
The BBG Rule Induction Algorithm

Kevin S. Van Horn and Tony R. Martinez

Computer Science Department, Brigham Young University

Provo, UT 84602 U.S.A.

This paper appeared in Proceedings of the 6th Australian Joint Conference on

Arti�cial Intelligence, Melbourne, Australia, 17 Nov. 1993, pp. 348{355.



The BBG Rule Induction Algorithm

Kevin S. Van Horn and Tony R. Martinez

Computer Science Department, Brigham Young University

Provo, UT 84602 U.S.A.

Abstract: We present an algorithm (BBG) for inductive learning from

examples that outputs a rule list. BBG uses a combination of greedy and

branch-and-bound techniques, and naturally handles noisy or stochastic

learning situations. We also present the results of an empirical study

comparing BBG with Quinlan's C4.5 on 1050 synthetic data sets. We

�nd that BBG greatly outperforms C4.5 on rule-oriented problems, and

equals or exceeds C4.5's performance on tree-oriented problems.

1 Background

BBG is an algorithm for learning to classify vectors of binary attributes. (It is

straightforward to extend it to arbitrary nominal attributes.

7

) BBG outputs a rule

list, i.e. an ordered list of if-then rules which are tried in order until one is found that

applies. In this section we introduce the basic concepts and vocabulary relevant to

BBG.

An example is a pair (x; c), where x 2 X = f0; 1g

n

and c 2 C for some �xed n

and �nite set of classes C. A hypothesis is a function h : X ! C. We say that h

misclassi�es an example (x; c) if h(x) 6= c.

A rule is a pair (t; c), where c 2 C and t 2 f{; 0; 1g

n

; t is called the rule's

precondition. We say that a vector x (or example (x; c)) matches t (or rule (t; c

0

))

if x

i

= t

i

whenever t

i

is not {. The size of a rule (t; c), written siz(t; c), is one plus

the number of 0's and 1's in t.

A rule list is a list of rules (t

1

; c

1

) � � � (t

k

; c

k

), with t

k

= true (the vector of all

{'s). It represents the hypothesis h such that h(x) = c

i

, where (t

i

; c

i

) is the �rst

rule that x matches. The size of a rule list is the sum of the sizes of its rules, i.e.

the number of rules plus the total number of literals appearing in rules.

BBG takes as input a collection of examples called the training sample, which

are presumed to be drawn independently and randomly from some unknown prob-

ability distribution D over X � C. Note that this implies that the relationship

between a vector x and its class c is in general a stochastic one, and not necessarily

deterministic.

The error of a hypothesis h is the probability that h(x) 6= c when (x; c) is drawn

at random from the same distribution D from which the training sample was drawn.

The empirical error of a hypothesis h is err(h; S)=jSj, where S is the training sample

and err(h; S) is the number of training examples misclassi�ed by h.

2 Outline of the Algorithm

The BBG algorithm consists of two parts:



1. An algorithm G which produces a sequence of rule lists of increasing size and

decreasing empirical error.

2. A method for trading o� empirical error and complexity to choose one of the

rule lists output by G. (There is a tendency to �t noise or statistical 
ukes of

the data when excessively complex hypotheses are allowed.

1,8

)

These two parts are entirely independent. The literature contains various meth-

ods for the second part: cross-validation,

2

hold-out sets,

3

the minimum description-

length principle,

6

structural risk minimization,

8

and heuristic error estimates.

5

BBG

uses a heuristic error estimate described in a separate paper.

7

This paper concen-

trates on algorithm G, which is outlined below:

i := 0

h

0

:= h := the single rule (true; c), where c is the most common class in S

while (err(h; S) > 0)

(t; c; p) := bestRule(h; S)

insert rule (t; c) into h just before its p-th rule

i := i+ 1; h

i

:= h

S is the training sample, and h

0

; h

1

; : : : is the output. The procedure bestRule()

tries to �nd a rule (t; c) and position p maximizing the ratio (decrease in empirical

error) / (rule size). We call this the gain-cost ratio of (t; c; p).

3 Finding the Best Rule to Insert

The di�cult part, of course, is implementing bestRule(). We use a branch-and-

bound algorithm with memory and time limits, which cannot guarantee optimality,

but usually produces optimal or near-optimal results.

Branch-and-bound algorithms explore a search tree, the nodes of which corre-

spond to sets of possible solutions, and the leaves of which are single solutions. The

children of a node comprise a partition of the set of solutions represented by the

node. The goal is to �nd a solution y maximizing �(y), for some given function �.

When a node z is reached one computes an upper bound u on the value of � for leaf

nodes descended from z; if u is no greater than �(y

?

) for the best solution y

?

found

so far, there is no need to explore the subtree rooted at z.

3.1 Preliminaries

For our purposes a node is a tuple (v; c; p), where v 2 f�; {; 0; 1g

n

, c 2 C, and p is

a position to insert a rule. If v has no � (undetermined) entries then the node is

a leaf, otherwise its children are obtained by choosing one index i for which v

i

= �

and setting v

i

to {, 0, or 1. We say that the node is expanded on variable i.

If z = (v; c; p) is a leaf node then (v; c) is a rule. If z is not a leaf node but

y = (t; c; p) is a leaf node, then y is a descendant of z in the search tree if and only

if t may be obtained from v by replacing each � entry with {, 0, or 1; this holds

regardless of the method for choosing the variable on which to expand a node.



We write solns(z) for the set of all leaf nodes descended from z. We de�ne

z

�

= (t; c; p), where t is obtained from v by replacing each � entry with {. We write

solns

�

(z) for solns(z)� fz

�

g. As will be seen, considering z

�

separately allows us to

obtain a tighter upper bound on the gain-cost ratio.

Associated with bestRule() are constants � (a memory bound) and � (a time

bound). It also uses variables Z (the collection of unexpanded nodes, with some

associated information), N (the number of nodes evaluated so far), g

?

(the gain-cost

ratio of the best solution found so far), and y

?

(the best solution found so far).

3.2 The Branch-and-bound Algorithm

Letting � = (�; : : : ; �), here is the algorithm for bestRule(h; S):

Z := ;; N := 0; g

?

:= 0

initialize information needed by eval(), using h and S

for (each class c and position p)

z := (�; c; p)

(u; j) := eval(z)

insert(u; j; z; Z)

while (Z 6= ; and N < � )

(u; j; z) := remove from Z its best element

while (u > g

?

)

let (v; c; p) = z

(z

0

; z

1

; z

2

) := children of z obtained by setting v

j

to {, 1, and 0

for (i := 0 to 2) (u

i

; j

i

) := eval(z

i

)

if (u

1

> u

2

) swap (u

1

; j

1

; z

1

) and (u

2

; j

2

; z

2

)

for (i := 0 to 1) insert(u

i

; j

i

; z

i

; Z)

(u; j; z) := (u

2

; j

2

; z

2

)

return y

?

The procedure insert(u; j; z; Z) adds (u; j; z) to the collection Z if u > g

?

and

either (1) jZj < � (the memory bound has not been reached), or (2) (u; j; z) is

better than the worst element w of Z (in which case w is removed to make room for

(u; j; z)). We consider (u; j; z) to be better than (u

0

; j

0

; z

0

) if u > u

0

(it has a better

upper bound) or u = u

0

and z contains fewer �'s than z

0

(z is closer to a leaf node

than z

0

).

The procedure eval(z) does the following:

1. It increments N , the number of nodes evaluated.

2. It computes an upper bound u on the gain-cost ratio for elements of solns

�

(z)

(see Section 3.3). If z is a leaf node then solns

�

(z) is empty, so it sets u = 0.

3. As a side-e�ect of the upper-bound computation it produces two more values:

the variable j on which the node is to be expanded, and the gain-cost ratio g

of the solution z

�

. If g > g

?

, then it sets g

?

to g and y

?

to z

�

.

4. The procedure returns (u; j) as its result.



Note that bestRule() uses a combination of best-�rst search and depth-�rst

search: it repeatedly removes the most promising node from Z and explores a linear

path down from the node. As each node z is reached the solution z

�

is considered

and evaluated. No leaf is ever expanded because the upper bound u = 0 associated

with it is never more than g

?

.

3.3 Computing the Upper Bound

We now give the details of steps 2 and 3 of eval(). Let us de�ne the following:

� �(y) = err(h; S) � err(h

0

; S), where y = (t; c; p) is a leaf and h

0

is obtained

from h by inserting the rule (t; c) at position p.

� msiz(z) = siz(t; c), where z

�

= (t; c; p). Note that msiz(z) � msiz(y) for any

y 2 solns(z).

The gain-cost ratio of a leaf y is just �(y)=msiz(y). Thus if � is an upper bound on

�(y) for y 2 solns

�

(z) then �=msiz(z) is an upper bound on the gain-cost ratio for

elements of solns

�

(z).

Let us consider the computation of �(t; c; p). We de�ne the following:

� S

p

= those examples in S that match none of the �rst p � 1 rules of h.

� S

t

p

= those examples in S

p

that match t.

� G(t; c; p) = those examples (x; c

0

) in S

t

p

for which c

0

= c and h(x) 6= c

0

;

G(z) = G(z

�

) if z is a non-leaf node.

� B(t; c; p) = those examples (x; c

0

) in S

t

p

for which c

0

6= c and h(x) = c

0

.

G(t; c; p) is the collection of previously misclassi�ed examples which are correctly

classi�ed after inserting rule (t; c) at position p. B(t; c; p) is the collection of pre-

viously correctly-classi�ed examples which are misclassi�ed after inserting the new

rule. Then �(t; c; p) = jG(t; c; p)j�jB(t; c; p)j, i.e. the number of old errors corrected

minus the number of new errors introduced.

Let y = (t

0

; c; p) 2 solns

�

(z) and z

�

= (t; c; p). Then S

t

0

p

� S

t

p

(since t

0

i

= t

i

whenever t

i

is not {), hence G(y) � G(z

�

) = G(z). Then jG(z)j � jG(y)j � �(y)

for every y 2 solns

�

(z), and we obtain jG(z)j=msiz(z) as an upper bound on the

gain-cost ratio for elements of solns

�

(z).

We can improve this bound without increasing the asymptotic time complexity

of eval(z), at the same time computing the gain-cost ratio of z

�

and identifying a

promising variable on which to expand z. BestRule() precomputes the various S

p

by ordering the examples in S according to the �rst rule in h which they match,

and computing for each p the index f [p] of the �rst example matching none of

the �rst p � 1 rules of h. If there are m examples then S

p

is just S[f [p]] through

S[m]. BestRule() also precomputes an array K such that K[i] = h(x), where (x; c

0

)

is the i-th example. Letting z = (v; c; p) and z

�

= (t; c; p), jG(z)j is computed

by stepping through the examples S[f [p]] through S[m], checking to see if each

example S[i] = (x; c

0

) matches t, and if so, comparing c

0

to K[i] and c to determine



if S[i] 2 G(z). This test of example i takes �(n) worst-case time. In �(1) additional

time eval() determines if S[i] 2 B(z

�

); summing over the examples this gives jB(z

�

)j,

which combined with jG(z)j = jG(z

�

)j and msiz(z

�

) gives the gain-cost ratio for z

�

.

Eval() also use counters �[i; b] (1 � i � n, b 2 f0; 1g) initialized to 0. Once

an example (x; c

0

) has been identi�ed as an element of G(z), eval() uses �(n) time

to step through the entries of x, incrementing �[i; x

i

] whenever v

i

= �. This does

not increase the asymptotic time complexity. Let z[i : b] be the possible child of

z obtained by replacing v

i

with b. Then after all the examples in S

p

have been

processed we have �[i; b] = jG(z[i : b])j for all i such that v

i

= �. Since msiz(z[i :

b]) = msiz(z) + 1, we then have �[i; b]=(msiz(z) + 1) as an upper bound on the

gain-cost ratio for elements of solns(z[i : b]). Taking the maximum over b 2 f0; 1g

and all i for which v

i

= � gives an upper bound on the gain-cost ratio for elements

of solns

�

(z). Furthermore, the i which attains this maximum is an obvious choice

for the variable on which to expand z in order to quickly reach a good solution in

the depth-�rst part of our search.

Putting all of this together gives the following algorithm for steps 2 and 3 of

eval():

let (v; c; p) = z and (t; c; p) = z

�


 := 0; � := 0; d := 0

init all �[i; b] to 0

for (j := f [p] to m) if (S[j] matches t)

let (x; c

0

) = S[j]

if (c

0

6= c and c

0

= K[j]) increment � | S[j] 2 B(z

�

)

if (c

0

= c and c

0

6= K[j]) | S[j] 2 G(z

�

)

increment 


for (i := 1 to n) if (v

i

= �) increment �[i; x

i

]

g := (
 � �)=msiz(z

�

) | gain-cost ratio of z

�

for (i := 1 to n and b := 0 to 1) if (�[i; b] > d)

d := �[i; b]; j := i

u := d=(msiz(z) + 1)

4 Experimental Results

We tested BBG on 1050 synthetic data sets. We wanted to compare its performance

on the same data sets with that of some well-respected and widely-known learning

algorithm; for this purpose we chose Quinlan's C4.5. We compiled the code that

came with his book

5

on DECstation 5000's and HP 710's. Since C4.5 can produce

either decision trees (the c4.5 program) or rule lists (the c4.5rules program), we

tested both alternatives. The default parameters were always used with these pro-

grams. Each data set consisted of 500 training examples and 30000 test examples

for estimating the actual error of the hypothesis output by a learning algorithm.

For BBG we set the memory limit � and time limit � as follows. Let m be the

number of examples (500) and n the number of Boolean attributes. For the 500 data



Table 1: Comparison of BBG and C4.5 on rule-oriented problems

l r n k � BBG c4.5 c4.5rules

29 12 38 3 0.03 4.85 � 0.84 14.31 � 1.65 13.15 � 1.43

32 9 38 5 0.02 3.38 � 0.51 15.58 � 2.13 13.14 � 1.70

30 11 45 5 0 0.45 � 0.26 11.86 � 1.64 8.75 � 1.70

34 7 50 4 0.04 7.56 � 0.77 20.78 � 2.32 20.78 � 2.14

34 7 52 2 0.05 9.05 � 1.01 17.22 � 1.50 16.49 � 1.37

30 11 54 6 0 0.58 � 0.30 13.15 � 1.84 9.88 � 1.57

32 9 61 4 0.02 4.19 � 0.82 16.69 � 1.69 15.18 � 1.71

36 5 64 3 0.05 11.21 � 0.93 17.96 � 1.30 19.38 � 1.29

31 10 67 3 0.04 6.97 � 0.80 20.70 � 2.06 19.07 � 2.04

28 13 79 2 0.02 6.36 � 1.02 12.75 � 1.63 11.66 � 1.52

sets summarized in Table 1 we set � to 2mn. For the 550 data sets summarized in

Table 2 we set � to max(50000; 2mn). In both cases we set � to max(250000; 10mn).

Typical execution times on an HP 710 workstation were around 25 minutes.

The data sets were produced using two problem generators, rgenex and tgenex.

These generators take the parameters n, k (number of classes), � (noise level), m,

and m

0

. Rgenex takes additional parameters r and l, and tgenex takes the additional

parameter s. Rgenex and tgenex work as follows:

1. A target h is randomly generated. For rgenex h is a rule list having r non-

default rules and size r + l + 1. In addition, each class c appears in approx-

imately (r + 1)=k rules and h has no super
uous rules (rules matched only

when some preceding rule is also matched.) For tgenex h is a decision tree

having s leaf nodes, with no class labeling more than twice as many leaf nodes

as any other class. In both cases we have n binary attributes and k classes.

2. A probability distribution D over f0; 1g

n

is constructed. For rgenex each of

the rules is equally often the �rst matched, and for tgenex the s leaf nodes are

equally often reached. The distribution \within" each rule / leaf is uniform.

3. m training examples and m

0

testing examples (x; c) are generated. First, x is

randomly selected from D. Then with probability 1 � � we set c = h(x), and

with probability � we set c = d for some class d 6= h(x) chosen uniformly and

randomly. This gives a uniform noise level of �.

Complete details on rgenex and tgenex are in another paper.

7

For any �xed setting of the parameters to rgenex and tgenex one can investigate

the expected error of a learning algorithm by generating a series of data sets using

these parameters, running the algorithm on the training samples and averaging

the resultant error rates on the test samples. We generated 50 data sets for each

parameter setting investigated, in order to get a good estimate of the expected error

rate, and also calculated 95% con�dence intervals. Note that the target h has an

error of �, which is the minimum possible error.



Table 2: Comparison of BBG and C4.5 on tree-oriented problems

s n k � BBG c4.5 c4.5rules

20 38 3 0.03 5.33 � 0.56 14.27 � 1.93 8.58 � 1.23

20 38 5 0.02 2.69 � 0.28 5.56 � 1.08 3.56 � 0.60

20 45 5 0 0.58 � 0.32 4.46 � 1.28 0.67 � 0.22

20 50 4 0.04 5.43 � 0.49 11.76 � 1.64 8.56 � 1.00

20 52 2 0.05 15.69 � 1.90 30.14 � 2.13 28.53 � 2.44

20 54 6 0 0.76 � 0.43 2.39 � 0.77 0.59 � 0.18

20 61 4 0.02 3.77 � 0.54 10.78 � 2.18 5.91 � 1.35

20 64 3 0.05 9.68 � 0.96 22.61 � 2.86 18.08 � 2.58

20 67 3 0.04 8.66 � 1.36 20.87 � 2.49 14.90 � 1.98

20 79 2 0.02 14.95 � 2.63 30.74 � 2.43 27.93 � 3.03

20 50 2 0 3.33 � 0.93 24.64 � 2.34 18.04 � 2.59

We �rst compared BBG and C4.5 for 10 di�erent parameter settings of rgenex

randomly chosen subject to r + l = 41. The results are summarized in Table 1,

where the columns labeled BBG, c4.5 and c4.5rules give the average error of the

three learning algorithms (in percent). For each of the ten settings of parameter

values, BBG outperforms both c4.5 and c4.5rules by wide margins.

We next compared BBG and C4.5 for 11 di�erent parameter settings of tgenex.

We set s = 20 in all cases and, except for the eleventh parameter setting, kept the

same values for n, k, and � as used for rgenex.

The results are summarized in Table 2. In each case the average performance

of BBG exceeds that of c4.5 and either is very close to or exceeds that of c4.5rules.

BBG's performance advantage is greater when there are few classes, and is quite

striking when k = 2 and � = 0 (the last case).

Next we compared BBG and C4.5 on four data sets from the UC Irvine machine

learning repository:

4

chess, tic-tac-toe, mushroom, and zoo. All of these have only

nominal attributes. We made a minor modi�cation to BBG to handle non-binary

attributes, described elsewhere.

7

We handled unknown attribute values by having

BBG treat \unknown" as just another possible attribute value.

We randomly partitioned the mushroom data set into 200 training examples and

7924 test examples (the problem is too easy if we use more training examples). Each

of the other data sets was randomly partitioned into 10 nearly-equal parts and the

learning algorithms run 10 times, each time choosing one part as the test sample

and the remaining data as the training sample; the errors were averaged. Table 3

contains the results, with m, n and k having the same meaning as before, and error

rates in percent. BBG used � = 50000 and � = 250000 in all cases.

Though not bad, these last results are a bit disappointing. This may simply be

due to chance, given the small number of data sets, but there is another possibility.

Our analysis of bestRule() reveals that that if there are strong correlations between



Table 3: Comparison of BBG and C4.5 on some UCI repository data sets

Data Set m n k BBG c4.5 c4.5rules

chess 3196 36 2 0.97 0.47 0.44

tic-tac-toe 958 9 2 1.15 14.61 1.04

mushroom 200 22 2 1.72 1.49 1.11

zoo 90 16 7 6.67 10.0 10.0

attributes, and these correlations are independent of class, BBG's branch-and-bound

search could be led down unproductive paths. While such correlations would be

uncommon in our synthetic data sets, they might be much more common in real-

world data sets.

5 Conclusions and Directions for Further Research

Our results indicate considerable promise for BBG, although the matter of corre-

lated attributes needs to be addressed; this can be investigated with more sophis-

ticated problem generators. Further research will look at other implementations of

bestRule() intended to be more robust and able to handle real-valued attributes and

internal disjunction for nominal attributes.

References

[1] A. Blumer et al. (1989.) Learnability and the Vapnik-Chervonenkis dimension.

Journal of the ACM 36, 929{965.

[2] L. Breiman et al. (1984.) Classi�cation and Regression Trees. Belmont, CA:

Wadsworth.

[3] L. Devroye (1988.) Automatic pattern recognition: a study of the probability

of error. IEEE Transactions on Pattern Analysis and Machine Intelligence 10,

530{543.

[4] P. M. Murphy & D. W. Aha (1992.) UCI Repository of machine learning

databases. Irvine, CA: University of California at Irvine, Dept. of Information

and Computer Sciences.

[5] J. R. Quinlan (1993.) C4.5: Programs for Machine Learning. San Mateo, CA:

Morgan Kaufmann.

[6] J. R. Quinlan & R. L. Rivest (1989.) Inferring decision trees using the Minimum

Description Length Principle. Information and Computation 80, 227{248.

[7] K. S. Van Horn & T. R. Martinez (1993.) The Design and Evaluation of a

Rule Induction Algorithm. Technical Report BYU-CS-93-11, Computer Science

Department, Brigham Young University.

[8] V. N. Vapnik (1982.) Estimation of Dependences Based on Empirical Data.

New York: Springer-Verlag.


