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ABSTRACT 
 
 
 

LAZY TRAINING: 
 

INTERACTIVE CLASSIFICATION LEARNING 
 
 

Michael Rimer 
 

Department of Computer Science 
 

Master of Science 
 
 
 

Backpropagation, similar to most learning algorithms that can form complex decision 

surfaces, is prone to overfitting.  This work presents the paradigm of Interactive Training 

(IT), a logical extension to backpropagation training of artificial neural networks that 

employs interaction among multiple output nodes.  IT methods allow output nodes to 

learn together to form more complex systems while not restraining their individual ability 

to specialize. 

 

Lazy training, an implementation of IT, is presented here as a novel objective function to 

be used in learning classification problems.  It seeks to directly minimize classification 

error by backpropagating error only on misclassified samples from outputs that are 

responsible for the error.  Lazy training discourages overfitting and is conducive to higher 

accuracy in classification problems than optimizing current objective functions, such as 



 

sum-squared-error (SSE) and cross-entropy (CE).  Experiments on a large, real world 

OCR data set have shown lazy training to significantly reduce generalization error over 

an optimized backpropagation network minimizing SSE or CE from 2.14% and 1.90%, 

respectively, to 0.89%.  Comparable results are achieved over eight data sets from the UC 

Irvine Machine Learning Database Repository, with an average increase in accuracy from 

90.7% and 91.3% using optimized SSE and CE networks, respectively, to 92.1% for lazy 

training performing 10-fold stratified cross-validation.  Analysis indicates that lazy 

training performs a fundamentally different search of the feature space than 

backpropagation optimizing SSE or CE and produces radically different solutions.  These 

results are supported by the theoretical and conceptual progression from algorithmic to 

interactive training models. 
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“ The discovery consists of seeing what everyone else has seen 
and thinking what no one else has thought”  
 

Albert Szent-Georgyi

 
 
 
 
Chapter 1 
 
Introduction 
 

Artificial neural networks have received substantial attention as robust learning models 

for tasks including classification and function approximation [Rum85].  Learning is no 

longer formulated as simply function approximation [Bia98].  Over the last decade much 

research has gone into improving a model’s ability to generalize beyond sampled data.  

Many factors play a role in a network’s ability to learn, including network properties, the 

learning algorithm, and the nature of the problem being learned.  Often, overfitting the 

training data is detrimental to generalization (correctly predicting future unseen data 

from presently available data).  Developing a universal learning model for high-accuracy 

learning while avoiding perceptible overfitting over relevant (real world) problem 

domains remains elusive. 

 

This work proposes interactive training (IT), an emerging neural network learning 

paradigm wherein a network or networks learn multiple tasks interactively.  Interactive 

training provides a framework for improving generalization on complex real world 

classification problems, such as speech and character recognition.  Enhancing neural 

network learning models through interaction is an extension consistent with the evolving 
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paradigm shift in computer science from reliance on algorithms to interactive models as 

the driving force in problem solving [Weg97, Weg99]. 

 

This work presents interactive classification training, or lazy training, as its main 

contribution, a training technique that implements a new objective function for learning 

classification tasks.  Lazy training seeks to directly minimize classification error by 

backpropagating error only on misclassified samples from outputs that are responsible for 

the error.  It is able to achieve this by enabling the output nodes to interact among 

themselves.  This technique discourages overfitting and is conducive to higher accuracy 

in classification problems than optimizing current objective functions, such as sum-

squared-error (SSE) and cross-entropy (CE). 

 

Lazy training is shown to perform markedly better on a large OCR data set than an 

optimized backpropagation network minimizing SSE or CE, reducing classification error 

from 2.14% and 1.90%, respectively, to 0.89%, a 58.4% decrease in error.  Comparable 

increases in accuracy are achieved on several classification problems from the UC Irvine 

Machine Learning Repository, with an average increase in accuracy from 90.7% and 

91.3% for optimized SSE and CE networks, respectively, to 92.1% for lazy training 

performing 10-fold stratified cross-validation.  Analysis indicates that lazy training 

performs a fundamentally different search of the feature space than backpropagation 

optimizing SSE or CE and produces radically different solutions. 
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1.1 Philosophy of artificial neural networks and terminology 

A common purpose of feed-forward backpropagation neural networks is to estimate a 

function f : x → y, from input variables x = { x1, …, xm}  to output variables y = { y1, …, 

yn} .  Neural networks consist of a connected directed graph of nodes (grouped into 

layers) and edges.  Pattern features (x) are entered into the network through the layer of 

input nodes.  Results (y) are received through the layer of output nodes.  Optional layers 

of hidden nodes within the network assist in estimating the generating function.  Layers 

of nodes are linked together by connecting edges called weights that represent excitatory 

(positive values) or inhibitory (negative values) signals between nodes.  Neural network 

backpropagation learning is commonly accomplished by repeatedly presenting data 

samples to the network.  The weight values are updated by minimizing an error or 

objective function until the network reaches an acceptable stopping criterion.  When the 

stopping criterion is met the network is said to have converged.  The process of 

presenting samples to a network to estimate the true data distribution is known as 

training.  The samples presented to the network are known as the training data.  Future 

data that are input to the network for processing once training is completed are known as 

test data. 

 

1.2 Overview 

An overview of the issues of learning with feed-forward backpropagation neural 

networks and is presented in Section 2.  The problem of overfitting is discussed and 

existing solutions are summarized.  A discussion of objective functions is provided in 

Section 3.  Interactive training is discussed in Section 4.  The lazy training heuristic is 
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presented in Section 5.  Experiments and analysis are given in Section 6.  The usefulness 

of interactive processes, problems in training networks independently and the benefits of 

interactive training are presented in Section 7.  Conclusions and future work are 

presented in Section 8. 
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Chapter 2 
 

Considerations in Neural Network Training 
 
 
In multi-layer perceptron (MLP) neural network learning, network speed, complexity and 

size are important considerations.  However, as computing resources continue to increase 

the consideration of generalization stands out at the forefront.  This, after all, is the prime 

purpose of learning.  With sufficient capacity, a network is able to store all of the training 

patterns presented it, and can reproduce results exactly as if performing a “ table lookup.”   

After a certain point in backpropagation learning, however, reducing training set error 

often accompanies an increase in test set error, illustrating the degradation in 

generalization that accompanies overfit as training continues (see Figure 1). 

 

Figure 1.  As training error (SSE) decreases, overfit is perceived as test error increases. 
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Figure 2.  Polynomial approximations of data from y = sin (x/3).  Significant overfitting 
can be observed for orders 16 and 20. 

 
Overfitting has been classically pictured by considering the task of fitting a curve of 

arbitrary polynomial degree to a set of N data points (possibly affected by noise) 

extracted from a given domain [Law00] (see Figure 2).  Often, with a low-order function 

the data points can be approximated fairly well.  With an Nth-order polynomial, it is 

guaranteed that all data points in the sample can be fit exactly.  However, this might be a 

poor solution for other data points in the population.  Numerous experiments in the 

literature provide examples of networks that achieve little error on the training set but fail 

to achieve “optimal”  accuracy on test data [And95, Sch93].  There is an inherent tradeoff 

between fitting the (limited) data sample perfectly and generalizing accurately on the 

entire population (see Section 2.6). 

 

The question of how to prevent overfitting is a subtle one.  When a network has many 

free parameters, not only can learning be fast, but also local minima can often be avoided.  
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On the other hand, networks with few free parameters tend to exhibit better 

generalization performance [Cas97].  Determining the appropriate size network remains 

an open problem.  How to combat overfitting has received much attention in the literature 

and is the main focus of this work. 

 

In this section, several issues are enumerated which must be considered when designing 

an effective neural network backpropagation learner.  How each of these issues is dealt 

with, to some extent, has a significant effect on generalization.  How the lazy training 

philosophy presented in this work fits into these issues is discussed. 

 

2.1 Altering Network Topology 

Network topology plays a large role in achieving high generalization.  Most commonly, 

solutions involve training a fully connected network (every node in one layer is connected 

to every node in the next layer).  However, it has often been shown that partially-

connected networks perform as well or better than fully-connected ones.  Pruning 

algorithms, such as Optimal Brain Damage [Sol90] and Optimal Brain Surgeon [Sto93], 

reduce the connectivity in an overly specified network, and construction algorithms 

(several are enumerated in [And01b]) insert needed connections into a skeleton-network 

until sufficient function specification is achieved. 

 

2.1.1 Pruning Algorithms 

For a fixed amount of data, networks with too many weights often do not generalize well.  

On the other hand, networks with too few weights will not have enough power to 
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represent complex data accurately.  The best generalization is often obtained by trading 

off the training error and the network complexity [Lec90].  If it is possible to reduce 

network complexity without reducing training error, then it is expected that 

generalization accuracy will improve. 

 

Network complexity is defined [Wan94] as not only the number of parameters but also 

the capacity to which they are used in learning (i.e., their magnitude).  A network with a 

few large weights may effectively be more complex than a network with several small 

weights.  Hence, complexity can be reduced not only through pruning parameters, but 

also by shrinking their values.  A learning algorithm that aims at preserving small 

weights during training can aid in improving generalization.  One example of this is 

performing weight decay [Wer88], which serves to weaken overly strong or saturated 

connections and in effect remove unused network connections.  However, weight decay 

serves more as a recovery technique to repair the damage caused by minimizing the error 

function as weights tend toward saturation, rather than providing a heuristic that 

specifically aims at small-weight solutions.  The lazy training algorithm presented in this 

work actively attempts to find good solutions with weights remaining as small as 

possible. 

 

2.1.2 Growth Algorithms 

Dynamic network construction algorithms typically start from a very simple basis and 

progressively add complexity until the training data are acceptably learned.  

Theoretically, a network can always be grown until it has perfectly learned the training 
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data.  However, at this point it often acts as a table lookup and exhibits poor 

generalization.  Therefore in growing networks it is essential to choose a proper stopping 

point.  Growth and pruning algorithms can be used in conjunction to first grow a network 

that empirically has the capability to learn the training data, and then prune nodes until 

accuracy on a holdout set begins to decrease. 

 

Several growth methods append nodes after the current output node, which is 

disadvantageous since the original output node was not trained specifically as a feature 

detector for use in the new network.  Cascade Correlation [Fah90] and DMP3 [And01b] 

add nodes before the output node.  Lazy training effectively teaches each output node to 

function as a feature detector that performs in conjunction with the other output nodes, 

rather than on its own.  In this way, their mutual results can be combined into 

meaningful, non-redundant output. 

 

2.2 Early Stopping 

Early stopping strategies [Wan94] commonly utilize network architectures that have the 

potential of being overly complex.  Larger network architectures are likely to converge to 

a lower training error, but tend to produce higher error on test samples.  In order to avoid 

this, early stopping strategies try to determine when the problem has been learned 

sufficiently well, but not yet overfit [And01b]. 

 

[Wan94] shows that stopping learning before the global error minimum has the effect of 

network size selection.  This can be accomplished through a number of methods, such as 
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considering the accuracy of a validation, or holdout, set, and stopping training when the 

performance on the holdout set begins to degrade [And01b]. 

 

Lazy training performs an “online”  form of early stopping.  Rather than stopping training 

completely when it is detected that the training set is being overfit, lazy training 

temporarily omits training on individual patterns when it is determined that such patterns 

are being overfit. 

 

2.3 Network Size 

It is often believed that networks with too many degrees of freedom generalize poorly.  

This line of reasoning is based on the fact that a sufficiently large network is able to 

“memorize”  the training data, essentially performing a table lookup.  By reducing the 

learning capacity of such a network, it will be thereby forced to generalize, as it no longer 

has the capability to memorize the training data. 

 

Caruana [Car97] points out that in order to perform a proper theoretical analysis of net 

capacity and generalization, the search heuristic must also be taken into account.  

Gradient descent search heuristics do not give all hypotheses an equal opportunity.  The 

inductive bias of standard backpropagation is to start with a simple hypothesis (usually 

small, random weights) and make the hypothesis more complex (increase the magnitude 

of the weights) until the network sufficiently learns the problem. 
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Thus, backpropagation is biased toward hypotheses with small weights, examining 

solutions with larger weights only as dictated by necessity.  Excess network capacity does 

not necessarily hinder generalization, as learning stops as soon as possible.  This stopping 

point is dictated in part by the objective function.  During the first part of training, large 

networks behave like small networks.  If they do not come across a satisfactory solution, 

they begin to perform less like small nets, and more like mid-size networks, and so on.  If 

a large net is too big, early stopping procedures will detect when generalization begins to 

degrade and halt training.  At this point, the larger network performs similar to some 

smaller network.  This means that generalization can be less sensitive to excess net 

capacity, and that using a net that is too small will hurt generalization more than using 

nets that are too large [Car97]. 

 

The ability to perform online stopping, which can be combined with standard early 

stopping techniques, enables lazy training to be more robust in its management of 

excessively large networks. 

 

2.4 Parameter settings 

Every learning algorithm involves the tuning of parameter settings to generate an 

acceptable solution.  Ubiquitous parameters are network topology (number of nodes, 

number of hidden layers, connectivity), input representation, selection of objective 

function, and stopping criteria.  For backpropagation networks, a learning rate is 

included.  A separate learning rate can be selected for each weight in the network.  

Choosing a proper learning rate is important, as there exists a finite range of values for 
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which convergence is possible.  Adding a momentum term can help the parameter range 

of convergence to be nearly doubled [Qia99].  Additionally, countless variants exist 

where additional parameters are added to vary learning rate and momentum over time, for 

flat spot elimination by artificially increasing the output sigmoid derivative [Fah88], 

capping the error backpropagated to a node, and so forth. 

 

2.5 Ensembles 

Learners trained in the same problem domain can be combined into an ensemble.  

Classical methods of designing ensembles involve a two-step process, where the 

networks are first generated independently, and then combined [Sha96].  Combining 

networks can be done in many ways.  A gating network can determine which network 

samples are sent through for classifying [Cha97a].  Alternately, a sample can be fed into 

all networks, and their outputs combined through voting [Bau99].  Their answers can also 

be fed as inputs into another learner that makes the final decision (a process called 

stacking) [Wol92]. 

 

Background knowledge can be taken advantage of in certain cases so networks in an 

ensemble can learn to master specific tasks.  A phoneme recognition system is presented 

in [Ham89] where division of subtasks (recognizing phonemes) is known prior to 

training.  Optical character recognition (OCR) is another application where division of 

subtasks can be determined prior to training.  When this is the case, networks can be 

selected to learn specific sub-goals (recognizing certain phonemes or letters as opposed to 

attempting to recognize entire words or all possible classes at once, for instance). 
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2.6 Bias and Variance 

A network’s bias and variance [Gem92] can be intuitively characterized as the network’s 

test set generalization and its sensitivity to training data, respectively.  There exists an 

inherent tradeoff between bias and variance, namely 

 

The best generalization requires a compromise between the conflicting 

requirements of small variance and small bias.  It is a tradeoff between 

fitting the training data too closely (high variance) and taking no notice of 

it at all (high bias) [Sha96, p. 8]. 

 

Bias is the extent to which the network’s output varies from the target function (the 

error), while variance is the sensitivity to the training data sampled in affecting 

generalization (the variance of the constructed hypothesis from the optimal (Bayes) 

hypothesis).  An ideal function approximation network has low bias and low variance. 

 

An ensemble with high variance tends to have low correlation of errors since each 

network arrives at a significantly unique hypothesis.  The ideal ensemble is a set of nets 

that do not show any coincident errors.  In other words, each net has good generalization 

(low bias), and when a network is in error, the error is not shared by other outputs (high 

variance) and can be corrected through voting.  If only one output is in error, it can be 

overruled by considering the majority of correct outputs of the remaining nets.  However, 

ambiguity results when more than one (i.e., close to a majority) output is in error.  Low 

bias and high variance is desirable in an ensemble, and having sufficiently high variance 
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can make up for moderately high bias.  Variance is commonly introduced into ensembles 

by varying the data presented to each network.  This can be done through data sampling, 

disjoint training sets, adaptive resampling, providing different data sources, 

preprocessing, or a combination of these [Sha96]. 

 

Friedman illustrates that low SSE bias is not important for classification, and one can 

reduce classification error toward the minimal (Bayes) value by reducing variance alone 

[Fri97].  Lazy training reduces variance among outputs by “over-smoothing”  the decision 

surface.  SSE bias is increased, but lazy training is used for classification tasks, not 

function approximation. 

 

Variance is controlled by the degree of over-smoothing – more smoothing, less variance.  

Lazy training accomplishes over-smoothing by discouraging patterns from affecting the 

shape and location of the decision surface more than is required for correct classification.   

Lazy training is need-based, attempting to reduce output error only when other outputs 

reproduce that error to an extent that can be considered detrimental.  Lazy training does 

not attempt to reduce error when it can be resolved by jointly considering the output 

values (as in ensembles), so as not to increase variance needlessly though overfitting. 

 

2.7 Chapter Summary 

Over the last fifteen years, much effort has been put into developing optimized neural 

network learning models and techniques.  Techniques, such as Quickprop [Fah88] and 

RPROP [Rie93], seek to speed up learning by dynamically adjusting update parameters.  



Chapter 2.  Considerations in Neural Network Training 15 

 

Models that seek to generate network topologies that are more suited to learning a given 

problem are classified as adaptive learning algorithms [And95, And96, Fah90].  Partially 

connected static architectures are also considered in [Cha97].  These networks have fewer 

parameters and are therefore simpler and more efficient than fully connected networks 

yet are able to perform equally well. 

 

In taking all of the above issues into account, overfitting is typically considered to be a 

global phenomenon.  However, the degree of overfitting can vary significantly 

throughout the input space.  Lawrence and Giles [Law00] show that overly complex MLP 

models can improve the approximation in regions of underfitting, while not significantly 

overfitting in other regions.  However, their discussion is limited to function 

approximation tasks and not classification problems, which are affected in a different 

way by bias-variance tradeoffs [Fri97].  Lazy training seeks to achieve minimal 

overfitting not only globally but also locally by not training on patterns that are already 

correctly classified. 

 

The problem of overfitting has likewise received much attention in the literature.  

Methods of addressing this problem include using a holdout set to stop training early 

[Wan94], cross-validation [And99a], node growth [Fah90, And01b] and node and weight 

pruning [Cas93, Cas97], weight decay [Wer88], and ensemble techniques [Sha96], 

among others.  These techniques approach optimal solutions given the bias of standard 

backpropagation learning but do not consider possible improvements to the bias itself.  

Node pruning seeks to improve accuracy by reducing network size, rather than alleviating 
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the problems common to larger networks, for example.  This bias exists to a large extent 

as a result of the objective function used to update the network parameters.  A discussion 

of objective functions is presented in the next chapter. 
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Chapter 3 
 
Classical Objective Functions 
 
 
3.1 Critique of common training techniques 

Much research has gone into developing optimizations to the backpropagation algorithm.  

Artificial training sets are often devised to illustrate the behavior of new training models 

in theoretical situations.  However, as neural networks are increasingly used in real world 

machine learning solutions, the necessity of basing research results on real world 

applications cannot be ignored.  As early as the development of the backpropagation 

algorithm, Rumelhart touched upon the importance of training and generalizing on real 

world data sets [Rum85].  However, the validity of results is often still based on analysis 

of artificial data sets.  Tollenaere [Tol90] observes once again it would be better to 

publish results on real world problems.  Now, routine experimentation on real world 

problems to test the validity of new learning approaches has become more common. 

 

There has been a tendency to base “better”  results of novel training variants on 

measurements which are not conclusive of improved learning ability.  This is especially 

prevalent in earlier research (see [Tol90, Section 3.1] and [Fah88, Section 2.1] for a good 

discussion of this), but still occurs today.  Results in the literature on speed 

enhancements, for instance, often show how fast a new algorithm can converge to 
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arbitrary accuracy on a training set.  In essence, this demonstrates how easily new 

training algorithms can overfit, but says nothing about their ability to generalize.  Further, 

when test set results on classification problems are reported, they as often as not report 

the minimization of some objective function used to learn, rather than classification 

accuracy, which is the real goal of the learner. 

 

3.2 Overview of Objective Functions 

Backpropagation neural networks are commonly trained through gradient descent 

procedures.  Gradient descent does not allow direct minimization of the number of 

misclassified patterns [Dud99, Chapter 5].  Therefore, an objective function must be 

derived that will result in increased classification accuracy as objective error is 

minimized.  The methodology of gradient descent requires a differentiable output 

function (i.e., squashing function) in order to minimize objective error.  When a sample is 

presented to the network, the network produces an output value.  This output may have a 

corresponding error measure derived by its deviance from a target output value.  

Quantifying the output error provides a way for iteratively updating the network weights 

in order to minimize that error and thereby achieve more accurate output. 

 

Classification of N classes is often viewed as a regression problem with an N-valued 

response, with a value of 1 in the nth position if the observation falls in class n and 0 

otherwise [Leb93].  The values of zero and one can be considered idealized or hard target 

values.  However, in practice there is no reason why class targets must take on these 

values. 
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To generalize well, a network must be trained using a proper objective function.  

Backpropagation training often uses an objective function that encourages making 

weights larger in an attempt to output a value approaching hard targets of 0 or 1 (±1 for 

htan).  Using hard targets is a naïve way of training and does not generalize well.  

Different fractions of the data are learned at different times during training, and using 

hard targets not only leads to weight saturation, making it harder and slower to learn 

samples that have yet to be learned, but also forces the learner to overfit on samples that 

have already been learned.  Using hard targets of 0.1 and 0.9 presents a less severe 

solution. 

 

Rankprop [Car95] provides an alternative method to training with hard target values and 

Caruana empirically shows that it improves generalization.  Rankprop records the output 

of the learner for each training pattern.  It then sorts the samples in the training set based 

on class, then according to output values.  Thus, a rank of the samples consistent with the 

current model is developed and used to define the target values on the next epoch.  The 

idea behind Rankprop is that in the case of complex nonlinear solutions a simpler, less 

nonlinear function is provided to learn instead.  The resulting simpler model often 

generalizes better. 

 

Below is a critique of several of the most commonly used objective functions, followed 

by the introduction of the classification training objective function. 
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3.2.1 Sum-squared error / Mean-squared error 

Sum-squared error (SSE) or mean-squared error (MSE), a common statistical measure 

of optimality, is a natural choice for an objective function, as it is differentiable.  The 

most common way to train a neural network is thus to approach network weights that 

minimize SSE. 

 

The validity of using SSE as an objective function to minimize error relies on the 

assumption that sample outputs are offset by inherent gaussian noise, being normally 

distributed about a cluster mean.  For learning function approximation of an arbitrary 

signal this presumption often holds.  However, this assumption is invalid for 

classification problems, where the target vectors are class codings (i.e., arbitrary nominal 

or boolean values representing designated classes).  This suggests that other metrics are 

more suited to classification problems. 

 

In [Lec90], a study of the digits problem revealed that heuristically reducing the number 

of network parameters by a factor of two increased training set MSE by a factor of ten, 

while generalization MSE increased by only 50%, and test set classification error actually 

decreased.  This indicates that MSE is not the most reliable objective function for this or 

similar tasks.  This also implies that comparison studies showing “ improvements”  

through a reduction of SSE/MSE on classification tasks are not significant unless 

classification accuracy increases likewise. 
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3.2.2 Cross-entropy 

Cross-entropy (CE) assumes idealized class outputs (i.e., target values of zero or one for 

a sigmoid activation) rather than noisy outputs as does SSE [Mit97] and is therefore more 

appropriate to classification problems.  However, error values using SSE and cross-

entropy have been shown [Ham90] to be inconsistent with ultimate sample classification 

accuracy.  That is, minimizing CE as well as SSE is not necessarily correlated to high 

recognition rates. 

 

3.2.3 Classification figure-of-merit 

The classification figure-of-merit (CFM) objective function was introduced in [Ham90] 

for classification problems.  It provides a closer estimation of true classification accuracy, 

as minimizing error is monotonic with increasing classification accuracy.  Networks that 

use the CFM as their criterion function are introduced in [Ham90] and further considered 

in [Barn91]. 

 

However, CFM does not determine localization in learning [Jac91, p.2], i.e., every net is 

trained on all samples.  It produces strong (cooperative) coupling between experts, but 

there could be redundant experts for each sample.  [Jac91] introduces competitive 

experts.  A gating network makes a stochastic decision about which expert to select based 

on the input.  This kind of system tends to devote a single expert to each training case. 
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The task of CFM is to separate network output values by as large a range as possible.  

Like SSE and CE, this tactic encourages weight saturation, which is often indicative of 

overfitting and detrimental to accuracy [Bart98]. 

 

3.2.4 Information gain 

Information gain is especially useful with iterative network growth in mind [And01b].  

Since it make decisions which have the most affect on accuracy, it has the potential to 

avoid local minima early on in the training process.  Rather than each learner trying to 

immediately fit local regions of a function (curve) to arbitrary accuracy, as one learner 

fits a small region sufficiently well, others stop trying to learn that part and can direct 

their attention to other areas still in need of learning the most. 

 

A problem with information gain is that it does not clearly suggest how training is to 

proceed.  Training is carried out either on repeated runs of random weight perturbations 

or by normalizing the learning rate for each class based on the prospective information to 

be gained from correcting an error on an incorrectly classified sample of that class 

[And01b].  Therefore, usually only very simple models are trained to maximize 

information gain, such as perceptrons. 

 

3.3 Improving the objective function for classification 

Methods for overcoming problems in the backpropagation objective function often 

involve forming network ensembles.  Ensemble techniques, such as bagging and boosting 
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[Mac97], or wagging [And99b], are more robust than single networks when the errors 

among the networks are not positively correlated (see Section 4). 

 

There is evidence [Bart98] that the size of the weights in a network plays a more 

important role to generalization than the number of nodes.  A simpler method of 

preventing overfitting is to modify the objective function by providing a maximum error 

tolerance threshold, dmax, which is the smallest absolute output error to be back 

propagated.  In other words, no weight update occurs for a given dmax, target value, tj, and 

network output, oj, if the absolute error | tj – oj | < dmax.  This threshold is arbitrarily 

chosen to represent a point at which a sample has been sufficiently approximated.  With 

an error threshold, the network is permitted to converge with much smaller weights 

[Sch93]. 

 

3.4 On the appropriateness of the objective function 

It must be stressed that minimizing an objective function is not the goal of learning.  

Rather, it must be viewed as the mechanism that guides the network in learning the 

concept.  The above objective functions provide mechanisms that do not directly reflect 

the true goal of classification learning, which is to achieve high recognition rates on 

unseen data.  A designer implementing a network to learn the task of face or voice 

recognition by minimizing SSE is not really interested in what value the SSE reaches, but 

how accurate the recognizer is.  Additionally, inappropriate objective functions can be 

deceiving in portraying how well the network has learned the problem (e.g., LeCun’s 

digits study mentioned in Section 3.2.1).  This being the case, the objective function 
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chosen for learning a given task should approximate the true goal of the learner as closely 

as possible. 

 

3.5 Lazy training, a novel objective function 

This thesis presents the classification error, or lazy training objective function.  Its 

philosophy is similar to CFM, in that in general it also attempts to increase the range 

between output activations.  However, lazy training differs from CFM in that it widens 

the range between outputs only when there is classification error (which in actuality 

translates to a narrowing of the gap between outputs, as they are transposed with respect 

to their classical target values).  When a classification error is made, error is 

backpropagated only from those outputs that are credited with producing the error.  This 

approach allows the network to relax more conservatively into a solution and discourages 

weight saturation and overfitting.  A theoretical basis for lazy training is presented in the 

next chapter, and the lazy training error function is presented in Chapter 5. 
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Chapter 4 
 

Interactive Training 
 
 
It has been proposed [Weg97, Weg99] that learning models that interact with an external 

environment (e.g., another learner) have a greater theoretical power of expression than 

non-interactive models.  To support this, [Wei99] shows that coupled agents perform 

much more efficiently than independent agents at complex learning tasks.  The paradigm 

shift from optimized, but isolated, algorithms to interactive models reflects the current 

evolution in the philosophy of the field of computer science from procedure-oriented to 

object-oriented languages and single mainframes to networks of personal computers. 

 

Neural network models that learn interactively are proposed to be superior over 

independent models.  A discussion of combining neural networks into ensembles can be 

found in [Sha96].  Interactive ensembles are presented in [Liu99a, Liu99b], where the 

networks in the ensemble are trained simultaneously with the inclusion of an additional 

error term that encourages negative error correlation among the networks.  This generally 

provides some improvement.  However, the field of interactive learning among neural 

nets is largely unexplored.  Lazy training is an original contribution to the budding field 

of interactive neural network learning. 
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Interactive methods can be performed on separate, specialized single-output networks or 

a single multi-output network, but discussion in this section will be limited to separate 

networks for simplicity.  The advantages and disadvantages of each method are discussed 

in Section 6.3. 

 

4.1 Multi-task learning 

Common training methods for learning multiple tasks involve training multiple networks 

separately, one for each task.  However, learning the subparts of a complex problem 

separately may not be a good idea.  Independent training of domain-specific experts is 

only marginally beneficial to the system as a whole.  Multi-task learning (MTL), learning 

multiple problems simultaneously with a multiple-output network, is described by 

Caruana [Car93, Car94, Car95, Car97].  Caruana shows how learning multiple tasks in 

conjunction (e.g., when learning how to automatically drive a vehicle, recognizing where 

the road’s center line and/or left and right lanes are located in addition to deciding just 

how to steer) helps to avoid local minima and improve generalization.  MTL performs 

better (learning tasks simultaneously) than learning tasks separately [Car93].  There are 

several reasons why MTL improves on single-task learning (STL).  Advantages and 

disadvantages of using MTL over STL are discussed in [Car93]. 

 

A problem that often occurs during training is due to the moving-target problem, and is 

referred to by Fahlman [Fah91] as the herd effect.  Suppose there exist two separate 

computational sub-tasks, A and B, which must be performed by the hidden nodes of a 

network.  Any of the hidden nodes could handle either task, but since they have no way 
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of communicating among themselves, they must decide independently which task to 

solve.  If task A produces a more coherent error signal than B, there is a tendency for all 

the hidden nodes to focus on learning A.  Once A is redundantly solved by all the nodes 

in the network, then they begin to work on B, which is now emitting the only significant 

error signal.  If they move toward B all at once, then problem A reappears.  Often the 

weights can be observed to oscillate for a prolonged period of time until the “herd”  

finally splits up and deals with both sub-tasks at once.  This phenomenon, where weights 

oscillate back and forth, can be seen on complex problems (e.g., 2 spiral).  The herd 

effect can be observed not only among nodes in an MTL or STL network, but among 

networks being trained simultaneously in an ensemble as well. 

 

4.2 Interactive learning 

Interactive training (IT) goes a step beyond MTL.  In addition to simply having 

specialized networks learning tasks at the same time, IT explicitly shares relevant 

information among the networks during training to coordinate their learning process.  

When networks are trained concurrently, rather than sequentially as in standard 

ensembles, they can take advantage of greater expressive power through interaction 

during the training process.  Two or more networks can collaborate together to decide 

how learning is to proceed at any given point.  One method for allowing interaction by 

simultaneously training ensemble networks is presented in [Liu99a, Liu99b]. 

 

Lazy training is another instance of the interactive training philosophy.  Network 

interaction through lazy training allows the implementation of a dynamic error threshold.  
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That is, when one network presents a sufficient solution in an area of the problem space, 

other networks do not need to work at redundantly modeling the same local data.  

Consequently, they are able to specialize and break up a complex problem into smaller, 

simpler ones.  This provides for a more conservative form of training that converges with 

smaller network weights, hence with less overfitting and greater generalization accuracy.  

The lazy training algorithm is presented in the following chapter. 
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Chapter 5 
 

The Lazy Training Heuristic 
 
 
Interactive training considers the output activations of the entire system during training. 

There are several possible ways to utilize this information in calculating the error signal 

for backpropagation.  In this case, for each pattern considered, only those networks that 

are credited with a classification error are updated through backpropagation. The result is 

training without idealized target outputs of 0 and 1, providing a training mechanism that 

is reminiscent of constraint satisfaction and reinforcement learning, where the network 

learns to interact with its (changing) environment.  As this technique forces networks to 

learn only when explicit evidence is presented that their state is a detriment to 

classification accuracy, we have dubbed this technique classification training, training by 

necessity, or lazy training (not to be confused with lazy learning approaches [Aha97]). 

 

Lazy training is similar to Rankprop in that it avoids the use of hard target values.  

However, rather than providing “soft”  targets, it avoids the use of specific target values 

all together.  The objective of lazy training is not to minimize the error between target 

and output values, but rather to produce output values that can be accurately translated to 

correct classifications.  When target values are not required to guide training, the network 

is able to arrive at a solution more simply.  This avoids many of the problems 
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accompanying overfitting.   

 

Network weights are updated during lazy training exclusively to minimize classification 

error.  When the network misclassifies a sample, credit for the error is assigned to two 

sources.  The first is the set of output nodes with higher output values than the target 

output node (resulting in the system outputting the wrong class value).  The second is the 

target output node itself, which outputted too low a value to produce the correct 

classification.  By lazy training, smaller weights, even approaching zero, can provide an 

acceptable solution for classification tasks.  In an MLP, weights are updated based on 

how much each node contributes to the output error.  Analogously, the IT model updates 

only the weights of nets that contribute to hindering the classification accuracy of the 

system.  Incorporation of an error function minimizing the classification error directly is 

made possible through the increased interactive expressiveness of the IT network.  This 

approach is formalized as follows. 

 

5.1 Lazy Training error function 

Let N be the number of output nodes in a network.  Let o designate the output value of a 

node (0 ≤ o ≤ 1 for sigmoid).  Let ok be the output value of the kth output node in the 

network (1 ≤ k ≤ N).  Let T designate the target class for the current pattern and ck signify 

the class label of the kth output node.  For target output nodes, ck = T, and for non-target 

output nodes, ck ≠ T.  Non-target output nodes are called competitors.  Often, class labels 

are indicated in training by setting the target value of one output node high and setting the 

rest low.  This restriction is not made here, as it is possible in the general case for more 



Chapter 5.  The Lazy Training Algorithm  31 

 

than one output node to act as a target node for a given class label.  However, for the 

remaining discussion standard 1-of-N target designations are assumed. 

 

Let oTmax denote the value of the highest-outputting target output node, or formally 

 oTmax ≡ max {  ok : ck = T } . 

Let o~Tmax denote the value of the competitor outputting the highest o, or formally 

 o~T max ≡ max {  ok : ck ≠ T } . 

The error, ε, back-propagated from the kth output node is then defined as 

εk ≡ 
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The error (1) represented in closed form is 

εk ≡ ( kT oo −max~ )I( )( and maxmax~ TTk ooTc ≥= ) + ( kT oo −max )I( )( and maxTkk ooTc ≥≠ ) 

where I is the indicator or characteristic function. 

 

Thus, a target output generates an error signal only if there is some competitor with an 

equal or higher value than oTmax, signaling a potential misclassification.  Non-target 

outputs likewise generate an error signal only if they have an output equal or higher than 

oTmax, indicating they are responsible for the misclassification.  The intuitive rationale 

behind this is that if the error is continually reduced on misclassified patterns, they will 

eventually be classified correctly. 

 

The error delta used for backpropagation is 

δk = εk f ’ (ok) 
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where f ’ (ok) is the standard error gradient, which is 

 f ’ (ok)  = ok (1 - ok) 

for a sigmoid squashing function, and can be removed on output nodes when using cross-

entropy [Joo98]. 

 

To illustrate how lazy training works, consider a three-class problem with a target vector 

of (0, 0, 1) for a given pattern.  On this pattern, the 3-output network outputs (0.1, 0.2, 

0.4).  While the third output (the target) has significant squared error (0.36), the first two 

output values (the competitors) are sufficiently low, enough so that it is possible to 

extract the correct classification (the third class is chosen since its value is highest). 

 

Only if one of the competitors fire higher than the target would a non-zero error signal be 

backpropagated from any of the output nodes.  In the case that the network outputs (0.1, 

0.4, 0.3), both the second and third outputs would backpropagate error: the second since 

it fires higher than the target node, and the third, since a non-target node fired higher than 

it. 

 

5.2 Advantages of lazy training 

Repeatedly forcing output values closer to 0 or 1 in cases where pattern classification is 

already correct usually results in overfitting.  This needlessly increases network variance 

(sensitivity to the training data), increasing classification error on the test set.  This 

insight is the driving philosophy behind lazy training, which avoids this practice. 
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Lazy training a network proceeds at a much different pace than using SSE or CE as the 

objective function.  Weights are updated only through necessity.  Backpropagating a non-

zero error signal from only the outputs that directly contribute to classification error 

results in significantly fewer weight updates overall (proportional to the classification 

accuracy) and allows the model to relax more gradually into a solution (picture an 

airplane gliding down in the direction of the global error minimum as opposed to a ball 

rolling along the steepest error gradient).  As a result it encounters fewer local minima.  

Lazy training learns only as much as required to remove misclassifications and thereby 

discourages overfitting.  This approach is reminiscent of training with an error threshold; 

however, whereas a fixed error threshold causes training to stop at a pre-specified point, 

meaning weights must increase to a given magnitude, lazy training dynamically halts 

learning at the first possible point that correctly classifies a training pattern.  This can be 

considered using a dynamic error threshold that is unique for each training pattern and 

network state.  The result is training without idealized target outputs, or target values at 

all for that matter, since a sample can be potentially “ learned”  with any output, providing 

competitors output lower values. 

 

5.3 Increasing the margin when lazy training 

Overfitting is minimized through lazy training in another regard because outliers (noisy 

samples) have minimal detrimental impact to the decision surface’s accuracy.  This is 

because the target output is only required to output a value negligibly higher than the 

highest competitor.  This translates to halting the movement of the decision surface right 

next to the sample (see Figure 3b).  This is in contrast to classical SSE training, where 
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hard target values of 0 and 1 require pushing the decision surface as far away from all 

points as possible, even noisy outliers (see Figure 3a).  Hence, a test pattern (represented 

by the question mark) falling immediately next to a noisy outlier belonging to a 

competing class has a much better chance of being correctly classified.  In other words, 

network variance is substantially reduced. 

 

 

Figure 3.  SSE decision surfaces (a,d) and lazy-trained decision surfaces (b,c,d). 

 

When lazy training, it is common for the highest outputting node in the network, which 

we will call omax, to output a value only slightly higher than the second-highest-firing 

node (see Figure 4).  This is true for correctly classified samples (those above 0 in Figure 

4), and also for misclassified ones (those below 0).  This means that most training 

samples remain physically close to the decision surface throughout training.  In the 

absence of outliers, then, one would expect the heuristic to arrive at a decision surface 

similar to those portrayed in Figure 3c.  According to the application this might not be 

desirable. 
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Figure 4.  Network output error margin after lazy training. 

 

An error margin, µ, can be introduced during training that serves as a confidence buffer 

between the outputs of target and competitor nodes.  The value for µ can range from –1 

to +1 under the sigmoid function.  For no error signal to be backpropagated from the 

target output, an error margin requires that o~Tmax + µ < oTmax.  Conversely, for a 

competing node k with output ok, the inequality ok < oTmax - µ must be satisfied for no 

error signal to be backpropagated from k.  This modification to (1) is presented as 
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In this way, lazy training approximates the SSE solution and the margin is maximized 

even in the absence of outliers (see Figure 3d). 
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During the training process, the value of µ can be altered and might even be negative to 

begin with, not expressly requiring correct classification at first.  This gives the network 

time to configure its parameters in an even more uninhibited fashion. Then µ is increased 

to an interval sufficient to account for the variance that appears in the domain data, 

allowing for robust generalization.  The value of µ can also be decreased, and remain 

negative as training is concluded to account for noisy outliers.  Analysis of updating µ 

during training will be performed in future work. 

 

Including a margin also decreases the amount of “classification oscillation”  that occurs as 

outputs react to one another.  Since patterns will lie close to the decision surface, many 

frequently slide back onto the wrong side as the decision surface shifts around while 

training proceeds.  Requiring them to be situated further away from the dividing 

hyperplane reduces the incidence of renewed misclassification, leading to quicker 

convergence. 

 

At the extreme value of µ equal to 1, lazy training reverts to standard SSE training, with 

target values of 1.0 and 0.0 required for all positive and negative samples, respectively. 
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Chapter 6 
 

Experiments and Analysis 
 
 
Neural networks were trained through backpropagation minimizing SSE, CE and through 

lazy training to explore the advantages of interactive training techniques over 

independent learning.  These models include: 

• Single-output networks on two-class problems (positive samples are assigned a 

target value of 1.0, negative samples are assigned a target value of 0.0) 

• Multi-output networks (one output per class) 

• Independent single-output networks on multi-class problems (one per class) 

 

Various styles of network interaction were considered, including: 

• Among N networks for N-class problems (one per class) 

• Between dual (complementary) networks for each class (two per class) 

• Within a single lazy-trained multi-output network (one output per class) 

 

Experiments were conducted over a variety of data sets with varying characteristics, 

differing by: 

• Size of data set (150 instances to half a million) 

• Number of features (two to hundreds) 



Chapter 6.  Experiments and Analysis  38 

 
 

• Number of labeled data classes (two to forty-seven) 

• Complexity of data distribution (nearly linearly separable to highly complex) 

 

Real world problems were drawn from the UC Irvine Machine Learning Database 

Repository (UCI MLDR) [Bla98] and from a large database of machine printed 

characters gathered for OCR.  This provides a vantage point from which to evaluate the 

robustness of the lazy training heuristic. 

 

In empirical comparisons among different learning methods, appropriate training 

parameters were determined in order for each model to maximize generalization.  For 

further conceptual analysis and illustration of the behavior of interactive versus non-

interactive systems, results of experiments using a range of parameters are provided. 

 

6.1 Data sets 

The performance of independent versus interactive lazy training models has been 

evaluated on an OCR data corpus (OCR) consisting of over 495,000 alphanumeric 

character samples, partitioned into roughly 415,000 training samples and 80,000 test 

samples.  This work was first presented in [Rim00a]. 

 

Two network topologies were evaluated for learning OCR, a single multi-output network 

and N single-output nets. 
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Additionally, eight well-known classification problems were selected from the UCI 

MLDR.  Descriptions of the selected data sets are listed as follows: 

 

ann – 7200 instances with 15 binary and 6 continuous attributes in 3 

classes.  The task is to determine whether a patient referred to the clinic is 

hypothyroid. 

 

bcw – 699 instances with 9 linear attributes in 2 classes.  The task is to 

detect the presence of malignant versus benign breast cancer. 

ionosphere – 351 instances with 34 numeric attributes in 2 classes.  This 

data set classifies the presence of free electrons in the ionosphere. 

iris – 150 instances with 4 numeric attributes in 3 classes.  This classic 

machine learning data set classifies the species of various iris plants based 

on physical measurements.   

musk2 – 6598 instances with 166 continuous attributes.  The task is to 

predict whether new molecules will be musks or non-musks. 

pima – 768 instances with 8 numeric attributes in 2 classes.  The 

predictive class in this data set is whether or not the tested individual has 

diabetes. 
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sonar – 208 instances with 60 continuous attributes in 2 classes.  The task 

is to discriminate between sonar signals bounced off a metal cylinder and 

those bounced off a roughly cylindrical rock. 

wine – 178 instances with 13 continuous attributes in 3 classes.  The 

attributes give various parts of the chemical composition of the wine and 

the task is to determine the wine’s origin. 

A single network with one output per class is used to learn these problems.  Results on 

UCI MLDR problems were gathered using 10-fold stratified cross-validation. 

 

6.2 Training parameters 

Experiments were performed comparing the SSE and CE objective functions against lazy 

training.  Fully connected feed-forward MLPs with a single hidden layer trained through 

standard on-line backpropagation were used.  In all experiments, weights were initialized 

to uniform random values in the range [-0.1,0.1].  Networks trained to optimize SSE and 

CE used an error tolerance threshold (dmax) of 0.1. 

 

Feature values (both nominal and continuous) were normalized between zero and one.  

Training patterns were randomly shuffled before each epoch.  For each simulation, a 

random seed for network weight initialization and sample shuffling was used across all 

networks tested. 
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On UCI MLDR data sets, training continued until the training set was successfully 

learned or until training classification error ceased to decrease for 500 epochs.  The 

network model then selected for testing was the one with the best training set 

classification accuracy.  In all OCR experiments presented, each MLP in a multiple 

network model contained a single hidden layer comprised of 32 hidden nodes.  The 

learning rate was 0.2 and momentum was 0.5.  Training was halted after 500 epochs. 

 

Network architecture was optimized to maximize generalization for each problem and 

learning heuristic.  Optimized numbers of hidden nodes used for learning UCI MLDR 

data sets are listed in Table 1.  Learning rate was 0.1 and momentum was 0.5 for all UCI 

MLDR problems. 

 

Table 1.  Network architectures on UCI MLDR problems. 

The number of input, hidden, and output nodes per network is shown. 

Data set SSE Net CE Net Lazy Net 

ann 21-30-2 21-30-2 21-30-2 

bcw 9-15-2 9-25-2 9-10-2 

ionosphere 34-7-2 34-9-2 34-9-2 

iris 4-1-3 4-1-3 4-1-3 

musk2 166-5-2 166-5-2 166-5-2 

pima 8-8-2 8-8-2 8-16-2 

sonar 60-15-2 60-5-2 60-15-2 

wine 13-16-3 13-8-3 13-16-3 
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Pattern classification was determined by winner-take-all (the class of the highest 

outputting node is chosen) on all models tested.  When a single-output network is trained 

on a two-class problem, outputs of 0.5 or higher are considered as outputting positive and 

outputs below 0.5 are considered as outputting negative. 

 

6.3 Results 

6.3.1 OCR data set 

Table 2 displays the results of standard SSE and CE backpropagation versus lazy training 

on OCR.  Train % and Test % are the final training and test set accuracy in percent.  

Train MSE and Test MSE are the mean squared errors for the training and test sets on the 

epoch for which the highest test set accuracy is achieved. 

 

Table 2.  Results on OCR data set. 

Method Train % Train MSE Test % Test MSE 
SSE (Multiple nets) 99.28 .0047 97.86 .0092 
SSE (Single net) 98.40 .0225 98.38 .0335 
CE (Multiple nets) 99.37 .0094 98.10 .0110 
CE (Single net) 98.62 .0153 98.58 .0300 
Lazy Train (Multiple nets) 
µ = 0.05 

99.61 .1830 99.11 .2410 

Lazy Train (Single net) 
µ = 0 

99.15 .1594 98.96 .1800 

 

The results on OCR show that multi-task learning (MTL), or using a single network with 

multiple output nodes, performs better than using a separate network to learn each class 

with SSE and CE objective functions.  Even though training accuracy is lower on the SSE 

and CE multi-output networks than multiple networks, generalization is improved.  
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Observe that training set accuracy is largely preserved on the test set when using a single 

multiple output network using any of the tested error functions.  This occurs since little 

overfitting can occur in this size network when attempting to learn all classes 

simultaneously.  When using a separate network for each class, each network has much 

greater potential to overfit since there are many more network parameters.  This behavior 

is exhibited to lesser degree with lazy training.   

 

Optimizing CE on this difficult classification problem trains and generalizes better than 

SSE, and lazy training performs significantly better than both.  Network models 

generated through lazy training have the capability of improving generalization even 

more.  These tests also show that, although the final SSE for lazy training is 10-20 times 

greater than for SSE and CE training, the amount of overfitting is sharply reduced and 

generalization is improved (see Section 6.4.3). Since the networks learn together their 

errors are less correlated and the solution transfers well to unseen data. 

 

Generalization error with the best lazy training architecture is 45.1% less than the best 

architecture trained with SSE and 37.3% less that the best architecture trained with CE.  

Considering only multiple-output networks, error drops from 1.62% for SSE to 1.42% for 

CE, and to 1.04% for lazy training, error reductions of 35.8% and 26.8%, respectively.  

Considering only the multiple-network models, error drops from 2.14% with SSE to 

1.90% with CE, and to 0.89% with lazy training, error reductions of 58.4% and 53.2%, 

respectively. 
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6.3.2 UCI MLDR data sets 

Table 3 lists the results of a naïve Bayes classifier (taken from [Zar95]), standard SSE 

and CE backpropagation, and SSE and CE lazy training on eight UCI MLDR 

classification problems.  Results were gathered using 10-fold stratified cross validation.  

The first value in each cell is the average classification accuracy of the selected model.  

The second value is the standard deviation over all runs.  The best generalization for each 

problem is bolded and the second best value is italicized. 

 

Table 3.  Results on selected data sets from UCI MLDR using 10-fold cross-validation.  

Best values are shown in bold and second best in italics. 

Data set Bayes SSE CE Lazy 
SSE 

Lazy 
CE 

ann 99.7 
0.1 

98.25 
0.54 

98.33 
0.53 

97.62 
0.47 

98.76 
0.51 

bcw 93.6 
3.8 

96.96 
2.01 

97.06 
1.81 

97.22 
2.01 

97.36 
1.81 

ionosphere 85.5 
4.9 

89.00 
4.72 

90.80 
4.64 

90.60 
3.75 

90.88 
3.87 

iris 94.7 
6.9 

93.83 
5.68 

94.37 
5.87 

95.47 
5.31 

95.37 
5.25 

musk2 97.1 
0.7 

99.06 
0.37 

98.56 
0.62 

99.15 
0.36 

99.27 
0.29 

pima 72.2 
6.9 

76.26 
4.24 

76.11 
4.36 

76.69 
3.43 

76.82 
6.46 

sonar 73.1 
11.3 

76.06 
9.37 

78.87 
9.03 

80.77 
9.02 

81.92 
8.60 

wine 94.4 
5.9 

96.29 
4.45 

96.74 
4.13 

98.31 
3.49 

97.19 
3.47 

Average 88.79 
5.06 

90.69 
3.92 

91.35 
3.87 

91.97 
3.48 

92.20 
3.79 

 

Overall, an optimized SSE or CE backpropagation network is superior to a naïve Bayes 

classifier on the above classification problems.  A lazy trained network performs better 
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than both Bayes and standard backpropagation classifiers except on a single data set, ann, 

where the Bayes classifier performed best of all.  Cross-entropy based training performs 

slightly better than SSE reduction on average for both standard and lazy backpropagation 

training.  Lazy CE training performed the best on five of the eight data sets and better 

than non-lazy trained classifiers on all eight of the eight.  Lazy SSE performed the best 

on two of the eight data sets and better than non-lazy trained classifiers on six of the 

eight.  This seems to indicate that either lazy error reduction metric is acceptable, with 

CE being preferred. 

 

The average decrease in classification error is from 9.31% for SSE training to 8.03% for 

lazy training, a 13.7% decrease in error.  An overall decrease in standard deviation also 

indicates that lazy training is more robust to initial parameter values and pattern variance 

then standard backprop.  This reflects the expectation that overfit is reduced and 

generalization is improved by lazy training. 

 

[Zar95] includes results and analysis of several other machine learning models on these 

and many other UCI MLDR data sets.  Lazy training significantly outperforms all other 

learning approaches shown on the problems tested here. 

 

6.4 Discussion 

Standard backpropagation and other gradient descent learning techniques do not consider 

or attempt to minimize the number of correctly classified training patterns (see [Dud99, 

p. 228, Figure 5.11]).  Lazy training incorporates a more direct minimization of 
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misclassified patterns in gradient descent procedures by reducing error on only 

misclassified patterns. 

 

It does not modify weights to provide a monotonic decrease in a global error signal based 

on ideal target values, such as SSE or CE.  In fact, during training SSE (MSE) often 

remains roughly constant as accuracy is improved (see Figure 5).  Change in CE displays 

the same behavior as MSE but is omitted from this graph and the following discussion for 

clarity.  This is in contrast to the steady drop in SSE asymptotically approaching zero 

exhibited in Figure 1 that is illustrative of standard backpropagation training minimizing 

SSE. 

0

0.25

0.5

0.75

1

1 30

Epoch

MSE Classification Accuracy

Figure 5.  Classification accuracy and MSE during lazy training. 
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SSE, rather than converging to zero, instead remains rather large.  A MSE of almost 0.25 

is equivalent to a mean error of nearly 0.5, which illustrates that many output activations 

are firing about 0.5.  This indicates that the weights for these outputs are approximately 

zero.  A large MSE is incurred by pattern outputs being very far away from their 

idealized target values.  This suggests that lazy training performs a fundamentally 

different search in feature space than standard SSE/CE optimization.  It descends towards 

different minima and converges to a feature location physically distant from SSE/CE 

solutions.  This also indicates that high-accuracy solutions exist where SSE are CE are 

just as high or higher as when training starts on a network initialized to small random 

weights.   

 

Figures 6 and 7 give insight into the behavior of the network during the learning process 

using four objective heuristics.  The surface plot shows a histogram of the values output 

by the network on the training samples every tenth training epoch.  Figure 6a and 6b 

show learning minimizing SSE, and Figure 7a and 7b show behavior during lazy training.  

The results shown here are only for the bcw data set, but such behavior is indicative of all 

the data sets tested. 

 

Note that SSE training forces the network to output values approaching 0 and 1, even 

from the very first trace (the tenth epoch).  Using a dmax of 0.1 reduces this tendency 

somewhat.  Observe the flattened peaks for positive samples in Figure 6b that do not exist 

in 6a. 
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Lazy training produces a starkly different behavior.  In Figure 7a, it can be observed that 

all samples output around 0.5 during the entire training process.  In Figure 7b, 

incorporating a confidence margin of µ = 0.1 widens the spread of output values, even 

causing the outputs of the two classes to visibly split apart as training progresses. 
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Figure 6.  Network output trace during SSE minimization on bcw. 
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Figure 7. Network output trace during lazy training on bcw. 
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6.4.1  Empirical effects of error margin 

Table 4 depicts the results of lazy training on bcw with a range of values for µ from 0 to 

0.9.  The top value is averaged classification accuracy and the bottom value is standard 

deviation using 10-fold stratified cross validation. 

 

Table 4.  10-fold CV results for lazy training on bcw with µ.  Best results are in bold. 

µ = 0.0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
95.17 
2.09 

97.22 
2.42 

97.22 
1.79 

97.22 
2.01 

96.78 
1.96 

96.93 
2.29 

96.78 
1.72 

95.90 
1.69 

95.61 
2.94 

95.90 
2.26 

95.75 
2.32 

95.75 
2.40 

 

These results show that lazy training is fairly robust to the selection of µ.  A µ greater 

than 0 causes the decision surface to be further removed from test patterns in general and 

increases generalization as a result.  Values closer to 0 show the most improvement and µ 

values closer to 1 cause lazy training to revert proportionally to the behavior of standard 

SSE training.  (Note that the accuracy shown for µ ~ 1.0 does not match the accuracy for 

SSE training in Table 3 because the accuracies in Table 3 are based on roughly optimized 

parameters for each error function, and lazy and standard training have different optimal 

learning parameters.) 

 

6.4.2 Effect of SSE on output values 

Following a training run on OCR training to minimize SSE, winning net outputs on the 

test set were distributed as shown on the logarithmic scale in Figure 8.  The network fires 

very close to 1.0 on the majority of the samples.  Only 2-3% of the samples lie close to 

where the decision surface is located (at 0.5).  The weights have grown to the point that 

the dividing sigmoidal surface is very sharp. 
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Figure 8.  Network outputs on OCR test set after SSE minimization. 
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Figure 9.  Network outputs on OCR test set after lazy training. 
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6.4.3 Effect of lazy training on output values 

Lazy training produces a final output distribution quite unlike that seen in Figure 8.  

When networks only perform weight updates to prevent misclassification, instead of 

pushing the sample outputs to one end of the output range or the other, the vast majority 

remains spread out just slightly above the decision boundary (see Figure 9).  Sample 

output distribution is roughly gaussian, reflecting an actual gaussian data distribution 

(i.e., gaussian noise in the OCR input features).  There is a larger output variance than 

appears from standard SSE optimization but with only a fraction of the classification 

error.  This suggests that the decision surface is much smoother and that network weights 

are not saturated.  Misclassified samples usually have outputs below 0.5 and are lower 

than the output for correctly classified samples in the majority of cases. 

 

6.4.4 Network complexity 

At first, it seems counter-intuitive that networks firing only around 0.5 will generalize so 

well.  Ordinarily, training networks together allows a classifier to become more complex, 

prone to overfitting.  According to Occam’s razor, adding parameters to a network, 

beyond the smallest correct solution for a given problem, can be a detriment to the 

generalization ability of the network.  This is similar to the claim that a network with 

higher learning capacity tends to “memorize”  noise in the data, an undesirable trait. 

 

However, it has been illustrated how the number of nodes in a network is not as 

influential as the magnitude of the weights [Bart98].  The topology, rather, serves more 

as a mechanism that lends itself to solving of certain problems, while the weights 
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represent how tightly the network has fit itself to the (admittedly incomplete) training 

data distribution.  Network complexity is further defined [Wan94] as the number of 

parameters and the capacity to which they are used in learning (i.e., their magnitude).  

The authors show how network complexity is a generalization of Akaike’s Information 

Criterion, which reveals 

 

The generalization error of a network is affected not only by the number of 

parameters but also by the degree to which each parameter is actually 

used in the learning process. 

 

Occam’s principle stands, in that it is best to make minimal use of the capacity of the 

network for encoding the information provided by the learning samples [Wan94].  In 

light of this, it is understandable why training (often overly) complex networks using 

weight decay or lazy training, which allow networks to converge with smaller weights 

than normal, perform well.  Although the IT network has a high number of parameters, 

lazy training prevents further weight updates once samples are correctly classified and 

results in low complexity.  Hence, the possibility of overfitting is reduced in the training 

process. 

 

The networks used in the OCR experiments (1 for each class) had 64 inputs, 32 hidden 

nodes and 1 output node, with 2080 weight parameters (plus 33 bias weights).  The rows 

of Table 5 list the average magnitude of the weights in a network initialized with uniform 

random weights in the range [-0.3,0.3], after standard training, and after lazy training, 



Chapter 6.  Experiments and Analysis  55 

 
 

respectively.  The columns denote the average of the bias weight on the hidden nodes, 

bias on the output node, average weight from input to hidden node, and from hidden to 

output node, respectively.  The lowest weight values are bolded.  The lazy-trained 

network has weights that are roughly two to four times larger than the initial random 

values, while SSE and CE training produce weights from ten to twenty times larger.  The 

lazy-trained network is a simpler solution than the networks produced by 

backpropagation training optimizing SSE or CE. 

 

Table 5. Average final network weights. 

Method Hidden 
Bias 

Output 
Bias 

Hidden 
Weight 

Output 
Weight 

Initial 0.16 0.15 0.15 0.15 
SSE 2.21 4.66 1.27 6.25 
CE 2.56 4.95 1.43 4.16 
Lazy 0.56 0.02 0.31 0.74 

 

6.4.5 Lazy training single vs. multiple networks 

There are advantages to lazy training a single multi-output network over separate single-

output networks.  Using single-output networks to learn each class in the problem ensures 

each class is learned separately.  Learning classes separately might allow easier analysis 

of solutions, whereas deciphering the meaning of network weights in a multi-output 

network is very difficult. 

 

Training a single network takes advantage of the benefits of MTL.  Where problem 

hypotheses overlap, a single network can “ reuse”  nodes by taking advantage of redundant 

features.  This produces a much more compact solution than having to relearn redundant 
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features in separate networks.  In experiments on the OCR set 47 networks were trained.  

Each network had a 64x32x1 architecture, (plus bias) yielding 2113 weight parameters in 

each network.  In all, the model contains 2113 x 47 = 99,311 weights, whereas the best 

single network has a 64x256x47 topology (plus bias).  This equals 16640 + 12079 = 

28,719 weights, a reduction in size of nearly three-and-a-half times.  The practical 

implications of this are obvious.  Not only is memory conserved, but classification speed 

is increased as well. 

 

Caruana states that one of the disadvantages of MTL is that, since tasks are learned at 

different times during training, it is difficult to know when to stop training.  When 

training is stopped early, some tasks might not have been learned and generalization is 

often hurt as a result.  Caruana’s solution is to train the network until all tasks appear to 

be overfitting, or to take a separate snapshot of the network for each class, at the point 

where its validation accuracy is highest [Car94].  However, taking snapshots makes the 

solution much more unwieldy, and although the snapshot is taken at the point where 

accuracy is highest, there is no guarantee that overfitting has not already occurred in 

some part of the space for that class. 

 

Lazy training solves both problems by naturally stopping training on tasks as they are 

learned, both within classes and among them.  This helps in two ways: the solution can be 

kept small (using a single network), and overfitting is discouraged on two levels, both 

external to learning a class (overfitting a class because other classes have yet to be 
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learned sufficiently) and internal to it (overfitting on localized regions of a class because 

other regions have yet to be learned). 

 

Note, however, that the best OCR test accuracy obtained was using multiple networks.  It 

appears their increased computational ability enables them to find a better solution than 

with a single multi-output network, while lazy training helps them to avoid local minima.  

Using multiple networks makes more parameters available for use as needed in solving 

the problem, while lazy training discourages abuse of the increased potential of the 

system to overfit. 

 

6.4.6 Computational Cost 

Lazy training requires an O(n) search through the n network outputs to determine the 

highest target and competitor values.  This search could be made O(log n) if the output 

values were sorted into a binary search tree as they are produced.  However, this 

additional overhead is negligible compared to the computation requirements of O(ih) for 

feed-forward and O(ihn) for backpropagation steps, where i is the number of inputs and h 

is the number of hidden nodes.  In fact, lazy training saves O(ihn) steps by omitting the 

error backpropagation step when presented samples that it already correctly classifies. 
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Chapter 7 
 

Philosophy of Interactive Training 
 
 
Algorithms and Turing machines have been the dominant model of computation during 

the first 50 years of computer science.  Wegner, et al, [Weg99] formalize the claim that 

interactive finite computing agents are more expressive than Turing machines and 

consider the evolution from algorithmic to interactive computing models.  Their 

definitions of interaction machines, behavior, and expressiveness are presented here in 

brief.  The reader can refer to their work in [Weg97, Weg99] for a more complete 

discussion. 

 

Turing machines (TM) are state-transitional string processing machines, of the form M = 

(S, T, s0, F), with finite states S, tape symbols T, starting state s0, and a state-transition 

relation F: SxT à  SxO.  They compute functions f : X à  Y from integers to integers 

(strings to strings).   

 

Classical Turing machines are not able to interact within distributed systems.  Interaction 

machines (IM) provide a stronger model of computation than Turing machines that better 

capture computational behavior of finite interactive computing agents.  Sequential 

interaction machines (SIMs) are state-transitional stream processing machines M = (S, I, 
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m), where S is an enumerable set of states, I is an enumerable set of inputs, and the 

transition mapping m : SxI à  SxO maps state-action pairs to new states and outputs.  

Each step of a SIM can be considered a complete Turing machine computation, and the 

behavior of SIMs is expressed by I/O streams, of the form (i1, o1), (i2, o2), …, where ok is 

computed from ik but precedes and can influence ik+1.  Multi-agent interaction machines 

(MIMs) can interact simultaneously with multiple autonomous interaction streams. 

 

System behavior of a finite computing machine M is specified by its set of all possible 

interactions with all possible environments, and is denoted by B(M).  Observable 

behavior of a machine M for an environment E is the set of all behaviors of M in E and is 

denoted by BE(M).  Observable behavior is a projection of system behavior to a specific 

context.  Given two finite machines, M1, M2, the exclusive-or BE(M1) ⊕ BE(M2) is called 

the distinguishability set DS for M1, M2 in E.  Two machines are distinguishable if DS is 

non-empty and equivalent if they are not distinguishable. 

 

Expressiveness is the set of behaviors BE(M), which measures the ability of agents to 

make observational distinctions about their environment.  Machine M1 is more expressive 

than machine M2 in environment E if BE(M1) is a strictly larger set of behaviors than 

BE(M2).  Interaction between an environment and an observer can be modeled as a 

producer/consumer relation, where E is a producer of behavior, and M is a consumer.  

Since the behavior BE(M) depends on E as well as M, environments are classified into 

classes that support progressively stronger forms of interaction: 

• TM environments (relation of enumerable index) 
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• SIM environments (relation of nonenumerable index) 

• MIM environments 

• The physical world, W 

 

Behavior of agents in TM environments is expressed by input-output pairs, while 

behavior in a SIM environment is expressed by sequences of observations (I/O streams) 

that allow more finely-grained distinctions among behaviors than single observations.  

Interaction machines that interact with the real world, W, have the property that 

EQ(SIM,W) is a finer equivalence relation on the real world than EQ(TM,W).  This leads 

to the following lemma: 

 

BW(TMs) ⊂ BW (SIMs) ⊂ BW (MIMs), where ⊂ is set inclusion for classes of behaviors. 

 

However, to a TM observer, all computing agents including SIMs and MIMs appear to 

behave like a TM: 

  

BTM(TMs) = BTM(SIMs) = BTM(MIMs) 

 

while to a TM, all computing environments as well as the physical world appear to 

behave like TMs: 

 

BTM(TMs) = BSIM(TMs) = BMIM(TMs) = BW(TMs) 
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Once the idea of expressiveness as distinguishing power is introduced, many levels of 

expressiveness may be distinguished.  Let SIMk be the class of SIMs restricted to no 

more than k interactions.  For all k>0, the distinctions than can be made by SIMk+1 in 

environment W are greater than those by SIMk.  SIMs determine an infinite expression 

hierarchy with TMs at the bottom, corresponding to behavior Bw(SIM1): 

 

For all k>0, Bw(SIMk) ⊂ BW(SIMk+1) 

and 

BW(TM) = Bw(SIM1). 

 

SIMs model interactive question answering.  The expressiveness hierarchy for SIMs 

shows that on-line questioning that makes use of follow-up questioning has greater 

expressiveness than off-line questioning.  Mitchell [Mit97] states the advantages of 

allowing a learner to query the environment in cases of uncertainty in order to refine its 

hypothesis. 

 

7.1 Increased expressiveness in neural network training 

This expressiveness hierarchy can be related to neural network learning (and other forms 

of machine learning).  The behavior of a neural network during training is that of a 

Turing machine.  It is given training data as input and generates its hypothesis as output: 

 

B(SIM1) : one interaction, that of receiving training data (input string). 
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Ensemble methods, such as bagging, boosting, and wagging provide a form of 

interaction.  Ensembles often include a two-step training process, that of training each 

network, and then combining their results once training is finished.  Thus, the interaction 

occurs at a certain point in time, usually when the current network has converged.  

Ensembles hence provide a greater level of interaction than standard training: 

 

B(SIM2) : two interactions, training n nets (observing training data) and then 

combining them after training. 

 

This has shown to improve generalization over isolated networks with no interaction 

[Sha96]. 

 

It is conceivable that more frequent interaction will further improve generalization.  A 

logical extension of the “off-line”  ensemble process is training the networks 

simultaneously and enabling each network to observe the behavior of other networks in 

the ensemble to decide how training should proceed (as in [Liu99a, Liu99b]): 

 

B(SIM t) : interaction at every pattern during training 

 

Training classifiers together allows them to receive the advantages of increased 

expressiveness.  Dual-network interaction (N = 2) produces SIM behavior, while multiple 

network interaction (N > 2) produces MIM behavior. 
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7.1.1 Expressiveness of perceptrons 

Initially, the perceptron model [Ros58] provided a statistical mechanism by which data 

points existing in a hyperspace of arbitrary dimension could be distinguished by a 

decision surface, geometrically represented by a hyperplane, comprised of a linear 

combination of feature values (see Figure 10).  The Widrow-Hoff rule [Wid60], and the 

Perceptron learning algorithm [Ros58], provided techniques by which each feature 

weight was iteratively refined to provide a more accurate separation of data points from 

opposing classes.  The perceptron is able to distinguish between any two arbitrary data 

distributions, provided they are linearly separable [Min69]. 

 

 

Figure 10.  Single-layer perceptron. 

 

7.1.2 Limitations of linear separators 

Learning first order features or rules performs well on real-world data, whereas not so 

well on artificial data.  Experts often already have a good intuition of the important 

features [And99b].  When “higher-order”  features have high output correlation, experts 
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often put them into the problem database as first order features.  This explains why 

perceptron models often perform adequately on real-world data.  Still, inasmuch as a 

solution is non-linear, simple perceptron models are not able to obtain it.  As the demand 

for high-accuracy learning models to solve complex real world problems increases, linear 

solutions become inadequate. 

 

7.1.3 Increasing expressiveness 

Networks with simple architectures generalize better when allowed to interact through 

ensembles [And99b, Sha96].  Some network dynamic construction algorithms [Fah90, 

And01b] also allow a form of interaction when each new (child) node determines how it 

must interact based on observing the previously existing network (considered to be the 

environment, with behavior independent of the new node). 

 

Interactive training takes advantage of potential coordination that can exist on a constant 

basis among all classifiers (networks), not just on an iterative basis where a single node 

or network is trained at a time, then incorporated into the existing system.  Possibly, 

interactive behavior could create reactive oscillations between networks as they each 

update their behavior based on how the other net is currently behaving, back and forth 

(similar to the herd effect). 
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Figure 11.  Decision surfaces for a simple training set. 

 

The importance of interaction can be seen in the following example.  Consider the simple 

training set with two possible hyperplanes shown in Figure 11a.  The hyperplanes can be 

considered decision surfaces, with the arrow indicating which side of the hyperplane for 

which examples are classified as O’s.  Since individual perceptrons only provide 

solutions to linearly separable data, if a simple perceptron is trained on such data, the 

resulting decision surface will look like the leftmost hyperplane.  This hyperplane 

maximizes classification accuracy.  Observe that such a solution, although correctly 

classifying all of the O’s, will incorrectly classify all of the X’s. 

 

When combining several such perceptrons into an ensemble, they are combined using an 

arbitrary linear combination.  In this case, the ensemble is incapable of improving the 

accuracy of the individual perceptrons.  Since all perceptrons are generalizing 

equivalently at baseline accuracy, the combined decision surface effectively becomes an 
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average of all the decision surfaces scattered around the perimeter of the training set.  

This puts the ultimate decision surface somewhere in the middle, resulting in 

generalization accuracy of about 50%, lower than what each single perceptron achieves. 

 

Now when perceptrons are allowed to learn interactively in a fashion that they may 

coordinate their results during training, much better results are obtainable (see Figure 

11b).  Coordinated perceptrons do not have the problem illustrated in Figure 11a where 

they remain outside of the data cloud.  If their outputs are put through a squashing 

function and summed, they can perform as a universal function approximator [Hor89].  

They can fit any data distribution, provided there are enough of them.  Observe that this 

interaction describes the behavior of the MLP [Rum85].  The MLP gains its expressive 

power by allowing perceptrons to interact and learn together as members of a hidden 

layer. 

 

7.1.4 Expressiveness of multi-layer perceptrons 

The multi-layer perceptron (MLP) [Rum85] consists of two or more layers of perceptrons 

(see Figure 12).  Analogously to the perceptron, the weights of an MLP are updated 

through gradient descent under the “generalized delta rule.”   The error signal is 

propagated back from the final (output) network layer back to the initial (input) layer, a 

process known as error backpropagation.  MLPs are proven to be universal function 

approximators [Hor89]. 
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Figure 12.  Feed-forward multi-layer perceptron. 

7.1.5 Interactive training architecture 

Interactive training with multiple networks provides a logical extension of the standard 

multi-layer perceptron (MLP).  In an MLP, an input vector fans out to a layer of hidden 

nodes.  The output of the hidden nodes is consolidated into one or more output nodes, 

generally with sigmoid activation functions.  Under IT, a similar architecture is utilized 

(see Figure 13).  However, there are two crucial differences in the implementation. 

 

 

Figure 13.  Interactive training network. 
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First, rather than being comprised of perceptrons, the hidden layer of an IT model is 

comprised of MLPs (individual networks).  Each MLP serves to specialize in learning a 

certain area of the problem space.  For instance, in learning a multi-class data 

distribution, each MLP can be responsible for learning one of the classes. 

 

Second, the output node is essentially another classifier stacked onto the MLP vector.  

For a given sample, the feature vector is presented to all MLPs in the network’s hidden 

layer.  Each MLP sends an output to the classifier.  A simple classifier is the winner-take-

all function.  The sample is classified correctly if an MLP corresponding to the target 

output class propagates the highest activation to the WTA node. 

 

7.2 Improved objective function 

The philosophy of lazy training has ties to multi-agent learning.  Stirling points out that 

typically, optimal single agent solutions are not jointly optimal in multi-agent settings 

[Sti99].  This is demonstrated for neural network architecture optimization schemes for 

voting [And01a].  It is shown that the optimal network architecture selected for a single 

network model is typically not the optimal architecture when many such networks are 

combined with voting techniques such as bagging.  The optimal architecture when a 

single network is used is often much less complex than the optimal network architecture 

of several networks being combined into a voting ensemble. 

 

Coordination among agents occurs if members of a multi-agent system use information 

concerning the existence, decisions, or perceived decision-making strategies of other 
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agents.  Coordination should provide a means of decision-making for each agent in the 

system as a function of both the agent’s individual agenda and its relationships to the 

other members of the system [Sti96].  Coordinating means enabling a network to update 

its parameters based not only on its behavior, but the behavior of the other networks in 

the system.  A network’s complexity must be necessarily restrained when using standard 

learning heuristics to avoid overfitting.  Coordinating network behavior using lazy 

training allows the use of a more complex model without engendering overfit. 

 

Lazy training provides coordination among multiple single-output networks, or among 

output nodes in a multi-output network.  Lazy training illustrates the principle of 

satisficing (see [Sim59]), where an aspiration level is specified, such that once that level 

is met, the corresponding solution is deemed adequate.  Lazy training balances an 

output’s credibility, or the exactness with which it can produce ideal target values for its 

class (e.g., reducing SSE to zero), against its rejectability, or the risk of overfitting by 

doing so.  A trade-off is created between each network’s exactness and the classification 

accuracy of the entire system.  An output node can satisfactorily perform less “ ideally”  

with the understanding that the effectiveness of the entire system can be improved as a 

result.  Recall that classification generalization is the ultimate goal of learning, and it 

does not ultimately matter how close an output fires to zero or one.  Thus, by relaxing the 

constraint of optimal credibility, resultant rejectability is reduced. 
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Figure 14.  RBF networks with differing node variances. 

Consider an RBF network where the node variance r of gaussian spheres of influence is a 

parameter.  Choosing an r that is too small  (Figure 14a) or too large (Figure 14c) often 

leads to poor generalization.  An r just right leads to good generalization (see [Barn91] 

for an elaboration).  An r too small is akin to overfitting, and too large to underfitting.  A 

proper value for r provides a good overall solution, but does not guarantee that certain 

parts of the space are overfit, and others underfit.  The intuition behind lazy training is 

that it attempts to find the balance between the two extremes on a local level.  It 

effectively adds as much constraint as needed (by determining r) for a correct solution, 

but no more.  It also allows r to be variable for each node (Figure 14b).  Furthermore, as 

the maximum class output is the deciding factor, in practice variances can overlap, as 

long as the target class’  influence is stronger for all patterns. 
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Chapter 8 
 

Conclusion and Future Work 
 
 
Lazy training produces less overfit in gradient descent backpropagation training than 

optimizing SSE and CE.  It produces simpler hypotheses than SSE and CE, increasing the 

probability of better generalization. Its robustness and superior generalization over SSE 

and CE backpropagation has been demonstrated on several real world data sets.   On UCI 

MLDR problems there was an average increase in accuracy from 90.7% for optimized 

SSE networks to 92.1% for lazy training performing 10-fold stratified cross-validation.  

Similarly, there was a drop in error from 2.14% to 0.89% on a large OCR data set. 

 

There are many directions that future research on lazy training can take.  The effect of 

modifying the upper and lower target bounds and error margin will be considered.  It is 

natural to consider implementing dynamic versions of these parameters that change over 

time or using values local to each instance in the training set.  Further studies of the effect 

of network size on lazy training behavior and classification accuracy will be done.  The 

effect of lazy training in more sophisticated classification systems, where classification 

functions more complex than WTA are used, such as stacking a perceptron, MLP, or 

rule-based or search system onto the IT network [Rim00c], will be investigated. 

 



Chapter 8. Conclusion and Future Work  72 

 

We will explore the advantages of lazy training over independent learning on different 

network models, such as single-output networks on two-class problems, and multi-output 

networks (one output per class).  Various styles of network interaction will be considered, 

including: (1) between dual (complementary) networks for each class (two per class), (2) 

among redundant networks (many per class), (3) within a lazy-trained multi-output 

network (one output per class). 

 

Lazy training will be combined with many other learning enhancements, such as weight 

decay to produce even “simpler”  solutions, RPROP [Rie93] or Quickprop [Fah88] to 

improve the rate of convergence, speed training [Rim00b] to speed up learning, methods 

for growing and pruning networks, forming network hierarchies, and so forth.  Lazy 

training variants will also be considered for batch learning. 

 

It has been observed that classification errors between standard and lazy trained networks 

are highly uncorrelated.  Ensembles combining standard and lazy trained networks will 

be analyzed with the expectation that this will further reduce test error. 
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