
Edge Inference for Image Interpolation

Neil Toronto

Department of Computer Science

Brigham Young University

Provo, UT 84602

email: ntoronto@cs.byu.edu

Dan Ventura

Department of Computer Science

Brigham Young University

Provo, UT 84602

email: ventura@cs.byu.edu

Bryan S. Morse

Department of Computer Science

Brigham Young University

Provo, UT 84602

email: morse@cs.byu.edu

Abstract— Image interpolation algorithms try to fit a function
to a matrix of samples in a “natural-looking” way. This paper
presents edge inference, an algorthm that does this by mixing
neural network regression with standard image interpolation
techniques. Results on gray level images are presented. Extension
into RGB color space and additional applications of the algorithm
are discussed.

I. INTRODUCTION

The goal of image interpolation is to infer a continuous

function f(x, y) from a given m × n matrix of quantized

samples [1]. Though the density and equal spacing of the

samples simplifies the mechanics of this process, the human

eye is picky—which gives rise to the quest to find techniques

that yield ever-more “natural-looking” fits. In machine learning

terms, the objective is to find an algorithm with a bias that

approximates that of human image interpretation.

This paper presents edge inference, an algorithm that uses

many simple neural networks to infer edges from blocks of

neighboring samples and combines their outputs using bicubic

interpolation. The result is a natural-looking fit that achieves

much sharper output than standard interpolation algorithms but

with much less blockiness.

Edge inference is similar to edge-directed interpolation [2],

[3], [4], but with a crucial difference. Edge-directed meth-

ods regard an edge as a discontinuity between two areas

of different value, and use thresholds to determine which

discontinuities are significant. They then use the edges to

guide a more standard interpolation algorithm. Edge inference

regards an edge as a gradient between two areas of different

value and uses the gradient as a model of the underlying image,

avoiding thresholding altogether.

Edge inference may also be regarded as a reconstruction

technique. It fits geometric primitives to samples and combines

them to produce the final output. Data-directed triangulation

(DDT) [5] is similar, with triangles as its geometric primitives.

DDT is computationally demanding, and while edge inference

produces output that is qualitatively similar to DDT’s, it

produces it much more quickly.

Edge-directed methods provide sharpness control in a post-

processing stage, and DDT currently provides none. With edge

inference, users have control over a sharpness factor: a sliding

scale between the output of bicubic interpolation (which is

“fuzzy”) and edge inference of any sharpness.

Please note that all matrices are assumed column-major.

This is for notational convenience only, as the algorithm works

just as well with row-major matrices.

II. THE EDGE INFERENCE ALGORITHM

In short, edge inference performs regression using multiple

neural network basis functions, and combines their outputs

using a piecewise bicubic interpolant.

The image samples are given in an m × n matrix M of

gray-level pixel values, normalized to the interval [−1, 1]. Each

sample has a location (x, y) and a value Mxy .

A. Neural Network Basis Functions

An m×n matrix F contains the basis functions, for a one-

to-one correspondence with the samples. (This is not strictly

necessary, but has given the best results so far.) It may be

helpful to think of the neural networks as being placed on the

image itself.

Figure 1 shows the simple two-layer network that this

algorithm uses. Each trains on the sample it is associated with

and its eight nearest neighbors (or fewer, if the sample lies on

an image boundary). The instances in the training set are in

the form

(x, y) → Mxsys

where (xs, ys) is the location of the sample, and (x, y) is the

location of the sample relative to the neural network. That

is, if (u, v) is the location of the network, x = xs − u, and

y = ys − v. Each neural network represents a function in this

form:

Fuv(x, y) = w4 ∗ tanh(w1x + w2y + w3) + w5 (1)

V

x y 1

1

w
1

w
3

w
2

w
5

w
4

Fig. 1. The simple two-layer network

Figure 2 shows the graphical interpretation of fitting one of

these simple neural networks to a 3 × 3 block of samples.

(a) A 3× 3 block of sam-
ples

X

−1.0

−0.5

0.0

0.5

1.0

Y

−1.0

−0.5

0.0

0.5

1.0

V
alue

−0.5

0.0

0.5

(b) 1 ∗ tanh(2x + 2y + 0) + 0

Fig. 2. Fitting to a 3 × 3 block of samples

Unlike with most neural networks, the weights can be

interpreted to have specific, geometric meanings. The equation

w1x + w2y + w3 = 0

gives the orientation of the inferred edge as a line in implicit

form. The gradient of Fuv is

▽Fuv =

[

∂Fuv/∂x
∂Fuv/∂y

]

=

[

w1(1 − tanh2(w1x + w2y + w3))

w2(1 − tanh2(w1x + w2y + w3))

]

Because the steepest slope of tanh(x) is at x = 0, ▽Fuv is at

its greatest magnitude when w1x + w2y + w3 = 0:

▽F ∗

uv
=

[

w1(1 − tanh2(0))

w2(1 − tanh2(0))

]

=

[

w1

w2

]

Therefore, the steepest slope of Equation 1 is given by

|▽F ∗

uv
| =

√

w2

1
+ w2

2

which can be interpreted as the sharpness of the inferred edge.

The values −w4 +w5 and w4 +w5 approximate the gray-level

values on each side of the edge, and w5 is the gray-level value

along the line defining the edge.

Speed is critical in most image processing applications.

Though these neural networks are small, special care must be

taken in setting the training parameters and setting stopping

criteria. The appendix describes our current implementation,

and the techniques and parameters we used to reduce training

time.

B. Bicubic “Distance Weighting”

Edge inference uses an inexact cubic B-spline interpolant

to combine the outputs of the neural networks. Other cubic

interpolants exist and may be desirable for some images [1],

[6], but in our experiments, B-splines tended to produce

the best results in photographs and cartoon images. For the

remainder of this paper, assume that all cubics mentioned are

cubic B-splines.

This section describes only what is necessary to implement

bicubic interpolation. For a fuller treatment, see [1].

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

B
(x

)

Fig. 3. B-spline kernel function

Figure 3 shows a plot of the cubic B-spline’s kernel func-

tion:

B(x) =
1

6







3|x|3 − 6|x|2 + 4 : 0 ≤ |x| < 1
−|x|3 + 6|x|2 − 12|x| + 8 : 1 ≤ |x| < 2

0 : 2 ≤ |x|
[1]

which can be used much like a distance metric. If (x, y) is the

point in question, and

x0 = max(⌊x⌋ − 1, 1)

x1 = min(⌊x⌋ + 2,m)

y0 = max(⌊y⌋ − 1, 1)

y1 = min(⌊y⌋ + 2, n)

c = (x1 − x0 + 1)(y1 − y0 + 1)

(where (x0, y0) is one corner of the surrounding samples,

(x1, y1) is the opposite corner, and c is the number of

surrounding samples), then the interpolated value is given by

b(x, y) =
16

c

x1
∑

u=x0

y1
∑

v=y0

MuvB(x − u)B(y − v) (2)

where b is a C2-continuous function over the image domain.

The term 16

c
scales the result according to the number of

surrounding samples, to avoid vignette effects (fuzzy, dark

borders) on the image boundaries. Each of the 16 (or fewer)

nearest neighbors makes a weighted contribution to the inter-

polated value.

What if, instead of contributing a constant value, the nearest

neighbors contributed an estimate of the value at (x, y)? Under

the right circumstances, this should result in more detail.

Fortunately, the matrix of neural networks, F , provides a way

to make these estimates.

Given the same definitions for x0, x1, y0, y1, and c above,

edge inference’s interpolated values are given by

v(x, y) =
16

c

x1
∑

u=x0

y1
∑

v=y0

Fuv(x − u, y − v)B(x − u)B(y − v)

(3)

where v is also a C2-continuous function over the image

domain. In a sense, edge inference interpolates over super-

pixels, which have not just a single value, but two values and

an oriented edge between them.

(a) Nearest-neighbor (to emphasize samples) (b) Edge inference, s = 1 (c) Edge inference, s = 2

(d) Bicubic interpolation (e) Full edge inference (with noise), s = 1 (f) Full edge inference (with noise), s = 2

Fig. 4. 128 × 128 crop of “Man” from the USC-SIPI Image Database, scaled to 1024 × 1024 (8 × 8)

With this intuition, it is easy to see why edge inference is

capable of sharper edges than bicubic interpolation. Suppose a

small local area of samples has a sharp edge running through

it. Multiple neural networks on either side of the edge are

likely to fit to that edge, especially if it is the strongest feature

in their training sets. Thus, at interpolated points near the edge,

nearest neighbors from both sides of the edge contribute the

correct value. With standard bicubic interpolation, this is not

possible.

Figure 4 demonstrates that this is often the case. It shows

the output of edge inference applied to a 128× 128 image of

an unfortunate actor from the USC-SIPI Image Database [7],

and used to magnify the image to 1024 × 1024. Figure 4(a)

shows the original image magnified using nearest-neighbor

interpolation to emphasize the original samples. Figure 4(d)

shows the output of Equation 2, and Figure 4(b) shows the

output of Equation 3. Notice how much sharper the edges are

in Figure 4(b).

C. Post-training Sharpness Control

Modifying Equation 1 to become

Fuv = w4 ∗ tanh(s(w1x + w2y + w3)) + w5 (4)

introduces a new sharpness factor, s. This is similar to gain,

except it is held constant equal to 1 during training, and may

only be changed afterward.

Now, when w1x + w2y + w3 = 0, ∂Fuv/∂x = sw1 and

∂Fuv/∂y = sw2. The steepest slope is given by

|▽F ∗

uv
| =

∣

∣

∣

∣

[

sw1

sw2

]
∣

∣

∣

∣

=
√

s2w2

1
+ s2w2

2
= s

√

w2

1
+ w2

2

Thus, s is a constant multiplier to the steepest slope. Fig-

ure 4(c) shows the output of Equation 3 with s = 2, which is

even sharper than Figure 4(b).

D. Reinterpreting Noise

A problem with Figures 4(b) and 4(c) is that parts that, in the

original image, have fine detail—especially the headdress—

are flat and uninteresting. The neural networks have learned

the edges very well and disregarded noise. (We define “noise”

somewhat circularly as every feature the neural networks fail

to learn.) However, the “noise” clearly contains significant

features that would be desirable to have in the interpolated

image.

A simple way to keep those features is to add the noise

directly to the interpolated image. Let N be an m×n matrix,

defined by

Nuv = Muv − Fuv(0, 0) (5)

In other words, each element in the noise matrix N contains

the signed difference between the sample and the correspond-

ing neural network’s estimate of the sample. Figure 5 shows

the calculation of N and the result: a low-contrast image with

values in the range [−2, 2].
The noise image is then scaled and added directly to

the interpolated image. This is easy to combine with edge

inference as it is defined so far. Adding the right side of

Equation 2 (with N substituted for M) to the right side of

Equation 3 results in

f(x, y) =

16

c

x1
∑

u=x0

y1
∑

v=y0

(Nuv + Fuv(x− u, y − v))B(x− u)B(y − v)

(6)

This finally completes the algorithm. Figures 4(e) and 4(f)

show the results of applying it to the 128 × 128 “Man”

image. Both seem to be fuller and have more depth than their

counterparts, Figures 4(b) and 4(c). In particular, the noisy

parts of the image, such as the feathers and hair, have regained

lost features.

Figure 6 gives edge inference in high-level pseudocode.

Notice that the noise value is calculated only after the neural

network’s sharpness is set, because any Nuv depends on the

value of Fuv(0, 0), which depends on the sharpness. Of course,

if the sharpness is changed later on, the noise value will have

to be recalculated.

One very useful property of this formulation is that it turns

edge inference into a generalization of bicubic interpolation.

Specifically, from Equation 4, when s = 0,

Fuv = w4 ∗ tanh(0(w1x + w2y + w3)) + w5

= w4 ∗ 0 + w5

= w5

Equation 5 becomes

Nuv = Muv − w5

and the term (Nuv +Fuv(x−u, y−v)) in Equation 6 becomes

Muv − w5 + w5 = Muv , yielding

fs=0(x, y) =
16

c

x1
∑

u=x0

y1
∑

v=y0

MuvB(x − u)B(y − v)

which is the same as Equation 2. Therefore, when s = 0, edge

inference with a bicubic weighting function behaves exactly

as bicubic interpolation. (In fact, when s = 0, edge inference

with any interpolant’s weighting function behaves exactly as

that interpolant.)

This means that users of edge inference get a sliding

scale between bicubic interpolation and edge inference of any

sharpness. A much weaker but still important result is that, as

long as a human being has control over the value of s, it is

impossible for edge inference to perform subjectively worse

than bicubic interpolation.

function learnFunctions(M, m, n, sharpness)

F <- new mxn matrix of neural networks

N <- new mxn matrix of values

for x from 1 to m

for y from 1 to n

F[x,y].train(x, y, M, m, n)

F[x,y].s = sharpness

N[x,y] = M[x,y] - F[x,y](0,0)

return F, N

function getInterpolatedValue(F, N, m, n, x, y)

x0=max(floor(x)-1,1)

x1=min(floor(x)+2,m)

y0=max(floor(y)-1,1)

y1=min(floor(y)+2,n)

c=(x1-x0+1)*(y1-y0+1)

value=0

for u from x0 to x1

for v from y0 to y1

value=value+(N[u,v]+F[u,v](x-u,y-v))*

B(x-u)*B(y-v)

return 16*value/c

Fig. 6. Edge inference in pseudocode

III. EDGE INFERENCE WITH COLOR IMAGES

Edge inference will work on RGB images with very little

change, by treating each color plane as a separate image.

However, it can be done much more quickly and with less

memory by making one simplifying assumption: that the edges

in each color plane are oriented approximately the same way.

Thus, the neural network matrix F is defined by

Fuv(x, y) =





w4

w5

w6



 tanh(s(w1x+w2y+w3))+





w7

w8

w9



 (7)

as shown in Figure 7. It is easy to verify that the functions b
(Equation 2) and f (Equation 6) do not have to be altered to

use vectors as matrix elements.

Notice that Figure 7 implies that the neural network trains

in YCrCb color space [8] rather than in RGB. The neural

networks consistently produce better fits in YCrCb color space

than they do in RGB color space. This is likely because the

luminance plane (Y) offers the neural network a very strong,

single feature to train on when learning data from photographic

images.

Cr

x y 1

1

w
9

w
2w

1

w
4

w
3

CbY

w
5

w
7

w
6

w
8

Fig. 7. The three-output network

(a) Muv

-

(b) Fuv(0, 0)

=

(c) Nuv

Fig. 5. Calculation of the noise image

Figure 8 shows the results of applying edge inference to

“Peppers” from the USC-SIPI Image Database [7], which has

been shrunk to 128×128 and then scaled to 512×512. It also

demonstrates using the sliding sharpness scale, from s = 0 to

s = 3.

IV. ADDITIONAL APPLICATIONS

Only image superscaling has been presented here, but there

are many other possible applications of edge inference. In

particular, many image transformations and distortions [8] can

make good use of well-interpolated sub-pixel values. Besides

those, however, there are two more applications that arise

from the mechanics of edge inference: noise reduction and

sharpening.

A. Noise Reduction

If one makes the assumption that “noise” is every feature

the neural networks fail to learn, it is possible to use edge

inference to remove noise from images. The output image, I ,

is given by

Iuv = kNuv + Fuv(0, 0)

where k is a constant noise factor in the range [0,1]: a sliding

scale between the original image and the noise-reduced image.

Figures 5(a) and 5(b) demonstrate the ends of this scale, as

k = 0 and k = 1, respectively.

B. Sharpening

In image processing, sharpening an image without enhanc-

ing noise is a difficult problem [8]. Using edge inference while

constraining the output image to the same dimensions as the

input image is one possible solution. Figure 9(b) shows the

result, with s = 4.

Note that some of the detail is lost. This might be com-

pensated for by inferring edges of more complex shapes than

simple lines, such as quadratic curves.

(a) Original image (b) Sharpened image (s = 4)

Fig. 9. Sharpening with edge inference

V. APPENDIX: IMPLEMENTATION DETAILS

Our current implementation employs a number of tech-

niques to train the neural networks quickly and cause them

to return consistent results. It is fully deterministic and, in our

tests, averages about 9 seconds to train on 1024 × 768 RGB

images on a 2 GHz Intel processor.

The details discussed in this section only apply to the

YCrCb version of edge inference—the neural network de-

picted in Figure 7.

A. Determinism

It is desirable for edge inference to always infer the same

f(x, y) for each image. To achieve this, the weights are

initialized to constant values. We determined experimentally

that

w1 = w2 = w7 = w8 = w9 = 0

w3 = w4 = w5 = w6 = 0.002

tends to produce good results. Also, the neural networks are

trained in batch mode to avoid randomizing the order of the

training set for each epoch.

(a) Nearest-neighbor (b) s = 0 (bicubic interpolation) (c) s = 0.25 (d) s = 0.5

(e) s = 1.0 (f) s = 1.5 (g) s = 2.0 (h) s = 3.0

Fig. 8. Scaling the 128 × 128 “Peppers” image to 512 × 512, from s = 0 to s = 3

B. Training Parameters

The momentum term is 0.9. The learning rates are per-

weight, with

ηw1
= ηw2

= ηw3
= 0.4

ηw4
= ηw5

= ηw6
= 0.2

In our implementation, weights w7, w8 and w9 are not trained,

but are solved after every epoch (see section V-C).

We found that having good stopping criteria was the best

way to speed up training over the entire image. When the

majority of the neural networks in F train in fewer than

25 epochs, the algorithm runs very quickly. In our current

implementation, the neural networks train for at least five

epochs, and no longer than 300. They stop training when the

largest weight update is smaller than 0.002.

C. Other Time-Reducing Techniques

The function tanh is implemented with a lookup table,

which speeds up training and querying considerably.

We also derive the error function in terms of each weight,

and use those partial derivatives to perform gradient descent.

This uses fewer floating-point operations than backpropaga-

tion, and allows those operations to be arranged for better

temporal locality. It also allows w7, w8 and w9 to be solved

for the minimum sum squared error directly.

Our current implementation of neural network training is
written in C, and located at

http://axon.cs.byu.edu/˜neil/edge_function/

along with a PDF file giving all the partial derivatives and

solutions for w7, w8, and w9.

REFERENCES

[1] T. M. Lehmann, “Survey: Interpolation methods in medical image
processing,” IEEE Transactions on Medical Imaging, vol. 18, no. 11,
November 1999.

[2] J. P. Allebach and P. W. Wong, “Edge-directed interpolation,” in Proceed-

ings of the IEEE International Conference on Image Processing, vol. 3,
1996, pp. 707–710.

[3] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE

Transactions on Image Processing, vol. 10, no. 10, October 2001.
[4] Q. Wang and R. Ward, “A new edge-directed image expansion scheme,” in

Proceedings of the IEEE International Conference on Image Processing,
vol. 3, 2001, pp. 899–902.

[5] X. Yu, B. S. Morse, and T. W. Sederberg, “Image reconstruction using
data-dependent triangulation,” IEEE Computer Graphics and Applica-

tions, vol. 21, pp. 62–68, May 2001.
[6] D. P. Mitchell and A. N. Netravali, “Reconstruction filters in computer

graphics,” Computer Graphics, vol. 22, no. 4, August 1988.
[7] “The USC-SIPI image database.” [Online]. Available:

http://sipi.usc.edu/database/
[8] R. C. Gonzales and R. E. Woods, Digital Image Processing, 2nd ed.

Pearson Education, 2002.

