
Improving Liquid State Machines Through Iterative

Refinement of the Reservoir

David Norton, Dan Ventura

Computer Science Department, Brigham Young University, Provo, Utah, United States

Abstract

Liquid State Machines (LSMs) exploit the power of recurrent spiking neural
networks (SNNs) without training the SNN. Instead, LSMs randomly gen-
erate this network and then use it as a filter for a generic machine learner.
Previous research has shown that LSMs can yield competitive results; how-
ever, the process can require numerous time consuming epochs before finding
a viable filter. We have developed a method for iteratively refining these ran-
domly generated networks so that the LSM will yield a more effective filter
in fewer epochs than the traditional method. We define a new metric for
evaluating the quality of a filter before calculating the accuracy of the LSM.
The LSM then uses this metric to drive a novel algorithm founded on princi-
pals integral to both Hebbian and reinforcement learning. We compare this
new method with traditional LSMs across two artificial pattern recognition
problems and two simplified problems derived from the TIMIT dataset. De-
pending on the problem, our method demonstrates improvements in accuracy
of from 15 to almost 600%.

Keywords: Spiking Neural Network, Liquid State Machine, Recurrent
Network

1. Introduction

By transmitting a temporal pattern rather than a single quantity along
synapses [1], spiking neural networks (SNNs) can process more information at
each node than traditional artificial neural networks [2, 3, 4, 5]. Furthermore,
each node in an SNN has its own memory adding to the computational
potential of SNNs. Augmenting SNNs with recurrence allows the model to
maintain a trace of past events that can aid in the analysis of later inputs.

Preprint submitted to Neurocomputing April 26, 2010

Despite these strengths, training recurrent SNNs is a problem without a
satisfactory solution.

Liquid state machines (LSMs) are a model that attempts to take advan-
tage of recurrent SNNs without training the network. Instead, a randomly
generated reservoir, or liquid, of spiking neurons is used as a filter for a sim-
ple learner, such as a perceptron. As a filter, the liquid has the potential to
transform complex temporal patterns into more basic spatial patterns that
are more amenable to machine learning. Unfortunately, randomly generated
liquids often do not act as a useful filter, which requires researchers to gener-
ate many random liquids until a useful filter is found. Since there is no form
of regression in this random creation process, there is no way of iterating
upon the best liquid found so far. This results in an unsatisfactory termina-
tion criteria. Furthermore, in order to determine whether each filter is useful
or not, a separate learner must be trained on the liquid and then evaluated.

We present an algorithm for training the randomly created liquid of an
LSM so that a useful filter can be found after fewer liquid generations than
using a strictly random search. We show that this algorithm not only de-
creases the number of liquids that must be created to find a usable filter, it
also evaluates each liquid without training a learner and provides a satisfac-
tory termination criteria for the search process.

The algorithm does not attempt to directly improve the accuracy of the
system like most machine learners; rather, it attempts to improve the ability
of the liquid to separate different classes of input into distinct patterns of
behavior—a more general task. We define a metric to measure this ability to
separate and aptly call it separation. Because separation drives the proposed
algorithm, we call it Separation Driven Synaptic Modification (SDSM). In
our results, SDSM yields LSMs with higher accuracy than traditional LSMs
on all of the problems that we explore.

In order to motivate the subject of LSMs, we begin this paper with Sec-
tion 2 by describing in detail the characteristics of recurrent SNNs and LSMs.
In Section 3 we define separation and provide motivation for its use in driv-
ing a learning algorithm. In Section 4, we formally define SDSM. The next
two sections show the implementation and results of several experiments
comparing SDSM to traditional LSMs. For these experiments we choose
two artificial problems and two simplified problems derived from the TIMIT
dataset (commonly used in speech recognition) to evaluate SDSM. In addi-
tion to our results, Section 5 contains the description and motivation for the
artificial problems we use. In Section 6 we describe the problems derived

2

from the TIMIT dataset, how we convert speech data into spike trains for
the LSM, and the results for those problems. In Section 7 we show some
results demonstrating transfer learning occurring with SDSM. Finally, the
conclusions and implications of our results are discussed in Section 8.

For duplication purposes, we note that all of the LSMs used in this paper
are created using CSIM [6, 7].

2. Background

To appreciate the benefits of liquid state machines we first describe the
strengths and weaknesses of recurrent spiking neural networks. We then
explain, in detail, liquid state machines themselves.

2.1. Recurrent Spiking Neural Networks

Spiking neural networks (SNNs) emulate biological neurons by transmit-
ting signals in a sequence of spikes with constant amplitude. Information
has the potential to be encoded in the varying frequencies of spikes pro-
duced by the neurons rather than in the single rate value commonly used in
non-spiking networks [1]. SNNs can, in theory, convey temporal information
more accurately by maintaining non-uniform spiking frequencies. This allows
SNNs to have greater computational power for problems in which timing is
important [2, 3], including such problems as speech recognition, biometrics,
and robot control. Even in problems where timing isn’t an explicit factor,
SNNs achieve competitive results with fewer neurons than traditional artifi-
cial neural networks [4, 5].

Recurrent neural networks allow cycles to occur within the network. This
property theoretically improves neural networks by allowing neural activity
at one point in time to affect neural activity at a later time. In other words,
context is incorporated indirectly into the network, endowing the network
with the capability to solve timing-critical problems.

Despite the obvious advantages of using recurrent SNNs over traditional
neural networks, they suffer from a distinct lack of satisfactory training al-
gorithms. Concerning the recurrent property alone, only a handful of es-
tablished algorithms exist, all of which have very high computational costs,
limiting them to very small networks [8]. All of these methods also require
very specific and sensitive parameter settings for each application in which
they are used. Training non-recurrent SNNs is also a developing area of
research. Most SNN training algorithms currently proposed only allow for

3

a single output spike from each neuron [4, 5, 9]. This is unrealistic and
computationally limiting. Combining recurrence with SNNs compounds the
difficulty of training—though biologically plausible models, such as those of
cortical microcircuits, are showing promise [10].

2.2. Liquid State Machines

The Liquid State Machine, or LSM, is one approach for harnessing the
power of recurrent SNNs without actually training them [6, 11]. LSMs are
a type of reservoir computing comparable to echo state networks (ESN) [12]
and Backpropagation Decorrelation (BPDC) [13], neither of which employs
spiking neurons. LSMs are composed of two parts: a reservoir featuring
a highly recurrent SNN, and a readout function characterized by a simple
learning function. Temporal input is fed into the reservoir which acts as a
filter. Then the state of the reservoir, or state vector, is used as input for the
readout function. See Figure 1. In essence, the readout function trains on the
output of the reservoir. No training occurs within the reservoir itself. This
process has been analogized with dropping objects into a container of liquid
and subsequently reading the ripples created to classify the objects—hence
the name liquid state machine.

The aforementioned state vector is specifically a vector containing the
binary state of each neuron in the reservoir at a given time—either the neuron
is firing or it isn’t. Since action potentials occur instantly, the state of each
neuron is determined by analyzing a thin slice of time rather than an instance.
In other words, the state vector indicates which neurons fired during a given
time slice. For all of the experiments in this paper, the time slice for the state
vector was taken at the end of the temporal input sequence giving most of
the input sequence a chance to percolate throughout the reservoir.

Because no training occurs in the reservoir, the quality of the LSM is
dependent upon the ability of the liquid to effectively separate classes of in-
put. Here the term “effectively separate” is defined as the ability of a liquid
to yield a state vector with which a readout function can attain acceptable
accuracy. Typically, the liquid is created randomly according to some care-
fully selected parameters specific to the problem at hand. This parameter
selection has been the topic of much research [14, 13] although the research
has not yet led to a consistent and general method of generating liquids for
all problems [15]. Even when adequate parameters for a given problem have
been implemented, the creation of a useful liquid is not guaranteed. Typi-
cally hundreds or even thousands of liquids will be created to find a suitable

4

Figure 1: Outline of a liquid state machine: We transform the input signal (a) into a spike
train (b) via some function. We then introduce the spike train into the recurrent SNN, or
“liquid” (c). Next, the LSM takes snapshots of the state of the “liquid”; these are called
state vectors (d). Finally, the LSM uses these state vectors as input to train a learning
algorithm, the readout function (e).

filter. Fortunately, once such a liquid is discovered, the results of the LSM
are comparable with the state-of-the-art [16, 13, 17]. Such results, coupled
with the lack of a sufficient algorithm to train these promising networks, fuel
the exploration of LSMs.

3. Separation

Separation is a metric used to determine the effectiveness of a liquid. It
measures how well the liquid separates different classes of input into different
reservoir states, or state vectors, and is related to supervised clustering in
that separation essentially measures how well state vectors are clustered into
their respective classes. State vectors are described in detail in Section 2. A
metric for separation was first devised by Goodman [16] and is inspired by the
description of the properties of a liquid presented by Maass [18]. Goodman’s
definition of separation essentially finds the mean difference between the
state vectors obtained from each of the classes in a problem. In order to
more accurately perform the desired measure of separation, we have revised
Goodman’s definition to take into consideration the variance between state
vectors of the same class.

Separation is initialized by dividing a set of state vectors, O(t), into n

5

subsets, Ol(t), one for each class, where n is the total number of classes.
Individual state vectors are represented by o, and the more state vectors
available for the metric, the more accurate the calculation of separation. In
our notation, rather than strictly representing time, t represents the current
iteration of the soon to be described SDSM algotihm.

Separation is divided into two parts, the inter-class distance, cd(t), and
the intra-class variance, cv(t). cd(t) is defined by Equation 1 and is the mean
distance between the center of mass for every pair of classes. The center of
mass for each class, µ(Ol(t)), is calculated with Equation 2. For clarity, we
use | · | notation for set cardinality, and ‖·‖k notation for the Lk-norm.

cd(t) =
n∑
l=1

n∑
m=1

‖µ(Ol(t))− µ(Om(t))‖2

n2
(1)

µ(Ol(t)) =

∑
om∈Ol(t) om

|Ol(t)|
(2)

cv(t) is defined by Equation 3 and is the mean variance of every cluster, or
class, of state vectors. ρ(Ol(t)) is the average amount of variance for each
state vector within class l from the center of mass for that class. We calculate
the mean variance as shown in Equation 4.

cv(t) =
1

n

n∑
l=1

ρ(Ol(t)) (3)

ρ(Ol(t)) =

∑
om∈Ol(t) ‖µ(Ol(t))− om‖2

|Ol(t)|
(4)

Separation can now be defined by Equation 5. Cv(t) is incremented by one
to ensure that separation never approaches ∞.

SepΨ(O(t)) =
cd(t)

cv(t) + 1
(5)

Here Ψ is the liquid that produced the set of state vectors, O(t). Separa-
tion essentially measures the mean distance between classes of state vectors
divided by the average variance found within those classes.

In Figure 2 we show that separation does correlate with the effectiveness
of a liquid. Here, effectiveness is measured as the accuracy of the LSM at

6

dan
Highlight
This should still be italic, too.

dan
Highlight
why not use traditional i and j (and k) for index variables?

dan
Highlight
vector indexes aren't vectors

dan
Highlight
lowercase

Figure 2: Correlation between accuracy and separation in 1000 different liquids run on an
artificial problem. The correlation coefficient is 0.6876.

classifying inputs in an artificial problem. One thousand liquids were gener-
ated with varying parameter settings to create a large variety of separation
values. The artificial problem consisted of five input classes expressed as tem-
plate spiking patterns for four input neurons. The system needed to identify
which class a variation of the template spiking pattern belonged to. These
variations were created by jittering each spike in a template by a normal dis-
tribution. The accuracies displayed in Figure 2 were obtained by training the
readout with 2000 training instances and then testing with 500 test instances.
Separation was calculated with only three examples from each class. Since
we were not applying a synapse modifying algorithm to the liquids, only one
iteration, t, was observed. The correlation coefficient between accuracy and
separation is a convincing 0.6876.

Another method for identifying the computational power of liquids, called
the linear separation property, has been proposed by Maass et al. [19]. This
metric, while geared towards more biologically plausible models than ours,
is shown to generalize to a variety of neural microcircuits. Development of
an algorithm for preparing effective reservoirs based on the linear separation
property may prove useful in future research.

7

4. Separation Driven Synaptic Modification

Separation Driven Synaptic Modification, or SDSM, is an approach used
to modify the synapses of the liquid by using the separation metric defined
in Section 3. The underlying principals of SDSM are in part inspired by
Hebbian learning and bare some resemblance to prior work [20]. However,
SDSM is more akin to a linear regression model since it is guided by the
separation metric. Following is an equation that represents SDSM:

wij(t+ ∆t) = sgn(wij(t))(|wij(t)|+ e(t)λf(t)) (6)

Here wij(t) is the weight of the synapse from neuron j to neuron i at iteration
t, λ is the learning rate, sgn(wij(t)) is the sign of wij(t) (i.e. whether the
synapse is excitatory or inhibitory), e(t) is a function of the effect of separa-
tion on the weight at iteration t, and f(t) is a function of the firing behavior
of all neurons in the liquid at iteration t.

First we will look at the function E(t). To explain this function and
its derivation it is first important to understand what we mean by relative
synaptic strength, rs, defined by Equation 7.

rs =
|wij(t)| − µw

mw

(7)

Here µw estimates the expected value of the magnitude of synaptic weights
in the initial liquid. mw is an estimate of the maximum of the random
values drawn from the same distribution used to generate synaptic weights
in the initial liquid. (These approximations were obtained via simulation with
10,000 samples). mw normalizes the synaptic strength while µw is used to
differentiate weak synapses and strong synapses. A negative rs is considered
weak while a positive rs is considered strong.

Too little distance between centers of mass, cd(t) (Equation 1), or too
much variance within classes, cv(t) (Equation 3), can decrease separation
and thus the overall effectiveness of the liquid. Generally speaking, if there
is too little distance between centers of mass, it is because strong synapses
are driving the liquid to behave a particular way regardless of input class.
To rectify this, we want to strengthen weak synapses and weaken strong
synapses. This will drive the liquid towards a more chaotic structure that
will yield results more dependent on the input. On the other hand, if there
is too much variance within classes, it is because the liquid is too chaotic to
drive inputs of the same class to behave similarly. To relieve this problem, it

8

dan
Highlight
lowercase

dan
Highlight
hopefully not confused with the natural base e

is necessary to strengthen strong synapses and weaken weak synapses even
more. This will polarize the liquid, requiring greater differences in input to
cause a change in the liquid’s behavior (in other words, the liquid will be less
chaotic).

The motivation behind the function e(t) (see Equation 6) is to, at the
level of an individual synapse, find a balance between differentiating classes
of input and reducing variance within classes. The solution to the problem
of differentiating classes of input, di(t), is implemented with Equation 8.

di(t) = αi(t)

(
1− cd(t)

Sep∗Ψ

)
(8)

αi(t) =

∑n
k=1 µi(Ok(t))

n
(9)

Here αi(t) is the activity of a specific neuron i (the post-synaptic neuron
of synapse wij) at iteration t and is defined by Equation 9. αi(t) contains
µ(Ok(t)) which is the mean of the state vectors in class k. Specifically,
µi(Ok(t)) is the value of the ith element of the mean state vector. This is
also the fraction of state vectors belonging to class k in which neuron i fires.
As in Section 3, n is the number of classes for the given problem. Sep∗Ψ is
the optimal separation value for the given problem and liquid. We evaluate
Sep∗Ψ by performing a one-time approximation of the maximum separation
for an artificial set of n state vectors that have the same cardinality as state
vectors from the given liquid. The artificial set of state vectors is constructed
such that for all vectors the average Hamming distance to all other vectors
is (approximately) maximized. Sep∗Ψ must be approximated in this manner
because we are not aware of a method to explicitly calculate optimal sep-
aration. Since this approximation far exceeds the inter-class distances that
we have encountered in actual liquids, it is suitable as a reference point to
calculate what is essentially an error function for inter-class distance.

In Equation 8, the normalized value of cd(t) is subtracted from one so that
di(t) will provide greater correction for smaller values of cd(t). Essentially,
Equation 8, multiplies the activity of a particular neuron by the amount of
correction necessary for too little distance between class centers of mass. We
assume that neuron activity is to blame for this problem. This may or may
not be the case; however, consistently assuming correlation between cd(t) and
neuron activity should eventually impose this correlation on the liquid and
ultimately yield the desired results.

9

The solution to the problem of reducing variance within classes, is imple-
mented with Equation 10.

vi(t) =

∑n
k=1 µi(Ok(t))ρ(Ok(t))

n
(10)

vi(t) is calculated similarly to αi(t) except that each instance of µi(Ok(t))
is multiplied by the mean variance for class k, because mean variance is
determined class by class. The end result is that Equation 10 provides greater
correction for larger values of cv(t), which is desirable since we are trying to
reduce intra-class variance. Like the equation for di(t) (Equation 8), the
equation for vi(t) assumes a correlation between the neuron’s activity and
cv(t).

Equations 8, 9, and 10 all depend upon a sample of state vectors produced
by the liquid at iteration t. To maintain the efficiency of SDSM and avoid
conventionally training the liquid, only three randomly selected state vectors
per class are used.

The function e(t) is derived from the Equations 7-10 as follows:

e(t) = rs (vi(t)− di(t)) (11)

Here di(t) is subtracted from vi(t) because, as mentioned previously, we want
the distance correction, di(t), to strengthen weak synapses and weaken strong
synapses while we want the variance correction, vi(t) to strengthen strong
synapses and weaken weak synapses. In other words, we want di(t) to increase
the chaotic nature of the liquid and vi(t) to decrease the chaotic nature of
the liquid. Ultimately the goal of Equation 11 is to find a balance between
a liquid that is too chaotic and one that is too stable [21]. This goal is in
accordance with other studies that have identified the importance of building
systems that operate near the edge of chaos, a.k.a. edge of stability [22, 23].

We now turn our attention to F (t), the function of the firing behavior of
all neurons in the liquid at iteration t. This function is expressed in three
parts as follows:

f(t) =

{ 1
φ(t)

, if wij(t)e(t) ≥ 0

φ(t), if wij(t)e(t) < 0
(12)

φ(t) = 2kA(t)−b (13)

10

dan
Highlight
lowercase

dan
Highlight
lowercase

a(t) =

∑
o∈O(t)

∑
η∈o η

|o|

|O|
(14)

Here a(t) is the activity of the entire liquid at iteration t and is calculated
by finding the average fraction of neurons, η, that fire in each state vector
in O(t). φ(t) is a transformation of A(t) that reduces it to a function that
will allow f(t) to be multiplied by e(t) in Equation 6. φ(t) contains two
variables, k and b, that represent, respectively, the scale and offset of the
transformation. For our experiments, k = 6 and b = 3 were found, through
preliminary tuning, to yield the highest separation values. f(t) uses the state
of the synapse and the results of e(t) to determine how the global activity of
the liquid at iteration t will effect the change in weight. The effect of f(t) is
to promote the overall strengthening of excitatory synapses while promoting
the overall weakening of inhibitory synapses if less than half of the neurons
in the liquid fire. If more than half of the neurons fire, the effect of f(t) is
reversed. The goal of f(t) is to direct the liquid to a “useful” amount of
activity. This assumes that half of the neurons firing for all state vectors is
the desired fraction of activity to achieve maximum separation. This is not
an unreasonable assumption as such a condition would allow for statistically
the most variation between states, and thus allow for the highest degree of
separation possible between numerous states.

5. Applying SDSM

We develop two artificial problems to test the effect of Separation Driven
Synaptic Modification (SDSM) on the accuracy of an LSM given limited
liquid creations. This section explores the results of these experiments and
shows the strength of this algorithm in selecting ideal liquids for these prob-
lems.

We call the simpler of the two problems the frequency recognition problem.
This problem has four input neurons and five classes. Each input neuron
fires at a slow or fast frequency. The five classes are defined by specific
combinations of fast and slow input neurons as shown Table 1, where 1
represents a fast input neuron and 0 a slow one. These particular patterns
are chosen to challenge the liquid with a variety of combinations as well as
the task of ignoring one channel (input neuron 4).

Individual samples from each class are generated by following the class
template and then jittering the frequencies. Since each class is distinctly

11

dan
Highlight
lowercase

Input 1 Input 2 Input 3 Input 4
Class 1 1 0 0 0
Class 2 0 1 0 0
Class 3 1 1 0 0
Class 4 0 0 1 0
Class 5 1 0 1 0

Table 1: Frequency patterns for each class in the frequency recognition problem. Each
input represents one of four input neurons. A 1 indicates a fast spiking frequency while a
0 represents a slower spiking frequency.

defined by a particular pattern of behavior with only two options for each
neuron, this is a fairly simple problem.

The second problem, which is more complex, we call the pattern recogni-
tion problem. This problem has eight input neurons and a variable number
of classes. Each class is based on a template spike pattern randomly created
for each input neuron. We generate this random pattern by plotting indi-
vidual spikes with a random distance between one another. This distance is
drawn from the absolute value of a normal distribution with a mean of 10ms
and a standard deviation of 20ms. Once we create the template pattern for
each input neuron in a class, individual instances from the class are created
by jittering each spike in the template. The spikes are jittered by an amount
drawn from a zero-mean normal distribution with a standard deviation of
5ms making the problem particularly difficult. We derive all of these values
through empirical analysis to create a solvable but difficult problem. A sim-
plified example with only two classes and three input neurons is shown in
Figure 3.

5.1. Parameter Settings

The models we used for the neurons and synapses for all of our exper-
iments were taken from CSIM [6, 7]. Specifically, we used the StaticSpik-
ingSynapse model for synapses, and the SpikingInputNeuron and LifNeuron
models for the input and reservoir neurons respectively. We determined the
best setting for each of the many parameters in the liquid by performing
extensive preliminary tuning. The parameters that apply to traditional liq-
uids were chosen based on the best tuning results prior to any application
of SDSM. The different parameters we looked at in these preliminary ef-

12

(a) Template for Class A (b) Instance 1 for Class A (c) Instance 2 for Class A

(d) Template for Class B (e) Instance 1 for Class B (f) Instance 2 for Class B

Figure 3: Simplified example templates for two classes, A and B, are shown in (a) and (d)
respectively. Each class has three input neurons designated by the y-axis. The x -axis is
time spanning 100ms. (b) and (c) show examples of instances from class A created from
jittered versions of the template. (e) and (f) show examples of instances from class B.

forts were the number of neurons, connection probability, the mean synaptic
weight and delay, the standard deviation of the synaptic weight and delay,
the number of samples per class used to determine separation at each in-
stance, the number of iterations to run, the learning rate, the synaptic time
constant, and the amount of noise present in each neuron. While excitatory
and inhibitory neurons are not explicitly created, positive synaptic weights
are excitatory and negative synaptic weights are inhibitory. Table 2 shows
the parameters we use for all of the results presented in this section as well
as Section 6. As the results of this section and the next section show, these
parameters generalize very well as long as the temporal scale of the input is
on the order of one second.

Some of the parameters presented in Table 2 require further explana-
tion to more easily replicate the results. The connection probability is the
probability that any given neuron (including input neurons) is connected to
any other liquid neuron (liquid neurons cannot connect back to input neu-
rons). The value for the connection probability indicated in Table 2 means
that each neuron is connected to roughly one third of the other neurons.
The mean and standard deviation for synaptic weight define the distribution
from which the initial weight values are drawn for every synapse. The same
applies to the mean and standard deviation for synaptic delay—although the
synaptic delay values for each synapse remain constant during SDSM. The
“samples per class” parameter refers to the number of training samples used
from each class when calculating separation. This in turn is what drives the
SDSM algorithm. The more samples used, the more accurate the separation

13

Neurons 64
Connection Probability 0.3
Synaptic Weight Mean 2 · 10−8

Synaptic Weight SD 4 · 10−8

Samples per Class 3
Training Iterations 500
λ 5 · 10−10

Inoise 5 · 10−8

τ 0.003
Synaptic Delay Mean 0.01
Synaptic Delay SD 0.1
State Vector Length 0.05

Table 2: Parameters used by SDSM for Artificial and Phonetic problems.

calculation will be, but at the cost of speed. The number of iterations is
simply how long to run the SDSM algorithm. In our experiments, by 500
iterations, most liquids had reached a plateau in separation improvement. λ
is the learning rate first shown in Section 4. τ is the synaptic time constant
which refers to the rate at which the membrane potential of each synapse
decays. Inoise is the standard deviation of the noise added to each neuron
and is necessary for an efficient liquid [24]. Finally, the “state vector length”
parameter is the length, in seconds, of the time slice at the end of each
temporal input sequence from which each state vector is collected.

5.2. Results

Using the established parameters, we create LSMs with SDSM for both
the pattern and the frequency recognition problems (explained above). For
the pattern recognition problem we explore 4-, 8-, and 12-class problems.
We only explore the specifically defined 5-class scenario for the frequency
recognition problem. For each problem we run fifty experiments, each with a
unique randomly generated initial liquid. State vectors obtained from both
the initial liquid and the liquid after five hundred iterations of SDSM are
used as input to multiple perceptrons. We train each perceptron to classify
members of one particular class, so there are n binary classifiers. We then
compare the output of each perceptron, assigning the class of the perceptron
with the greatest confidence to the state vector in question. This readout

14

(a) Mean Accuracy (b) Mean Separation

Figure 4: A comparison of traditional liquids (initial) and those shaped by SDSM (final)
across four problems. Results are the mean accuracy (a) and separation (b) of fifty LSMs.

function is used because it is very simple, thus allowing us to more carefully
scrutinize the quality of the liquid. For all of our experiments, the test size
is one hundred samples per class.

Figure 4(a) shows the mean accuracy (over all fifty experiments) of the
LSM for each problem. Additionally Figure 5(a) shows the best accuracy
obtained out of the fifty experiments for each problem. In practice, the
liquid with the maximum accuracy is the one that we would select for future
use. However, since we are interested in the potential of SDSM to decrease
the number of liquids that must be created, we are also interested in the
mean accuracy. Note that the initial liquid is the typical LSM scenario: a
strictly randomly generated liquid. So, both of these figures are a comparison
of standard LSMs to LSMs using SDSM. We did not perform a statistical
analysis of these results since the improvement of SDSM over the traditional
method is clearly substantial in all cases.

In addition to the accuracy of the LSMs, Figures 4 and 5 show the sepa-
ration of the liquids. It should be noted that the liquid with the maximum
separation is not necessarily the same liquid that accounts for the maximum
accuracy. Overall these results support the correlation between separation
and accuracy, though there is an anomaly in Figure 5(b) where a higher sep-
aration occurs in an initial random liquid than in any SDSM shaped liquid.
Such anomalies are bound to occur occasionally due to the random nature
of LSMs. The mean results in Figure 4(b) confirm the abnormal nature of
this event.

15

(a) Maximum Accuracy (b) Maximum Separation

Figure 5: A comparison of traditional liquids (initial) and those shaped by SDSM (final)
across four problems. Results are the best accuracy (a) and separation (b) obtained out
of fifty LSMs.

5.3. Discussion

These results show a substantial increase in the performance of liquids us-
ing SDSM, particularly in the problems with more classes. Note that SDSM’s
mean accuracy is higher than the traditional method’s best accuracy—for ev-
ery problem (Figures 4(a) and 5(a)).

Figure 6 compares the trends in liquid exploration for both traditional
and SDSM generated liquids. The results in this figure are from the pattern
recognition problem with eight classes. Figure 6(a) shows the accuracy of
the best liquid obtained so far, given an increasing number of total liquids
created. (The mean accuracy is also shown). Figure 6(a) demonstrates that
far fewer liquids are required to obtained a satisfactory liquid using SDSM
when compared with the traditional method. Figure 6(b) extends the graph
further for traditional liquid creation, and compares the results to the best
results obtained from SDSM after only fifty liquid creations. We see from this
figure that even after 500 liquid creations, a liquid has not been created by
the traditional means that can compete with SDSM after only eleven liquid
creations. This figure illustrates that not only can SDSM find a suitable liquid
in fewer iterations than traditional methods, but it can also potentially create
a liquid that obtains higher accuracy than what is possible with conventional
LSMs in a reasonable amount of time.

Figure 7 shows how separation changes with each iteration over the his-
tory of a typical SDSM trial. Figure 8 shows the mean value of separation

16

(a) Accuracy Over 50 Liquid Creations (b) Accuracy Over 500 Liquid Creations

Figure 6: A comparison of accuracy trends in traditional liquids and those generated with
SDSM. These results show how the accuracy of the best liquid obtained so far improves as
more liquids are created. The results also show that the mean accuracy stabilizes as more
liquids are created. (a) shows the trend up to fifty liquid creations. (b) shows the trend
up to 500 liquid creations for traditional liquids only (the accuracy for SDSM generated
liquids is shown as a baseline only).

over fifty trials of SDSM. These results show that separation is clearly im-
proving over time for the pattern recognition problems. For the frequency
recognition problem, separation quickly increases and then slowly begins to
decrease. This is somewhat distressing and may indicate an instability in
the algorithm when confronted with certain problems; however, even after
500 iterations of SDSM, the average separation is still higher than that of
the initial liquid. Also, the results in Figure 4(a) indicate that, even on the
frequency recognition problem, the accuracy of liquids trained with SDSM
greatly outperform that of traditional liquids. While we currently do not
know the source of this anamoly, we are satisfied with the overall increase in
liquid performance and will leave a deeper investigation of the abnormality
for future research.

Overall, these results indicate that the SDSM algorithm is behaving as
expected (i.e. improving separation). Since SDSM results in a significant
improvement in accuracy, the notion that separation correlates with accuracy
is also strengthened by these results. It is important to keep in mind that
separation in both of these figures was calculated using only three samples
per class for each iteration and is thus a very rough estimate. The initial
and final separation values indicated in Figures 4(b) and 5(b) are much more
accurate approximations of separation—here, we use one hundred samples

17

Figure 7: The separation of a liquid at each iteration during training of SDSM. This is
a single representative example out of two hundred different liquids created in this set
of experiments. This particular liquid was created using the pattern recognition problem
with eight classes.

per class.
Though the correlation between accuracy and separation is not perfect,

it is satisfactory as a metric for both evaluating the quality of a liquid and
revealing beneficial changes that can be made to a liquid. As the algorithm
in Section 4 reveals, the relationship between separation and synaptic mod-
ification within the SDSM algorithm is complicated and can’t necessarily be
predicted. Some flaws of the separation metric become apparent when study-
ing Figure 5(b). While the accuracy for the frequency recognition problem
and the pattern recognition problems are similar, the best liquid separation
is distinctly higher in liquids created with the frequency recognition prob-
lem. This demonstrates that different problems will yield different separation
values due to their unique properties. In this particular case the disparity
is probably at least partly a result of the differing number of input neurons
present in each problem. The pattern recognition problems all have twice
as many input neurons as the frequency recognition problem. This char-
acteristic of the separation metric does not necessarily call for a change in
the metric. It does mean however, that separation values between different
problems cannot be adequately compared to one another.

Finally, for our experiments we fixed the number of training iterations

18

(a) Frequency Recognition: 5 classes (b) Pattern Recognition: 4 classes

(c) Pattern Recognition: 8 classes (d) Pattern Recognition: 12 classes

Figure 8: The mean separation history using SDSM for the four problems explored in our
experiment. Each history is an average of fifty trials.

to 500 in order to bring attention to the limitations of traditional liquid
creation methods. However, since SDSM typically yields a increase in sepa-
ration, surpassing a specific separation threshold could be used as a desirable
termination criteria in practical applications. Such a threshold would not be
as reliable in the traditional approach as there is not an increase in separation
over time.

6. TIMIT Classification with SDSM

Liquids created with SDSM show significant improvement over traditional
LSMs in tightly controlled artificial problems. Now we will explore the use
of SDSM in classifying phonemes found within the TIMIT dataset [25].

19

6.1. TIMIT

TIMIT consists of 6300 spoken sentences, sampled at 16 kHz, read by
630 people employing various English dialects. Since we are interested in
identifying context independent phonemes, we break each sentence down
into its individual phonemes using phonetic indices included with the sound
files. This results in 177389 training instances. We then convert each of these
phoneme WAV files into its 13 Mel frequency cepstral coefficients (mfccs) [26]
sampled at 200 Hz. Finally, we convert the mfccs into thirteen spike trains
(one for each mfcc) with a firing rate calculated using Equation 15 (taken
from Goodman [16]).

Ratei(t) =
mfcci(t)− ωi

(Ωi − ωi)
·MaxRate (15)

Here mfcci(t) is the ith mfcc value at time t which corresponds with the
firing rate for input neuron i; ωi is the minimum value of the ith mfcc, and
Ωi is its maximum value. MaxRate is the maximum rate of firing possible
for a given input neuron. MaxRate is a constant that, as per Goodman, we
defined as 200 spikes per second. Additionally, preliminary work shows that
in order for the liquid to achieve any appreciable level of separation, the time
span of the input needs to be on the order of one second due to the operating
timescale of the liquid. Since single phonemes have a length on the order of
50ms, we temporally stretch each of the spike trains using Equation 16.

tnew =
1

1 + e−k·told
(16)

Here told is the original length of a spike train while tnew is the new
stretched length. The variable k is a sigmoid gain that we set to five, based
on preliminary tuning.

The TIMIT dataset contains roughly fifty-two phonemes. Out of context,
correctly identifying all of these phonemes is a daunting task. Using six
natural classes of phonemes, we reduce this problem to two simpler problems.
The first is a general problem that involves identifying phonemes as either
consonants or vowels. For this problem “stops”, “affricates”, and “fricatives”
are considered consonants. “Nasals” and “semivowels” are removed to avoid
ambiguous sounds. The training data consists of 1000 instances of each class
and the test data contains 100 instances of each class. The second problem is
more specific and involves identifying one of four distinct “vowel” phonemes.

20

(a) Mean Accuracy (b) Mean Separation

Figure 9: A comparison of SDSM and traditional LSMs across two problems derived from
the TIMIT dataset. Results are the mean accuracy (a) and separation (b) of fifty LSMs.

The phonemes used in this problem are ē as in beet; ĕ as in bet; ŭ as in but;
and the er sound in butter. For this problem, the training data consists of
150 instances of each class while the test data contains 50 instances.

6.2. Results

The two problems outlined above are run on LSMs using SDSM, and on
traditional LSMs. The mean results can be found in Figure 9 and the best
results are shown in Figure 10. These results are obtained by running the
problems on fifty liquids either generated with SDSM or created randomly,
with both the accuracy of the LSMs as well as the separation of the liquids
displayed (keep in mind that the liquids showing the best separation do
not necessarily correspond to the LSMs with the highest accuracy). The
parameter settings we use in these algorithms are the same as those outlined
in Section 5 with the exception of the number of training iterations. In
experiments with TIMIT, we run SDSM for only two hundred iterations,
since liquids tend to reach a plateau in separation improvement by this point.
Again, we did not perform a statistical analysis of these results since the
improvement of SDSM over the traditional method is clear in all cases.

6.3. Discussion

Although the results of SDSM on TIMIT data are not as distinguished
as the results obtained with artificial template matching (Section 5), SDSM

21

(a) Max Accuracy (b) Max Separation

Figure 10: A comparison of SDSM and traditional LSMs across two problems derived from
the TIMIT dataset. Results are the best accuracy (a) and separation (b) obtained out of
fifty LSMs.

still shows a significant improvement over traditional liquids. Based on Fig-
ure 9(a), on average traditional liquids do no better than guessing with either
of the phoneme recognition problems while LSMs using SDSM improve over
this baseline.

While neither of these phoneme recognition problems are performed at
an immediately applicable level, even when only looking at the best liquids
created with SDSM (Figure 10(a)), it should be reiterated that these results
are obtained by classifying individual phonemes completely out of context.
Most of these sounds last one twentieth of a second and span a diverse range
of accents. Speech recognition tasks usually involve classifying phonemes as
they are heard in a stream of data, thus providing context for each sound
(i.e. preceding phonemes and pauses). Even in cases where words are being
classified (such as classifying spoken digit), the fact that each word consists
of multiple phonemes aids in the classification process. We chose to perform
only out-of-context experiments in order to keep these problems parallel to
the artificial ones in Section 5 and to focus on the separation properties of
the liquid. The poor accuracy obtained in classifying phonemes may also lie
with our process of converting mfccs into spike trains. However, different
methods of encoding input into spike trains is a whole domain of research in
and of itself, so we will leave that to future work.

Even on these difficult real-data problems, the improvement of using
SDSM over traditional methods is clear. Also, the fact that the results

22

from both of these real-data problems were obtained using essentially the
same parameters as those obtained from both of the artificial-data problems
in Section 5, emphasizes another strength of the SDSM algorithm—a ro-
bustness of algorithm parameters. Extensive parameter exploration of the
liquids for these problems did not show a marked improvement over the set-
tings already obtained in Section 5. Parameter exploration on a problem by
problem basis is a ubiquitous and time consuming component of machine
learning. While these results do not exclude the possibility of the necessity
for parameter exploration on other problems, they show that there is a level
of robustness here not common in machine learning.

7. Transfer Learning with SDSM

Transfer learning refers to the idea of transferring acquired knowledge
from one domain to another similar, but distinctly different, domain. In ma-
chine learning it often refers to the approach of using a model already trained
for success on one problem to realize instantaneous performance gains on an-
other related problem [27, 28]. One of the strengths of LSMs is the ability of
the liquid to be transfered to different problems while maintaining effective-
ness as a filter—effectively transfer learning. This is an important property
since useful liquids can be difficult to find. Because SDSM essentially uses
training data to create the liquid, there is a concern that the liquid’s abil-
ity to transfer may be compromised. In order to test the transfer-learning
capability of the SDSM generated liquids, we run each of the problems ad-
dressed in Figures 4 and 5 on every liquid used to generate those figures. In
other words, we are using the same liquid generated for one problem as the
reservoir for a new readout on a different problem. The results are shown in
Figure 11. When discussing the problem used to create a specific liquid, we
refer to the problem as the source problem.

Input neurons are considered part of the liquid, thus their synapses are
modified as part of SDSM. When a liquid is created from a source problem,
it has i input neurons, where i is the number of spike trains that encode the
source problem’s input. Because different problems have differing numbers of
spike trains, when transfering problems across liquids, discrepancies between
the number of spike trains and number of input neurons must be resolved.

When running a new problem on a liquid that was trained with a different
source problem, we use the following approach. If the new problem’s input
is encoded in fewer spike trains than the source problem, then we arbitrarily

23

dan
Highlight
this is usually an index variable

Figure 11: We used SDSM to generate fifty unique liquids for each of four different source
problems. The corresponding liquid types are indicated on the x-axis. Each of the four
problems was then applied to each of these liquids as indicated by the colored bars. The
mean accuracy of the readouts trained on each liquid-problem combination is reported.

map the spike trains to a subset of the liquid’s input neurons. The excess
input neurons receive a null signal as input. If the new problem’s input is
encoded in more spike trains than the source problem, then we arbitrarily
map multiple spike trains from the new problem’s input to individual input
neurons in the liquid. We combine the spiking patterns by simply including
all spike instances from multiple inputs into a single spike train. For each
experiment, we use the same arbitrary mapping for every input to maintain
consistency.

The results shown in Figure 11 are obtained using two types of problems.
All of the pattern recognition problems use eight spike trains for each in-
stance while the frequency recognition problem uses only four spike trains.
When the frequency recognition problem is run on a source liquid that was
generated by applying SDSM to a pattern recognition problem, four of the
input neurons have no signal. When a pattern recognition problem is run
on a source liquid that was generated by applying SDSM to the frequency
recognition problem, each input neuron combines the signals of two spike
trains.

Figure 12 shows results using initial random liquids as the source liquid.
Since all of the pattern recognition problems have the same number of spike
trains, and since the initial liquids are untrained, the three data points show-

24

Figure 12: We randomly generate fifty unique liquids for each of four different source
problems. The corresponding liquid types are indicated on the x-axis. Each of the four
problems was then applied to each of these liquids as indicated by the colored bars. The
mean accuracy of the readouts trained on each liquid-problem combination is reported.

ing the results for these initial liquids are actually redundant. However, they
are included to allow a side by side comparison with Figure 11.

These results demonstrate the ability of liquids to transfer knowledge to
different problems. Figure 12 emphasizes this by the distinct lack of variation
in behavior between liquids generated for frequency recognition and pattern
recognition problems. One might expect a difference in behavior between
these two different liquid states since liquids created for frequency recognition
only have four input neurons while liquids created for pattern recognition
problems have eight. The fact that the results show no significant difference
indicates that the liquid is indeed acting as a general temporal filter.

SDSM uses training data to create new liquids from those randomly gen-
erated for Figure 12. Since the new liquids that are created depend upon the
problem used to train them (the liquid source), one might expect that the effi-
cacy of the learning transfer would be compromised. Interestingly, the results
shown in Figure 11 clearly demonstrate that this is not the case. In fact, liq-
uids not created with frequency recognition as the source problem performed
better on that problem than liquids actually created with frequency recogni-
tion as the source problem. However, liquids created with the various pattern
recognition source problems did perform better on those problems than liq-
uids generated with frequency recognition as the source problem. In both

25

cases, SDSM still performed significantly better than traditional LSMs (com-
pare Figures 11 and 12). The fact that liquids created with pattern recog-
nition performed better on both problems indicates that the source problem
used to create the liquid can make a difference. Looking at Figure 11 we see
that all of the liquids created with pattern recognition source problems found
liquids that performed better on all of the problems than liquids created with
frequency recognition as the source problem. Pattern recognition is arguably
the more complicated of the two problems because of the number of inputs
and more distinct separation of classes in the frequency recognition problem;
and, by applying SDSM with the more complicated source problem, the liq-
uid may be primed for overall better performance. It should be noted that
transferring learning across different numbers of classes and input neurons
alone is a difficult problem that SDSM apparently overcomes. Future work
should investigate a greater variety of problems to determine the extent of
generalization that is possible using SDSM.

8. Conclusions

For a variety of temporal-pattern-recognition problems, we have shown
that by training the liquid, our new algorithm, SDSM, reduces the number of
liquids that must be created in order to find one that acts as a useful filter for
the LSM. Additionally, separation provides a metric for directly evaluating
the quality of the liquid, and can thus act as a satisfactory termination
criteria in the search for a useful filter.

Also, despite training the liquid for a specific problem, we have demon-
strated the ability of liquids generated with SDSM to transfer between dis-
tinct problems effectively. This requires individual liquids to elicit variable
numbers of distinct responses to account for differing numbers of classes
between problems. Furthermore, transfer learning occurs despite a naive
translation from one input representation to another in cases with differing
numbers of input neurons.

SDSM may allow researchers to more effectively create liquids for most
LSM research—both improving results and cutting down on experimental
run-time. More generally, since the liquid in an LSM is a recurrent SNN,
and since SDSM trains this liquid, our algorithm may present a useful option
for researchers of recurrent SNNs to explore.

[1] W. Gerstner, W. Kistler (Eds.), Spiking Neuron Models, Cambridge
University Press, New York, 2002.

26

[2] S. M. Bohte, Spiking neural networks, Ph.D. thesis, Centre for Mathe-
matics and Computer Science (2003).

[3] W. Maass, Networks of spiking neurons: the third generation of neural
network models, Neural Networks 10 (9) (1997) 1659–1671.

[4] S. M. Bohte, J. N. Kok, H. L. Poutré, Error-backpropagation in tempo-
rally encoded networks of spiking neurons, Neurocomputing 48 (2001)
17–37.

[5] O. Booij, H. T. Nguyen, A gradient descent rule for spiking neurons
emitting multiple spikes, Information Processing Letters 95 (2005) 552–
558.

[6] T. Natschläger, Neural micro circuits,
http:/www.lsm.tugraz.at/index.html (2005).

[7] T. Natschläger, W. Maass, H. Markram, Computer models and analysis
tools for neural microcircuits, in: Neuroscience Databases. A Practical
Guide, Kluwer Academic Publishers, 2003, Ch. 9, pp. 123–138.

[8] H. Jaeger, A tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the “echo state network” approach, Tech. rep.,
International University Bremen (2005).

[9] W. Mass, Networks of spiking neurons: the third generation of neural
network models, Transactions of the Society for Computer Simulation
International 14 (1997) 1659–1671.

[10] W. Maass, P. Joshi, E. D. Sontag, Computational aspects of feedback
in neural circuits, PLoS Computational Biology 3 (1:e165) (2007) 1–20.

[11] T. Natschläger, W. Maass, H. Markram, The “liquid” computer: A
novel strategy for real-time computing on time series, Special Issue on
Foundations of Information Processing of TELEMATIK 8 (1) (2002)
39–43.

[12] H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication, Science (2004) 78–80.

27

[13] D. Verstraeten, B. Schrauwen, M. D’Haene, D. Stroobandt, An experi-
mental unification of reservoir computing methods, Neural Networks 20
(2007) 391–403.

[14] E. Goodman, D. Ventura, Effectively using recurrently connected spik-
ing neural networks, Proceedings of the International Joint Conference
on Neural Networks 3 (2005) 1542–1547.

[15] D. Verstraeten, B. Schrauwen, D. Stroobandt, Adapting reservoirs to
get Gaussian distributions, European Symposium on Artificial Neural
Networks (2007) 495–500.

[16] E. Goodman, D. Ventura, Spatiotemporal pattern recognition via liquid
state machines, Proceedings of the International Joint Conference on
Neural Networks (2006) 3848–3853.

[17] D. Verstraeten, B. Schrauwen, D. Stroobandt, J. V. Campenhout, Iso-
lated word recognition with liquid state machine: a case study, Infor-
mation Processing Letters 95 (2005) 521–528.

[18] W. Maass, T. Natschläger, H. Markram, Real-time computing without
stable states: A new framework for neural computations based on per-
turbations, Neural Computation 14 (11) (2002) 2531–2560.

[19] W. Maass, N. Bertschinger, R. Legenstein, Methods for estimating the
computational power and generalization capability of neural microcir-
cuits, Advances in Neural Information Processing Systems 17 (2005)
865–872.

[20] S. Bornholdt, T. Röhl, Self-organized critical neural networks, Physical
Review E 67.

[21] N. Brodu, Quantifying the effect of learning on recurrent spiking neu-
rons, Proceedings of the International Joint Conference on Neural Net-
works (2007) 512–517.

[22] N. Bertschinger, T. Natschläger, Real-time computation at the edge of
chaos in recurrent neural networks, Neural Computation 16 (7) (2004)
1413–1436.

28

[23] T. Natschläger, N. Bertschinger, R. Legenstein, At the edge of chaos:
Real-time computations and self-organized criticality in recurrent neural
networks, Advances in Neural Information Processing Systems.

[24] K. Jim, C. L. Giles, B. G. Horne, An analysis of noise in recurrent
neural networks: Convergence and generalization, IEEE Transactions
on Neural Networks 7 (1996) 1424–1438.

[25] J. S. Garofolo et al., Timit acoustic-phonetic continuous speech corpus,
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?ca
talogId=LDC93S1, linguistic Data Consortium, Philadelphia (1993).

[26] ETSI ES 202 212STQ: DSR, Extended advanced front-end feature ex-
traction algorithm; compression algorithms; back-end speech reconstruc-
tion algorithm, Tech. rep., European Telecommunications Standards In-
stitute (ETSI) (2003).

[27] S. Thrun, L. Pratt (Eds.), Learning to Learn, Kluwer Academic Pub-
lishers, 1998.

[28] K. Yu, V. Tresp, Learning to learn and collaborative filtering, Neural
Information Processing Systems workshop “Inductive Transfer: 10 Years
Later”.

29

