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a b s t r a c t

Though the k-nearest neighbor (k-NN) pattern classifier is an effective learning algorithm, it can result in
large model sizes. To compensate, a number of variant algorithms have been developed that condense the
model size of the k-NN classifier at the expense of accuracy. To increase the accuracy of these condensed
models, we present a direct boosting algorithm for the k-NN classifier that creates an ensemble of models
with locally modified distance weighting. An empirical study conducted on 10 standard databases from
the UCI repository shows that this new Boosted k-NN algorithm has increased generalization accuracy in
the majority of the datasets and never performs worse than standard k-NN.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The k-nearest neighbor (k-NN) pattern classifier is an effective
learner for general pattern recognition domains. k-NN classifiers
are appealing because of their conceptual simplicity, which makes
them easy to implement. k-NN classifiers allow new information to
be easily included at runtime and are thus useful for applications
that collect users’ feedback. Moreover, it is proven that the asymp-
totic error rate of the k-NN rule has an upper bound that is at most
twice that of the Bayes optimal error (under some continuity
assumptions on the underlying distributions) (Cover and Hart,
1967). (Note: strictly speaking, this bound applies to the case
k = 1; as k grows large, this bound approaches the Bayes optimal
error rate.)

However, the k-NN classifier is not without its drawbacks. One
of these is the need for a large amount of storage space due to the
fact that it has to store all training instances as its model. This also
leads to large computation requirements during classification.
There are indexing techniques that would help in reducing the
computation requirement, but not the storage need. Several meth-
ods have been proposed to reduce the model size of the k-NN
classifier.

One year after k-NN was introduced, the first algorithm to re-
duce the model size was introduced: the Condensed Nearest
Neighbor rule (CNN) (Hart, 1968). CNN iterates through the train-
ing instances, adding instances that are classified incorrectly to the
ll rights reserved.
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selected set, until all the instances are correctly classified. The CNN
algorithm has been improved upon by several other algorithms.
One such algorithm is the Reduced Nearest Neighbor (RNN) rule
(Gates, 1972). RNN is an extension of CNN which iteratively re-
moves an instance in the CNN selected set and tests for consistency
(all training instances being correctly classified) till none can be re-
moved. Another algorithm that reduces the model size is the Selec-
tive Nearest Neighbor (SNN) decision rule (Ritter et al., 1975). SNN
searches for the smallest possible consistent subset; however, SNN
requires exponential runtime. In order to improve the CNN algo-
rithm by keeping only instances that are close to the decision
boundary, Tomek introduces two modifications of CNN using the
concept of Tomek Links, which are pairs of nearest neighbor in-
stances of different class (Tomek, 1976). Tomek’s algorithm first
computes all the Tomek Links for a dataset. Next, it iterates through
the dataset adding an instance from the Tomek Links set to the con-
densed set until all the instances from the dataset are correctly
classified. Tomek’s concept was improved upon in the GKA algo-
rithm, which uses the concept of mutual nearest neighborhood
for selecting patterns close to the decision boundaries and results
in a smaller selected set than Tomek (Gowda and Krishna, 1979).

Recently there has been a resurgence in attempts to reduce the
model size for the k-NN classifier. The Modified Condensed Nearest
Neighbor (MCNN) algorithm uses centroids (the training instance
closest to the mean of all the instances of the same class) as the
starting point and thus is order independent, unlike CNN (Devi
and Murty, 2002). The Pairwise Opposite Class-Nearest Neighbor
(POC-NN) algorithm is the first model size reduction algorithm
that is able to improve accuracy over the CNN algorithm while
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needing significantly less training time (Raicharoen and Lursinsap,
2005). POC-NN recursively separates, analyzes and selects proto-
types until all regions are correctly classified. Fast Condensed
Nearest Neighbor (FCNN) is another algorithm that attempts to re-
duce the training time while producing an accurate reduced model
(Angiulli, 2005). FCNN is order independent and has sub-quadratic
worst-case time complexity, requires few iterations to converge,
and is likely to select points very close to the decision boundary.
All of these algorithms have had varied degrees of success in reduc-
ing model size for the k-NN algorithm.

Model size reducing algorithms have come a long way since
being introduced; however, using a model reduction algorithm
usually results in a reduction in accuracy. Perhaps the most com-
mon way to increase accuracy is to employ an ensemble of models.
For example, Alpaydin suggests voting over multiple condensed
nearest neighbors (CNN) to increase accuracy, exploring simple
and weighted voting, and also bootstrapping and partitioning of
the training set before training (Alpaydin, 1997). Alpaydin is suc-
cessful in increasing accuracy over a single CNN but only partially
successful in increasing accuracy over the original k-NN algorithm
which uses the entire training set. Multiple Feature Subset (MFS) is
another algorithm for combining multiple NN classifiers (Bay,
1998). In MFS, each nearest neighbor classifier has access to all
the patterns in the original training set, but only to a random sub-
set of the features. An empirical study showed that MFS was effec-
tive in improving accuracy on many datasets, and was even
competitive with boosted decision trees on some, but performed
much worse in others. However, both Alpaydin’s algorithm and
MFS use randomness to facilitate creating uncorrelated errors.
There is no guarantee that these errors will be uncorrelated, but
it does happen frequently.

Okun and Priisalu experimented, in the context of k-NN clas-
sifiers, with a multi-view classification methodology where pat-
terns or objects of interest are represented by a set of different
views (a view is a subset of features) rather than the union of
all views (all features) (Okun and Priisalu, 2005). They suggest
that by replacing feature selection with multiple views, it is pos-
sible to dramatically lower computational demands for combin-
ing classifiers. Empirical study shows accuracy improvement
can be achieved in the protein fold recognition problem over
current best results.

Another approach creates an ensemble of nearest neighbor clas-
sifiers by sampling feature subsets according to a probability dis-
tribution calculated by the ADAMENN algorithm which estimates
feature relevance (Domeniconi and Yan, 2004). Experiments show
that it has an advantage over random feature selection when the
number of features is large. Zhou and Yu experimented with boot-
strap sampling and injecting randomness to distance metrics in or-
der to create diverse k-NN models for use in an ensemble (Zhou
and Yu, 2005a). Later they added attribute filtering (removing irrel-
evant attributes) and attribute subspace selection (random feature
subset) to their algorithms (Zhou and Yu, 2005b). Using majority
voting on ensembles of size 100, experiments show best results
are achieved using various combinations of the four ways to per-
turb the models.

Boosting is popular as a somewhat more principled approach to
ensemble creation. It is an iterative approach which re-weights
misclassified instances, increasing their importance to subsequent
models, which are then more likely to fix previous errors. A well-
known boosting algorithm for classifiers is AdaBoost (short for
Adaptive Boosting) (Freund and Schapire, 1995). AdaBoost is a gen-
eral purpose boosting algorithm that can be used in conjunction
with many other learning algorithms to improve their perfor-
mance. AdaBoost (and its multi-class extensions M1 and M2) has
been shown to be practical and effective in reducing error when
used with the C4.5 algorithm (Freund and Schapire, 1996). How-
ever, it is shown that AdaBoost does not work well with a standard
nearest neighbor classifier, as accuracy is reduced instead of in-
creased (Valverde and Ferri, 2005). One reason why k-NN does
not work with AdaBoost is because k-NN is a stable algorithm with
low variance, resulting in the production of hypotheses with corre-
lated errors during each iteration of AdaBoost. As a result, some re-
search has been done to attempt to adapt AdaBoost for the k-NN
classifier or increase its accuracy through various algorithms and
methodologies.

For example, Freund and Schapire were the first to experiment
with AdaBoost and a variant of a NN classifier (Freund and Scha-
pire, 1996). They were able to speed up the classification by pro-
ducing an ensemble of subsets of the training set sufficient to
correctly label the whole training set. However, the method does
not increase generalization accuracy. A somewhat similar ap-
proach, by Babu et al., uses AdaBoost and a prototype selection
method based on clustering to select small subsets of data that
are used to train ensemble members and does show good general-
ization results (Babu et al., 2004).

Instead of applying boosting directly, there are ways that boost-
ing can indirectly benefit the k-NN algorithm. Athitsos and Sclaroff
experimented with using boosting to learn a distance metric and
applying it to a k-NN classifier (Athitsos and Sclaroff, 2005). This
is achieved by using AdaBoost to learn a linear combination of a
family of distance measures. Boosted Distance is another algorithm
that also uses AdaBoost to learn a distance function for a k-NN clas-
sifier (Amores et al., 2006). Instead of a using a family of distance
measures as inputs, Boosted Distance creates a new distance met-
ric by comparing similarities between pairs of training instances.
Empirical studies show that Boosted Distance is a superior imple-
mentation as it produces better results when compared with Athit-
sos and Sclaroff’s algorithm, with AdaBoosted C4.5 and with a k-NN
classifier employing other distance measures.

All the aforementioned algorithms attempt to increase the
accuracy of the k-NN classifier either by creating ad hoc ensembles
using randomness and/or feature manipulation, or by applying
boosting indirectly by supplying the classifier with a boosted dis-
tance function. We present Boosted k-NN, a direct boosting algo-
rithm specifically for the k-NN classifier. Boosted k-NN can
increase generalization accuracy by creating ensembles of
weighted instances, and it allows the user to control the trade-
off between speed (model size) and accuracy.
2. Boosted k-NN

First we present the basic Boosted k-NN algorithm. Following
the basic algorithm, we discuss 5 variants to the algorithm. Finally,
empirical results of applying the basic Boosted k-NN algorithm and
the 5 variants to several real datasets are presented.
2.1. The basic algorithm

The new Boosted k-NN algorithm follows the basic structure of
AdaBoost by iterating through the training set to produce an
ensemble of classifiers as the proposed hypothesis. However, dur-
ing each iteration, instead of testing the current hypothesis with
the whole set of training instances, Boosted k-NN holds out a train-
ing instance and classifies the held out instance using the rest of
the training set. By using this ‘‘leave one out’’ method, each train-
ing instance will not help classify itself. This is important because
by not leaving the instance out, the k-NN classifier (distance
weighted) will always achieve 100% training set accuracy, and
boosting is not possible. In traditional boosting, an instance that
is misclassified would have its weight changed. However, in the
case of the k-NN classifier, changing the weights of the
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misclassified instance will not help classify itself. Therefore, during
each iteration and for each training instance that has been classi-
fied incorrectly, the algorithm will determine and modify the influ-
ence of its k-nearest neighbors.

At the start of the Boosted k-NN algorithm, a weight term w0
i is

associated with each training instance, and the weight terms are all
initialized to zero. Boosted k-NN then uses a k-NN classifier with
distance weighting of 1/d to classify each instance using the rest
of the training instances. Boosted k-NN will then modify the influ-
ence of the k nearest neighbors in the following manner during
each iteration. If a query instance is classified incorrectly, Boosted
k-NN will examine each of its k nearest neighbors, and modify their
weights such that they are more likely to classify that instance cor-
rectly the next iteration. Thus, the modified weight term will in-
crease the value of the vote for the correct class and decrease the
value of the vote for the incorrect class. Each iteration through
the training set, Boosted k-NN produces a model with modified
weight terms. Boosted k-NN loops through the training set multi-
ple times and returns an ensemble of models as the final
hypothesis.

We begin with some preliminary definitions. Let S be a training
set with n instances, and the ith instance si is described by
w0

i ; xi; yi

� �
where w0

i is a weight term initialized to zero, xi is a vec-
tor in the feature space X, and yi is a class label in the label set Y.
d(x1,x2) is defined as the Euclidean distance between two instances
s1 and s2 (kx1 � x2k2). The distance between the query instance sq

and the ith instance is then defined as the function D(sq,si) where
Dðsq; siÞ ¼
1

1þ e�wt
i

� �
dðxq; xiÞ
1 For interpretation of color in Fig. 1, the reader is referred to the web version of
is article.
The distance function D(sq,si) is designed to be the product of a sig-

moid function 1= 1þ e�wt
i

� �
and the traditional distance function 1/

d(xq,xi). When the weight term is set to the initial value of 0, the va-
lue of the distance function D(sq,si) is half that of the traditional dis-
tance function 1/d(xq,xi). Modifying the weight term will then
change the value of the sigmoid function between 0 and 1 before
it is multiplied with the traditional distance function. Constraining
the weight term with a sigmoid function works well to prevent
weights from modifying the distance function D(sq,si) too drastically
and/or too quickly.

The pseudo code for the Boosted k-NN algorithm is shown in
Algorithm 1. Given the training set S, number of iterations T, and
weight update term k, Boosted k-NN constructs an ensemble of
up to T k-NN classifiers with modified weight terms. During each
iteration t, a k-NN classifier is constructed by iterating through
the weighted training set querying each instance against the rest
of the training set. When an instance is misclassified, the
weights of its k-nearest neighbors will be modified as follows.
For each neighbor instance that belongs to a different class than
the query instance, its weight term for the next iteration will be
decreased by k/d(xq,xi), where d(xq,xi) is defined as the Euclidean
distance between the query instance and the nearest neighbor
being modified. On the other hand, a neighbor that belongs to
the same class as the query instance will have its weight for
the next iteration increased by k/d(xq,xi). The modified weight
term affects the distance function D(sq,si) by increasing the dis-
tance of neighboring opposite-class instances and decreasing
the distance of neighboring same-class instances. The label of
the query instance is the class that has the highest weighted
sum of votes among its k nearest neighbors based on the dis-
tance function D(sq,si); therefore, modifying the weight terms
in this way improves the chances of misclassified instances
being correctly labeled the next iteration.
Algorithm 1. Boosted k-NN
1:
 Inputs: � �� �

S ¼ fsig ¼ w0

i ; xi; yi ; T; k
2:
 Initialize:

w0

i  0; i ¼ 1 . . . n

S0 S
3:
 for t = 1 to T do

4:
 St St�1
5:
 for sq 2 St do

6:
 Nq k nearest neighbors of sq using D(sq,si)P

7:
 labelðsqÞ ¼ argmaxy2Y si2Nq

Dðsq; siÞdðy; yiÞ

8:
 if label(sq) – yq then

9:
 for si 2 Ni do
10:
 if yi – yq then

11:
 wt

i  wt
i � k=dðxq; xiÞ
12:
 else

13:
 wt

i  wt
i þ k=dðxq; xiÞ
14:
 if label(sq) = yq, "sq then

15:
 break

16:
 return ensemble hypothesis f(S1, . . .,St)
We have considered that there are very rare cases where
Boosted k-NN would not be able to perform modification of the
weights. For example, if the training set is able to correctly label
all its instance using the ‘‘leave one out’’ method during the first
iteration, then no boosting is possible. In another rare case, all
modifications of weights during an iteration may cancel each other
out, and all weights return to their initialized value after an itera-
tion through the training set. However, these cases are extremely
rare and may occur only in trivial/toy problems.

A high-level example of what Boosted k-NN does is shown in
Fig. 1. In Fig. 1(a), sq is labeled incorrectly with k set to 5. Boosted
k-NN then modifies the 2 nearest neighbors of the same class (blue1

circle) by increasing their weights, and reduces the weight of the 3
nearest neighbors of the opposite class (red triangle), see Fig. 1(b).
As a result, subsequent queries of sq will return the correct label due
to the new weighted distances. The Boosted k-NN algorithm locally
modifies the decision surface by increasing or decreasing the influence
of each instance in the model. The goal of modifying the weights is to
alter the decision surface closer to the true solution.

After T ensembles have been created or all labels are correct
during an iteration (T = t), Boosted k-NN returns T weighted k-NN
classifiers as the final hypothesis. A voting mechanism (e.g. simple
voting) is used on the ensemble to determine the class label for a
query instance. Each k-NN classifier uses the same weighted dis-
tance function D(sq,si) to determine the k nearest neighbors, and
the class with the highest sum of D(sq,si) will be returned as the la-
bel. That is, the class label for a query point sq is calculated as
argmaxy2Y

Pk
i¼1Dðsq; siÞdðy; yiÞ.

2.2. Addressing sensitivity to data order

Since the original algorithm is sensitive to data ordering, we
investigate two simple alternatives that ameliorate the problem.
The original algorithm is sensitive to data ordering because as it
iterates through the training instances wt

i is updated so that the
new weights affect the calculations for subsequent instances in
same iteration. One way to eliminate the problem is to randomize
the instances in the data set during each training iteration in the
algorithm (between lines 4 and 5 in Algorithm 1).
th



Fig. 1. Boosted k-NN modifying the decision surface. (a) At the beginning of the algorithm, weights are initialized to zero. During an iteration, query sq is incorrectly labeled.
(b) After the algorithm modifies the weights of the 5 nearest neighbors (k = 5), the shape of the decision surface is changed, and subsequent queries to sq will be correct.
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Another method for addressing the sensitivity to data order is to
use a batch update method. Instead of updating the weight term wt

i

each iteration, we accumulate the changes in a weight change term
Dwt

i ¼ �k=dðxq; xiÞ (replacing lines 11 and 13 in Algorithm 1), and
update wt

i ¼ wt
i þ Dwt

i after iterating through the entire training
set (after line 15). It is also necessary to initialize Dwt

i  0 each
time through the ensemble loop of line 3 (this initialization is done
between lines 4 and 5).

2.3. Voting mechanism

In the original algorithm we suggest using simple voting where
each k-NN classifier in the ensemble has an equal vote. An alterna-
tive to simple voting is error-weighted voting. The algorithm is
modified such that the training accuracy for each iteration is re-
corded and returned together with the ensemble. The training
accuracy for each iteration is then used to weight the vote for its
corresponding k-NN classifier. This is accomplished by accumulat-
ing a count of misclassified instances (between lines 8 and 9 of
Algorithm 1), converting this to a percentage of the total number
of instances at the end of the iteration (before line 14) and includ-
ing this percentage for each iteration in the final hypothesis (line
16). In addition, the count must be reinitialized each iteration (be-
tween lines 4 and 5).

2.4. Condensing model size

In Section 1, we discussed the need to reduce the model size for
the k-NN classifier as it reduces both storage and computational
requirements. Therefore, since Boosted k-NN increases the size of
the model by creating an ensemble of weights, it is important that
we investigate ways that can condense the model size of the
Boosted k-NN algorithm while retaining the accuracy gain.

One of the ways that we can condense the model size of the
Boosted k-NN algorithm is instead of using an ensemble, the algo-
rithm could return the model with the optimal weights (weights
giving the best training accuracy during an iteration). This is
achieved by storing the best training accuracy seen so far while
iterating up to T and returning only one model, Soptimal, where opti-
mal is the loop with the best training accuracy. This is done by
modifying Algorithm 1 to count each correctly classified instance
(adding an ELSE statement to the IF of line 8) and adding function-
ality at the end of the iteration to compare this count with the best
seen so far—if there is an improvement, the latest accuracy and
iteration number are saved (new lines added before line 14). The
hypothesis returned (line 16) is simply the best model seen in
any of the iterations. Of course, the accuracy must be re-initialized
each time through the loop (between lines 4 and 5).

Another way to condense model size is to average the weights
of all the models in the ensemble and return just one k-NN classi-
fier with the averaged weights. This is similar to the weight aver-
aging concept in neural networks (Utans, 1996) and single layer
perceptrons (Andersen and Martinez, 1999). After the algorithm
has iterated up to T iterations and produced an ensemble of
weights, the new Boosted k-NN with average weight algorithm
then iterates through the ensemble, averaging the weights for each
instance (new lines added just before line 16 of Algorithm 1). The
new variant then returns only one model with the averaged
weights (line 16).

3. Results and analysis

For the basic Boosted k-NN algorithm, we compare results to re-
sults obtained using regular k-NN, CNN and (for some datasets) the
Boosted Distance algorithm. In the case of the Boosted Distance
algorithm, we are not confident in our implementation of the algo-
rithm, due to the fact that we found an error in the pseudo code in
(Amores et al., 2006). Therefore, only results for the sonar, iono-
sphere and liver dataset which are obtained from Amores et al.
(2006) are included in the comparison. (Please note that there
are slight differences in the experiment setup.) For the variants
of Boosted k-NN, we are interested in comparing them to the basic
Boosted k-NN, and regular k-NN is included as a base line.

3.1. Experiment setup

We conducted an empirical study using 10 UCI datasets (Asun-
cion and Newman, 2007) to determine the effectiveness of our
algorithm. Table 1 lists the datasets with the number of samples
and number of attributes in each set. The datasets chosen are of
various sizes and difficulty, and to avoid complicating distance cal-
culations, we chose to select datasets with only real-valued attri-
butes. In the case of the Vowel dataset, the speaker name and
sex is removed.

For each experiment, we use 10-fold cross validation to evalu-
ate the performance of each algorithm including k-NN, CNN and
Boosted Distance. In the case where a dataset is pre-divided into
training and test sets, they are combined into one pool before sam-
ples for each fold are randomly selected. We experimented with a
range of values as input parameters to Boosted k-NN and its



Table 1
Datasets used in the experiments.

Dataset Samples Attributes Classes Distribution

Sonar 208 60 2 53/47
Ionosphere 351 34 2 63/37
Wine 178 13 3 Balanced
Liver 345 6 2 42/58
Vowel 990 10 11 Balanced
Segment 2310 19 7 Balanced
Vehicle 846 18 4 Balanced
Iris 150 4 3 Balanced
Glass 214 10 7 70/17/6/0/13/9/29
Diabetes 768 8 2 65/35
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variants. For each dataset and each algorithm variant, we experi-
mented with values of k from 1 to 15, k from 1 to 0.005 and T
set to 10 and 100. A total of 3600 experiments were run and each
of them was 10-fold cross validated. Here we highlight various
interesting empirical results.

3.2. Boosted k-NN

Fig. 2 shows the experimental results of Boosted k-NN in com-
parison to other algorithms. The results for the Boosted k-NN and
the original k-NN shown in Fig. 2 are results chosen from the best
of all the experiments with various parameters (e.g. pick the best k
value). From Fig. 2 we observe that the results of Boosted k-NN are
competitive with other algorithms for all ten datasets. Fig. 3 shows
the accuracy gain of Boosted k-NN over regular k-NN. Boosted k-
NN is able to increase generalization accuracy over regular k-NN
in seven of the ten datasets, and of those seven, two datasets (so-
nar, ionosphere) exhibit statistically significant accuracy gains
(computed using a paired permutation test with a p-value less than
0.05). Only one dataset (segment) shows a small loss in generaliza-
tion accuracy, and two other datasets (vowel and iris) show no
gain. Note that accuracies for all three of these datasets are in
the high 90s; therefore, it is more difficult to increase accuracy in
these cases.

One observation we make about Boosted k-NN is that it is less
sensitive to the selection of k. Fig. 4 shows that Boosted k-NN is
less sensitive to the selection of k in seven of the datasets, no dif-
ferent in one dataset and sightly worse in two datasets.

On the other hand, Boosted k-NN is sensitive to the selection of
T and k. Choosing a k that is too big can actually cause the gener-
alization accuracy to decrease. Fig. 5 shows that for the glass and
liver dataset, the upper range of k chosen in our experiments is
too large for the datasets and this results in the decrease of accu-
racy. This is representative of what can happen to any dataset if
Fig. 2. Boosted k-NN vs. other algorithms. This graph shows the generalization accura
datasets.
the value of k is too large. This decrease in accuracy can be com-
pounded by multiple iterations of the algorithm causing the gener-
alization accuracy to decrease significantly. On the other hand,
choosing a k that is too small can fail to produce enough shift in
the weights to cause any changes in the generalization accuracy.
In general, if we pick a suitable k, then by increasing T (more mod-
els in the ensemble) we improve the results at the cost of increased
storage and query times. Fig. 6 shows that from our experiments, 5
datasets show accuracy increases when T is increased and only 1
dataset has a decrease.

From the experiments we did not discover a one-size-fits-all va-
lue for k. This is because each dataset has different characteristics.
Datasets with smaller average distances between instances will re-
quire the choice of a smaller k than datasets with larger average
distances. With a suitable k the algorithm can then converge to a
stable solution. This is similar to the step size of the gradient des-
cent algorithm—picking a step size that is too large will cause the
algorithm to skip across the local minimum. In Boosted k-NN, each
training instance will modify weights of its neighbors towards its
respective desired local minimum; therefore, choosing a k that is
too large with respect to the average distance, will cause the
weights to oscillate rather than converging to a good solution,
while choosing a k too small will negatively impact the time to
convergence.

3.2.1. Using hold-out set for selection of k
One standard way we can choose k is to use a hold-out set.

However, this method is computationally expensive due to the
large range for k that needs to be tested. In order to demonstrate
the idea, we conducted an experiment trying a range for k from
10 to 10�8 using the ionosphere dataset with T set to 10. We use
the 10-fold cross validation method to compute the accuracies,
and for each fold we use 10% of the training set as the hold-out
set. Fig. 7 shows the hold-out and test set accuracies of the exper-
iment. The graph shows that the hold-out set accuracy closely
tracks the test set accuracy, demonstrating that the hold out set
accuracy is a good indicator for selecting a suitable k that will likely
produce good test set accuracy.

The result of Fig. 7 corroborates the results we obtained from
the experiment described in Section 3.2. Both experiments indicate
that a k value of 0.1 produces good results and a k value of 0.01 and
smaller produces poorer results.

3.3. Boosted k-NN with randomized data order

Fig. 8 shows the experiment results for Boosted k-NN with ran-
domized data order compared to the basic Boosted k-NN and
cy of Boosted k-NN, regular k-NN, CNN and (sometimes) Boosted Distance on 10



Fig. 3. Absolute accuracy gain of Boosted k-NN over regular k-NN. Dataset names with an asterisk indicate statistically significant accuracy gains.

Fig. 4. Accuracy range of Boosted k-NN and regular k-NN. This graph plots the accuracy difference for 10 datasets with k ranging from 1 to 15.

Fig. 5. Large k causes accuracy decrease. Choosing larger values for k causes the accuracy of the liver and glass datasets to decrease.
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regular k-NN. From the graph we can see that Boosted k-NN with
randomized data order performs worse than the basic algorithm
in 6 of the datasets (statistically significant accuracy lost on sonar
and ionosphere datasets) and posts insignificant or no gain on 3 of
the datasets. On the iris dataset Boosted k-NN with randomized
data order performs 1.3% better than the basic algorithm.

The experiment results show that it is not advisable to use
Boosted k-NN with randomized data order over the basic algo-
rithm. Randomizing the data order does not seem to help the algo-
rithm improve generalization accuracy. In fact, for most of the
datasets it actually prevents the algorithm from converging to a
good solution.
3.4. Boosted k-NN with batch update

In Fig. 9, Boosted k-NN with batch update is compared with the
basic Boosted k-NN and regular k-NN. The graph shows that in
comparison with the basic algorithm, Boosted k-NN with batch up-
date performs poorly on 3 of the datasets, better on 1 dataset, and
performs the same for the rest. Although Boosted k-NN with batch
update performs better than Boosted k-NN with randomized data
order, it is still not as consistent as the basic algorithm. Boosted
k-NN with batch update shows statistically significant accuracy
loss on the sonar dataset when compared to the basic Boosted k-
NN. However, Boosted k-NN with batch update still has statistically



Fig. 6. Increasing the value of T can increase accuracy if a suitable k is chosen.

Fig. 7. Using a hold-out set for selection of k. Accuracy and the value of k are compared for the hold-out and test sets on the ionosphere dataset. From the results, we can see
that the hold-out set accuracy is a good indicator for picking a suitable k.

Fig. 8. Boosted k-NN with randomized data order. The accuracy gain of Boosted k-NN with randomized data order vs. basic Boosted k-NN and regular k-NN. The randomized
version does not compare favorably with the basic algorithm. In the sonar and ionosphere datasets, Boosted k-NN with randomized data order shows statistically significant
accuracy loss when compared to the basic Boosted k-NN.
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significant accuracy gain over regular k-NN in the ionosphere data-
set. Although not statistically significant, k-NN with batch update
also performs much better in the liver dataset, achieving 3.2% bet-
ter generalization accuracy than regular k-NN and 2.3% better than
the basic Boosted k-NN algorithm.
Boosted k-NN with batch update does a better job than the basic
algorithm at avoiding local minimum, moving instead toward a
global minimum. This is because when weights are updated incre-
mentally, there is a higher chance that it will be trapped in a local
minimum, whereas batch update sums changes to weights from all



Fig. 9. Boosted k-NN with batch update. The accuracy gain of Boosted k-NN with batch update vs. basic Boosted k-NN and regular k-NN. Boosted k-NN with batch update
shows statistically significant accuracy loss in the sonar dataset when compared to the basic Boosted k-NN. However, Boosted k-NN with batch update still has statistically
significant accuracy gain over regular k-NN in the ionosphere dataset.
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training instances thus moving towards a more global solution.
However, it requires more iterations to get to a stable solution as
instances often ‘‘resist’’ each other, making the update slower than
if it were an incremental update. Increasing k may speed up the
process; however, it may also cause problems when multiple iter-
ations modify a weight in the same direction causing it to over-
shoot the desired solution. Boosted k-NN with batch update is
perhaps worth trying if training time and model size is not an
issue.
3.5. Boosted k-NN with error-weighted voting

Fig. 10 shows the experimental result for Boosted k-NN with er-
ror-weighted voting. We see from the graph that Boosted k-NN
with error-weighted voting performs comparably with the basic
Boosted k-NN algorithm on all ten datasets. This raises the ques-
tion of why error-weighted voting does not improve performance
of Boosted k-NN over simple voting. One of the reasons is because
the variance of the error rates between the models is small (due to
the fact that all interior instances are always classified correctly;
therefore, only instances close to the decision surface affect the er-
ror rate). Another reason is the fact that a lot of parameter optimi-
zation is done on the experiment shown in Fig. 10; therefore,
training accuracies are stable and do not vary much.

However, Boosted k-NN with error weighted voting would be
useful in situations where the training accuracy is fluctuating a
lot. For example, choosing an unsuitable k will cause the training
Fig. 10. Boosted k-NN with error-weighted voting. The accuracy gain of Boosted k-NN
statistically significant differences between Boosted k-NN with error-weighted voting a
accuracies to fluctuate quite a bit between models. Thus by
weighting the vote of each model by its training accuracy, the im-
pact bad models have on the overall accuracy would be reduced.
3.6. Boosted k-NN with optimal weights

The experimental results for Boosted k-NN with optimal
weights compared to the basic Boosted k-NN and regular k-NN
are shown in Fig. 11. There are no statistically significant differ-
ences between Boosted k-NN with optimal weights and the basic
Boosted k-NN. From the graph we see that Boosted k-NN with opti-
mal weights, in 8 of the datasets, exhibits less than 1% difference in
generalization accuracy compared to the basic Boosted k-NN algo-
rithm. Boosted k-NN with optimal weights performs worse on only
the diabetes dataset, and performs somewhat better on the iris
dataset.

The results are encouraging considering that Boosted k-NN with
optimal weights uses only one set of weights rather than an
ensemble. Boosted k-NN with optimal weights reduces both the
storage requirement and query time over the basic algorithm.
The space requirement for Boosted k-NN with optimal weights is
O(nm), which is the same as regular k-NN. In contrast, the basic
Boosted k-NN algorithm requires O(nm + nT) space, where n is
the number of instances, m is the number of features and T is the
number of training iterations. Therefore, Boosted k-NN with opti-
mal weights is useful when boosting is needed but not at the ex-
pense of increased storage or query time.
with error-weighted voting vs. basic Boosted k-NN and regular k-NN. There are no
nd the basic Boosted k-NN.



Fig. 11. Boosted k-NN with optimal weights. The accuracy gain of Boosted k-NN with optimal weights vs. basic Boosted k-NN and regular k-NN. There are no statistically
significant differences between Boosted k-NN with optimal weights and the basic Boosted k-NN. This variant reduces storage requirements while maintaining accuracy gains.
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3.7. Boosted k-NN with averaged weights

The last algorithm variant we experimented with is Boosted k-
NN with averaged weights. Fig. 12 shows the results. There are no
statistically significant differences between Boosted k-NN with
averaged weights and the basic Boosted k-NN. Only on 2 datasets
(sonar and diabetes) did it lose generalization accuracy of more
than 1%, and it performs just as well on the rest of the datasets.

However, there is a potential for performance decreases with
Boosted k-NN with averaged weights. The algorithm produces poor
results when the input T is large. This is because when the number
of models produced during training is large, it is very likely to pro-
duce groups of models that are converging to different local min-
ima. This also happens if the value of k is large. By averaging the
weights in these scenarios, the algorithm can produce results that
are not close to any correct solution. Therefore, it is not advisable
to use Boosted k-NN with averaged weights unless both T and k
are small enough that the algorithm will not likely produce models
converging to different local minima.
4. Scaling up

Because changing instance weights may result in neighborhood
modification, the Boosted k-NN algorithm can be computationally
expensive because it must (in theory) consider the possibility that
any instance may (eventually) be the neighbor of any other in-
stance (with enough weight modification). However, in practice,
it does not seem likely that such extremes will occur. Therefore,
Fig. 12. Boosted k-NN with average weights. The accuracy gain of Boosted k-NN with a
significant differences between Boosted k-NN with averaged weights and the basic Boo
judiciously to avoid undesirable side effects.
to save computation time, we consider a modification, called throt-
tling, in which we limit the set of possible neighbors for each in-
stance. In the most extreme case, we set the throttle limit n = k
and an instance may never change it’s original k neighbors (though,
of course, their weights will still be changed during boosting). If
this limit is relaxed, the set of possible neighbors grows until n
reaches the size of the data set and we have the original Boosted
k-NN algorithm.

Table 2 shows the effect on performance for different throttling
levels for Boosted k-NN and compares this with unthrottled
Boosted k-NN. Notice that even fairly severe throttling does not in-
cur too significant a performance penalty (see also Table 3, which
compares with traditional k-NN). Notice that even the throttled
boosted results are never worse than k-NN and are often some-
what better.

Finally, we applied the throttled Boosted k-NN algorithm to the
MAGIC Gamma telescope data set (19,020 instances, 10 attributes,
2 classes, 65/35 distribution), which involves the discrimination of
primary gamma ray events from background hadron events. The
best throttled boosted accuracy for the MAGIC data set was
0.846 (classical k-NN produces the same result). The best unthrot-
tled boosted accuracy was 0.848.
5. Discussion

Experimental results show that compared to traditional k-NN,
the Boosted k-NN algorithm maintains or increases generalization
accuracy in 9 out of 10 datasets (the loss in the remaining dataset
verage weights vs. basic Boosted k-NN and regular k-NN. There are no statistically
sted k-NN. This variant can be effective for model size reduction but must be used



Table 2
Limiting the number of potential neighbors can result in significant computational savings for large data sets without incurring a significant performance penalty. The first three
columns represent different throttling levels with the rightmost column the full Boosted k-NN for comparison.

Dataset Throttled boosted (n = k) Throttled boosted (n = 2k) Throttled boosted (n = 5k) Boosted k-NN

Sonar 0.852 0.881 0.889 0.907
Liver 0.650 0.666 0.657 0.666
Vowel 0.990 0.990 0.990 0.990
Wine 0.988 0.984 0.982 0.984
Diabetes 0.754 0.753 0.757 0.761
Iris 0.967 0.960 0.967 0.960
Ionosphere 0.952 0.949 0.949 0.960
Vehicle 0.719 0.732 0.729 0.733
Segment 0.971 0.971 0.971 0.971
Glass 0.709 0.725 0.714 0.736

Table 3
Best throttled results (over all throttling levels) compared with classical k-NN. Even
with fairly tight throttling, there is no loss of performance and in many cases some
modest improvement.

Dataset k-NN Best throttled boosted (n = k,2k,5k)

Sonar 0.871 0.889
Liver 0.657 0.666
Vowel 0.990 0.990
Wine 0.978 0.988
Diabetes 0.751 0.757
Iris 0.960 0.967
Ionosphere 0.878 0.952
Vehicle 0.720 0.732
Segment 0.971 0.971
Glass 0.729 0.725

Table 4
Comparing Boosted k-NN to its variants. The paired values in columns 2 and 3
represent the number of datasets (out of 10 datasets) on which the algorithm does
better or worse than regular k-NN or basic Boosted k-NN by at least 1% difference in
generalization accuracy (e.g. Boosted k-NN with batch update when compared to
regular k-NN, does better in 3 datasets and worse in 1 dataset).

Algorithm vs. k-NN vs. bBk-NN Compression

basic Boosted k-NN (+5,�0) NA No
bBk-NN + rand. data order (+2,�0) (+1,�2) No
bBk-NN + batch update (+3,�1) (+1,�3) No
bBk-NN + weighted voting (+5,�0) (+0,�0) No
bBk-NN + optimal weights (+5,�1) (+1,�1) Yes
bBk-NN + average weights (+4,�0) (+1,�2) Yes
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is insignificant). For 2 of the datasets, Boosted k-NN posts a statis-
tically significant increase in generalization accuracy over the reg-
ular k-NN.

It should be noted that these two data sets both exhibit class
imbalance (see Table 1), and that the performance of traditional
k-NN is known to be susceptible to degradation in the presence
of class imbalance (Japkowicz and Stephen, 2002; Hand and ronica,
2003).

At the same time, boosting has been shown to be a robust solu-
tion for many pathological data scenarios, including the case of
class imbalance (Guo and Viktor, 2004; Sun et al., 2006). Our re-
sults here agree, and provide additional motivation for a direct
method for boosting k-NN—directly incorporating boosting into
the k-NN algorithm makes it more robust in the presence of class
imbalance. Consider the class distributions shown in Table 1 and
note from Figs. 2 and 3 that most of the exhibited improvement
for Boosted k-NN occurs on unbalanced sets, with lesser improve-
ments shown on the balanced data sets (vehicle being a bit of an
exception). Additionally, the three data sets not improved (vowel,
segment and iris) are all balanced, suggesting that a significant
gain for Boosted k-NN is its robustness to class imbalance (inherent
in the boosting).

In fact, it may be possible to make further improvements by
combining Boosted k-NN with additional ideas for handling class
imbalance, such as additional weighting schemes (Liu and Chawla,
2011) or oversampling the minority class(es) (Guo and Viktor,
2004; Sun et al., 2006).

And, very recent work suggests that in very noisy environments
class imbalance may best be ameliorated using bagging rather than
boosting (Khoshgoftaar et al., 2011), suggesting that perhaps an
analogical directly bagged version of k-NN might be developed.

We also investigated five variants to the Boosted k-NN algo-
rithm. Table 4 shows the high level comparison of performance be-
tween Boosted k-NN and its 5 variants. The paired values in
columns 2 and 3 represent the number of dataset(s) (out of 10
datasets) for which the algorithm (variant) does better or worse
than regular k-NN or basic Boosted k-NN by at least 1% difference
in generalization accuracy. For example, Boosted k-NN with batch
update when compared to regular k-NN, does better on three data-
sets and worse on one dataset. Out of the five variants, Boosted k-
NN with optimal weights is the most interesting as it produces
comparable results to the basic Boosted k-NN algorithm while
reducing storage requirements and query time. Boosted k-NN with
optimal weights requires only a single model with assigned
weights instead of the ensemble of models produced by the basic
Boosted k-NN algorithm. However, when the model size is not an
important factor in choosing the algorithm, the basic Boosted k-
NN is the algorithm of choice because it is less complicated than
its variants, and it produces the best results.
6. Conclusion

We present an innovative algorithm, Boosted k-NN, that can
boost the generalization accuracy of the k-nearest neighbor algo-
rithm. This is accomplished via local warping of the distance metric
using modified weights assigned to each instance. The weights are
trained by iterating through the training set and classifying each
instance against the rest of the training set. Incorrectly classified
instances then update the weights of their neighbors so that they
are more likely to correctly classify the instance during the follow-
ing iteration. With the addition of these trained weights, the
Boosted k-NN algorithm modifies the decision surface, producing
a better solution.

We have several ideas for future research directions. One area
we can explore is the use of a decay term for k. It would be inter-
esting to see if reducing the value of k after each iteration through
the training set would help eliminate the algorithm’s sensitivity to
the selection of k. Having a decaying k also might improve the algo-
rithm’s convergence to the desired solution.

Another improvement we would like to make to Boosted k-NN
is to assign one weight to each feature in each instance instead of
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just one weight per instance. By assigning weights to features, we
can modify the relationship between instances in each dimension
in proportion to that dimension’s importance. It would be interest-
ing to see if assigning weights to features would help solve the fea-
ture selection problem or help eliminate k-NN’s sensitivity to
irrelevant features.

Last, we would like to explore using the trained weights in other
applications. One application might be to use the weights for noise
reduction. Trained weights that have their value reduced signifi-
cantly might be a good indication that the associated data point
is noise. Another possibility is to use the weights to label boundary
instances or interior instances. With this labeling, we can perform
model reduction by removing interior instances, reducing storage
requirements and speeding up classification.
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