
Network Simplification Through Oracle Learning 
 

Joshua Menke, Adam Peterson, Mike Rimer, Tony Martinez 
Computer Science Department, Brigham Young University, Provo, UT, 84602 

Email: {josh, adam, mrimer}@axon.cs.byu.edu, martinez@cs.byu.edu 
 

Abstract – Often the best artificial neural network to solve a real 
world problem is relatively complex. However, with the growing 
popularity of smaller computing devices (handheld computers, 
cellular telephones, automobile interfaces, etc.), there is a need 
for simpler models with comparable accuracy. The following 
research presents evidence that using a larger model as an 
oracle to train a smaller model on unlabeled data results in 1) a 
simpler acceptable model and 2) improved results over standard 
training methods on a similarly sized smaller model. On 
automated spoken digit recognition, oracle learning resulted in 
an artificial neural network of half the size that 1) maintained 
comparable accuracy to the larger neural network, and 2) 
obtained up to a 25% decrease in error over standard training 
methods. 
 

I. INTRODUCTION 
 

As Le Cun, Denker, and Solla observed in [1], often the 
best artificial neural network (ANN) to solve a real-world 
problem is relatively complex. They point to the large ANNs 
Waibel used for phoneme recognition in [2] and that of Le 
Cun et al. with handwritten character recognition in [3]. “As 
applications become more complex, the networks will 
presumably become even larger and more structured.” [1] 
The growing complexity of neural networks in real-world 
applications presents a problem when using them in 
environments with less available memory and processing 
power (i.e. embedded systems like handheld computers, 
cellular telephones, etc.). Therefore, there is a demand to 
create smaller, faster, neural networks that still maintain a 
similar degree of accuracy. The oracle learning solution 
involves using the most accurate available model as an oracle 
to train a smaller model. We propose that oracle learning will 
result in simpler models that 1) have accuracy comparable to 
their oracles, and 2) have improved results over standard 
training methods for the same sized model. For the following 
experiment, simple feed-forward single-hidden layer ANNs 
were used as both the oracle and the oracle-trained network 
(OTN). We propose the use of the following nomenclature for 
classifying OTNs within this paper: 

 
OTN (n  m) 
 

Reads “an OTN approximating an n hidden node ANN with 
an m hidden node ANN.” For example: 
 
 OTN (200  100) 
 
Reads “an OTN approximating a 200 hidden node ANN with 
a 100 hidden node ANN.” The rest of the paper describes 
oracle learning in terms of ANNs since the experiments deal 

solely with ANNs. We refer to the oracle as an oracle ANN 
(which is no different than a standard ANN, it is just used as 
an oracle). 
  

One of the advantages of using an ANN as an oracle is the 
ability to use unlabeled training data to train smaller ANNs. 
In speech recognition, for example, there are more than 
enough data, but it is difficult and expensive to hand label 
them at the phoneme level. However, if an oracle ANN 
exists, the smaller ANN can theoretically request as many 
labeled data points as is necessary to best approximate the 
larger or oracle ANN. 
 

The idea of approximating a more complex model is not 
entirely new. Domingos used Quinlan’s C4.5 decision tree 
approach from [4] in [5] to approximate a bagging ensemble 
and Zeng and Martinez used an ANN in [6] to approximate a 
similar ensemble (both using the bagging algorithm Breimen 
proposed in [7]). Craven and Shevlik used a similar 
approximating method to extract rules [8] and trees [9] from 
ANNs. Domingos and Craven and Shevlik used their 
ensembles to generate training data where the targets were 
represented as either being the correct class or not. Zeng and 
Martinez used a target vector containing the exact 
probabilities output by the ensemble for each class. The 
following research also used vectored targets similar to Zeng 
and Martinez since Zeng’s results supported the hypothesis 
that vectored targets “capture richer information about the 
decision making process . . .” [6]. 
 

While, previous research has focused on either extracting 
information from neural networks [8,9], or using statistically 
generated data [5,6] for training, the novel approach we 
propose in this paper is to use the approximated network as 
an oracle. The next section explains the details of the oracle 
learning process. 
 

II. ORACLE LEARNING 
 

Oracle learning involves the following 3 steps: 
 

A. Oracle Preparing 
B. Data Labeling 
C. Oracle Learning 

 
A. Oracle Preparing 
 

 The primary component in oracle learning is the oracle 
itself. Since the accuracy of the oracle ANN directly 
influences the performance of the final, simpler ANN, the 



oracle should be the most accurate classifier available, 
regardless of complexity (number of hidden nodes). The only 
requirement is that the number and type of the inputs and the 
outputs of each ANN (the oracle and the OTN) be the same.  

 
B. Data Labeling 
 
 The main step in oracle learning is to use the oracle ANN 
to create a very large training set for the OTN to use. 
Fortunately the training set does not have to be pre-labeled 
since the OTN only needs the oracle ANN’s outputs for a 
given input. Therefore the training set can consist of as many 
data points as there are available, including unlabeled points.  
 
 The key to the success of oracle learning is to obtain as 
much data as possible that ideally fit the distribution of the 
problem. There are several ways to approach this. In [6], 
Zeng and Martinez use the statistical distribution of the 
training set to create data. Another approach is to add random 
jitter to the training set, again following its distribution. The 
easiest way to fit the distribution is to have more unlabeled 
real data. In many problems, like ASR, there are more than 
enough unlabeled data. Other problems where there are 
plenty of unlabeled data include intelligent web document 
classifying, optical character recognition, and any other 
problem where gathering the data is far easier than labeling 
them. The oracle ANN can label as much of the data as 
necessary to train the OTN at the phoneme level. Therefore, 
the OTN has access to an arbitrary amount of ideally 
distributed training data. 
  

In detail, this step must create a target vector t for each 
input vector x where each ti in t1 . . . tn  (n being the number of 
output nodes) is equal to the oracle ANN’s activation of 
output i given x. Then, the final oracle learning data point 
contains both x and t. In order to create the points, each 
available pattern x (labeled or not, but not including a small 
labeled subset for testing) is presented as an input to the 
oracle which then returns the output vector t. The OTN’s 
training set then consists of every x paired with its 
corresponding t. 

 
As an example, the following two vectors represent the 

target vectors for a given input. The first vector is a standard 
0-1 encoded target where the 4th class is the correct one. The 
second is more representative of an ANN output vector (the 
oracle for the following experiments) where the outputs are 
between 0 and 1, and the 4th class is still the highest. 

 
(1) <0,0,0,1,0> 

 
(2)  <0.27, 0.34, 0.45, 0.89, 0.29> 
 
Now suppose the OTN outputs the following vector: 
  
(3) <0.19, 0.43, 0.3, 0.77, 0.04> 
 

The standard error would simply be the difference between 
the target vector in (1) and the output vector in (3) which is: 
 
(4) <-0.19, -0.43, -0.3, 0.23, -0.04>. 
 
Whereas the oracle-trained error would be the difference 
between the target vector in (2) and the output in (3): 
 
(5) <0.08, -0.09, 0.15, 0.12, 0.25> 
 
Notice the oracle-trained error in (5) is on average lower than 
the standard error in (4), and therefore the OTN learns a 
function that may be easier for standard back-propagation. 
 

Once again, Zeng and Martinez found the use of vectored 
targets to give improved accuracy over using standard targets 
in [6]. 
 
C. Oracle Learning 
 
 For the final step, the OTN is trained using the data 
generated in step 2, making sure to utilize the targets exactly 
as presented in the target vector. The OTN must interpret 
each element of each target vector as the correct output 
activation for the output node it represents given the input 
paired with it, hence the ANN’s learning algorithm may need 
to be modified depending on how it handles targets. For most 
ANNs, classification targets are encoded in binary with the 
correct class as 1 and all others as 0 and hence the error is 
generally computed as {0 | 1} - oi where oi  represents the 
output of node i. With oracle learning, the error would instead 
be the ti – oi where, as stated above, ti is the ith element of the 
target vector t paired with the input x. The outputs of the 
OTN will approach the target vectors of the oracle ANN on 
each data point as training continues. 

 
III. EXPERIMENT 

 
One of the most popular applications for smaller 

computing devices (i.e. hand held organizers, cellular phones, 
etc.) and other embedded devices is automated speech 
recognition (ASR). Since the interfaces are limited in smaller 
devices, being able to recognize speech allows the user to 
more efficiently enter data. Given the demand and usefulness 
of speech recognition in systems lacking in memory and 
processing power, there is a demand for simpler ASR engines 
capable of achieving acceptable accuracy. Hence the 
following experiments seek to reduce the complexity of our 
current ASR engine—or more specifically, the phoneme 
classifying ANN portion of the engine. 

 
The following experiments use data from the unlabeled TI 

digit corpus [10] for testing the ability of the oracle ANN to 
create accurate phoneme level labels for the OTN. The corpus 
was partitioned into a training set of 15,322 utterances 
(3,000,000 phonemes), and a test set of 1000 utterances. A 
small subset of the training corpus consisting of around 
40,000 phonemes was labeled at the phoneme level for 



training the oracle ANN. The inputs are the first 13 mel 
cepstral coefficients and their derivatives in a 16 ms frame 
extracted from wav files every 10 ms (overlapping). 

 
It is important to mention the fact that the final measure of 

accuracy is performed at the word and utterance levels, not 
the phoneme level. In general, word and sentence accuracies 
are more significant in speech recognition and do not always 
directly correlate with phoneme accuracy. It depends on the 
decoding technique and / or speech model used to build 
phonemes into words. In fact, in preliminary experiments, the 
standard trained networks always had slightly better phoneme 
accuracies than the OTNs (for any size). 

  
Figure 1 diagrams the basics of the ASR engine used for 

the experiments. The mel cepstral coefficients are fed into the 
ANN and the ANN phoneme outputs are decoded into words. 
Both the oracle ANN and the OTN are used as the neural 
network recognizer part of the engine when determining word 
and utterance accuracy. 
 

 
 

Figure 1: The basic ASR Engine 
 
A) Obtaining the Oracles 
 
The ASR engine’s standard neural network recognizer is a 

200 hidden node standard back-propagation-trained feed-

forward network that has been tuned and optimized over time. 
In the following experiment, the ANN is trained directly on 
the phoneme labeled training data, storing the ANN weight 
configurations for future testing. Although the ANN most 
accurate on the test set (words and utterances) was chosen as 
the oracle ANN, any one of them was sufficient to validate 
oracle learning as long as the OTN achieves similar accuracy. 
We chose to use the most accurate ANN in order to create the 
most accurate OTN. 

 
B) Labeling the Data Set 
 
For the next step a large training set was created from the 

unlabeled data. The entire 15,000+ utterance training set was 
used to create a new training set consisting of the inputs from 
the old set combined with the target vectors from each oracle 
(one data set for each oracle), acquiring the target vectors as 
explained in B of section II (from the oracle ANN’s outputs). 
In detail, oracle learning presents the oracle with an input 
pattern and then saves the activations of each output node for 
that input as a vector. The new OTN’s training vector then 
consists of the original input and the new target vector. 

 
C) Oracle Learning 

  
 Finally, the large OTN training set created in B is used to 
train an ANN half the size of the oracle (100 hidden nodes) 
using vectored targets instead of 0-1 targets according to the 
method described in section II part C. For a given training 
pattern, the error back-propagated was set to the difference 
between the oracle ANN’s output node activation and the 
OTN’s output or ti – oi where ti is the oracle’s output for class 
i and oi is the output of the OTN net on class i.  
 
 To measure the effectiveness of oracle learning during the 
training phase, several metrics were used: the mean error with 
respect to the target vector, accuracy compared to the oracle 
ANN, and the top 100 OTN outputs compared the top 100 
oracle ANN outputs. The general trend during training was 
for each of the metrics to improve, however, contrary to 
intuition, the best OTNs did not have the best values 
according to our metrics. It would be intuitive to believe the 
ANN with the least error with respect to the oracle would 
perform most like the oracle and hence have the best overall 
accuracy, but it did not. We hypothesize the reason was the 
phoneme-to-word decoding module did better with networks 
better arranging the ordering (from highest to lowest) of the 
output activation levels, regardless of the single highest 
output of the oracle ANN. The decoder considers more than 
just the top output, so where the next several outputs are 
ordered correctly, better word accuracy results. Therefore, 
even though one network may be more likely to have the 
same highest scoring phoneme as the oracle, the final 
ordering of the probabilities is better in a network with 
slightly a worse overall accuracy against the oracle.  
 



 A standard 100 hidden node network was also trained in 
order to compare it to the oracle learning 100 hidden node 
OTN (200  100). 
 

After every oracle learning epoch, word and utterance 
accuracies were gathered and the respective OTN weights 
saved. The weights of the most accurate epoch were chosen 
as the best OTN of that particular oracle learning run. 
  

IV. RESULTS AND ANALYSIS 
 

Table I reports the accuracy for each of the mentioned 
ANNs on the test set (the standard back-propagation-trained 
200-hidden node ANN used as the oracle, the OTN (200  
100) and the 100 hidden node standard net). Sentence 
accuracy refers to the percentage of times where the ASR 
system recognized the digits in an utterance correctly. 
 

TABLE I 
ORACLE LEARNING ACCURACIES 

 
Network configuration Word % Sentence % 

200 hidden nodes 
(standard, the oracle 

ANN) 
99.59 98.70 

OTN (200  100) 99.56 98.60 

100 hidden nodes 
(standard) 99.41 98.10 

  
 As seen above, an OTN (200  100), having half as many 
hidden nodes than its oracle, achieves a comparable accuracy, 
99.56% instead of 99.59%. The OTN (200  100)’s accuracy 
also demonstrates 25% less error than training a 100 hidden 
node net with the standard back-propagation approach 
(99.56% vs. 99.41%). 
 

One reason for the improvement is that the OTN can train 
as long as necessary to over-fit on the oracle ANN’s outputs 
using the large amount of unlabeled data and hence “sees” far 
more data points than the standard trained network which can 
only be trained with labeled data. Also the fact that the OTN 
(200  100) is learning a simpler function than the 0-1 
encoding the standard 100-node network must learn may aid 
its improved accuracy.  
 

V. CONCLUSION AND FUTURE WORK 
 

The results of the experiment support the theory that 
training a smaller ANN to approximate a larger ANN results 
in 1) a less complex network capable of accuracy comparable 
to its oracle, and 2) improved accuracy over standard training 
of smaller ANNs. An OTN with half the complexity of its 
oracle had significantly less error than the standard trained 
model, and achieved comparable accuracy to its oracle. 

 
Future work in this area includes several more 

experiments. First, research will be done to determine how 

well even smaller ANNs perform when approximating both 
the original oracle and even approximating larger OTNs. It is 
important to determine the relation between the sizes of both 
the OTN and its oracle ANN. For example, does a 50 hidden 
node network yield better results approximating the original 
200 hidden node oracle or an OTN (200  100)? Next, even 
more powerful oracles will be obtained (including mixture 
models, ensembles, etc.) to ascertain the robustness of using 
OTNs when presented with non-ANN oracles. 

 
Preliminary results in the above areas indicate that the 

closer the complexity of the oracle ANN to the OTN, the 
better the OTN performs. For example, in one experiment, an 
OTN (100  50) achieved higher accuracies than an OTN 
(200  50). If this trend persists, the ideal size will be 
determined (number of hidden nodes) for an OTN to 
approximate even more complex oracles (mixture models, 
ensembles, etc.) to reveal how the complexity of an ANN 
relates to the complexity of non-ANN models. 

 
Other research includes using the above complexity 

measures to develop a system for more accurately comparing 
complexity between different classifier models (i.e. ANN 
compared to mixture-of-gaussian ASR models). The system 
would be in terms of the number of hidden nodes needed to 
effectively approximate a given model and would be obtained 
by simply oracle-training ANNs of various sizes using the 
model being measured as the oracle. The main problem in 
this area would be handling the different inductive biases 
between the models. 

 
The ASR engine used in the experiment uses a decoder that 

takes as much advantage of the order of the outputs as it does 
the single highest output. Therefore, in order to determine if 
oracle learning can be as effective in problems that do not 
require or lend themselves to decoding, further experiments 
will compare and contrast decoded and non-decoded 
problems to find the correlation. 
 

ACKNOWLEDGEMENTS 
 

This research was funded in part by a grant from fonix Corp. 
 

VI. REFERENCES 
 
[1] Y. Le Cun, J.S. Denker, and S.A. Solla, "Optimal brain damage ", in 

Advances in Neural Information Processing Systems 2, D.S. Touretzky, 
Ed., pp. 598--605. Morgan Kaufmann, San Mateo, CA, 1990. 

 
[2] Waibel, A. (1989) "Consonant Recognition by Modular Construction of 

Large Phonemic Time-Delay Neural Networks" in D. S. Touretzky 
(ed.), Advances in Neural Information Processing Systems 1, Morgan 
Kaufmann. 

 
[3] Y. Le Cun, Bernhard Boser, John S. Denker, Donnie Henderson, 

Richard E. Howard, Wayne Hubbard, and Lawrence D. Jackel. 
“Handwritten digit recognition with a back-propagation network.” In 
David S. Touretzky, editor, Neural Information Processing Systems, 
volume 2, pages 396-404. Morgan Kaufmann Publishers, San Mateo, 
CA, 1990. 

 



[4] P. Domingos, “Knowledge acquisition from examples vis multiple 
models”, in Proc. of the Fourteenth International Conference on 
Machine Learning, pp. 211-218, 1997. 

 
[5] Quinlan, J. R. (1993). C4.5: Programs for machine learning. San 

Mateo, CA: Morgan Kaufmann. 
 
[6] Zeng, Xinchuan and Tony R. Martinez, “Using a Neural Network to 

Approximate an Ensemble of Classifiers,” Neural Processing Letters, 
vol. 12, pp. 225-237, 2000. 

 
[7] Breiman, L. (1996a), “Bagging Predictors”, Machine Learning, Vol. 

24, No. 2, pp. 123-140. 
 

[8] M. W. Craven and J. W. Shavlik, “Learning symbolic rules using 
artificial neural networks,” in Proceedings of the 10th International 
Conference on Machine Learning, pp. 73-80, Amherst, MA. 
Kaufmann, 1993. 

 
[9] M. W. Craven and J. W. Shavlik, “Extracting tree-structured 

representation from trained networks”, in D. S. Touretzky, M. C. Mozer 
and M. Hasselmo (ed.) Advances in Neural Information Processing 
System 8, pp. 24-30, MIT Press, 1996. 

 
[10]  R. Gary Leonard and George Doddington. (1993). TIDIGITS speech 

corpus, http://morph.lds.upenn.edu/Catalog/LDC93S10.html. Texas 
Instruments, Inc.

 


	I. INTRODUCTION
	II. ORACLE LEARNING
	A. Oracle Preparing
	B. Data Labeling
	C. Oracle Learning
	III. EXPERIMENT
	
	
	�
	A) Obtaining the Oracles
	B) Labeling the Data Set
	For the next step a large training set was created from the unlabeled data. The entire 15,000+ utterance training set was used to create a new training set consisting of the inputs from the old set combined with the target vectors from each oracle (one 
	C) Oracle Learning




	IV. RESULTS AND ANALYSIS
	
	TABLE I

	V. CONCLUSION AND FUTURE WORK

	ACKNOWLEDGEMENTS
	VI. REFERENCES



