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ABSTRACT 
 
 
 

CONSTRUCTING LOW-ORDER DISCRIMINANT NEURAL NETWORKS USING  
 

STATISTICAL FEATURE SELECTION 
 
 
 
 

The selection of relevant inputs, and determining an appropriate network 

topology, are two critical issues faced when applying neural networks to classification 

problems. This paper presents an algorithm called Pair Attribute Learning (PAL) for 

addressing both input selection, and the determination of network topology.  

The PAL algorithm uses a preprocessing stage to search for features derived from 

pairs of training instances. A statistical rank is used to select a good set of features, and 

these features are then used to drive the construction of a single hidden layer neural 

network. Only inputs relevant within the context of a feature are used in constructing the 

network. This results in a sparsely connected hidden layer, and lower-order discriminants. 

Results on nine learning problems demonstrate that PAL constructed networks are 70% 

less complex on average than networks built using other constructive techniques, without 

a significant loss of predictive accuracy. In addition, the PAL algorithm does not use 

iterative construction, or suffer from bias mismatch. Because it addresses both input 

selection and network topology, it provides an end-to-end solution for applying neural 

networks to classification problems. 

 

 

KEYWORDS: feature selection, network construction, architecture selection, neural 

networks, machine learning
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1 INTRODUCTION 
 
Two important parameters must be selected when designing a neural network to solve a 

given classification problem. First, the number, type, and range of the inputs must be chosen. 

Since this is established when the training data is collected and often includes many irrelevant 

inputs, a subset of these inputs should be selected that optimizes performance. This is known as 

input (or feature) selection. Second, the network topology must be created. That is, the number 

and organization (e.g. interconnections) of the nodes comprising the neural network must be 

specified. Since both of these parameters significantly affect the network’s performance, it is 

essential to have some means to select them appropriately. 

We present an algorithm called Pair Attribute Learning (PAL), which addresses both 

input selection and network topology. The PAL algorithm selects features from a training set of 

instances that are then used to determine the topology of a neural network for solving a 

classification problem. The algorithm uses a novel search strategy based on features appearing in 

instance pairs. Features are chosen using a rank of statistical accuracy over the training set. The 

selected features drive the number of nodes in a single hidden layer network, and also dictate the 

connections on the input layer. The resulting network can then be trained using standard 

techniques, such as backpropagation.  

The PAL algorithm preprocesses the training data and constructs the network directly 

from the result – it does not require iterative constructive methods. In addition, the resulting 

networks are significantly less complex than those built using other techniques, while 

maintaining similar predictive accuracy. Experimental results on nine separate learning problems 

demonstrate that PAL constructed networks are 70% less complex on average than the best 

performing standard networks, while maintaining accuracy within 1.2%. When compared to a 

common heuristic network, the PAL constructed networks show a 38.8% average reduction in 

complexity, with a corresponding 3.1% increase in predictive accuracy. In addition, because the 

PAL algorithm addresses input selection and network topology simultaneously, it is a 

comprehensive solution for the application of a neural network on a particular problem.  

There has been a substantial amount of research done separately on the issues of input 

selection (Battiti 1994, Domingos 1997, John 1994, Mucciardi 1971) and network topology 

(Andersen 2001, Fahlman 1991, Lehtokangas 1999, Roy 1993, Wang 1994). Some of these are 
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summarized in Sections 2 and 3. A much smaller amount of work has also been done on 

algorithms that address both simultaneously (Steppe 1996). 

The remainder of this paper is organized as follows. Section 2 presents in detail the 

feature selection problem and summarizes the approaches that exist in the literature. Section 3 

explores the issue of neural network topology and surveys some of the types of solutions that 

have been previously applied to this problem. Section 4 gives the details of the proposed 

algorithm.  Several experiments are introduced in Section 5 along with the methods used to 

obtain the results. The results are analyzed in Section 6, and Section 7 concludes with a summary 

and an outline of planned future work. 

2 FEATURE SELECTION 
 

For classification problems, it is helpful to visualize the set of all possible inputs as a 

hyper-dimensional space, where a single dimension represents each input. Each instance of the 

problem occupies a finite point in this space, and a point can be labeled with its corresponding 

output class value. The distribution of these instances within the space is essentially what the 

learning algorithm is tasked with discovering (Blum 1997). If the distribution is not random, then 

it will contain groups or patterns of instances, having the same output class, which can be 

described as a function of some of the inputs. These will be referred to as features of the input 

space. A feature is an area of the input space where certain inputs take a certain range or value, 

much like geographic features on a two dimensional map can be specified using coordinate 

values. Instances whose input values lie within the range of the feature are members of the 

feature. 

Because a feature is a function of some number of inputs, the order of a feature is defined 

as the number of inputs it uses. An input that is used in defining a feature is said to be relevant to 

that feature. The more relevant inputs a feature has, the higher the order of that feature. This 

implies that higher order features are more specific because they are more constrained (having 

more input requirements) and define smaller areas of the input space. As a result, higher order 

features will normally describe, or “cover”, fewer instances. Conversely, lower order features 

that use fewer input constraints define much larger areas in the input space, potentially covering 

more instances and are thus more general. For example, in three dimensions (with coordinates x, 

y, and z), consider a two dimensional circle in the x,y plane with the constraint that z = 0. This 
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circle will include a relatively small number of points when compared to the size of the space. 

However, if z is not constrained, the circle becomes a cylinder parallel to the z axis and encloses 

a much larger set of points in the space. 

For a given non-random distribution of instances, there exists many sets of features that 

can reproduce it to some desired level of accuracy. The learning algorithm must discover a set of 

features that promises the best performance on future novel instances. Biasing the search towards 

more general features increases the likelihood of future accuracy because these features are the 

most inclusive. Specific features are more exclusive and thus are less useful for generalizing. 

This can be illustrated in the extreme case where a set of features is chosen such that each 

training instance is covered by a single high order feature. This amounts to memorizing the 

training data and provides no means for generalizing on novel instances. 

2.1 Feature Search 

Even for a small number of inputs the search for a good set of features to describe the 

instance distribution is extremely complex. The size of the input space increases exponentially in 

the number of inputs making an exhaustive search prohibitive. Learning algorithms that search 

for features must have some means for guiding (or limiting) the search through the input space if 

they are to be tractable. 

One means of reducing the complexity of the search for features is to reduce the size of 

the input space by eliminating an input altogether. An input can usually be eliminated if it is not 

strongly relevant to the features used to model the distribution. Each input removed significantly 

reduces the complexity of the input space. Selecting a minimal, relevant subset of the inputs can 

therefore reduce the scope of the feature search required by the learning algorithm, potentially 

improving training speed and accuracy. 

The selection of a subset of relevant inputs is often referred to in the literature as the 

“feature subset selection problem” (John, 1994). Some references use the terms feature, input, 

and attribute interchangeably. It should be emphasized that this paper distinguishes between a 

feature (as described in section 2.0), and an input. (The term input and the term attribute are used 

synonymously throughout this paper). In this sense, the search for features is simply adapting the 

network to solve the classification problem (by selecting features to model the instance 

distribution). In contrast, the selection of a relevant subset of inputs is primarily concerned with 
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removing irrelevant inputs from the representation of the problem and reducing the input space 

complexity.  

2.2 Relevant Input Selection 

There have been many approaches to the selection of relevant inputs proposed in the 

literature. These can be functionally classified as filter or wrapper algorithms (John, 1994). A 

filter attempts to reduce the number of inputs independent of the learning algorithm. The filter is 

run in a pre-processing stage and uses some measure of relevance to determine the subset of 

inputs to pass to the learning algorithm. A wrapper is used in conjunction with the learning 

algorithm. The wrapper determines a candidate subset of inputs and then measures the relevance 

by running the actual learning algorithm on them. 

2.2.1 Filters.  
The filtering method is not hindered by the computational complexity of the learning 

algorithm since it uses an independent measure of relevance. However, it is difficult to find a 

good measure of relevance that is computationally inexpensive. The more sophisticated the filter 

becomes, the closer it comes to a learning algorithm in its own right. Many of the filters that 

have been proposed use statistical measures of information content (Battiti, 1994). An irrelevant 

input provides no information with respect to the class of an instance and this can theoretically 

be measured using statistical techniques (Battiti, 1994; Ben-Bassat, 1978). 

Filtering methods can also potentially suffer from mismatched biases. If the filter’s bias is 

significantly different from the learning algorithm, the learning algorithm performance might 

degrade using the subset of inputs selected by the filter. 

The RELIEF algorithm proposed by Kira and Rendell (1992) is a filter that ranks inputs 

individually, based on a relevance score. This score is derived by taking random samples of the 

training set and finding the difference between the nearest same and opposite class neighbors. 

The k best (i.e. most relevant) inputs are selected to be used with a decision tree algorithm.  

A more thorough search for relevant inputs is conducted using the FOCUS algorithm 

from Almuallim and Dietterich (1991). This filter searches for a set of the lowest combination of 

inputs that can be used to cover the training set without contradiction. The selected inputs are 

then used in a decision tree algorithm. The algorithm searches through the set of input spaces by 

exhaustively looking at individual inputs, then pairs of inputs, then triples, etc. Obviously for 
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distributions where there are no completely irrelevant inputs, this algorithm will execute in 

exponential time with respect to the number of inputs. The algorithm is also susceptible to noise, 

since any point in the (original) input space with a contradiction will force the algorithm to fail to 

find a subset. Further work by the authors has been proposed to overcome these limitations. 

Cardie (1993) used a decision tree as a filter to select inputs for another machine learning 

algorithm (nearest neighbor). A C4.5 tree was run on the training data, and inputs that were not 

utilized by the algorithm were determined to be irrelevant. The remaining inputs were then used 

in the nearest neighbor algorithm. This method suffers from the bias mismatch previously 

discussed. In this case, the biases are explicitly different and this could prove problematic for 

certain problems, although improved performance was reported for the problems that were 

investigated. 

2.2.2 Wrappers.  
Since wrapper techniques run the learning algorithm to measure the relevance of a subset 

of inputs, they are restricted by the computational complexity of the learning algorithm. 

However, because wrappers measure performance directly, there is no danger of a bias 

mismatch. Wrappers essentially extend the learning algorithm by including a search of input 

spaces with the search for features within an input space.  

The search for an input space (i.e. subset of inputs) must be guided or limited by the 

wrapper, just as the search for features must be guided or limited by the learning algorithm. 

Wrappers typically use standard computer search algorithms such as greedy or beam search to 

guide the exploration of input selection. 

The most common wrapper techniques are Backward Sequential Search (BSS) and 

Forward Sequential Search (FSS). BSS begins with all inputs and successively removes one at a 

time using a greedy decision process. FSS works in a similar fashion but begins with no inputs 

and successively adds them. Both techniques are usually implemented to stop the search when 

the performance on the next iteration declines. 

Aha and Bankert (1996) began with a random set of inputs and used a beam search to 

determine the next subset of inputs. The search was terminated when no better performing 

subsets could be found. The resulting subset was used with a nearest neighbor algorithm. 

Domingos (1997) extends FSS and BSS for nearest neighbor algorithms by including a 

means of measuring relevance in context. The algorithm selects subsets of inputs local to groups 
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of instances using FSS or BSS. The results were reported as having a significant improvement 

over the standard FSS or BSS methods. 

3 NEURAL NETWORK CONSTRUCTION 
 

Neural networks, like other machine learning algorithms, essentially search through the 

input space for features that can be used to represent the distribution of instances for a given 

problem. The larger the size of the input space, the more complex this search becomes. 

Subsequently, techniques to reduce the size of the input space (i.e. input subset selection) can 

help improve the performance of neural networks. 

Most neural networks search for features in the input space by adjusting discriminant 

surfaces within the space (Principe, 2000). These surfaces are n-dimensional in the number of 

inputs and define linear boundaries of class membership. Because the discriminant surface is 

linear, groups of discriminants must be combined to describe convex regions (features) of the 

input space (Lippmann, 1987). The number of discriminants available is a function of the 

network topology, and the number of discriminants needed (to describe a feature) is dependent 

on the shape of the feature. This presents a problem when configuring the topology of a neural 

network because the shape of a feature is related to the distribution of the instances and is not 

known a priori. 

The position of the discriminant in the input space is determined by adaptable parameters 

in the network, just as in two dimensions the equation for a line is determined by two adaptable 

parameters (i.e. slope and y-intercept). The adaptable parameters take the form of weights on 

connections in the network. The greater the number of weights for a discriminant, the more 

degrees of freedom it has. By removing some of the weights (or forcing them to zero), the 

position of the discriminant is restricted and the complexity of placing the discriminant in the 

input space is reduced. 

3.1 Multilayer Perceptrons 

A popular configuration used in the application of neural networks to classification 

problems is the Multilayer Perceptron (MLP). MLPs have been shown to be universal classifiers 

(Hassoun, 1995), and can be trained using a simple adaptive rule called backpropagation 

(Rumelhart, 1986). It is common to use a single hidden layer when constructing MLPs, to reduce 
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the complexity. It has been shown that restricting the network to a single hidden layer does not 

compromise the discriminating power of the network (Hassoun, 1995). The scope of this 

research is limited to MLPs consisting of a single hidden layer trained using backpropagation. 

Each node in the hidden layer of an MLP is a discriminant in the input space (Principe, 

2000). The number of adaptable weights for a hidden layer node determines the number of 

degrees of freedom the network has to position the discriminant. As previously stated, the 

number of discriminants necessary to describe the features (i.e. model the distribution) is not 

known a priori. This makes it difficult to optimally select the number of hidden layer nodes (i.e. 

topology) of the network. If there are too few nodes to adequately describe the features, the 

network will have poor accuracy. If there are too many nodes in relation to the features present in 

the distribution, the network could describe the features too precisely, referred to as overfitting. 

A network overfits when it begins to learn spurious features that are not related to the underlying 

distribution, resulting in poor generalization and susceptibility to noise in the training data 

(Geman, 1992). 

3.2 Constructive Techniques 

Techniques for applying neural networks to classification problems have been refined in 

recent years. There are many heuristics based on empirical research that can help construct a 

neural network with satisfactory results. Usually the hidden layer is set in relation to the number 

of inputs and outputs of the network (Lippmann, 1987). If there is domain knowledge about the 

problem, such as the expected number and shape of features, the hidden layer can be set 

accordingly. The network topology can then be adjusted based on experimental results. 

Unfortunately, training a network on a large problem can be prohibitively expensive and using 

trial and error to select the topology may not be feasible. 

To address this problem researchers have focused on two types of solutions. The first 

approach is to construct the network, usually using some iterative algorithm that starts with a 

small network and gradually increases the size until some desired accuracy is achieved. The 

second approach is to start with a very large network trained to the desired level of accuracy, and 

to reduce the size until some error threshold is exceeded. This is called pruning the network. 

Some examples of constructive and pruning algorithms are presented in the next sections. 
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3.2.1 Constructive algorithms. 
Many constructive techniques produce network configurations unlike the standard 

feedforward single hidden layer MLP (Fahlman, 1991; Andersen, 2001; Roy, 1992). Other 

constructive techniques are specific to a class of learning problems, and use alternative 

activations or adaptive rules (Kim, 1995; Martinez, 1994). Constructive algorithms that result in 

standard network configurations often use variations on backpropagation training, or novel 

iterative techniques (Moody, 1994; Opitz, 1997; Setiono, 1995; Lehtokangas, 1999; Wang, 1993; 

Steppe, 1996; Young, 1998). 

Fahlman and Lebiere (1991) proposed the Cascade-Correlation Learning Architecture, 

which iteratively constructs a hierarchical network structure. The algorithm begins with no 

hidden nodes and trains the network until “no significant error reduction occurs” during a set 

number of training cycles. The network weights are then frozen and a new node is added. The 

process is repeated until the residual error becomes acceptable. Cascade-correlation uses a much 

faster adaptive rule than standard backpropagation because the internal nodes are trained in 

isolation and the error is not propagated down the hierarchy. 

Lehtokangas (1999) adapted Cascade-Correlation to standard MLP architectures. This is 

called Constructive Backpropagation (CBP). The algorithms are similar except that CBP uses the 

standard backpropagation adaptive rule and the network is built using a single hidden layer. New 

nodes are added to the hidden layer without hierarchical interconnections. Because the network 

only trains the new node at each iteration, the computational complexity remains much less than 

a similar network trained simultaneously. 

Andersen (2001) used a decision tree type method of constructing a neural network, 

called Dynamic Multilayer Perceptron (DMP). A network with a single output node (assuming a 

dual positive/negative class problem) is first trained using the entire set of instances. If it 

misclassifies some positive instances, a new node is connected to precede the output node (the 

left child). Similarly, if it misclassifies some negative instances, a new node is inserted prior to 

the output node (the right child). A subset of the instances, including those misclassified by the 

output node, is used to train the new node(s). This repeats until all the instances are correctly 

classified. This produces a network that takes the form of a binary tree, and is guaranteed to 

converge for consistent training sets. 
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Roy, Kim, and Mukhopadhyay (1992) describe a constructive technique based on using 

linear programming to search for “masks” (i.e. features) to cover class regions. This is analogous 

to constructing a single hidden layer MLP where each hidden node represents a mask. In this 

implementation, the hidden nodes have a single connection to the output node of the class they 

cover. The number of masks used to define the classes determines the size of the hidden layer. 

The number of masks needed is determined using an iterative clustering algorithm and linear 

programming. 

Wang, Massimo, Tham and Morris (1993) use a canonical decomposition technique to 

determine how to modify the hidden layers of a two hidden layer MLP. This technique starts 

with a small two hidden layer network and iteratively grows the number of nodes until a 

performance criterion is satisfied.  

Other constructive techniques are non-iterative and attempt to analyze the training data to 

find the optimum number of nodes in a hidden layer. Suzuki (1995) proves an explicit equational 

representation for function approximation using three-layer neural networks that explicitly 

specifies the number of hidden layer nodes. Zheng and Billings (1995) use a measure of mutual 

information between the inputs and outputs to select a sub-optimal set of inputs to a radial basis 

function (RBF) network. The orthogonal least squares algorithm (OLS) is then used to determine 

the number of hidden layer nodes. Bichsel and Seitz (1988) use an analysis of neural networks as 

multistage encoders to arrive at an optimal configuration of the hidden layer, although the 

application results in a constructive technique that is iterative and similar to CBP. 

The majority of constructive algorithms applicable to supervised learning of classification 

problems require iterative techniques. Like heuristic or trial and error approaches, for large 

problems, training iterative networks becomes prohibitive. In addition, many of these 

constructive methods produce alternative topologies that preclude the use of widely available 

tools. Although a few non-iterative constructive techniques exist, they typically have constraints 

on the type of problems they can be applied to. The PAL algorithm presented in this paper is 

generally applicable to all classification problems and does not rely on iterative methods to 

determine the network topology. 

3.2.2 Pruning algorithms. 
Pruning techniques can be used on individual weights (i.e. connections) or individual 

nodes. Some pruning methods are interactive (Sietsma, 1991), others operate after the training 
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phase (Mozer, 1989; Le Cun, Denker, and Solla, 1990; Hassibi, 1993), and some algorithms 

incorporate the pruning into the adaptive rule itself (Chauvin, 1989; Weigend, 1991; Plaut, 1986; 

Ishikawa, 1990; Kruschke, 1989; Whitley, 1990). 

Le Cun, Denker, and Solla (1990) proposed the Optimal Brain Damage (OBD) pruning 

method, which determines a weight’s saliency using the Hessian matrix. Weights are pruned 

beginning with low saliency until the network error rises above a predetermined threshold.  

A simple but effective weight pruning technique removes weights in order of magnitude, 

beginning with the smallest weights. Weights with very small magnitudes are near zero, and 

have little effect on the network. This reduces the complexity of the network with minimal effect 

on the accuracy. 

Another common pruning technique is to add a term to the weight update rule in the 

backpropagation algorithm itself, which drives the weight to zero. This is known as “weight 

decay”. The theory is that the training error that is backpropagated through the network will 

continually “refresh” the significant weights, letting the unimportant weights die out. Many 

variations on the form of the weight decay term have been proposed (Plaut, 1986; Ishikawa, 

1990; Nowlan, 1992; Chauvin, 1989). 

Whitley and Bogart (1990) apply a genetic algorithm to search for a weight-pruned 

network. Individuals in the population represent variations of pruned networks. After the genetic 

operators are applied, the new population is given a short retraining time. Smaller networks are 

given longer retraining. The fitness function is the error of the individual after the retraining 

occurs. This biases the search to small networks, but not at the price of high inaccuracy. 

 Pruning algorithms that operate on individual nodes work with some means of 

measuring a node’s relevance to determine which node is to be pruned. In some cases an 

exhaustive search may even be appropriate since the evaluation of the accuracy of a trained 

neural network is computationally inexpensive. 

Mozer and Smolensky (1989) use a node relevance term based on the difference between 

the network error with and without the node present. By using the partial derivative of a 

modified error function to approximate the relevance, the relevance can be calculated for each 

node using backpropagation, similar to the error used in training. 

Pruning algorithms are generally successful at reducing the complexity of some 

networks. However, the size of the network to be pruned must first be determined, and must be 
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large enough to easily adapt to the problem. This introduces the computational expense of first 

training a large network. There is also the issue of when to stop pruning (i.e. when a sufficient 

reduction in complexity has been achieved). In addition, pruning may only succeed in removing 

redundant elements, and not affect the internal representation adapted by the network, which 

may be hindering generalization (Reed, 1999). 

4 PAIR ATTRIBUTE LEARNING 
 

We present a novel algorithm called Pair Attribute Learning (PAL) that addresses both 

feature selection and network topology. This method uses a filtering stage to select relevant 

features based on a statistical measure. The resulting features are used directly to construct a 

neural network. The network is trained using standard backpropagation and no further processing 

is required. 

4.1 Relevant Inputs 

Fully connected single hidden layer MLPs using backpropagation adapt the weights on 

the connections between input nodes and hidden layer nodes. The weights determine the position 

of the discriminant (i.e. the hidden layer node) in the input space. It is possible for some weights 

to be adapted such that they are very close to zero (relative to other weights). In this case, the 

network determines that the input from the connection is irrelevant to the position of the 

discriminant in relation to the feature being described. Another possible outcome of adapting the 

weights is for the network to produce an irrelevant correlation. In this case the weight is adapted 

such that it is significantly non-zero, but does not affect the position of the discriminant in 

relation to the feature. In both of these situations it would be advantageous to remove the 

connection to the irrelevant input thereby reducing the complexity of placing the discriminant. 

An input may be found to be irrelevant only in the context of a specific feature and in this 

case should not be removed from other features. Many feature selection algorithms only search 

for inputs that can be safely removed from the problem completely. This approach does not 

consider that individual features may need only a small subset of the inputs, and these inputs 

may vary from feature to feature. 

The PAL algorithm does not explicitly search for irrelevant inputs to the problem. Instead 

it evaluates individual features and determines which inputs are relevant to that feature. Useful 
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features are selected based on a performance measure. These features are then used to construct a 

single hidden layer MLP such that each feature produces a corresponding hidden node with 

connections only to the inputs that were determined to be relevant to that feature. The algorithm 

is biased toward low order features resulting in the construction of hidden nodes with low order 

discriminants. This reduces the complexity of placing the discriminants while allowing the 

neural network to find the best fit for a given feature. 

The construction of the network is driven by the features discovered in the preprocessing 

stage. The resulting network typically has fewer connections to the input layer than a standard 

feed forward network with the same number of hidden nodes. The number of hidden nodes 

produced by the PAL algorithm is dependent on the distribution of the training data. If the 

distribution contains many small features, PAL will produce a network with a large number of 

hidden layer nodes. If there are only a few large features, PAL will construct a network with few 

hidden nodes. Heuristic methods to construct a network are typically based solely on the number 

of inputs and outputs and therefore would produce the same number of nodes in either case. 

4.2 Search Strategy 

All feature selection algorithms must have some means to guide or limit the search 

through the input space because an exhaustive search is intractable for even a modest number of 

inputs. The PAL algorithm uses correlations on pairs of instances in the training set to generate 

the features to be explored. This constrains the search to only those features that appear in the 

training set. For this to be effective, the distribution of the training data must model the actual 

distribution of the learning problem (a constraint shared by most learning algorithms). 

The algorithm generates a feature by finding the correlation on inputs between a pair of 

instances that share the same class. Correlated inputs are simply inputs that have the same value 

(continuous values are handled using discretization as described in section 5.2.1). All correlated 

inputs are relevant in the context of the feature (since in this case the feature is defined as the 

correlated inputs), whereas uncorrelated inputs are not relevant. The algorithm attempts to 

explore all features that exist in the training data by iterating through successive pairs. Each 

feature is evaluated using a statistical measure based on the accuracy of the feature when used to 

predict the class of the training data. This is done by finding the percent of instances that 

correlate with the feature, within the feature’s class. A penalty term is derived for instances that 
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correlate with the feature but have a different class. Each feature is ranked based on the result 

and the top scoring features are selected for use in the construction of the network. The algorithm 

is biased toward more general features by selecting them over more specific features when both 

show a similar performance. This increases the likelihood that the network can generalize 

adequately, and is less susceptible to noise. 

4.3 Network Construction 

Once a set of features is selected, a corresponding network is constructed. A node is 

placed in the hidden layer for each feature in the set. Each relevant input used in the feature is 

connected to the node with all other inputs left unconnected. The output layer is then fully 

connected. This produces a network with the input layer sparsely connected to the hidden layer, 

assuming the pre-processing produces low order features. The network can then be trained using 

standard techniques such as backpropagation. 

Figure 1 near here 

Figure 1 shows an example of a network constructed with the PAL algorithm. In this 

example, the classification problem has four inputs and two outputs. The first network (a) is a 

standard fully connected single hidden layer MLP with seven nodes in the hidden layer. A list of 

three features is shown under the second network (b). The features are given as an ordered list of 

1’s and *’s corresponding to the four inputs. A 1 is shown for a relevant input, and * is shown for 

an irrelevant input. These features were used to construct the network (b) shown in the figure. 

4.4 The PAL Algorithm 
 

Pseudocode for the feature selection phase of the Pair Attribute Learning algorithm is 

given in section 4.4.1. The pseuodocode consists of two main loops and a subroutine. The first 

loop iterates through all same-class pairs of instances to find features that are then ranked by the 

subroutine. The second main loop selects a subset of the collected features based on rank, to be 

used in the construction of the network.  

The subroutine ranks features using the percentage of instances (from the same class as 

the feature) that match the feature. A penalty term equal to the percentage of instances from 

different classes that match the feature, is subtracted off. A more detailed explanation of the 

function of each code block follows in section 4.4.2. 
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4.4.1 Pseudocode. 
 
begin Pair Attribute Learning 
 
(A) for all classes in the training data  
 
(B) for all j-1 instances in the class  
 
(C)  for all k instances in the class where k > j  
 
(D)   if instance pair (j,k) has a correlated feature with order > 1  
 
(E)    if the feature has never been encountered before  
 
(F)     call subroutine to rank the feature 
 

add the feature to a list for later processing 
 
if the feature is ranked higher than 25 break for loop (C), and continue 
with the next j instance 
 
 

(G) for all classes in the training data do 
 

(H) while there are more features in the list for this class 
 

(I)  select the feature with the highest rank for network construction 
 
if the cumulative rank of selected features is > 200 break while loop (H) 

 
end Pair Attribute Learning 
 
begin subroutine to rank a feature 
 
(J) let thisClass be the class of the feature 

 
let percentCorrect be the percentage of instances that belong to thisClass that are covered by the 
feature 
 
let percentIncorrect be the percentage of instances that don’t belong to thisClass that are 
(erroneously) covered by the feature 
 
if percentIncorrect > percentCorrect return that the rank of the feature is zero 
 
return the rank of the feature as percentCorrect - percentIncorrect 
 

end subroutine to rank a feature 
 

4.4.2 Explanation. 
The outermost for loop (A) in the first code block is used to iterate through each output 

class that exists in the problem. The algorithm does not use instance pairs that have a different 
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class for feature selection. (Obviously, this would not yield a useful correlation.) Only the 

instance pairs within the same class are used in the search for features. 

The next for loops (B) and (C) iterate through all possible unique instance pairs within 

the class by starting with the first instance and iteratively choosing all successive instances to 

form a pair. This repeats for the next instance such that the first pair is not used again, and so on. 

For each instance pair, the if statement block (D) is executed. This statement determines if the 

instance pair being evaluated shares a feature whose order is greater than one (i.e. more than one 

correlated input). If so, the if statement block (E) is executed, otherwise the next pair is selected.  

Single order features were not used because they were determined to be spurious for most 

interesting real world problems. However, these features would typically occur very frequently 

in the training set, requiring the computation of their rank. By enforcing a minimum order of two 

on evaluated features, an improvement in the runtime of the algorithm was realized. 

The if statement (E) is used to further optimize the algorithm by rejecting features that 

have previously been examined. Features that rank high will appear frequently in the instance 

pairs, so omitting repeated evaluations of these features provides a significant performance 

improvement. 

Once a unique feature with order greater than two is encountered, the statements in block 

(F) are executed. First, the feature is ranked using the statistical method shown in the subroutine 

to rank a feature. Second, the feature is added to a list to save for later processing. Third, if the 

feature is ranked higher than 25, successive pairs using the first instance are not examined. The 

algorithm resumes processing at the next iteration of for loop (B). This is another optimization to 

improve execution speed of the algorithm. If a high-ranking (determined empirically to be 25 or 

greater) feature is found using a certain instance, it means there is a high correlation with 

subsequent instances in the class. Therefore, it is likely that the instance is redundant, making it 

unnecessary to use it further in the feature search. 

The ranking represents the percentage of instances that match the feature (see below). 

Thus a rank of 25 means 25%, or 1 in 4, of the instances in the class will appear with this feature. 

To optimize the processing, it is desired to use a low rank threshold to break the for loop (C) as 

early as possible. However, breaking the loop too early using a low threshold has the adverse 

effect of possibly missing important features. In our experiments, we determined a rank 

threshold of 25 to give the best tradeoff between optimization and efficiency. 
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Once all instance pairs from all classes have been processed, for loop (A) terminates and 

the algorithm proceeds to the for loop (G). This iterates through each class in the training data, 

executing the while loop (H). This loop uses a greedy method to select features for the current 

class from the list of features produced in code block (A). When the cumulative rank of the 

selected features exceed 200, or no more features exist for the current class, the loop is 

terminated.  

The 200 cumulative rank threshold is an empirical value and was chosen to achieve a 

higher probability of covering all instances in the given class. If each rank percentage 

represented unique covered instances, a cumulative rank of 100 would mean a class was 

completely covered. However, because the algorithm does not record the particular instances 

covered by a feature, a situation may arise where two features cover a large number of the same 

instances (overlap). The sum of the ranks of selected features can therefore possibly be much 

higher than the actual percent of class coverage provided by the selected features. Using a higher 

cumulative threshold provides a greater chance for attaining total class coverage, at the cost of 

possible redundancy and greater complexity.  

The subroutine to rank a feature begins with code block (J). The rank of a feature rf is 

given by 
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where f is the feature to be ranked, cf is the set of instances belonging to the class c of feature f, x 

is a training instance, m(f, x) is 1 if the feature f matches instance x and zero otherwise, nc is the 

number of training instances in class c, and n is the total number of training instances. 

The subroutine first calculates percentCorrect , the percentage of instances from the 

same class as the feature that are covered by the feature. It then finds percentIncorrect, the 

percentage of instances having a different class than the feature that are covered by the feature. 

This is used as a penalty term to help distinguish highly accurate general features (i.e. those that 

match a large number of instances), from highly inaccurate general features. The rank is 

calculated as the difference between percentCorrect and percentIncorrect or zero, 

whichever is greater, giving the rank a range of 0 – 100. 
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4.5 Time Complexity of the Algorithm 

The algorithm iterates through all possible pairs in the data set that share the same class. 

Each pair produces a feature, and each feature is ranked by checking it against all instances. This 

yields a time complexity of 
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where k is the number of output classes, nk is the number of instances in class k, and m is the 

total number of instances. For nk > 2 equation (1) reduces to 
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The upper bound occurs when the data set has only one output class. This would not be a 

realistic learning problem, but can be used to find the bound on the time complexity. Substituting 

into equation (2) k = 1, which gives nk = m: 
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Although the bound on the time complexity is cubic in the worst case, the time 

complexity is slightly better than equation (3) assuming that the instances in the data set are 

evenly divided among the output classes, giving nk = m/k.  

Several optimizations to the algorithm reduce this time considerably in practice. One 

simple but effective optimization is to skip the evaluation of redundant features. The algorithm 

keeps track of features that have been evaluated and skips the evaluation phase if a feature is 

found to be redundant. A practical learning problem will have features that appear many times in 

the training data. Using this optimization the algorithm avoids making many redundant passes 

through the training set. 
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Another optimization is to have the algorithm discontinue searching for features if 

sufficient features have been found to model the distribution of a class. This means that after a 

predetermined level of predictive accuracy has been achieved with existing features, the 

algorithm terminates the feature search for that class. This has a significant benefit because good 

features cover many instances and therefore show up early in the search, allowing the algorithm 

to terminate after searching only a relatively few pairs. However, if the distribution can only be 

modeled using very high order features, the algorithm will be forced to examine most, or all of 

the pairs. 

Finally, for a given instance, if a feature has been found to rank higher than some 

threshold, the instance is no longer used to generate features. A good feature will cover many 

instances, and subsequent pairs using the given instance will thus be redundant. Allowing the 

algorithm to terminate a loop early in this case can significantly speed up execution time. 

 5 EXPERIMENTS 
 

We used two metrics to evaluate the neural networks in our experiments. First, we 

measured the accuracy of the network. This is determined by how well a network correctly 

classifies novel instances once it has been constructed and trained. Second, we measured the 

complexity using the number of connections contained in the network. This is reported as the 

average complexity over all runs of a ten-fold cross validation (see section 5.3.2). 

We compared the accuracy and complexity of the networks produced by the PAL 

algorithm against manually constructed fully-connected single hidden layer MLPs. This is a 

common configuration when manually constructing networks for learning problems with non-

graphical input. We selected two sizes for the hidden layer of the manually constructed networks. 

First, we used a common heuristic that allocates two hidden layer nodes for every input 

node (Principe, Euliano and Lefabvre, 2000). This yields a hidden layer twice the size of the 

input layer. We refer to this in our discussion as the Double Input Network (DIN). 

Second, we exhaustively tested hidden layer sizes incrementally up to five times the size 

of the input layer. For cases where the input layer was small (less than five nodes) this was done 

in single node increments. For larger problems this was done using five node increments. The 

network size that achieved the best accuracy was recorded for use in our comparisons. We refer 

to this as the Best Iterative Network (BIN). Although in a few cases this technique resulted in a 
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network size similar to the heuristic DIN, in most cases the sizes were significantly different (see 

section 6). The BIN results represent the best accuracy possible given a fully connected single 

hidden layer MLP, since all (reasonable) sizes for the hidden layer were tested.  

Using the BIN and DIN networks provide a meaningful comparison because the PAL 

constructed networks can be derived from the same topology. Given a fully connected single 

hidden layer MLP with the same number of hidden layer nodes as a PAL network, an equivalent 

transform can be realized by pruning the appropriate connections. Comparing against these 

configurations demonstrates what performance gains we can practically achieve using automated 

PAL construction, versus networks constructed manually. Additionally, any constructive 

algorithm which produces a fully connected single hidden layer MLP is effectively represented 

in the comparison with the exhaustive iterative testing that produces the BIN. 

 

5.1 Data Sets 
 

We evaluated the PAL algorithm using eight real-world learning problems and one 

artificial learning problem. The data sets used in the experiments are described below. The size 

of the data set is given for each problem, and is also listed in Table 1 in section 6. 

 
Blood – (Principe, 1999). This data has four blood measurements taken from patients, 
represented as real numbers. There are two output classes representing healthy or sick diagnoses. 
There are 209 instances in the data set. 
 
Cancer – (Blake and Merz, 1998). This data set is composed of nine physical measurements 
taken from breast cancer patients and stored as integer values in the range one through ten. The 
output classes correspond to benign and malignant diagnoses. There are 683 instances in the data 
set. 
 
Credit – (Blake and Merz, 1998). This data set has 15 inputs related to credit application 
screening. The inputs are a mixture of nominal and continuous values. The output classification 
is defined as accepted or rejected. The data set contains 653 instances. 
 
Echo – (Blake and Merz, 1998). This is a collection of data from patients who had a heart attack. 
The classification problem is to predict which patients survived one year after the heart attack. 
There are eight input attributes comprised of integer and continuous values. The data set contains 
62 instances. 
 
Iris – (Blake and Merz, 1998). This is a very popular data set containing physical measurements 
from iris plants. There are four real inputs and three output classes representing three types of iris 
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plants. This is a very simplistic domain and has been widely used in the literature. The data set 
contains 150 instances. 
 
Lenses – (Blake and Merz, 1998). This data set contains four nominal attributes of patients who 
are being fitted for contact lenses. The possible output classes are soft, hard, or none, 
corresponding to the type of lenses that should be used (if any). The input space is extremely 
small and contains only 24 points in four-dimensional space. All 24 points (instances) are present 
in the data set. 
 
Mushroom – (Blake and Merz, 1998). This data set has 22 nominal input attributes that give 
physical attributes of a mushroom plant. The output classifications are poisonous or edible. This 
problem has a very large set of data samples - the data set contains 5,644 instances. 
 
Monk3 – (Blake and Merz, 1998). This is a data set artificially created for benchmarking 
learning algorithms. It has six nominal input attributes and an output classification of zero or 
one. The training data has 5% noise added. There are 554 instances in the data set. 
 
Zoo – (Blake and Merz, 1998). This data set contains 17 boolean-valued input attributes 
describing various characteristics of animals. There are seven output classes each representing a 
group of animals with similar traits. The data set contains 101 instances. 

5.3 Methods 
 

It is difficult to do an objective comparison of neural networks because there are a large 

number of implementation parameters that can affect the performance of a network. For 

example, the initialization of the weights, the learning rate, the learning rule, and the method of 

determining convergence. Because this research is primarily concerned with comparing network 

topologies, all parameters were chosen to have conservative, typical settings. More importantly, 

these were kept constant throughout the experiments. The following sections detail the methods 

we used to build, train, and test the networks. 

5.3.1 Input Processing. 
The inputs to the learning problems took several different forms depending on the nature 

of the physical attributes they represented. Nominal inputs could take one of a fixed set of 

discrete values that were pre-defined for the particular problem. These were then mapped on to 

the positive integers to be used by the algorithm. Numeric inputs could be any integer value, and 

continuous inputs could be any real number. 

Determining the correlation of two nominal, or numeric inputs simply requires 

determining if they have the same discrete value. This method is not effective for continuous 
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inputs because usually these types of inputs do not correlate exactly. One common method for 

handling continuous valued inputs is discretization. The real numbered values are mapped to a 

discrete number of nominal values. There are several sophisticated means for deriving the 

number of nominal values and the way in which the continuous values are mapped to them. For 

this research, we used a simple method consisting of ten equal discrete intervals on the 

normalized range of the continuous values. After discretization, continuous inputs were treated 

the same as nominal inputs. 

5.3.2 Cross Validation. 
All results reported in this research were obtained using a modified form of ten-fold 

stratified cross validation (Kohavi, 95). For each learning problem, we partitioned the data into 

three sets, referred to collectively as a mix. Ten different mixes were used for testing on each 

problem, and the average results were reported. Each mix contained a training set, holdout set, 

and test set. The training set was used to train the neural network, the holdout set was used to 

determine when to stop the training (convergence), and the test set was used to obtain a 

performance metric. This ensured a more accurate benchmark of true performance because the 

network did not use the test set during training in any way. 

The size of the three sets was determined as a percentage of the original data and 

remained constant for all experiments: 67.5% for the training set, 7.5% for the holdout set, and 

25% for the test set.  

Each set in a mix retained the same ratio of class samples as the original data 

(stratification), but the particular samples in a set varied among the mixes. This was done to 

provide the broadest coverage of training/holdout/test set permutations possible with the original 

data, while still reproducing the original distribution. 

5.3.4 Network Training. 
We trained the networks using standard backpropagation with no momentum. The 

connection weights were first randomly initialized between –0.2 and 0.2 using a uniform 

distribution. The networks were then trained on-line (vs. batch mode) using a learning rate of 

0.2. After every 100 epochs, the holdout set was tested and the summed squared error (SSE) 

recorded. If the SSE increased by 25% from the best SSE recorded to that point, the training was 
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stopped. This usually occurs when the network begins to overfit the training data while 

generalization suffers.  

Two other conditions were allowed to stop the training process. First, if the SSE went 

below .001, the accuracy was deemed sufficient and the training was stopped. Second, if the SSE 

did not decrease more than 2% over 500 epochs, the network was said to have converged, and 

the training was stopped. These stopping thresholds were determined empirically and kept 

constant throughout the experiments.  

We used the network corresponding to the best recorded (holdout) SSE, over the entire 

training run, to measure performance on the test set. This implies that even if the network began 

to overfit the training data, this would not be reflected in the test results because a previous 

version of the network was saved for use in the testing. 

6 RESULTS 
 

The results of running the PAL algorithm on all nine data sets, along with the results 

from the BIN and DIN methods, are shown in the bar charts in Figures 2 and 3. Figure 2 shows 

the percent accuracy for each method on each data set. The BIN slightly outperformed the other 

methods on all but the mushroom data sets, where the PAL algorithm was the most accurate. The 

PAL algorithm was within 3.4% of the BIN method in every case. The DIN also had very similar 

performance to the BIN method, but suffered on the Lenses data set. The DIN method 

underperformed PAL on all but three of the problems.  

 

Figures 2 and 3 near here 
 

Figure 3 shows the complexity of the resulting network for each method as a percentage 

of the most complex network. The most complex network is shown as 100%. Table 1 gives the 

actual complexities (number of connections) produced by each method, as well as the number of 

inputs, output classes, and training instances for each learning problem. 

 
Table 1 near here 

 
The PAL algorithm produced significantly less complex networks than the BIN method 

in all cases. In three cases the DIN method produced slightly less complex networks than the 
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PAL algorithm. These were the Iris, Lenses, and Monk3 data sets. Of the three, the accuracy of 

the DIN method was only better than the PAL algorithm on the Iris data set. 

Overall, the PAL algorithm produced networks 70% less complex than the BIN method, 

and 38.8% less complex than the DIN method. The accuracy of the PAL networks was only 

1.2% lower than the most accurate network (BIN), on average. These results demonstrate that 

using the PAL algorithm produces small, accurate networks without the computational overhead 

of iterative construction techniques, or the uncertainties of heuristic approaches. 

The most pronounced reductions in complexity can be observed for the learning problems 

with larger numbers of input or output nodes, such as the cancer, credit, echo, and zoo 

problems. In each of these cases, the PAL networks were significantly less complex than both 

the BIN and DIN networks while maintaining reasonable accuracy. The PAL algorithm is well 

suited for learning problems like this which have sharp features distributed over a large input 

space, since the algorithm is able to target these features directly. Learning problems with small, 

uniform input spaces such as iris and lenses, benefit less from the PAL algorithm. 

One shortcoming of the PAL algorithm is that it lacks a facility for removing redundant 

inputs. Since there is no explicit measure of correlation on inputs within a feature, all inputs that 

are correlated in an instance pair are used for the feature. Redundant inputs will then appear as 

connections in the constructed network, adding to the network complexity. 

The PAL algorithm potentially discovers all features that appear in the training set. Not 

every feature is useful for generalizing so some means of selecting the features to drive the 

network construction must exist. As explained in section 4, the PAL algorithm ranks the features 

based on predictive accuracy, but a heuristic had to be empirically determined to set the 

threshold for feature selection.  

The threshold value was chosen to ensure that enough features could be selected to cover 

each class, but this was not necessarily the optimum for a given problem. This is why for certain 

problems the PAL network is more complex than the DIN method. More features were selected 

in this case than were necessary, although the accuracy did not suffer significantly. 

An interesting result of running the BIN method was the variance of the network 

accuracy over all topology iterations. Most of the data sets had relatively small variances with 

one exception. The Monk3 data set had the largest variance. This was most likely due to the fact 

that the training data for the Monk3 set has 5% class noise added artificially. This has the effect 
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of “spreading” the instances in the input space and can sometimes cause a network to overfit the 

noise. Figure 4 shows the accuracy as a function of the number of nodes in the hidden layer for 

the Monk3 data set. 

Figure 4 near here 
 

7 CONCLUSION AND FUTURE WORK 
 

Two important issues relating to the implementation of a neural network to solve a 

classification problem were examined in this paper, namely feature selection and network 

topology. The choices for certain parameters of the implementation, related to feature selection 

and topology, can significantly impact the performance of the network. There is presently a need 

for better methods to address these aspects of neural network design.  

The Pair Attribute Learning algorithm addresses both these issues simultaneously by 

using the results of a feature search to drive network construction. Features are extracted as 

correlations of instance pairs, and selected based on a statistical measure. A single hidden layer 

network is constructed with a hidden layer node inserted for each selected feature. The hidden 

layer node is only connected to inputs that are relevant in the feature. The output layer is fully 

connected, and the network is trained via standard backpropagation. 

Results from nine different experiments show that the PAL algorithm constructs 

networks that have on average a 70% reduction in complexity when compared to the best 

performing standard network topology. Although the PAL networks were significantly less 

complex, the predictive accuracy remained on average within 1.2% of the highest recorded 

accuracy. This is due to the low order features selected in the first phase of the algorithm that 

determine the hidden layer connections, and the minimization of redundant or extraneous hidden 

nodes. 

The results in this study focused on network topologies that were most similar to the 

automatically constructed PAL networks (i.e. fully connected single hidden layer MLPs). A wide 

variety of constructive algorithms exist that produce more exotic network configurations. It 

would be informative to test the performance of the PAL networks against these other algorithms 

with respect to accuracy, complexity, and computationally intensity. Future work could also 

include a comparison of pruning techniques, applied to both the manually constructed networks 

used in this study, and the results of other constructed networks. 
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Some parameters of the PAL algorithm, such as the cumulative rank threshold, were 

determined empirically over the nine data sets used in the experiments. Future work should focus 

on removing dependence on these parameters, such as dependent ranking to avoid overlap. Also, 

further work should extend the feature search to more general features by reducing instance pair 

correlations (e.g. removing spurious inputs). Other extensions to be explored include optimizing 

the algorithm to improve execution time, provisions for problems where class outputs are 

underrepresented by the selected features, and sparsely connecting the output layer. 
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Figure 1 – (a) A fully connected network with four inputs, seven hidden layer nodes, and 
two outputs. (b) A network constructed with the PAL algorithm using the three listed 
features. Relevant inputs are denoted by a 1, irrelevant inputs by a *. 

Feature A: 1, 1, *, 1 
Feature B: 1, *, 1, * 
Feature C: *, *, 1, 1 
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 Figure 2 – Accuracy for PAL, BIN, and DIN on each data set 
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Figure 3 – Complexity for PAL, BIN, and DIN on each data set 
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 Complexity Parameters Learning Problem 
BIN DIN PAL Inputs Outputs Instances 

Blood 54 48 18.1 4 2 209 
Cancer 143 198 12.1 9 2 683 
Credit 425 510 84.2 15 2 653 
Echo 150 160 83.8 8 2 62 
Iris 700 56 83.7 4 3 150 

Lenses 350 56 62.7 4 3 24 
Zoo 1035 736 341.6 16 7 101 

Mushroom 120 1056 67.3 22 2 5644 
Monk3 360 96 119 6 2 554 

 
Table 1 – Network complexities (number of connections) and general parameters for the nine 

learning problems used in the experiments. 
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Figure 4 –Accuracy versus hidden layer nodes for the Monk3 data set 


