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Manifold Learning by Graduated Optimization

Michael Gashler, Dan Ventura, and Tony Martinez

Abstract—We present an algorithm for manifold learning called
manifold sculpting, which utilizes graduated optimization to seek
an accurate manifold embedding. An empirical analysis across a
wide range of manifold problems indicates that manifold sculpting
yields more accurate results than a number of existing algorithms,
including Isomap, locally linear embedding (LLE), Hessian LLE
(HLLE), and landmark maximum variance unfolding (L-MVU),
and is significantly more efficient than HLLE and L-MVU. Mani-
fold sculpting also has the ability to benefit from prior knowledge
about expected results.

Index Terms—Manifold learning, nonlinear dimensionality re-
duction, unsupervised learning.

I. INTRODUCTION

ARGE dimensionality is a significant problem for many

machine learning algorithms [1]. Dimensionality reduc-
tion algorithms address this issue by projecting data into fewer
dimensions while attempting to preserve as much of the infor-
mational content in the data as possible.

Dimensionality reduction involves transforming data to oc-
cupy as few dimensions as possible so that the other dimensions
may be eliminated with minimal loss of information. Nonlinear
transformations not only have more flexibility to align the data
with a few dimensional axes but also have more potential
to disrupt the structure of the data in that process. Manifold
learning algorithms seek a balance by prioritizing the preser-
vation of data structure in local neighborhoods. A projection
is deemed to be good if the relationships (typically, distances
and/or angles) between neighboring points after the projection
are very similar to the relationships between those same points
before the projection.

Manifold learning therefore requires solving an optimization
problem. In general, global optimization over a nonlinear error
surface is an NP-hard problem [2]. Most popular manifold
learning algorithms, such as Isomap [3] and locally linear
embedding (LLE) [4], approach this problem by casting it as
an overconstrained convex optimization problem in the low-
dimensional space. Unfortunately, much is lost in casting the in-
herently nonconvex problem as a convex problem. The solution
to the convex problem can typically be rapidly computed, but
the results do not necessarily preserve the distances and angles
between neighboring points as well as can be done in low-
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Fig. 1. With graduated optimization, the solution to each optimization prob-
lem gives a good starting point for the next harder problem. If the optimum of
the first problem is found, and the solution to each problem is within the convex
region around the optimum of the next problem, then graduated optimization
will find the optimum of the final problem.

dimensional space. Algorithms that perform optimization in the
high-dimensional space, such as maximum variance unfolding
(MVU) [5], produce better results but tend to have unreasonably
high computational costs.

We make the novel observation that the optimization problem
inherent in manifold learning can be solved using graduated op-
timization. Graduated optimization involves solving a sequence
of successively more difficult optimization problems, where the
solution to each problem gives a good starting point for the next
problem, as illustrated in Fig. 1. This technique is commonly
used with hierarchical pyramid methods for matching objects
within images [6]. A related technique called numerical con-
tinuation [7] has been used to approximate solutions to para-
meterized equations in chaotic dynamical systems, molecular
conformation, and other areas. To our knowledge, graduated
optimization has not yet been recognized as being suitable for
addressing the problem of manifold learning. With graduated
optimization, if the first optimization problem in the sequence
can be solved and if the solution to each problem falls within the
locally convex region around the solution to the next problem,
then it will find the globally optimal solution to the nonconvex
optimization problem at the end of the sequence.

We present an algorithm for manifold learning called man-
ifold sculpting, which discovers manifolds through a process
of graduated optimization. Manifold sculpting approaches the
optimization problem of manifold learning in a manner that
enables it to solve the optimization problem in the original
high-dimensional space, while only requiring the computa-
tional cost of optimizing in the reduced low-dimensional space.
Furthermore, because graduated optimization is robust to local
optima, it is not necessary to cast it as an overconstrained
convex optimization problem. Instead, manifold sculpting di-
rectly optimizes to restore the relationships computed between
neighboring points. This gives manifold sculpting the flexibility
to operate using an arbitrary set of distance metrics or other
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relationship metrics. Additionally, manifold sculpting has the
ability to benefit from prior knowledge about expected results
and the ability to further refine the results from faster manifold
learning algorithms. We report results from a variety of experi-
ments, which demonstrate that manifold sculpting yields results
that are typically about an order of magnitude more accurate
than state-of-the-art manifold learning algorithms, including
Hessian LLE (HLLE), and landmark MVU (L-MVU).

Section II discusses work that has previously been done in
manifold learning. Section III describes the manifold sculpting
algorithm in detail. Section IV reports the results of a thorough
empirical analysis comparing manifold sculpting with existing
manifold learning algorithms. Finally, Section V summarizes
the contributions of manifold sculpting.

II. RELATED WORK

Dimensionality reduction has been studied for a long time [8]
but has only started to become a mainstay of machine learning
in the last decade. More algorithms exist than we can mention,
but we will attempt to give a summary of the major work that
has been done in this field. Early nonlinear dimensionality re-
duction algorithms, such as nonlinear multidimensional scaling
[9] and nonlinear mapping [10], have shown effectiveness but
are unable to handle high nonlinearities in the data. Curvilinear
component analysis [11] uses a neural network technique to
solve the manifold embedding, and curvilinear distance analy-
sis (CDA) [12] takes it a step further by using distance on the
manifold surface as a metric for identifying manifold structure.
These algorithms are unfortunately computationally demanding
and suffer from the problems of local minima.

Isomap [3] uses the same metric as CDA but solves for
the embedding into fewer dimensions using classic multidi-
mensional scaling, which enables it to operate significantly
faster. Unfortunately, it still struggles poorly sampled areas of
the manifold. (See Fig. 2(a).) LLE [4] achieves even better
speed by using only local vector relationships represented in
a sparse matrix. It is more robust to sample holes but tends
to produce quite distorted results when the sample density is
nonuniform. (See Fig. 2(b).) With these algorithms, a flurry of
new research in manifold learning began to produce numerous
new techniques. L-Isomap is an improvement to the Isomap al-
gorithm that uses landmarks to reduce the amount of necessary
computation [13]. Other algorithms include kernel principal
component analysis [14], Laplacian eigenmaps [15], manifold
charting [16], manifold Parzen windows [17], HLLE [18], and
there are many more [19]-[21]. HLLE preserves the manifold
structure better than the other algorithms but is unfortunately
very computationally expensive. (See Fig. 2(c).)

More recently, the MVU algorithm has become popular for
manifold learning [5]. This algorithm seeks to maximize vari-
ance in the data points while preserving distances and angles
in local neighborhoods. It finds the solution to this problem
using semidefinite programming. Unfortunately, because it op-
timizes in the original high-dimensional space and because of
the computational complexity of semidefinite programming, it
is too inefficient to operate on large data sets. L-MVU [22]
utilizes randomly chosen landmarks to reduce the computa-
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Fig. 2. Comparison of several manifold learners with a Swiss Roll manifold.
Color is used to indicate how points in the results correspond to points on
the manifold. Isomap has trouble with sampling holes. LLE has trouble with
changes in sample density. HLLE, L-MVU, and manifold sculpting all produce
very good results with this particular problem. (Results with other problems
are presented in Section IV.) (a) Isomap. (b) LLE. (c) HLLE. (d) L-MVU with
56 landmarks. (e) Manifold sculpting.

tional complexity of MVU. (See Fig. 2(d).) Although this tech-
nique yields somewhat degraded results, it makes the algorithm
more suitable for larger problems. Excessive computational
complexity, however, is still the most significant drawback
of L-MVU.

Several recent manifold learning algorithms have also been
presented with specialized capabilities. For example, LGGA
[23] creates a continuous mapping such that out-of-sample
points can efficiently be projected onto a learned manifold. We
show that manifold sculpting can achieve a similar capability
using a pseudoincremental technique. S-Isomap [24] has the
ability to benefit from partial supervision. Manifold sculpting
can also utilize supervision to improve its manifold embedding.
TRIMAP [25] and the D-C Method [26] are manifold learning
techniques that specifically seek to preserve class separability
in their projections for classification tasks. Manifold sculpting
is not specifically designed for this application.

The primary difference between other methods that have
been presented and manifold sculpting is that others use various
convex optimization techniques to approximate a solution to
the nonconvex problem of preserving relationships in local
neighborhoods, while the latter seeks to directly solve this
nonconvex optimization problem with the use of graduated
optimization. Manifold sculpting was first presented in [27]. In
this paper, we present an improved version of the algorithm,
demonstrate additional capabilities and show that it gives better
results than modern algorithms. (Fig. 2(e) shows that results
with the Swiss Roll manifold are visually similar to those of
HLLE or L-MVU. In Section IV, we show that an empirical
analysis with this and several other problems indicates that the
results of manifold sculpting tend to be much more accurate
than those of other algorithms.)
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TABLE 1
HIGH-LEVEL OVERVIEW OF THE MANIFOLD
SCULPTING ALGORITHM

Find the k-nearest neighbors of each point.
Compute a set of relationships between neighboring points.
Pre-process the data with a faster dimensionality reduction
algorithm. (This step is optional.)
4 Do until no improvement is made for 50 iterations:
a. Scale the data in the non-preserved dimensions by a
constant factor o, where o < 1.
b. Restore the relationships computed in step 2 by
adjusting the data points in the first ¢ dimensions.
5  Drop the non-preserved dimensions from the data.

W =

III. MANIFOLD SCULPTING ALGORITHM

An overview of the manifold sculpting algorithm is provided
in Table I, and the detailed pseudocode is provided in Fig. 3.
Let

d  original dimensionality of the data;

t  number of target dimensions into which the data will be

projected;

k  number of neighbors used to define a local neighbor-

hood;

P set of all data points represented as vectors in R? such

that p;; is the jth dimensional element of the ith point
in P;

N |P| x k matrix such that n;; is the index of the jth

neighbor of point p; .;

o constant scaling factor;

n  step size (which is dynamically adjusted).

A. Steps I and 2: Compute Local Relationships

Manifold sculpting can operate using custom distance/
relationship metrics. In our implementation, we use Euclidean
distance and local angles. We compute the k-nearest neighbors
n;; of each point. For each j (where 1 < j < k), we compute
the Euclidean distance d;; between p; . and each of its neighbor
points. We also compute the angle 6;; formed by the two line
segments (P;,« to point n;;) and (point n;; to point m,;), where
point m;; is the most colinear neighbor of point n;; with p; ..
(See Fig. 4.) The most colinear neighbor is the neighbor point
that forms the angle closest to 7. The values of § and 6 define
the relationships that the algorithm will seek to preserve during
the transformation. The global average distance between all the
neighbors of all points ¢4, is also computed so that distances
may be normalized.

B. Step 3: Optionally Preprocess the Data

The data may optionally be preprocessed with another
dimensionality reduction algorithm. Manifold sculpting will
work without this step; however, preprocessing may result in
even faster convergence. For example, a fast but imprecise
algorithm, such as LLE, may be used to initially unfold the
manifold, and then, manifold sculpting can further refine its
results to obtain a better embedding. (This technique is demon-
strated in Section IV-B.) Even preprocessing with a linear di-
mensionality reduction algorithm may give some speed benefit.
For example, principal component analysis (PCA) can be used
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function manifold_sculpting(P)
t+— 2, k18, 0 «— 0.999
1 for i from 0 to |P| — 1:
n; < the k nearest neighbors of p; .
2 for i from 0 to |P| — 1:
for 5 from 0 to k — 1:
d;; — P.distance(s, n;;)
0;; < maxo<i<i P. angle(s, ni;, ny)
M;; < argmaxg_ ;< P.angle(s, ni;, nj)
Save — average_neighbor_distance()
n— dave
Call align_axes_with_principal _components(P)
4 Until at least (log, 0.01) iterations, and until no
improvement is made for 50 iterations, do:
4a for ¢ from 0 to |P| — 1:
for j from ¢ to d — 1:
Pij < OPij
while average neighbor_distance() < dgpe:
for ¢ from 0 to |[P| — 1:
for j from 0 to ¢ — 1:
Pij — Dij/o
4b r « random value, 0 < r < |P|
add point 7 to a queue
steps «— 0
A+ empty set
while the queue is not empty, do:
pop index ¢ from the queue
ifi¢ A:
steps « steps + adjust_point(p, n)
add each neighbor of p; . to the queue
add i — A
if steps > |P|:
n—nxll
else
n«—n%0.9
5 Drop all dimensions > ¢

w

Fig. 3. Pseudocode for the manifold sculpting algorithm. Note that the
pseudocode for the align_axes_with_principal_components function is given
in the Appendix, and the pseudocode for the adjust_point function is given
in Fig. 6. A C++ implementation of manifold sculpting is available online at
http://waffles.sourceforge.net.

®
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Fig. 4. ¢ and 0 define the relationships that manifold sculpting seeks to
preserve in the projection.

to rotate the dimensional axes to shift the information in the
data into the first several dimensions. Manifold sculpting will
then further compact the information by unfolding the nonlinear
components in the data. Except where otherwise noted, we use
PCA to preprocess data in this manner.
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Fig. 5.
tion. This experiment was performed with 2000 data points, k = 14, o = 0.99,
and iterations = 300.

Swiss Roll manifold shown at four stages of the iterative transforma-

Efficient PCA algorithms generally compute only the first
few principal components and simultaneously project away the
additional dimensions. In this case, however, it is preferable
to rotate the axes to align the data with the first few principal
components without projecting away the remaining dimen-
sions, since that will be done later in step 5. The additional
information in those dimensions is useful in step 4 for reduc-
ing tension in the graduated optimization step. The Appendix
gives pseudocode for aligning axes with the first few principal
components without projecting away the additional dimensions.

C. Step 4: Transform the Data

The data are iteratively transformed as shown in Fig. 5. This
transformation continues until at least log,(0.01) iterations are
performed, and the sum error has not improved over a window
of 50 iterations. The first criterion ensures that most (99%) of
the variance is scaled out of the dimensions that will be dropped
in the projection. The second criterion allows the algorithm to
operate as long as it continues to improve the results. These
criteria can be modified to suit the desired quality of results—if
precision is important, a larger window may be used; if speed
is important, early stopping may be appropriate.

1) Step 4a—Reduce the Variance in Nontarget Dimensions
by Scaling: All the values in P, except those in the first ¢
dimensions, are scaled down by multiplying by a constant factor
o, where o is slightly less than 1. This value controls the rate
at which the optimization problem is graduated. A conservative
value, such as o = 0.999, will ensure that the error surface is
slowly transformed, so that the global optimum can be followed
with precision. A more liberal value, such as ¢ = 0.99, can be
used to quickly obtain results, with some risk of falling into a
local optimum. Except where otherwise indicated, we use the
value o = 0.99 for all of the experiments in this paper.

To compensate for this downscaling in the nonpreserved
dimensions, the values in the first ¢ dimensions are scaled
up to keep the average neighbor distance equal to daye. As
the algorithm iterates, this will shift the variance out of the
nonpreserved dimensions and into the preserved dimensions.
Thus, when the projection is performed in step 5, very little
information will be lost.

2) Step 4b—Restore Original Relationships: Next, the val-
ues in the first ¢ dimensions in P are adjusted to recover the
relationships that are distorted by scaling in the previous step.
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function adjust_point(p,n)
s+ 0
loop:
€y < compute_error(p)
Jj<0
for ¢ from O to ¢t — 1:
Di < pi + 1
if compute_error(p) < €:
Je—j+1
else
Di — pi — 27
if compute_error(p) < €:
je—j+1
else
Pi = Di +1
if j =0:
return s
s«—s+1

Fig. 6. Pseudocode for the adjust_point function, where compute_error is (1).
This is a convex hill-climbing algorithm that moves a point to a locally optimal
position and returns the number of steps required to get there.

This is the optimization phase of graduated optimization. A
heuristic error value is used to measure the extent to which the
current relationships between neighboring points differ from
the original relationships

. 9 2
Sijo — 0ij max(0,0;;, — 0:;)
€p; Zwij <j253> ( 7‘] J )
j 0 ave
(D

where §;; is the current distance to point 75, d;5, is the original
distance to point n;; measured in step 2, 0;; is the current angle,
and 0, is the original angle measured in step 2. The denomina-
tors are normalizing factors that give each term approximately
equal weight. When ¢,,, = 0, the relationship metrics have been
restored to their original values. We adjust the values in the first
t dimensions of each point to minimize this error value. Since
the equation for the true gradient of the error surface defined by
this heuristic is complex and is O(d?) to compute, we use the
simple hill-climbing technique of adjusting in each dimension
in the direction that yields improvement until a local optimum
is found. This technique is sufficient to follow the trough of the
changing error surface. The pseudocode for our hill-climbing
technique is given in Fig. 6.

Three performance optimizations can be used in this step to
significantly speed convergence:

First, it is observed that the component of distances and
angles in the nonpreserved dimensions does not change, except
that it is scaled by o in each iteration. These values can be
cached (as long as the cached values are scaled by o in each
iteration) such that only the first ¢ dimensions must be evaluated
to compute the error heuristic. Since ¢ tends to be a small
constant value, this can have a significant impact on runtime
performance.

Second, the step size 1 can be dynamically adjusted to keep
the number of total steps low. We adjust ) after each iteration to
keep the total number of steps taken approximately equal to the
total number of data points. If the number of steps is less than
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the number of data points, then n < 1 * 0.9; otherwise, 1 «
n * 1.1. Experimentally, this technique was found to converge
significantly faster than using a constant or decaying value
for n.

Third, it is observed that the points that have already been
adjusted in the current iteration have a more positive influence
for guiding the movement of other points to reduce overall
error than the points that have not yet been adjusted. Thus,
we begin step 4b by starting with a randomly selected point,
and we visit each point using a breadth-first traversal ordering.
Intuitively, this may be analogous to how a person smoothes
a crumpled piece of paper by starting at an arbitrary point
and smoothing outward. Thus, a higher weight is given to
the component of the error contributed by neighbors that have
already been adjusted in the current iteration such that w;; = 1
if point n;; has not yet been adjusted in this iteration and w;; =
10 if point n;; has been adjusted. Intuitively, a large weight
difference will promote faster unfolding, while a smaller weight
difference should promote more stability. In our experiments,
nearly identical results were obtained using values as low as
w;; = 5 or as high as w;; = 20 for the case where a neighbor
has already been adjusted, so we made no attempt to further
tune w;; in any of our experiments.

D. Step 5: Project the Data

At this point, nearly all of the variance is contained in the first
t dimensions of P. The data are projected by simply dropping
all dimensions > ¢ from the representation of the points.

E. Graduated Optimization

The optimization technique used by manifold sculpting war-
rants particular consideration. The algorithm relies on a simple
hill climber to adjust the location of each point (in step 4b). It
cycles through the dimensions, and for each dimension, it tries
increasing and decreasing the value. It accepts whichever yields
improvement (or leaves the point unchanged if neither yields
improvement). By itself, this is an unsophisticated optimization
technique that is highly susceptible to falling into local optima.
The problem over which manifold sculpting ultimately seeks to
optimize, however, is not convex. Thus, an additional compo-
nent is necessary to ensure that manifold sculpting obtains good
results.

The key observation of manifold sculpting is that after the
relationships between neighboring points has been computed
but before any transformation begins, the error value will be
zero. No set of values for the data points can produce a lower
error, so the system begins in a stable state. The hill climber
need not seek a global optimum from a random starting point.
Rather, it needs to only remain in a stable state while the
variance is iteratively scaled out of the higher dimensions.
Thus, by gradually transforming the problem from these initial
conditions, a simple hill-climbing algorithm can be sufficient to
follow the optimum.

Gradient-based optimization may be comparable to rolling
a ball down a hill and hoping that it finds its way to a good
local optimum. The optimization technique used by manifold
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sculpting, on the other hand, is more analogous to a ball
following at the feet of a person walking across a trampoline.
It begins adjacent to the person’s feet and seeks to remain by
them as the person moves slowly across the trampoline. As long
as the ball never deviates very far from the person’s feet, the
topology of the rest of the trampoline is irrelevant to the final
destination of the ball because the trampoline will always be
locally convex around the person’s feet.

To understand why this approach tends to be effective, let us
first consider the hypothetical case where the manifold repre-
sented by the original data set is topologically close to the opti-
mally transformed data. In other words, suppose the optimally
transformed data with all variance in the first ¢ dimensions can
be obtained through a continuous transformation. Furthermore,
suppose that there exists such a continuous transformation that
would also preserve the relationships in local neighborhoods at
all times during the transformation. It follows that there will
be a globally optimal embedding (with an error of zero) at
any time during the transformation. Furthermore, because the
transformation is topologically continuous, that embedding will
follow a continuous path through the error space, beginning at
the point that represents the original data and ending with the
optimally transformed data. At any given time, this embedding,
which is known to be optimal with respect to the error surface at
that time, will be found at the exact bottom of a locally convex
basin. Thus, if the continuous transform is approximated with
small enough values for o (the scaling rate) and 7 (the step size),
then the system can be certain to finally arrive at the globally
optimal solution. This is not a proof that manifold sculpting
will always yield optimal results, however, because there is no
guarantee that there exists such a continuous transformation.
On the other hand, it is not a pathological situation either. The
Swiss Roll manifold, for example, can be trivially shown to
meet all of these conditions.

In cases where neighborhood relationships must be temporar-
ily violated to “unfold” a manifold, it is often still reasonable
to expect that the lowest valley in the error surface will fol-
low a continuous path through the error space, even if that
valley does not remain at zero. Noncontinuous jumps in the
error space correspond to “tearing” of a manifold structure to
instantly separate previously adjacent parts. Intuitively, this is
not typically a desirable behavior. Even in cases where the best
transformation requires such jumps in the error space, it is still
likely that it will yet arrive at a good local optimum. It should do
no worse than techniques that simply use convex optimization.
Furthermore, necessary rips in the manifold structure are not
likely to be frequent events. If the system becomes temporarily
separated from the global optimum, it may yet be able to find
the optimum again as the error surface continues to change. The
global optimum is the only optimum that is certain to remain a
local optimum during the entire transformation.

F. Parameter Tuning

Although this algorithm has several parameters that could,
in theory, be tuned to obtain better results with a particular
problem, we have not found that it is typically necessary to
do so. In the experiments reported in this paper, we have only
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adjusted k (the number of neighbors), ¢ (the number of target
dimensions), and o (the scaling rate). The parameters & and ¢
are common in all of the algorithms with which we compare.
The scaling rate, however, is unique to manifold sculpting. For
most problems, rapid convergence can be obtained using the
value o = 0.99, but for complex manifold topologies, a slower
scaling rate, such as o = 0.999, may be necessary to give the
manifold more iterations to unfold.

G. Estimating Intrinsic Dimensionality

The error heuristic used by manifold sculpting is an indicator
of how well the neighborhood structure has been preserved.
In cases where the intrinsic dimensionality of a problem is
not known a priori, the variance may be scaled out of the
higher dimensions one at a time. The error heuristic will then
indicate how well the manifold structure is preserved into each
number of dimensions. In contrast with eigenvalues, this error
heuristic will indicate the component of nonlinear variance
in the manifold. When the error begins to rapidly climb, the
intrinsic dimensionality of the manifold has been subceeded.
This feature is particularly convenient for analysis in which
the intrinsic dimensionality must be determined. When the
intrinsic dimensionality is known, however, as is the case with
the experiments in this paper, it is preferable for efficiency to
simultaneously scale all of the extra dimensions.

IV. EMPIRICAL ANALYSIS

We tested the properties of manifold sculpting with a wide
variety of experiments and a range of manifolds. Section IV-A
reports empirical measurements of accuracy using toy prob-
lems that have known ideal results. These results indicate that
manifold sculpting is more accurate than Isomap, LLE, HLLE,
and L-MVU with these problems. Section IV-B demonstrates
the capabilities of manifold sculpting using several image-
based manifolds. Section I'V-C reports on an experiment with
document-based manifolds. Section IV-D discusses using par-
tial supervision and training manifold sculpting in a pseudoin-
cremental manner.

A. Accuracy

Fig. 2 shows that manifold sculpting visually appears to
produce results of higher quality than LLE and Isomap with
the Swiss Roll manifold, a common visual test for manifold
learning algorithms. A quantitative analysis shows that it also
yields more precise results than HLLE and L-MVU. Since
the actual structure of this manifold is known prior to using
any manifold learner, we can use this prior information to
quantitatively measure the accuracy of each algorithm.

We define a Swiss Roll in 3-D space with n points (x;, y;, 2;),
where 0 < < n, as follows: Let t = 8i/n + 2, x; = tsin(t),
y; be a random number —6 < y; < 6, and z; = t cos(t). In 2-
D manifold coordinates, the corresponding target points are
(us,v;), such that u; = (sinh ™' (¢) + tv/t2 + 1)/2 and v; = v;.
To emphasize the effect of poorly sampled areas, we also

1463
A
1000 -\,
— T T
E R’ |
B 100 S—=Nc
E LLE
g 10
=
15}
g 1 |
S ——
= i \ i — — i
= Rt
® o1 \a LIimvu]| [ [ []
= VAAE : : —+ HLLE
< N — ——
é 0.01 L . ey
2 :
— \ ;
|| . Manifold
0.001 : === —_e—+——"=—" Sculpting
— —" i
1 T T
2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of Neighbors
Fig. 7. Mean squared error of four algorithms for a Swiss Roll manifold using

a varying number of neighbors k. The vertical axis is shown on a logarithmic
scale. The excessive memory requirement of L-MVU and HLLE limited the
range of neighbors over which we were able to test these algorithms, but
L-MVU did very well with few neighbors. Manifold sculpting yielded the most
accurate results when at least 12 neighbors were used.

removed samples that fell within a star-shaped region on the
manifold, as shown in Fig. 2.

We created a Swiss Roll with 2000 data points and reduced
the dimensionality to two with each of four algorithms. We
tested how well the output of each algorithm is aligned with
the target output values (u;, v;) by measuring the mean squared
distance from each point to its corresponding target value. Since
there is no guarantee how the results would be oriented, we used
the affine transformation that most closely aligned the results
with the expected results before measuring the mean squared
distance. We then normalized the mean squared error by divid-
ing by A\, where A is the square of the average distance between
each point in the target data set and its nearest neighbor. Thus,
a normalized mean squared error larger than 1 would probably
indicate that the results are significantly distorted, since the
average deviation of a point from its ideal location is more than
the distance between neighboring points.

Fig. 7 shows the normalized mean squared distance between
each transformed point and its expected value. Results are
shown with a varying number of neighbors k. Both axes are
shown on a logarithmic scale. With L-MVU, 44 landmarks
(~ \/n) were used. The resource requirements of L-MVU
became unreasonable after nine neighbors, as they did for
HLLE after 48 neighbors. LLE and manifold sculpting could
easily handle many more neighbors, but neighbors begin to cut
across manifold boundaries at that point. Isomap yielded very
poor results and is not shown. Manifold sculpting did not yield
good results until at least 12 neighbors were used. This may
indicate that L-MVU is a better choice when so few samples
are available that many neighbors would be unreasonable.
With this problem, L-MVU, HLLE, and manifold sculpting
can all produce results that are very close to the ideal results.
Proportionally, however, the results from manifold sculpting are
precise by more than an order of magnitude over the next-best
algorithm.
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Fig. 9. Visualization of an S-curve manifold.

We repeated the experiment with the Swiss Roll manifold
using a varying number of points to sample the manifold. Fig. 8
shows the results of this experiment. Eighteen neighbors were
used for LLE, HLLE, and manifold sculpting because these al-
gorithms all did well with this value in the previous experiment.
For L-MVU, six neighbors were used to keep the resource
requirements manageable and because it did well with this
value in the previous experiment. We used the square root of the
number of points (rounded down) for the number of landmarks.
The memory requirements for HLLE and L-MVU became
unreasonable after 3175 points. HLLE and L-MVU yielded
very good results with this problem. When the manifold was
sampled with at least 500 points, however, manifold sculpting
produced proportionally more accurate results than the other
algorithms. L-MVU yielded the best results when the manifold
was sampled with fewer points, but none of the algorithms
yielded very good results with fewer than 500 sample points.
HLLE, L-MVU, and manifold sculpting all appear to exhibit
the trend of producing better accuracy as the sample density is
increased.

To verify that these results were not peculiar to the Swiss Roll
manifold, we repeated this experiment using an S-curve mani-
fold as depicted in Fig. 9. This manifold was selected because
we could also compute the ideal results for it by integrating
to find the distance over its surface. We defined the S-curve
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Fig. 11. Visualization of an entwined spirals manifold.
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Fig. 12. Mean squared error for five algorithms with an entwined spirals
manifold. Isomap does very well when the intrinsic dimensionality is exactly 1.

points in 3-D space with n points (z;, y;, ;), where 0 < i < n,
as follows: Lett = (2.2¢ — 0.1)7/n, x; = t, y; = sin(¢), and z;
be a random number 0 < z; < 2. In 2-D manifold coordinates,
the corresponding target points are (u;,v;), such that u; =
fo (y/cos?(w) + 1)dw and v; = z;. We measured accuracy in
the same manner described in the previous two experiments.
These results are shown in Fig. 10. Again, results are not shown
for L-MVU or HLLE with very large numbers of points due
to the demanding resource requirements of these algorithms.
Consistent with the previous experiment, L-MVU, HLLE, and
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Images of a face reduced by manifold sculpting into a single dimension. The values are shown here on two wrapped lines to fit the page. The original
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manifold sculpting all produced very good results with this
simple manifold. The trends exhibited in these results were
similar to those from the Swiss Roll manifold, with manifold
sculpting producing results that were proportionally better.

A test was also performed with an entwined spirals manifold,
as shown in Fig. 11. In this case, Isomap produced the most
accurate results, even though it consistently had the poorest
results for all manifolds with an intrinsic dimensionality greater
than 1. (See Fig. 12.) This can be attributed to the nature of the
Isomap algorithm. In cases where the manifold has an intrinsic
dimensionality of exactly 1, a path from neighbor to neighbor
provides an accurate estimate of isolinear distance. Thus, an
algorithm that seeks to globally optimize isolinear distances
will be less susceptible to the noise from cutting across local
corners. When the intrinsic dimensionality is higher than 1,
however, paths that follow from neighbor to neighbor pro-
duce a zig-zag pattern that introduces excessive noise into
the isolinear distance measurement. In these cases, preserving
local neighborhood relationships with precision yields better
overall results than globally optimizing an error-prone metric.
Consistent with this intuition, Isomap yielded very accurate
results in our other experiments, which are reported hereafter,
that involved a manifold with a single intrinsic dimension
and yielded the poorest results with experiments in which the
intrinsic dimensionality was larger than one.

B. Image-Based Manifolds

Many unsupervised learning problems do not have a cor-
responding set of ideal results. The Swiss Roll and S-curve
manifolds are useful for quantitative analysis because expected
results can be computed a priori but real-world applications are
likely to involve many more than just three dimensions. We
therefore performed several experiments to demonstrate that
manifold sculpting is also accurate with problems that involve
much larger initial dimensionality. Fig. 13 shows several frames
from a video sequence of a person turning his head while
gradually smiling. Each image was encoded as a vector of
1634 pixel intensity values. No single pixel contained enough
information to characterize a frame according to the high-level
concept of facial position, but this concept was effectively en-
coded in multidimensional space. These data were then reduced
to a single dimension. (Results are shown on two separate

Images of a hand reduced to a single dimension. The original image is shown above each point.

Fig. 15. Data set was generated by translating an image over a background of
noise. Nine representative images are shown. Results from several algorithms
using this data set are shown in Fig. 16.

lines to fit the page.) The one preserved dimension could then
characterize each frame according to the high-level concept that
was previously encoded in many dimensions. The dot below
each image corresponds to the single-dimensional value in the
preserved dimension for that image. In this case, the ordering
of every frame was consistent with the ordering in the video
sequence. Because the ideal results with this problem are not
known, it is not possible to compute the accuracy of these
results. We therefore did not compare with other algorithms
using this problem, but the correctness of these results is
somewhat visually apparent.

Fig. 14 shows 11 images of a hand. These images were
encoded as multidimensional vectors in the same manner. The
high-level concept of “hand openness” was preserved into a
single dimension. In addition to showing that manifold sculpt-
ing can work with real-world data, this experiment also shows
the robustness of the algorithm to poorly sampled manifolds
because these 11 images were the only images used for this
experiment. Again, the ideal results with this problem are not
known, so no accuracy measurement is given.

Another experiment involves a manifold that was generated
by translating a picture over a background of random noise, as
shown in Fig. 15. This figure shows a sample of nine images.
The manifold was sampled with 625 images, each encoded as
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Fig. 16. Comparison of results with a manifold generated by translating an image over a background of noise. Eight neighbors were used with HLLE, L-MVU,
and manifold sculpting. Four neighbors were used with LLE because it produced better results than the case with eight neighbors. Forty-nine landmarks were
used with L-MVU. Results for manifold sculpting are shown with LLE preprocessing using the default scaling rate o = 0.99, and with only PCA preprocessing
using a slower scaling rate of ¢ = 0.999. The results from manifold sculpting are nearly linearly separable. (a) PCA. (b) LLE. (c) HLLE. (d) L-MVU. (e) LLE +

manifold sculpting. (f) Manifold sculpting.

a vector of 2304 pixel intensity values. Because two variables
(horizontal position and vertical position) were used to generate
the data set, the data can be interpreted as sampling from a
manifold with an intrinsic dimensionality of two in a space with
an extrinsic dimensionality of 2304. Because the background
is random, the average distance between neighboring points
in the input space should be somewhat uniform; therefore, the
ideal reduced-dimensionality result can be expected to occupy
a space very close to square in shape. We therefore use this
as a basis for empirically measuring the quality of results.
Quantitative measurements with this problem may be a better
indicator of the strengths of a manifold learning algorithm than
the Swiss Roll or S-curve manifolds because: 1) this problem
involves reduction from high-dimensional space; and 2) to our
knowledge, highly accurate results have not yet been obtained
with this problem.

Fig. 16 shows a comparison of results from various algo-
rithms on this problem. For increased visibility of the inherent
structure, each vertex is shown to be connected with the four
nearest neighbors in the input space. Results are shown with
PCA to demonstrate how very nonlinear this manifold is [see
Fig. 16(a)]. We tested the other algorithms with four and eight
neighbors (because the points lie on a grid-like structure) and
report the best results for each algorithm. LLE did better with
four neighbors. The other algorithms did better with eight
neighbors.

To demonstrate the ability of manifold sculpting to benefit
from the results of other dimensionality reduction algorithms,
we substituted LLE for the preprocessing (step 3 of the man-
ifold sculpting algorithm). These results, shown in Fig. 16(e),
were rapidly obtained using the default scaling rate of o =
0.99. The best results, however, were obtained using a slower
scaling rate (o = 0.999). These results are shown in Fig. 16(f).
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Fig. 17. Empirical measurement of the error of the results shown in Fig. 16.
Error was computed as the smallest mean squared error from points evenly
distributed over a square. An affine transformation was found to align results
as closely as possible with the square before error was measured. Results from
manifold sculpting are more than an order of magnitude better than the next
closest competitor.

In this case, we used the default PCA preprocessing. With this
problem, it is necessary to use a slower scaling rate when PCA
is used for preprocessing so that the manifold has sufficient time
to unfold.

We empirically measured the quality of the results obtained
in this experiment by comparing results with points evenly
distributed over a perfect square. These results are shown in
Fig. 17. LLE and HLLE do poorly because their results tend to
exhibit global distortions, which have a more significant impact



GASHLER et al.: MANIFOLD LEARNING BY GRADUATED OPTIMIZATION

Fig. 18. (a) Manifold sculpting was used to reduce the dimensionality of a
manifold generated from a collection of 1296 images, each represented as a
vector of 3675 continuous pixel values. These images were generated by sliding
a window over a larger picture of the Mona Lisa. This result is not square
because the sliding window creates a bigger change in input distance when
sliding over regions with a bigger gradient. (b) A custom distance-metric was
used to normalize distance such that each neighborhood represents a uniform
amount of total distance. This result better represents the intrinsic variables of
this problem.

on the mean squared error. L-MVU achieves a normalized mean
squared error less than 1. It exhibits a mixture of both global
and local distortions. The mean squared error of the result from
manifold sculpting is more than an order of magnitude smaller
than that of L-MVU.

Another observation that can be made from the results shown
in Fig. 16(f) is that the results are approximately linearly sepa-
rable. For example, if it were desirable to classify these images
into two classes such that class A contained all images in which
the picture of the Mona Lisa is adjacent to the top of the image
and class B contained all other images, this could be done
using the results from manifold sculpting with a single linear
division boundary. Since this data set was designed to have
predictable results, these classes would only have pathological
applications, but this demonstrates the significant potential of
manifold sculpting to create separability of intrinsic concepts
from otherwise complex data.

With many problems, however, distances in observation
space are not uniformly scaled in relation to the intrinsic
variables. For example, Fig. 18(a) shows the results of using
manifold sculpting to reduce the dimensionality of a manifold
generated by sliding a window over a larger picture of the Mona
Lisa. This result is not square because some parts of the image
exhibit different gradients than other parts. When the window
slides over a region with a larger gradient, a bigger distance is
measured. To obtain results that more correctly represent the
intrinsic variables in this problem, we used a custom distance
metric that normalized distances in local neighborhoods, such
that each neighborhood represents a uniform amount of total
distance. This result is shown in Fig. 18(b). These values are
a better representation of the intrinsic values in this problem
because they are less biased by the irrelevant gradient in the
images. This experiment used 1296 images, each represented
as a vector of 3675 continuous pixel values.

In addition to supporting custom relationship metrics, man-
ifold sculpting is also flexible regarding the representation of
intrinsic points. For example, if a subset of supervised points
is available, these points can be clamped with their supervised
values while manifold sculpting operates, and manifold sculpt-
ing will naturally find values for the other points that fit well
in relation to the supervised points. This capability is useful
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for at least three potential applications. First, it can be used to
improve runtime performance. With several problems, we were
able to measure as much as a 50% speedup when as few as
5% of the points had supervised values. Since the supervised
points are clamped with their known values, they tend to act
as a force that pulls the other points directly toward their final
destinations. Second, it can be used to align intrinsic values
with the dimensional axes or to give the distances between
them meaning with respect to a particular unit. This might be
useful, for example, if the intrinsic values are used to estimate
the state of some system. Third, it can be used to facilitate
pseudoincremental manifold learning. If, for example, points
arrive from a stream, pseudoincremental manifold learning may
be useful to update the reduced-dimensional estimate for all of
the points that have yet arrived. This is done in two steps. First,
manifold sculpting is applied with values clamped to all the
points that have known values. This rapidly computes values for
the new incoming points. Second, manifold sculpting is applied
again with all points unclamped but starting in the location of
their reduced-dimensional values. This enables all of the points
to be updated in consequence of the new information but also
incurs very little computational cost since all points already
begin in nearly optimal locations.

C. Document Manifolds

The utility of manifold learning algorithms for image
processing applications has recently been recognized, but this
is certainly not the only field that deals with multidimensional
data. The vector space model [28], for example, is commonly
used in the field of information retrieval to characterize web
documents. Each web page is represented as a large vector
of term weights. The number of dimensions in the vector
corresponds to the number of unique word stems (about 57 000
in English), and the values in these dimensions correspond to
a term weight computed from the number of occurrences of
the term in a document. Search queries can be evaluated by
finding the documents whose vector has the closest angle with
the vector of the query. This representation bears some striking
resemblances to the pixel representation used for processing
images, so it seems likely that similar results could be obtained
by applying manifold learning to this field.

To test this hypothesis, we implemented a simple application
for refining the results obtained from a Google search. A typical
search often yields many thousands of documents, but users
rarely have patience to look at more than the first few. Our
application downloads the first 100 documents, removes stop
words, stems each term with the Porter stemming algorithm
[29], and represents the documents with the vector space model.
Next, it uses manifold sculpting to reduce the dimensionality of
the vectors to a single dimension. It then divides this dimension
into two halves at the point that minimizes the sum variance of
the two halves. Finally, it extracts three terms to represent each
of the two clusters by summing the vectors in the cluster and
picking the three terms with the highest total weight. In theory,
these two groups of terms should reflect the most significant
range of context found in the query results, and a user should
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be able to refine his or her query by selecting which of the two
halves is closer to the intended meaning of the query.

As an example, a query for the term “speaker” yielded for
one set of terms “box,” “amp,” and “off,” and for the other set,
it yielded “hit,” “baseball,” and “bat.” The first interpretation
of the term “speaker” probably comes from references to audio
devices. Prior to performing this experiment, we did not know
that this term had anything to do with baseball, but a search for
the refined query “speaker baseball” yields many documents
with information about Tris Speaker who was elected to the
baseball hall of fame in 1937. Not all queries yielded such
distinctly separated results, but this is an area with potential for
further research.

D. Semi-Supervision

Manifold learning and clustering have many things in com-
mon. Clustering collections of multidimensional vectors such
as images, for example, is more effective when manifolds in
the data are taken into account [30]. Manifold learning and
clustering are both unsupervised operations. Unlike clustering,
however, which groups vectors into a discrete number of buck-
ets, manifold learning arranges them into a discrete number of
continuous spectra. In some sense, clustering is to manifold
learning what classification is to regression. It seems intuitive,
therefore, that techniques that benefit clustering algorithms
may have a corresponding counterpart for manifold learning
algorithms. Clustering algorithms can be greatly enhanced with
partial supervision [31]. Likewise, a small modification to the
manifold sculpting algorithm makes it possible to perform
semisupervised manifold learning.

Semisupervised clustering involves a subset of data points
for which classification values or hints about those values are
provided. Semisupervised manifold learning likewise requires
final values or estimated final values to be provided for a
subset of the data points. During scaling iterations (step 4 of
the manifold sculpting algorithm), these points are clamped
to their supervised values. The unsupervised points are free
to move but will be influenced by their neighbors, some of
which may be supervised. This results in more efficient and
potentially more accurate manifold learning. Fig. 19 shows the
amount of time required to learn the intrinsically 1-D manifold
for each of the four video sequences with a varying percentage
of supervised points. It can be observed in these results that
the first 20% to 50% of supervised points tend to produce
noticeable improvements in speed, but additional supervised
points tend to make little difference.

In some cases, data may not be available all at once. In such
cases, it may be desirable to learn a manifold as the data become
available from a stream [32]. Pseudoincremental learning is
naturally achieved with semisupervised manifold learning. The
following two-step process is followed when new data points
become available: First, the old points are clamped to their
known reduced-dimensionality values, and the new points are
allowed to settle. Second, all points are unclamped, and the
entire data set is allowed to settle. The first step is very fast
because most of the points are supervised. The second step is
also fast because the manifold is already unfolded, and all of the
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Fig. 19. Manifold learning is faster when more points are supervised. (When
most of the points are supervised, the only significant cost is the neighbor-
finding step of the algorithm.)

points are likely to be very close to their final states. Significant
computation is only required when new data cause the overall
structure of the manifold to change.

Often, semisupervised clustering is performed by having
human experts classify a subset of the available data. When
real values are required, however, it may only be reasonable
to ask human experts to provide vague estimates. For example,
humans might be able to easily sort a collection of images
according to relevance to a particular topic. The sorted images
could be assigned sequential output values, and these values
could be used as estimates for the points in manifold coor-
dinates. However, precise values may be difficult to obtain
initially. Fortunately, even estimated output values can be useful
in semisupervised manifold learning. This benefit is exploited
by first clamping estimated values to guide the unfolding of the
manifold and then unclamping all of the points during later
iterations so that more precise refinements can be made to
the data.

V. CONCLUSION

A significant contribution of this paper is the observation
that the optimization step of manifold learning is suitable to
be solved using graduated optimization, a technique that can
rapidly find the global optimum with many otherwise-difficult
optimization problems. We have demonstrated this by present-
ing a manifold learning algorithm called manifold sculpting,
which uses graduated optimization to find a manifold embedded
in high-dimensional space.

The collection of experiments reported in this paper indicate
that that manifold sculpting yields more accurate results than
other well-known manifold learning algorithms for most prob-
lems. We have collected empirical measurements using a Swiss
Roll manifold with varying sample densities and with varying
numbers of neighbors. We have also tested with an S-curve
manifold, an entwined spirals manifold, a manifold generated
by translating an image over a background of noise, and a
few other manifolds. Isomap tends to be very strong when the
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function align_axes_with_principal_components(P)
1 — compute_mean(P)
for each p; . € P:
Pix < Pixx — U
Q « copy_of(P)
G — {i,7,k,...} such that |G| = ¢
for k from O to ¢t — 1
¢ < a random vector of size t
do 20 times:
v «— zero vector of size ¢
for each q; € Q:
Ve v (@ o
Cc— ‘:—‘
for each q; € Q:
qi — qi — (¢ qi)c
a— Gy
b
¢ — a‘rctan(%)
for j from k to ¢t — 1
u—a-Gj
v—b- -Gy
G; — G —ua
Gj — G]‘ —vb
u? + v?
0 « arctan()
u — rcos(f + o)
v —rsin(d + ¢)
Gj — G] + ’Ub
for each p; . € P:
for j from O to ¢t — 1:

Pij — Piy Gy +py

T

Fig. 20. Pseudocode for the align_axes_with_principal_components function.
This performs the same function as the axis rotation step of PCA, except this
algorithm only aligns with the first | Dpreserved| principal components while
preserving data in all dimensions.

intrinsic dimensionality of a problem is exactly 1, and L-MVU
does well when very few sample points are available, but in
all other cases, manifold sculpting yielded the most accurate
results and is typically at least an order of magnitude more
accurate than the closest competitor algorithm.

The results produced by manifold sculpting are robust to
parameter choices, except for the scaling rate. We have shown
that the default scaling rate (o = 0.99) works well with most
problems but that a slower scaling rate will yield good results
with more complex problems. We have also demonstrated that
manifold sculpting can benefit by preprocessing the data with
other dimensionality reduction algorithms. In many cases, this
enables accurate results to be rapidly obtained, without resort-
ing to the use of a slower scaling rate.

APPENDIX
PCA FOR GRADUATED OPTIMIZATION

This appendix provides pseudocode for the align_axes_with_
principal_components function. This performs the same func-
tion as the axis rotation step of PCA, except that it preserves
data in all dimensions while only aligning with the first ¢ prin-
cipal components. This differs from regular PCA, which aligns
data with the first few principal components and then throws
out all values in the remaining dimensions. With manifold
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sculpting, it may be preferable to preserve these values because
they represent some component of the distances between points.
Thus, this algorithm may be used instead of regular PCA for
preprocessing the data prior to applying manifold sculpting
with the slight advantage that this technique guarantees not
to affect any of the distances in local neighborhoods. This
pseudocode is given in Fig. 20.
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