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ABSTRACT

Manifold Sculpting

Mike Gashler

Department of Computer Science

Master of Science

Manifold learning algorithms have been shown to be useful for many applica-

tions of numerical analysis. Unfortunately, existing algorithms often produce noisy

results, do not scale well, and are unable to benefit from prior knowledge about the

expected results. We propose a new algorithm that iteratively discovers manifolds

by preserving the local structure among neighboring data points while scaling down

the values in unwanted dimensions. This algorithm produces less noisy results than

existing algorithms, and it scales better when the number of data points is much

larger than the number of dimensions. Additionally, this algorithm is able to benefit

from existing knowledge by operating in a semi-supervised manner.
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Chapter 1

Introduction

Large dimensionality is a significant problem for many machine learning al-

gorithms (

1). Dimensionality reduction algorithms address this issue by projecting

data into fewer dimensions while attempting to preserve as much of the informational

content in the data as possible.

Dimensionality reduction is a two-step process: 1) Transform the data so

that more information will survive the projection, and 2) project the data into fewer

dimensions. The more relationships between data points that the transformation

step is required to preserve, the less flexibility it will have to position the points in a

manner that will cause information to survive the projection step. Due to this inverse

relationship, dimensionality reduction algorithms must seek a balance that preserves

information in the transformation without losing it in the projection. The key to

finding the right balance is to identify where the majority of the information lies.

Nonlinear dimensionality reduction (NLDR) algorithms seek this balance by

assuming that the relationships between neighboring points contain more informa-

tional content than the relationships between distant points. Although non-linear

transformations have more potential than do linear transformations to lose informa-

tion in the structure of the data, they also have more potential to position the data to

cause more information to survive the projection. In this process, NLDR algorithms

expose patterns and structures of lower dimensionality (manifolds) that exist in the

original data. NLDR algorithms, or manifold learning algorithms, have potential to
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make the high-level concepts embedded in multidimensional data accessible to both

humans and machines.

This paper introduces a new algorithm for manifold learning called Manifold

Sculpting, which discovers manifolds through a process of progressive refinement.

The algorithm has several unique characteristics including the ability to extend the

transformation of other manifold learning algorithms, and the ability to operate in a

semi-supervised manner. Section

1.1 discusses some of the work that has been done in

manifold learning. Section

2 (page

5) describes the Manifold Sculpting algorithm in

detail. Section

3 (page

15) reports the results of several experiments that compare the

capabilities of Manifold Sculpting with similar manifold learning algorithms. Section

4 (page

35) mentions some of the ongoing research with Manifold Sculpting, and

discusses some areas with much potential for further research.

1.1 Related Work

Early NLDR algorithms, such as Nonlinear Multidimensional Scaling (

2) and

Nonlinear Mapping (

3), have proven useful, but are unable to handle high nonlineari-

ties in the data. Curvilinear Component Analysis (CCA) (

4) uses a neural technique

to solve many of these problems, and Curvilinear Distance Analysis (CDA) (

5) takes

it a step further by using distance on the manifold surface as a metric for preservation,

but both algorithms are computationally demanding, and suffer from problems with

local minima. Isomap (

6) uses the same metric as CDA, but solves for the embedding

into fewer dimensions with an algebraic technique. This approach is faster, but still

computationally expensive as it requires solving for the eigenvectors of a large dense

matrix, and has difficulty with poorly sampled areas of the manifold. (See Figure

1.A.) Locally Linear Embedding (LLE) (

7) is able to perform a similar computation

using a sparse matrix by using a metric that measures only relationships between

vectors in local neighborhoods. Unfortunately it produces distorted results when the

sample density is non-uniform. (See Figure 1.B.) L-Isomap, an improvement to the

Isomap algorithm, was later presented that uses landmarks to reduce the amount of

necessary computation (

8). (See Figure 1.C.) Many other NLDR algorithms have been
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presented, including Kernel Principal Component Analysis (

9), Laplacian Eigenmaps

(

10), Manifold Charting (

11), Manifold Parzen Windows (

12), Hessian LLE (

13), and

others (

14;

15;

16). Hessian LLE preserves the manifold structure better than the

other algorithms but is, unfortunately, very computationally expensive. (See Figure

1.D.).

In contrast with these algorithms, Manifold Sculpting is robust to sampling

issues and still produces very accurate results. Additionally, it can be used in either

an unsupervised or semi-supervised manner. This algorithm iteratively transforms

data by balancing two opposing heuristics, one that scales information out of un-

wanted dimensions, and one that preserves local structure in the data. Experimental

results show that this technique preserves information into fewer dimensions with

more precision than existing manifold learning algorithms. (See Figure 1.E.)

Figure 1.1: Comparison of several manifold learners on a Swiss Roll manifold. Color
is used to indicate how points in the results correspond to points on the manifold.
Isomap and L-Isomap have trouble with sampling holes. LLE has trouble with changes
in sample density. HLLE and Manifold Sculpting both handle these problems well.
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Chapter 2

The Manifold Sculpting Algorithm

An overview of the Manifold Sculpting algorithm is given in Table

2.1. To

provide more depth, pseudo code is given in Figure

2.2. Let

P ≡ The set of all data points represented as vectors in Rn.

k ≡ The number of neighbors.

N ≡ A |P | × k matrix such that nij ∈ Ni is the

jth neighbor of point pi where pi ∈ P .

D ≡ The set of dimensions in which the input data is

represented.

Dpreserved ≡ The set of dimensions preserved by the projection.

Dscaled ≡ The set of dimensions we throw out int the

projection step. (D = Dpreserved ∪Dscaled).

σ ≡ A constant scaling factor.

η ≡ The step size.

2.1 Steps 1 and 2: Compute local relationships

For each data point pi in P , find the k-nearest neighbors Ni. For each j (where

0 <= j < k) compute the Euclidean distance δij between pi and each nij ∈ Ni. Also

compute the angle θij formed by the two line segments (pi to nij) and (nij to mij),

where mij is the most colinear neighbor of nij with pi. (See Figure

2.1.) The most

colinear neighbor is the neighbor point that forms the angle closest to π. The values

5



Table 2.1:

A high-level overview of the Manifold Sculpting algorithm.

1 Find the k nearest neighbors of each point.
2 Compute a set of relationships between neighboring data points.
3 Optionally align axes with principal components.
4 While the stopping criteria has not been met...

a. Scale the data in the non-preserved dimensions with a constant
factor σ, where σ < 1.

b. Restore the relationships computed in step 2 by adjusting the
data in the preserved dimensions.

5 Project the data.

of δ and θ are the relationships that the algorithm will attempt to preserve during

transformation. The global average distance between all the neighbors of all points

δave is also computed.

Figure 2.1: δ and θ define the relationships that Manifold Sculpting attempts to
preserve.

2.2 Step 3: Optionally preprocess the data

The data may optionally be preprocessed with the transformation step of

Principal Component Analysis (PCA). Manifold Sculpting will work without this step;

however, preprocessing can result in significantly faster convergence. To the extent

that there is a linear component in the manifold, this will move the information in the
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function ManifoldSculpting
1) for each pi ∈ P :

Ni ← the k nearest neighbors of pi

2) for i from 1 to |P |:
for j from 1 to k:

δij ← distance(pi, nij)
mij ← argmax0<l≤k correlation(nij − pi, njl − nij)
cij ← correlation(nij − pi, mij − nij)
(Note: correlation computes the cosine
of the angle between two vectors)

δave ← 1
k|P |

∑
0<i≤|P |,0<j≤k δij

η ← δave

3) Call AlignAxesWithPrincipalComponents(P )
4) Until the stopping criteria is met, do:

a) for each pi ∈ P :
for each j ∈ Dscaled:

pij ← pijσ
while 1

k|P |
∑

0<i≤|P |,0<j≤k δij < δave:

for each pi ∈ P :
for each j ∈ Dpreserved:

pij ← pij/σ
b) add pr to a queue, where pr is a random element of P

steps← 0
while the queue is not empty, do:

pop pcur from the queue
if pcur has not been adjusted yet:

steps← steps + AdjustPoints(pcur, η)
add each neighbor of pcur to the queue

if steps ≥ |P |, η ← η/.9 else η ← η ∗ .9
5) Project the data by dropping Dscaled

.

Figure 2.2: Pseudo code for the Manifold Sculpting algorithm. Note that pseudo code
for the AlignAxesWithPrincipalComponents function is given in Figure

2.3 (page

9),
and pseudo code for the AdjustPoints function is given in Figure

2.5 (page

12)
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data into as few dimensions as possible, thus leaving less work to be done in step 4

(which handles the non-linear component). Although small generated manifolds (like

the Swiss Roll manifold) may benefit very little from this step, natural manifolds in

much larger dimensional space are very likely to have a significant linear component.

Efficient PCA algorithms generally compute only the first few principal com-

ponents and combine the transformation step with the projection step. Since we

want only the transformation portion of PCA, and since all the dimensions of data

are needed to maintain stability in step 4, these algorithms are not suitable for this

purpose. We therefore present a new algorithm that aligns data with only the first

few principal components, but preserves correct values in all dimensions. We start

with the standard set of basis vectors: {̂i, ĵ, k̂, . . .}. For each di ∈ Dpreserved, we rotate

the set of basis vectors to align the ith basis vector with the ith principal component

(which we compute with a variation of the algorithm presented in (

17)). Then we

remaps all the data into the new vector space. Pseudo-code for this algorithm is given

in Figure

2.3.

2.3 Step 4: Transform the data

The data is iteratively transformed as shown in Figure

2.4. This transforma-

tion continues until some stopping criterion has been met. One effective technique

is to stop when the sum change of all points during the current iteration falls below

a threshold. The best stopping criteria depend on the desired quality of results – if

precision is important, the algorithm may iterate longer; if speed is important it may

stop earlier.

2.3.1 Step 4a: Scale the values in Dscaled.

All the values in Dscaled are scaled down by multiplying by a constant factor σ,

where 0 < σ < 1 (σ = 0.99 was used in this paper). Over time, the values in Dscaled

will converge to 0. When Dscaled is dropped by the projection (step 5), there will be

very little informational content left in these dimensions. The values in Dpreserved are

scaled up to keep the average neighbor distance equal to δave.

8



function AlignAxesWithPrincipalComponents(P )
(center data around origin)

µ← mean(P )
for each pi ∈ P :

pi ← pi − µ
Q← P

G← {̂i, ĵ, k̂, . . .} such that |G| = |D|
for k from 1 to |Dpreserved|

(find the next principal component)
c← a random vector with |D| elements
do 10 times:

t← zero vector with |D| elements
for each qi ∈ Q:

t← t + (qi · c)qi

c← t
|t|

(subtract out the component)
for each qi ∈ Q:

qi ← qi − (c · qi)c
(find a safe plane of rotation)

a← Gk

b← c−(a·c)a
|c−(a·c)a|

(rotate the basis vectors)
φ← arctan( b·c

a·c)
for j from k to |D|

u← a ·Gj

v ← b ·Gj

Gj ← Gj − ua
Gj ← Gj − vb

r ←
√

u2 + v2

θ ← arctan( v
u
)

u← r cos(θ + φ)
v ← r sin(θ + φ)
Gj ← Gj + ua
Gj ← Gj + vb

(transform the data)
for each pi ∈ P :

for j from 1 to |D|:
pij ← pi ·Gj + µj

Figure 2.3: Pseudo code for the AlignAxesWithPrincipalComponents function. This
performs nearly the same function as the axis rotation step of principal component
analysis, except this algorithm only aligns with the first |Dpreserved| principal compo-
nents, and it is much more efficient when the number of dimensions is large.
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Figure 2.4: A Swiss Roll manifold shown at four stages of the iterative transforma-
tion. This experiment was performed with 2000 data points, k = 14, σ = 0.99, and
iterations = 300.

2.3.2 Step 4b: Restore original relationships.

For each pi ∈ P , the values in Dpreserved are adjusted to recover the relation-

ships that are distorted by scaling. Intuitively, this step simulates tension on the

manifold surface. A heuristic error value is used to evaluate the current relationships

among data points relative to the original relationships:

εpi
=

k∑
j=0

(
δij0 − δij

2δave

)2

+

(
max(0, θij0 − θij)

π

)2

(2.1)

where δij is the current distance to nij, δij0 is the original distance to nij measured

in step 2, θij is the current angle, θij0 is the original angle measured in step 2 These

denominator values were chosen because the value of the angle term can range from

0 to π, and the value of the distance term will tend to have a mean of about δave with

some variance in both directions. These value therefore normalize the terms of the

equation such that they each carry approximately equal weight. We adjust the values

in Dpreserved for each point in order to minimize this error value. Unfortunately the

equation for the true gradient of the error surface defined by this heuristic is complex,

and is in O(|D|3). We therefore use the simple hill-climbing technique of adjusting

in each dimension in the direction that yields improvement. Pseudo-code for this

10



technique is given in Figure

2.5.

Many algorithms that attempt to minimize an error heuristic over a non-convex

error surface may be compared to rolling a ball down a hill and hoping that it finds

its way to a globally optimal position. This algorithm, on the other hand, is more

analogous to a ball following at the feet of a person walking across a trampoline.

It begins at a globally optimal position (with an error value of zero), and seeks to

remain in a basin while the error surface slowly changes.

At least three factors help increase the likelihood that the algorithm will be

able to maintain a globally optimal position: First, the PCA pre-processing step often

tends to move the whole system to a state somewhat close to the final state. Even if

a local minimum exists so close to the final optimal state, it may have a sufficiently

small error as to be acceptable. Second, every point has a unique error surface.

Even if one point becomes temporarily stuck in a local minimum, its neighbors are

likely to pull it out, or change the topology of its error surface when their values are

adjusted. Very particular conditions are necessary for every point to simultaneously

find a local minimum. Third, as long as it stays fairly close to the currently optimal

state while the values in Dscaled slowly change, it unlikely for the error surface to be

able to change in a manner that permanently separates it that optimal state. (This

is why all the dimensions need to be preserved in the PCA pre-processing step.) And

perhaps most significantly, our experiments show that Manifold Sculpting generally

tends to converge to very good results.

To speed convergence, we adjust the step size η to keep the total number of

steps taken in each pass approximately equal to the total number of data points. If

the number of steps is less than the number of data points, then η ← η ∗ .9, otherwise

η ← η/.9. Experimentally this technique was found to converge significantly faster

than using a constant or constantly decaying value for η. The order in which points

are adjusted also has an impact on the convergence rate. Best results were obtained

by employing a breadth-first neighborhood graph traversal from a randomly selected

point. (A new starting point was randomly selected for each iteration.) Intuitively this

may be analogous to how a person smoothes a crumpled piece of paper by starting at

11



an arbitrary point and smoothing outward. Higher weight is given to the component

of the error contributed by neighbors that have already been adjusted in the current

iteration. Thus the error equation is

εpi
=

k∑
j=0

wij

((
δij0 − δij

2δave

)2

+

(
max(0, θij0 − θij)

π

)2
)

(2.2)

where wij = 1 if ni has not yet been adjusted in this iteration, and wij = c, where

c > 1, if nij has been adjusted. Large values for c yield better performance, while

small values yield greater stability. If c is very large and the number of neighbors k

is small, the manifold may become twisted and therefore require additional iterations

before the system will correct itself and converge. A value of c = 10 was used for all

the experiments reported in this paper.

function AdjustPoints(pcur, η)
s← −1
improved← true
while improved = true, do:

increment s
improved← false
error ← ComputeError(pcur)
for each d ∈ Dpreserved:

pcurd
← pcurd

+ η
if ComputeError(pcur) > error:

pcurd
← pcurd

− 2η
if ComputeError(pcur) > error:

pcurd
← pcurd

+ η
else

improved← true
else

improved← true
return s

Figure 2.5: Pseudo code for the AdjustPoints function. Note that the ComputeError
function is equation

2.2.
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2.4 Step 5: Project the data

At this point Dscaled contains only values that are very close to zero. The data

is projected by simply dropping these dimensions from the representation.
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Chapter 3

Validation

We tested the properties of Manifold Sculpting with a wide variety of experi-

ments and a range of manifolds. Section

3.1 shows the results of experiments designed

to test accuracy. These results indicate that Manifold Sculpting is more accurate than

Isomap, LLE, and HLLE with most problems. Section

3.1.1 reports an experiment

in which accuracy is measured for each algorithm with varying number of neighbors.

Section

3.1.2 reports the accuracy of each algorithm with varying sample densities.

Section

3.1.3 reports accuracy with an entwined spirals manifold. Section

3.1.4 shows

results with two image-based manifolds. Finally, section

3.1.5 measures accuracy with

each of these algorithms using image-based manifolds with known topologies such as

images of a rotating object, images from a panning camera, etc. Section

3.2 gives

a complexity analysis of the Manifold Sculpting algorithm and reports results of an

experiment to measure the scalability of running time. Section

3.3 reports results on

an experiment using non-image-based manifolds to show that Manifold Sculpting is

useful in other domains as well.

3.1 Accuracy

Figure

1.1 (page

3) shows that Manifold Sculpting appears visually to produce

results of higher quality than LLE and Isomap with the Swiss Roll manifold, a com-

mon visual test for manifold learning algorithms. Quantitative analysis shows that

it also yields better results than HLLE. Since the actual structure of this manifold

15



is known prior to using any manifold learner, we can use this prior information to

quantitatively measure the accuracy of each algorithm.

3.1.1 Accuracy with varying number of neighbors.

We define a Swiss Roll in 3D space with n points (xi, yi, zi) for each 0 ≤ i < n,

such that xi = t sin(t), yi is a random number −6 ≤ yi < 6, and zi = t cos(t),

where t = 8i/n + 2. In 2D manifold coordinates, the point is (ui, vi), such that

ui = sinh−1(t)+t
√

t2+1
2

and vi = yi.

Figure 3.1: The mean squared error of four algorithms with a Swiss Roll manifold
using a varying number of neighbors k. In this example, when k > 57, neighbor
paths cut across the manifold. Isomap is more robust to this problem than other
algorithms, but HLLE and Manifold Sculpting still yield better results. These results
are shown on a logarithmic scale.

We created a Swiss Roll with 2000 data points and reduced the dimensionality

to 2 with each of four algorithms. Next we tested how well this output aligns with the

16



expected output values by measuring the mean squared distance from each point to

its expected value. (We rotated, scaled, and translated the output values as required

to obtain the minimum possible error measurement for each algorithm.) Figure

3.1

shows the average squared Euclidean distance between each transformed point and

its expected value. These results are consistent with a qualitative assessment of

Figure

1.1. Results are shown with a varying number of neighbors k. In this example,

when k = 57, local neighborhoods begin to cut across the manifold. Isomap is more

robust to this problem than other algorithms, but HLLE and Manifold Sculpting

still yield better results. The additional sub-pixel precision that can be obtained

with Manifold Sculpting may be superfluous for visualizations, but can be critical for

applications that rely on the precision of the data.

3.1.2 Accuracy with varying sample densities.

Figure 3.2: A visualization of an S-Curve manifold.

A similar experiment was performed with an S-Curve manifold as shown in

Figure

3.2. We defined the S-Curve points in 3D space with n points (xi, yi, zi) for

each 0 ≤ i < n, such that xi = t, yi = sin(t), and zi is a random number 0 ≤ zi < 2,

where t = (2.2i−0.1)π
n

. In 2D manifold coordinates, the point is (ui, vi), such that

ui =

∫ t

0

(√
cos2(w) + 1

)
dw and vi = yi.
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(a) k = 14

(b) k = 20

Figure 3.3: The mean squared error of points from an S-Curve manifold for four
algorithms with a varying number of data points. Manifold Sculpting shows a trend of
increasing accuracy with an increasing number of points. The experiment shown in (a)
was performed with 14 neighbors, while the experiment shown in (b) was performed
with 20 neighbors. Results are not significantly influenced by this difference. Results
are shown on a logarithmic scale. Due to the demanding memory requirements of the
HLLE algorithm, we only tested HLLE with up to 2828 data points.
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Figure

3.3 shows the mean squared error of the transformed points from their

expected values using the same regression technique described for the experiment

with the Swiss Roll problem. We varied the sampling density to show how this

affects each algorithm. A trend can be observed in this data that as the number of

sample points increases, the quality of results from Manifold Sculpting also increases.

This trend does not appear in the results from other algorithms. Results are shown

on a logarithmic scale, using 14 and 20 neighbors.

One drawback to the Manifold Sculpting algorithm is that convergence may

take longer when the value for k is too small. This experiment was also performed

with 6 neighbors, but Manifold Sculpting did not always converge within a reasonable

time when so few neighbors were used. The other three algorithms do not have this

limitation, but the quality of their results still tend to be poor when very few neighbors

are used.

3.1.3 Accuracy with entwined spirals manifold.

Figure 3.4: A visualization of an Entwined Spirals manifold.

A test was also performed with an Entwined Spirals manifold as shown in

Figure

3.4. In this case, Isomap was able to produce better results than Manifold

Sculpting (see Figure

3.5), even though Isomap yielded the worst accuracy in previous

problems. This can be attributed to the nature of the Isomap algorithm. In cases

where the manifold has an intrinsic dimensionality of exactly 1, a path from neighbor
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to neighbor provides an accurate estimate of isolinear distance. Thus an algorithm

that seeks to globally optimize isolinear distances will be less susceptible to the noise

from cutting across local corners. When the intrinsic dimensionality is higher than

1, however, paths that follow from neighbor to neighbor produce a zig-zag pattern

that introduces excessive noise into the isolinear distance measurement. In these

cases, preserving local neighborhood relationships with precision yields better overall

results than globally optimizing an error-prone metric. Consistent with this intuition,

Isomap is the closest competitor to Manifold Sculpting in other experiments that

involved a manifold with a single intrinsic dimension, and yields the poorest results

of the four algorithms when the intrinsic dimensionality is larger than one.

Figure 3.5: Mean squared error for four algorithms with an Entwined Spirals manifold.

3.1.4 Image-based manifolds.

The accuracy of Manifold Sculpting is not limited to generated manifolds in

three dimensional space. We also performed several experiments to demonstrate

its capabilities with real-world problems. Figure

3.6 shows several frames from a

video sequence of a person turning his head while gradually smiling. Each image
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Figure 3.6: Images of a face reduced by Manifold Sculpting into a single dimension.
The values are are shown here on four wrapped lines in order to fit the page. The
original image is shown above each point.

was encoded as a vector of 1, 634 pixel intensity values. No single pixel contained

enough information to characterize a frame according to the high-level concept of

facial position, but this concept was effectively encoded in multi-dimensional space.

This data was then reduced to a single dimension. (Results are shown on four separate

lines in order to fit the page.) The one preserved dimension could then characterize

each frame according to the high-level concepts that were previously encoded in many

dimensions. The dot below each image corresponds to the single-dimensional value

in the preserved dimension for that image. In this case, the ordering of every frame

was consistent with the ordering in the video sequence.

Figure

3.7 shows eleven images of a hand. These images were encoded as

multidimensional vectors in the same manner. The high-level concept of “hand open-

ness” was preserved into a single dimension. In addition to showing that Manifold

Sculpting can work with real-world data, this experiment also shows the robustness of

the algorithm to poorly sampled manifolds because these eleven images were the only

images used for this experiment. Again, the ordering of every frame was consistent

with the ordering in the video sequence.
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3.1.5 Controlled manifold topologies.

Figure

3.8 shows a comparison of results obtained from a manifold generated

by translating an image over a background of random noise. Nine of the 400 input

images are shown as a sample, and results with each algorithm are shown as a mesh.

Each vertex is placed at a position corresponding to the two values obtained from

one of the 400 images. For increased visibility of the inherent structure, the vertexes

are connected with their nearest input space neighbors. Because two variables (hor-

izontal position and vertical position) were used to generate the dataset, this data

creates a manifold with an intrinsic dimensionality of two in a space with an extrin-

sic dimensionality of 2,401 (the total number of pixels in each image). Because the

background is random, the average distance between neighboring points in the input

space is uniform, so the ideal result is known to be a square. Note that the distor-

tions produced by Manifold Sculpting tend to be local in nature, while the distortions

produced by other algorithms tend to be more global. This explains why the results

from Manifold Sculpting tend to fit the ideal results with much lower total error (as

shown in Figure

3.1 and Figure

3.3). Perhaps more significantly, it also tends to keep

the intrinsic variables in the dataset more linearly separable. This is particularly

important when the dimensionality reduction is used as a pre-processing step for a

supervised learning algorithm.

For contrast, Figure

3.9 shows the results of using Manifold Sculpting to reduce

the dimensionality of a manifold generated by sliding a window over a larger picture

of the Mona Lisa. In this case the final results are not square because some parts of

the image change at a different rate than other parts. Because the manifold learner

has no knowledge of this fact, it operates with the assumption that the ratio between

Figure 3.7: Images of a hand reduced to a single dimension. The original image is
shown above each point.
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Figure 3.8: A comparison of results with a manifold generated by translating an
image over a background of noise. Manifold Sculpting tends to produce less global
distortion, while other algorithms tend to produce less local distortion. Each point
represents an image. HLLE did not work with 4 neighbors, and LLE did not work
with 8 neighbors.
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Figure 3.9: Manifold Sculpting was used to reduce the dimensionality of a manifold
generated from a collection of 5776 images each with 1225 pixels. These images were
generated by sliding a window over a larger picture of the Mona Lisa. In this case the
results are correctly not square because the sliding window creates a bigger change
in input distance when sliding over some areas than others.

extrinsic and intrinsic distance in one local neighborhood of the data is equal to the

ratio between extrinsic and intrinsic distance in every other local neighborhood. The

“squareness” of the shape represented by these results shows the extent to which that

assumption is valid for this data set. In order to fully recover the intrinsic variables

of an arbitrary data set, a manifold learner would additionally need a mapping that

would enable it to determine the intrinsic distances from the extrinsic values. But

even with the assumption of constant distance ratios, Manifold Sculpting is able to

recover the intrinsic variables of this dataset with a high level of separation and

obvious continuity. This test used 5776 images each with 1225 pixels. All the other

algorithms required an unreasonable amount of memory to operate on a dataset of

this size, so results are only shown for Manifold Sculpting.

Unfortunately, the manifold structure represented by most real-world prob-

lems is not known a priori. The accuracy of a manifold learner, however, can still
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be estimated when the problem involves a video sequence by simply counting the

proportion of frames that are sorted into the same order as the video sequence. We

selected several video sequences to show various types of manifolds and measured the

accuracy of each manifold learning algorithm.

Figure

3.10(a) shows a sample of frames from a video sequence of a rotating

stuffed animal. The manifold produced by the vector encoding of such a video se-

quence can be characterized with a few observations. Notice that the elements in

each vector that represent background pixels will remain relatively constant across

the manifold. Elements that represent pixels on an outer edge of the depicted object

will change with seemingly random values as new colors rotate into view. Elements

that represent pixels that are interior to the object will typically aquire subsequent

values from their neighbors, resulting in a change in manifold topology proportional

to the change in contrast with neighboring pixels. Because this video sequence rep-

resents several possible manifold characteristics, we believe it should be serve as a

good general model for testing a manifold learning algorithm. In order to verify our

results, and to test the susceptibility of the algorithms to small changes in the data,

we made a second video of the same scene. Results are shown in Figure

3.10(b) and

Figure

3.10(c) as the percentage of frames that were correctly ordered. Notice that

HLLE, Isomap, and Manifold Sculpting yield consistent results, while LLE is less

stable with respect to this manifold.

Figure

3.11(a) shows a sample of frames from a video sequence made by moving

a camera down a hallway on a dolly. Notice that pixels near the center of the frame

remain relatively constant, while pixels near the edges change quite rapidly. This

results in a manifold that contains a wide range of topological variability. Again

we made two videos of this same scene. Results are shown in Figure

3.11(b) and

Figure

3.11(c). Interestingly, LLE yields consistent results with this problem, while

the results from HLLE fluctuate. In one of the two cases, Isomap produced slightly

better results than Manifold Sculpting.

Figure

3.12(a) shows a sample of frames from a video sequence made by pan-

ning across a scene of stuffed animals. Unlike the video sequence of the rotating fox,
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(a) Video 1: Sample frames from the rotating fox movie

(b) Frame order accuracy 1
(c) Frame order accuracy 2

Figure 3.10: (a) A sample of frames from a rotating stuffed animal. (b) The percent-
age of frames correctly ordered by four manifold learning algorithms. (c) The same
measurements from another filming of the same scene. In this case, LLE appears to
be less stable with respect to small changes in the data.
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(a) Video 2: Sample frames from the hallway movie

(b) Frame order accuracy 1
(c) Frame order accuracy 2

Figure 3.11: (a) A sample of frames from a camera travelling down a hallway on
a dolly. (b) The percentage of frames correctly ordered by four manifold learning
algorithms. (c) The same measurements from another filming of the same scene.
Isomap and Manifold Sculpting both yield good results with this problem.
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there are no background pixels that remain constant. Instead, every pixel obtains its

subsequent values from its neighbors. Despite this potential to make a more complex

manifold, both Isomap and Manifold Sculpting are able to sort all of the frames in

this sequence into the correct order.

(a) Video 3: Sample frames from the panning movie

(b) Frame order accuracy

Figure 3.12: (a) A sample of frames from a video sequence that pans across a scene
of stuffed animals. (b) The percentage of frames correctly ordered by four manifold
learning algorithms. Both Isomap and Manifold Sculpting get all of the frames correct
in this case.

Figure

3.13(a) shows a sample of frames from a video sequence of another

rotating stuffed animal. Even though the transformation (rotation) is the same as

that in the video sequence with the fox, the high-contrast texture of this stuffed

animal creates a much more difficult manifold. As the black spots shift across the

pixels, a manifold is created that swings wildly in the respective dimensions. Due to
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the large hills and valleys in the topology of this manifold, the nearest neighbors of a

vector frequently create paths that cut across the manifold. These results, therefore,

show how rubust each algorithm is to this situation.

(a) Video 4: Sample frames from another movie of a rotating stuffed animal

(b) Frame order accuracy

Figure 3.13: (a) a sample of frames from video sequence of a rotating stuffed animal.
The high-contrast texture on this toy creates a manifold with large topological hills
and valleys. (b) the percentage of frames correctly ordered by four manifold learning
algorithms.

3.2 Computational Complexity

The computational complexity of the algorithm can be broken down as follows:

Step 1: O(dkn log(n)) where n = |P |, and d = |D|

Step 2: O(k2n)
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Figure 3.14: The performance of Manifold Sculpting does not degrade as much with
additional data points as do other algorithms. Results are shown on a logarithmic
scale. Only the values used to compute scalability are shown. Values for fewer than
1000 points were not used for Manifold Sculpting because it did not consistently
converge with so few points. Values with more than 4000 points were not used with
LLE or Isomap due to their demanding memory requirements. Values with more than
2828 points were not used with HLLE because it took so long.
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Step 3: O(d2n)

Step 4: O(jdkn) where j is the number of iterations necessary to converge

Step 5: O(dn)

If k is assumed to be a small constant, then the overall complexity is bounded

by O(jdn log(n)). The value j seems to remain relatively constant when a given

manifold is sampled with varying densities. Unfortunately, a precise value for j is

difficult to estimate without actually performing the algorithm. Its value is related to

the complexity of the manifold. It is believed that this value remains nearly constant

because once the major features of a manifold are sampled, additional samples tend

to have little effect on the topological complexity. However, a solid theoretical foun-

dation for evaluating manifold complexity remains to be discovered. Consequently,

experimental results provide a better framework for evaluating the computational

complexity of the Manifold Sculpting algorithm.

The scalability of Manifold Sculpting was compared experimentally with LLE,

L-Isomap, and HLLE using a Swiss Roll manifold sampled with a variable number

of points. Results are shown in Figure

3.14. (We used L-Isomap for comparing

runtime performance because it scales better than regular Isomap. We used regular

Isomap when comparing accuracy, because it yields more accurate results than L-

Isomap.) Unfortunately, the scalability shown in Figure

3.14 is only valid when the

number of input dimensions is already small. In higher dimensional space, Step 1

becomes O(dkn2) because a more efficient method for finding neighbors is not known.

Neighbor finding can be done efficiently with a kd-tree as long as the input space is

well sampled, but when the number of dimensions is large, an exponentially larger

dataset is necessary for this technique to remain efficient.

To compute scalability, we generated a Swiss Roll manifold as defined in section

3.1.1 with a range of sample densities. We measured the running time with each

algorithm, and then used least squares to regress the function t = anb + c to fit

the experimental data. (t represents time, and n represents the number of sampled

points.) The value of b was then reported as the estimated order of scalability for
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the algorithm. For Manifold Sculpting, the values k = 40, and σ = 0.99 were used.

The PCA preprocessing step was omitted. For Isomap II, 20 landmarks were used in

every case. For LLE and HLLE, the value k = 14 was used to improve their respective

scalability. It should also be noted that the available implementation of LLE uses an

inefficient technique for finding neighbors, which we did not attempt to fix.

3.3 Document Manifolds

The utility of manifold learning algorithms for image processing applications

has recently been recognized, but this is certainly not the only field that deals with

multi-dimensional data. The Vector Space Model (

18), for example, is commonly

used in the field of Information Retrieval to characterize web documents. Each web

page is represented as a large vector of term weights. The number of dimensions in

the vector corresponds to the number of unique word stems (about 57,000 in English),

and the values in these dimensions correspond to a term weight computed from the

number of occurrences of the term in a document. Search queries can be evaluated by

finding the documents whose vector has the closest angle with the vector of the query.

This representation bears some striking resemblances to the pixel representation used

for processing images, so it seems likely that similar results could be obtained by

applying manifold learning to this field.

To test this hypothesis, we implemented a simple application for refining the

results obtained from a Google search. A typical search often yields many thousands

of documents, but users rarely have patience to look at more than the first few. Our

application downloads the first 100 documents, removes stop words, stems each term

with the Porter stemming algorithm (

19), and represents the documents with the

Vector Space Model. Next it uses Manifold Sculpting to reduce the dimensionality of

the vectors to a single dimension. It then divides this dimension into two halves at

the point that minimizes the sum variance of the two halves. Finally it extracts three

terms to represent each of the two clusters by summing the vectors in the cluster and

picking the three terms with the highest total weight. In theory, these two groups of

terms should reflect the most significant range of context found in the query results,
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and a user should be able to refine his or her query by selecting which of the two

halves is closer to the intended meaning of the query.

As an example, a query for the term “speaker” yielded for one set of terms

“box”, “amp”, and “off”, and for the other set “hit”, “baseball”, and “bat”. The first

interpretation of the term “speaker” probably comes from references to audio devices.

Prior to performing this experiment we did not know that this term had anything to

do with baseball, but a search for the refined query “speaker baseball” yields many

documents with information about Tris Speaker who was elected to the baseball hall

of fame in 1937. Not all queries yielded such distinctly separated results, but this is

an area with much potential for further research.
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Chapter 4

Semi-supervision

Manifold learning and clustering have many things in common. Clustering

collections of multidimensional vectors such as images, for example, is more effective

when manifolds in the data are taken into account (

20). Manifold learning and clus-

tering are both unsupervised operations. Unlike clustering however, which groups

vectors into a discrete number of buckets, manifold learning arranges them into a dis-

crete number of continuous spectra. Essentially, clustering is to manifold learning as

classification is to regression. It seems intuitive, therefore, that techniques which ben-

efit clustering algorithms may have a corresponding counterpart for manifold learning

algorithms. Clustering algorithms can be greatly enhanced with partial supervision

(

21). Likewise, a small modification to the Manifold Sculpting algorithm makes it

possible to perform semi-supervised manifold learning.

Semi-supervised clustering involves a subset of data points for which classi-

fication values or hints about those values are provided. Semi-supervised manifold

learning likewise requires final values or estimated final values to be provided for a

subset of the data points. During scaling iterations (step 4 of the Manifold Sculpting

algorithm), these supervised points are moved to their final values. As these points

are moved, they tend to recursively pull their neighbors along with them, resulting

in more efficient and potentially more accurate manifold learning. Figure

4.1 shows

the amount of time required to learn the manifold for each of the four videos that

were used in section

3.1.5 with a varying percentage of supervised points. In these

35



experiments, most of the performance gain comes from the first 20% of supervised

points. With the Swiss Roll problem, for example, computation time can be cut in

half with fewer than 5% supervised points.

Figure 4.1: Manifold learning is faster when more points are supervised. (When most
of the points are supervised, the only significant cost is the neighbor-finding step of
the algorithm.)

In some cases data may not be available all at once. In such cases it may be

desirable to learn the manifold incrementally (

22). This is naturally achieved with

semi-supervised manifold learning. Each time new data becomes available, the entire

manifold is re-learned with all the old data acting as supervised values. With suc-

cessive passes, a larger percentage of the points will be used in a supervised manner,

thus causing each learning cycle to execute more quickly.

Often, semi-supervised clustering is performed by having human experts clas-

sify a subset of the available data. When real values are required, however, it may

only be reasonable to ask human experts to provide vague estimates. For example,

humans might be able to easily sort a collection of images according to relevance to a

particular topic. The sorted images could be assigned sequential output values, and
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these values could be used as estimates for the points in manifold coordinates. How-

ever, precise values may be difficult to obtain initially. Fortunately, even estimated

output values can be useful in semi-supervised manifold learning. This benefit is ex-

ploited by using the estimated output values as a guide only during the initial scaling

iterations when coarse refinements are being made. The points are then set free dur-

ing later iterations when more precise refinements are performed on the data. The

more confident the supervisor is about provided output values, the more iterations in

which the supervision can provide benefit to the algorithm.

4.1 Conclusions

The experiments tested in this paper show that Manifold Sculpting yields

more accurate results than other well-known manifold learning algorithms. Manifold

Sculpting is robust to holes in the sampled area. Manifold Sculpting is more accurate

than other algorithms when the manifold is sparsely sampled, and the gap is even

wider with higher sampling densities. Manifold Sculpting has difficulty when the se-

lected number of neighbors is too small but consistently outperforms other algorithms

when it is larger.

Manifold Sculpting scales better than most manifold learning algorithms when

the number of data points is much larger than the number of input dimensions. In

the asymptotic case (with respect to data size) with a constant number of input

dimensions, therefore, Manifold Sculpting performs better than other known manifold

learning algorithms.

Manifold Sculpting benefits significantly when the data is pre-processed with

the transformation step of PCA. Current research seeks to determine the extent to

which other dimensionality reduction algorithms may work in tandem with Manifold

Sculpting to produce high quality results in an efficient manner. Ongoing research also

seeks to exploit the semi-superved capability of Manifold Sculpting to produce results

that could not be obtained from a purely unsupervised manifold learning algorithm.
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