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Abstract

This paper presents the development of a color feature descriptor well-
suited for low resource applications such as UAV embedded systems, small
microprocessors, and field programmable gate array (FPGA) fabric, and
its hardware implementation. The BAsis Sparse-coding Inspired Similar-
ity (BASIS) descriptor utilizes sparse coding to create dictionary images
that model the regions in the human visual cortex. Due to the reduced
amount of computation required for computing BASIS descriptors, re-
duced descriptor size, and the ability to create the descriptors without the
use of floating point, this approach is an excellent candidate for FPGA
hardware implementation. The BASIS descriptor was tested on a dataset
of real aerial images with the task of calculating a frame-to-frame homog-
raphy. Experimental results show that the software and bit-level accurate
BASIS descriptor outperforms SIFT and SURF. The bit-level accurate
hardware version of the BASIS descriptor also results in no loss of accu-
racy when compared with the software version. BASIS descriptors are
more space efficient than other descriptors, and can be computed entirely
in FPGA fabric, allowing the descriptor to operate at real-time frame
rates on a low power, embedded platform such as an FPGA.

1 Nomenclature

B = Basis dictionary image set
βi = Basis image i
βH = Basis image height
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βW = Basis image width
ω = Octave (scale)
FRIH = FRI pixel height
FRIW = FRI pixel width
I1 = image 1
I2 = image 2
p1 = point in image 1
p2 = point in image 2
H = Homography relating image 1 to image 2
BSM = BASIS similarity measure
SIS = similarity indicator sum

2 Introduction

Computer vision applications for low power, low resource, and embedded sys-
tems are becoming increasingly prevalent. Target tracking [25], object identifi-
cation [9], optical flow [28], stereo vision [24], super resolution [13], image stabi-
lization [15], rectification, localization, and pose estimation [25][17][26][2][6] are
all examples of computer vision applications that can be realized on a low-power
embedded platform. Computer vision applications such as image registration,
object detection, motion estimation, super resolution, image stabilization, pose
estimation, and target tracking all require some level of high quality feature
description and matching. The Open Source Computer Vision library, which
is often used in computer vision applications, now contains a feature detection
and description library that includes the MSER, Star, SIFT, SURF, and FAST
feature detectors and descriptors. As low resource platforms such as smart-
phones become more prevalent, the need for low resource vision algorithms will
continue to increase. There are now apps available for major smartphone oper-
ating systems that provide motion detection, color detection, barcode scanning,
OCR, accessibility aid, and scene recognition. A search on the Android Market
(http://market.android.com) for the terms motion detector, OCR, and color
detector yielded over 1000 app results as of September, 2011.

Feature descriptors take feature points obtained from a feature detector
(such as the DoG, Harris, FAST, or Harris Affine), and compute a unique de-
scription of that point [18][1][27][11]. A good feature descriptor will uniquely
describe a feature point to distinguish it from other feature points, thus allowing
for correct identification and tracking. SIFT creates descriptors by computing
orientations and magnitudes of intensity gradients [18]. This works well in ob-
ject recognition tasks on gray scale images and provides features invariant to
rotation and scale. SURF computes its descriptors using integral images and
Haar wavelet transforms [1]. CCH computes a histogram of intensities for a
feature point compared to a circular region around the point [11]. CDiKP
uses a method similar to SIFT but compresses the descriptor using a Walsh-
Hadamard kernel [27]. The resulting descriptors from these methods are vectors
of double-precision floating point numbers. For example, a SIFT descriptor is
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a vector of 128 double-precision numbers, and a SURF descriptor is 64 double-
precision numbers). These descriptors require a large amount of storage space:
each 128-element SIFT descriptor requires 1024 bytes [18], and each 64-element
SURF descriptor requires 512 bytes [1]. The OpenCV implementation of SURF
uses 128-element descriptors, making their storage size 1024 bytes per descrip-
tor. The storage space becomes an issue because these algorithms can easily
return more than 500 features from a 640x480 pixel resolution image. Also,
today’s most commonly used descriptors (SURF and SIFT) are very difficult to
implement in a limited resource application due to the complex descriptor cal-
culations and the use of floating point. For example, it is difficult to implement
a full floating-point unit in an FPGA’s hardware logic, so most FPGA imple-
mentations of feature descriptors off-load the actual descriptor computation to
a CPU for floating point computations [2] or perform other algorithm simplifi-
cations (such as conversion to fixed point) in order to accomodate a hardware
implementation [23][28].

The BAsis Sparse-coding Inspired Similarity (BASIS) feature descriptor pro-
vides significantly better size efficiency than existing detector/descriptor meth-
ods, is fully implementable on a low-resource or FPGA platform, and still pro-
vides good descriptor matching accuracy. This paper outlines both the develop-
ment of the BASIS algorithm and its hardware implementation. Our intended
application is a low power, embedded vision system for small UAVs. By focusing
on hardware during our descriptor design we have developed a descriptor that
does not require major simplifications to the algorithm in order to accommo-
date hardware implementation. Our target system is a small FPGA platform
based on a Xilinx Virtex-6 FPGA. Image information is fed into the FPGA
system from a small CMOS camera at up to 60 frames per second. This vision
system will be used for small unmanned aerial vehicle (UAV) and unmanned
ground vehicle (UGV) image stabilization, rectification, and pose estimation.
Our goal is to develop an accurate descriptor for the task of frame-to-frame
image registration, and implement the descriptor on our FPGA platform.

In this paper we describe the development and hardware adaptation of our
new BASIS feature descriptor that implements a derivative of sparse coding.
Feature regions in an image are described by their similarity to pre-computed
basis images. The resulting similarity values uniquely describe the features and
allow them to be matched in subsequent images. Because our descriptor does
not use floating point, it is an excellent fit for an FPGA implementation. Due
to the more efficient descriptor size, it also requires less memory than other
popular algorithms to compute and store descriptors. Section 3 describes the
BASIS descriptor algorithm. Section 4 outlines the hardware implementation
of the descriptor. In Section 4.2, we provide the results from an application of
the bit-level accurate version of the BASIS descriptor on selected datasets, as
well as comparisons to SIFT and SURF. In Section 5 we discuss our conclusions
and future work.
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3 The BASIS Descriptor

3.1 Sparse Coding

As with all descriptors, BASIS descriptors need to somehow uniquely identify a
feature point in two distinct images. Our method of describing feature points is
derived from sparse coding. Sparse coding is the process of creating a dictionary
of non-orthogonal basis functions, and optimizing over that dictionary to find
coefficients which allow a target signal to be reconstructed from the dictionary.
The dictionary (because it is non-orthogonal) has a higher dimensionality than
the target signal, but the benefit comes from using sparsity as an optimization
constraint to allow reconstruction of the target signal from as few basis functions
as possible [5]. The process flow for sparse coding begins with using an algorithm
such as the K-SVD to develop a basis dictionary. This requires training the K-
SVD on a large dataset of images in order to create generic basis functions that
can be used to reconstruct a large variety of target signals. Reconstruction then
happens by again using the K-SVD or similar optimization stage to recreate the
target signal, while optimizing over sparsity of basis functions. Some example
applications of sparse coding for images are image reconstruction (or inpainting)
[19][12], denoising [4], feature extraction for denoising purposes [14], and scene
classification [16]. In these examples, an image with noisy or missing regions is
used as a target signal, and, using a pre-defined basis dictionary, sparse coding
allows researchers to inpaint the degraded or missing areas and reconstruct the
damaged image.

In a paper by Olshausen [20, 21], sparse coding was applied to a very large
dataset of natural images in order to look for similarities between sparse coding
dictionaries and the human visual cortex V1. The resulting dictionary consisted
of very basic geometric shapes. Olshausen postulated that this implied that all
natural images are thus composed of these same types of geometric shapes:
“The receptive fields that emerge from this algorithm strongly resemble those
found in the primary visual cortex, and also those that have been previously
deduced by engineers to form efficient image representations.” [21] Olshausen
used entire images as input to the basis dictionary creation. However, in our
application for frame-to-frame feature point matching, the images used to create
a basis dictionary set are small regions around a feature point. Because these
feature region images are small and the types of intensity texture that form
these features are limited, we postulate that our resulting basis dictionary set
(unlike the basis dictionary sets created using entire images) will be similar not
only across the set of all natural images, but also across the set of all images
containing man-made objects.

Because sparse coding has been shown to be effective in recreating lost por-
tions of images in denoising and image reconstruction applications, the set of
basis functions used by the sparse coding algorithm can be thought of as po-
tential descriptions of image areas. Our work is based on the fact that, if the
basis function set is kept constant, the coefficients representing the contribu-
tion of each basis function can be used as a feature descriptor. In the same
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way, the sparse coding algorithm can generate a set of basis images using a
set of feature region images (small pixel regions around a detected feature in
an image) as input. Linear combinations of some or all of the resulting basis
images can re-create the feature region images. These basis images comprise a
dictionary of feature characteristics that can be combined in varying degrees to
uniquely reconstruct the feature region around any feature in an image. This
approach is similar in theory to vector quantization, used in signal compression
and video codecs, which processes entire frames [10]. By building dictionaries
for all three channels of an image, we can uniquely describe color features as
well as grayscale.

The BASIS descriptor algorithm consists of two portions: initial basis dic-
tionary creation, and BASIS descriptor computation. Dictionaries can be com-
puted off-line, on standard desktop computing hardware, and then stored in
memory on the on-line system. Once the basis dictionaries have been created
off-line, BASIS descriptors can be computed in real time on a low-resource plat-
form.

3.2 Off-Line Dictionary Creation

We define a small pixel region centered around a feature point as a feature region
image, or FRI. Features are detected in sample images using a feature detector,
and FRIs (Fig. 1), are saved to disk as individual images. Using sparse coding,
we create a set of basis images (or functions), B = β1 . . . βn, from a large dataset
of FRIs. In our experiments, a dataset of over 300,000 FRIs was used to create
each basis dictionary. If a smaller dataset is used, overfit can result and the
basis functions β1 . . . βn will not be generic. The set of basis images, B, is then
saved to disk and used in real time as the basis dictionary set.

For this off-line processing step, we detected features using the color Dif-
ference of Gaussians (DoG) [8, 7]. The color DoG performs the DoG on all
three channels of the YCbCr color space which provides color features from the
Cb and Cr channels as well as grayscale features from the Y channel. Using
the color DoG also provides scale invariance due to its use of scale space. This
provides us with a large variety of basis images to use as input to the sparse
coding portion of our algorithm. The color DoG returns, for each feature it
detects, its position (x, y), the scale (or octave), and the channel (Y, Cr, or Cb)
in which the feature was detected. Although this work uses the Color DoG for
basis image creation, any repeatable feature detector may be used to create the
dataset for basis dictionary creation.

For each feature obtained by the color DoG, we create an FRI centered on
the feature point. In order to create uniform FRIs for features found at different
scales, the initial dimensions of the FRI are dependent on the scale at which the
feature was detected. Because the DoG algorithm upscales the original image
by a factor of 2 before creating the scale space pyramid, the size of the FRIs
are computed as

FRIH = 2 ∗ βH ∗ 2(ω−1)FRIW = 2 ∗ βW ∗ 2(ω−1) (1)
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where βH and βW are the desired width and height of the final basis dictionary
functions, and ω is the scale (or octave) in which the feature was found. In
our experiments, we chose βH = βW = 30 pixels. At this point, the FRI is
then scaled to βH × βW using bilinear interpolation so that all FRIs are the
same size, regardless of the scale at which the feature was found. Fig. 1(a)
shows an original FRI image, and Fig. 1(b) the resulting re-scaled FRI. For our

(a) (b)

Figure 1: The FRI is originally obtained at a larger size (FRIH × FRIW ) (a),
and re-scaled to (βH × βW )(b).

experiments, we obtained eight video sequences (30 seconds or less of 640x480
resolution) of natural and non-natural scenes (Fig. 2). For each frame in these
sequences, we performed the above process for generating FRIs, and saved these
FRIs for future processing. Each video sequence provided over 300,000 FRI
images. This set of over 300,000 FRI images was input into the K-SVD algorithm
[3] which produced a set of 100 30x30 basis images B = β1 . . . β100. Fig. 3(a)-
3(c) shows examples of three basis image sets for three different video sequences.
We also then combined the FRI images (approximately 8x300,000 FRI images)
from all eight video sequences and processed them using the K-SVD to generate
a combined basis image set of 100 30x30 basis images (Fig. 3(d)). As we
theorized, because the feature regions are small and the types of intensity texture
that form these features are limited, the basis image set from all eight videos
combined looks very similar to the individual basis image set for each video
sequence regardless the contents of the scenes. Because the basis image sets
were very similar, we created a final basis image set (dictionary) by randomly
selecting 128 basis images for each channel of our image (Y,Cr, and Cb) for
a total of 384 basis images to be used as dictionary images for the BASIS
descriptor computation.

3.3 Calculating Descriptors (Online) - The Modified Cen-
sus Transform

The resulting basis dictionaries are stored in BRAM where they can be accessed
by the on-line portion of the algorithm. Only the on-line portion of the BASIS
descriptor needs to be implemented in the FPGA system. The on-line portion
of the BASIS descriptor algorithm, shown in Fig. 4, takes a list of features
detected using the FAST feature detector [22] and returns a descriptor for each
feature. Our desired application of frame-to-frame image registration for a small
unmanned aerial or ground vehicle (UAV/UGV) requires a fast, low-power fea-
ture detector, and does not need invariance to rotation greater than 10 degrees
due to the nature of our data. Because of these requirements, the FAST feature
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Figure 2: Typical frames from each of the 8 video sequences used to generate
FRIs as input to the K-SVD.

detector [22] proved to be an excellent fit for our application. The FAST detec-
tor provides more features and a higher repeatability of features than the color
DoG, but it does not provide color features, orientation, or scale invariance. If
rotation or scale invariance is needed for a given application, however, the only
change to the algorithm is to add a feature orientation and/or a scale value to
each feature. As described in Section II(a), a scale-appropriate FRI is obtained
from the original image. The FRI is then scaled down to the same dimensions
as the elements of the basis dictionary B so that a descriptor can be calculated.

The intent of the descriptor is to describe how similar this FRI is to each
individual basis image βi in the dictionary. Because each βi demonstrates a
simple characteristic of a feature (such as an edge, gradient, or corner), the entire
30x30 pixel area of each βi may not be of equal value. Fig. 5 shows a βi (a)
and an example FRI (b). This FRI matches well with this βi in the upper right
corner (both images have very similar pixel values), but not well in the lower
half of the image (there are large portions of the FRI that are black where the βi

has a much higher value). Performing a simple difference and then summing the
result would average out the resulting similarity, and the important information
about which regions of the FRI match well would be lost. To resolve this issue,
we developed a unique similarity measure, derived from the Census transform
[29], that we call the BASIS similarity measure (BSM), which retains the spatial
information of BASIS similarity. The first step in the BSM calculation is to
perform a direct pixel-by-pixel subtraction of the FRI from the βi (Fig. 6).
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(a) (b)

(c) (d)

Figure 3: Various basis image sets (or basis dictionaries, B). All of these sets
contain geometric shapes visibly similar to those found by Olshausen in [20].
(a) was obtained from a video sequence of a drive through a downtown area.
(b) was obtained from a video sequence of a frog in a pond. (c) was obtained
from a video sequence of movement down a typical building hallway. (d) was
obtained by combining FRIs from each of the eight video sequences (natural and
non-natural). The combined basis image set in (d) is very similar to those seen
in all the other basis image sets we created. Because of this, the basis image set
(dictionary) we used for our algorithm to create descriptors will work on both
natural and non-natural images.
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Figure 4: The process flow of the on-line portion of the BASIS descriptor.
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(a) (b)

Figure 5: An example basis dictionary image (a) and FRI (b). Portions of the
basis dictionary match the FRI well, but other regions do not. A region-aware
similarity measure is needed to record this information.

Because the FRI and the βi are both represented as positive intensity values
from 0-255, the result of the subtraction is a matrix (or polarity image) with
values in the range [-255,255]. Each value in the matrix corresponds to the
polarity of a pixel. A positive polarity value indicates that the pixel intensity of
the basis image is brighter than the intensity of the corresponding pixel in the
FRI. A negative polarity value means the basis image pixel is darker than the
corresponding FRI pixel. A zero polarity value represents equal intensity values
of the two corresponding pixels. For clarity of discussion, we will normalize
these integer values to real numbers in the range [-1,1]. Polarity allows us to
measure the similarity between an FRI and each of the basis images in the
dictionary. This is described below. This resulting polarity image is segmented

Figure 6: The first step in calculating the BSM is to perform an element-wise
subtraction of the FRI from the basis dictionary image. The matrix, with the
difference values normalized to the range [-1,1] is called the polarity image.

into 9 equal-sized regions (Fig. 7). In our example using 30x30 pixel FRIs, the
region size is 10 pixels by 10 pixels. Each of the 9 regions is then polled for its
polarity bias, a ternary quantization of the pixel’s value. If a pixel’s polarity
value (between -1 and 1) in the 10×10 region has a value less than a small
negative threshold –ε, it casts a vote of -1 (negative polarity). If the value is
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greater than a small positive threshold ε, it casts a vote of 1 (positive polarity).
If the value is in between -ε and ε (very small difference between the basis image
and FRI pixels), it casts a vote of 0 (zero polarity). The votes for all 100 pixels
are tallied, and the majority vote is the resulting regional vote of the 10x10 pixel
region. This process generates 9 regional votes for the 9 10×10 regions. These
9 regional votes are then concatenated into a 9 ternary digit value, and saved as
a descriptor element that describes the similarity between an FRI and one basis
image. Recall that there are a total of 384 basis images (128 per color channel)
in a dictionary, which results in 384 9-ternary-digit descriptor elements. These
384 descriptor elements are then stored in a 384-element array as the feature’s
descriptor. Although this descriptor has three times as many elements as the
SIFT descriptor, each element is only 9 ternary digits long, and uses only 18
bits, for a total of 864 bytes per descriptor, a reduction in memory requirements
of 71.9% per descriptor element.

Figure 7: Similarity measures are computed for a polarity image by allowing
each pixel in a 10x10 region to vote based on its thresholded value. The majority
vote for a 10x10 region is the overall vote for that region, and the 9 regional
votes are concatenated into a 9-ternary-digit descriptor element.

3.4 Comparing Descriptors

The descriptor element values for each feature are 9 ternary digits, and thus
cannot naturally be represented using an integer or floating point value, which
means standard comparison metrics such as Euclidean or Mahalanobis distance
(which both require complicated computations) cannot be used. We develop a
unique similarity measure similar to a Hamming distance to quickly compare
BASIS descriptors of two features. The proposed BASIS descriptor allows us
to find the best matched feature points between two consecutive frames. If two
BASIS descriptor element regional votes have the same polarity, i.e., (0, 0) , (1,
1), or (-1, -1), they can be considered an excellent match, because they both
matched equally well to a given basis image region. However, if one regional
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vote has a zero polarity but the other has either positive or negative polarity,
i.e., (0, 1) or (0, -1), we can still consider this a good match. Conversely, if the
two BASIS descriptor element regional votes have opposing polarities, i.e., (1,
-1), we now know that the regions are an even worse match because one FRI
matched the βi, and one did not.

Equation 2 shows an example descriptor element similarity calculation. For
each element in the descriptor, our similarity measure sums the absolute-values
of no-carry subtractions of each of the 9 ternary digits.

0 0 0 1 1 1 −1 −1 −1
0 1 −1 0 1 −1 0 1 −1∑

( 0 1 1 1 0 2 1 2 0 ) = 8
(2)

The subtractions result in 9 digits where each digit is a member of the set
0,1,2. These individual digits are summed together to create the similarity in-
dicator. A similarity indicator close to zero implies an excellent match, and a
higher valued similarity indicator indicates a poor match. The similarity indi-
cators for all 384 descriptor elements are then summed, and the resulting differ-
ence value (called the similarity indicator sum, or SIS) provides a comparison
between two features.

4 Hardware Implementation

To prove the feasability of developing a hardware version of the BASIS descriptor
algorithm, we created top-level hardware designs, tested the output using a
bit-level accurate software version of the BASIS descriptor, and developed the
system in VHDL. Figure 8 shows the top level of our hardware design. Data
from an image sensor is fed into a feature detection system. There are a large
number of feature detection cores that have already been developed in VHDL,
so we do not outline how the detection step is performed. The output of the
feature detection core is a list of x and y locations in the image where features
were detected.

As soon as features are returned from the detector, the descriptor stage
can begin computing descriptors. Counters iterate over each feature in the
list, and over each image in the basis dictionary. Figure 9 shows the image
retrieval stage for an FRI. The retrieval stage for a dictionary image is almost
identical. The feature x and y locations (obtained from the list in memory) and
the image location in memory, along with the image parameters (height, width,
and depth) are used to compute the starting address in memory of the FRI.
The FRI height and width are then used, along with the image parameters, to
calculate new addresses as the FRI is read out of memory. The FRI data out is
fed into nine 8 pixel by 8 pixel regional block RAM (BRAM) memory units. An
FRI row counter and column counter keep track of the current row and column
of the 3x3 block of regional BRAMs, and the output of these counters is fed into
a MUX controlling the write enable lines on all nine regional BRAMs using the
pseudo code in Algorithm 1.
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The output of one regional BRAM from the FRI and one regional BRAM
from the Basis Dictionary Image (BDI) are connected to one of nine differencing
blocks, as shown in Fig. 8. The details of the differencing block are shown in
Fig. 10. The differencing block contains three main components: an addressor,
a voter, and a vote accumulator. The addressor retrieves one pixel from the
BDI BRAM and one pixel from the FRI BRAM and passes them into the
voter. The voter block subtracts the BDI pixel value from the FRI pixel value
and thresholds the result, returning a vote of 1, 0, or -1. This vote is passed
out of the voter on three separate, XOR pins, vote(-1), vote(0), and vote(1).
When the voter is finished, it returns a done signal to the addressor and the
vote accumulator. The vote accumulator consists of three adders that add up
the individual votes. When the addressor has reached the end of the BRAMs,
the resulting argmax from the accumulator (-1, 0, or 1) is returned from the
differencing block. The nine regional votes from the nine differencing blocks
create one descriptor element (DE). Once all nine blocks are finished, the DE
is pushed onto a FIFO until the entire descriptor has been computed. Once
the descriptor FIFO has received all of the DE’s, the FIFO contains a complete
descriptor, and is appended with the feature’s (x, y) location and stored in the

Figure 8: The top-level hardware design of the BASIS descriptor. Each feature
from a feature detector core is processed through the FRI-Basis Dictionary
Image comparator section, and the resulting descriptor is stored in memory
along with the (x, y) location of the feature in a described feature list. There is
a potential for paralellizing the FRI-Basis Dictionary Image comparator section,
providing even greater speedup.
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Algorithm 1 Regional BRAM counter and write-enable logic.
addr ← rowcount ∗ 23 + colcount
if rowcount < 8 and colcount < 8 then

writeEnable← “0001”
else if rowcount >= 8 and rowcount <= 16 and colcount < 8 then

writeEnable← “0002”
end if
if plboutvalid = ‘1’ then
colcount← colcount+ 1

else
colcount← colcount

end if
if colcount = 24 then
colcount← 0
rowcount← rowcount+ 1

else
rowcount← rowcount

end if
if rowcount = 24 and colcount = 2 then
done← ‘1’

end if

described feature list.

4.1 Bit-level Accurate Software

In order to expose any disadvantages that adaptation into hardware may require,
we developed a bit-level accurate software version of the BASIS descriptor. This
version allowed us to compare results from the original software BASIS descrip-
tor algorithm and the hardware version. Fortunately, the BASIS descriptor
computation is not complex and does not require any high-level operators, so
it can be modified easily for an FPGA. BASIS descriptor computation requires
only subtraction, thresholding, and summation operators, all of which can be
implemented in VHDL in a single clock cycle. Also, BASIS descriptor elements
consist of ternary digits, not floating point numbers. These ternary digits are
easily represented using only 2 bits per digit. Computing and storing the de-
scriptor elements therefore requires no change from the original software design.
The only modification to our software algorithm we made to provide bit-level
accuracy was to modify the basis dictionary image and feature region image
dimensions from 30 pixels by 30 pixels to 24 pixels by 24 pixels. Using 24× 24
image sizes allowed us to segment the regional BRAMS so that each would hold
8 pixels, making the regional BRAM addresses require 3 bits instead of 4, and
reducing slightly the amount of memory required to hold the basis dictionaries.
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Figure 9: The FRI retrieval process. Using the feature list, the exact addresses
in memory are calculated for BRAM transaction from the large image BRAM
into the smaller BRAMs. Each BRAM holds an 8x8 pixel section of the full
24x24 pixel FRI and is called a regional BRAM.

4.2 Performance

Standard descriptor matching algorithms will compute distances between de-
scriptors and return sets of matches from one image to the next. The BASIS
descriptors and similarity measures can be used as input to any number of
matching algorithms. Understandably, the use of any particular match finding
algorithm would provide additional discernment (in order to choose matches)
that could possibly mislead the reader as to the accuracy of the descriptor it-
self. For example, in object detection research, frequently researchers will avoid
performing full image detection so that they can compare object detection accu-
racy independent of non-maximal suppression methods needed to do full image
detection. To avoid this matching performance boost, we apply a very simple
technique for testing the accuracy of our BASIS descriptor, and compare it to
other feature descriptors. We use the OpenCV RANSAC algorithm FindHomog-
raphy to compute a homography based on the detected features and resulting
descriptor matches.

First, features are found in image I1 using the FAST feature detector. Our
algorithm then computes BASIS descriptors for each feature. The same process
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Figure 10: The differencing block is the main component of the BASIS de-
scriptor. It differences an 8x8 pixel section and returns a regional vote for the
section. The 9 differencing block vote outputs are then concatenated into an
18-bit descriptor element (DE).

happens with the second image, I2. Next, a similarity indicator sum (SIS) is
calculated between each feature in I1and each feature in I2 and the results are
sorted by lowest SIS value (closest descriptor match).

Next, our algorithm applies a uniqueness constraint which removes any fea-
tures found in I1 whose closest match in I2 (top element in the sorted list) is
the closest match for more than one feature in I1. This constraint removes fea-
tures that did not provide enough information to create a good descriptor. As a
verification step, the remaining features from I1 (those whose top match is not
the top match of any other feature) and their associated match are input into
the RANSAC algorithm in order to compute a homography, H relating I1to I2.
The feature points from I1 are then warped by the homography using

p2 = H ∗ p1 (3)

I2 is then searched in the vicinity of p2 and the closest feature is connected
with a line, and the resulting “matches” image shown to the user. Using this
method, it is obvious if the algorithm computes an incorrect homography, and
thus easy to measure accuracy. If a homography is correct, feature points will
easily match up and all lines will follow a common direction that is synonymous
with the movement of the camera. If the algorithm cannot provide enough well-
matched points to compute a correct homography, the resulting homography
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will place all or most of the p2 in incorrect locations, and these mismatches are
obvious upon quick visual inspection. The BASIS descriptor utilizes the FAST
feature detector, so we do not compare repeatability rates of FAST to other
detectors in this paper, as those results can be found in previously published
articles.

In order to compare the performance of the software BASIS descriptor to
some commonly used detector/descriptor systems, we modified our code to al-
low for the use of any OpenCV implemented detector and descriptor. This al-
lowed us to change the descriptor and/or detector, but keep the post-processing
RANSAC step constant to allow an unbiased comparison. Our dataset, Idaho,
was created from real world images taken from an actual air flight. The same
variables and parameters were used across all examples. The images in the Idaho
dataset were taken from a camera running at 30 frames per second, 640x480 pixel
resolution. The images used for the dataset were obtained from video frames
that are one second apart to allow noticeable camera movement. With this large
gap between frames equating to larger movements and feature location shifts,
the BASIS descriptor still performed very well on real images from a UAV-style
application. In Figure 11, our bit-level accurate version of the BASIS descrip-
tor found matches, and RANSAC correctly computed the homography shown.
Figures 12 and 13 show two more examples from this dataset where the correct
homography was computed.

To test our descriptors, we ran the same images through the system using
BASIS, hardware-BASIS, the SIFT detector and descriptor and the SURF de-
tector and descriptor. We ran 65 images through all four algorithms, and tallied
for how many image pairs each algorithm computed a correct homography. The
Idaho test set features large blank areas of fields with few features, populated
urban scenes, and natural features such as mountains and rivers. While the
movement between frames is mostly translation and rotation, obviously some
perspective warping is present as a result of the plane banking in the air. SIFT
performed the poorest in our tests, achieving 32% accuracy. SURF and the
software BASIS descriptor performed very well on the dataset. Using SURF,
the RANSAC algorithm was able to compute an accurate homography 63% of
the time. The software BASIS descriptor performed slightly better. Using the
software BASIS descriptor, RANSAC calculated the correct homography for
65% of the images. The bit-level accurate BASIS descriptor, hardware-BASIS,
achieved a similar accuracy of 66%. Due to the very small number of modifica-
tions required to make the BASIS descriptor hardware-ready, there is no loss of
accuracy between sofware and hardware implementations. It is noted that for
our application, the 65% accuracy on aerial images with very few features is con-
sidered very significant and is more than enough for air vehicle pose estimation
or image registration.

Additionally, average memory usage per image was calculated assuming that
800 features are kept for each image for all descriptors. BASIS descriptors
require the least amount of memory space. Table 1 shows the results of the
three software implementations, SIFT, SURF, and BASIS, and the bit-level
accurate hardware-BASIS. As Table 1 shows, this change did not negatively
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Figure 11: Resulting homography created by the bit-level-accurate version of
the BASIS descriptor.

affect overall performance of the descriptor.

4.3 Memory Requirements and Speed

Our FPGA vision system consists of an image sensor that provides image data
for a 640x480 pixel resolution image at a rate of 25MHz. Each pixel is 16 bits
of RGB565 standard data. The pixel data is fed directly into the feature de-
tection core, but can also be stored in SRAM for other applications to use.
The hardware-BASIS algorithm was coded into VHDL, and all memory mod-
ules were declared as inferred BRAMs or LUT-RAMs on the FPGA fabric. In
addition, BRAM storage is included for two full 640x480 16-bit frames and
two 1000-element feature lists from the detector to allow for double-buffering
of feature detector output. However, no memory was allocated for the feature
detector because off-the-shelf FPGA feature detectors are readily available, and
the purpose of this experiment was to show the feasibility of implementing the
descriptor in hardware.

Due to the large amount of data being moved through the system, the main
bottleneck of this hardware implementation is memory bandwidth and capac-
ity. The system requires enough room in FPGA memory to hold two full image
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Figure 12: Resulting homography created by the bit-level-accurate version of
the BASIS descriptor.

frames, two feature lists, all required basis dictionaries, and the described fea-
ture lists. Table 2 shows the memory requirements of our system. Images are
saved into memory as 16 bit (RGB565) images at 640 x 480 pixel resolution,
requiring 4915200 bits, or 614400 bytes each. Although the size of the feature
list varies depending on the detector used and the number of features found in
the image, we make some basic assumptions for the sake of completeness. For
our calculations here, we will limit the output of the feature detector to 1000
features. Each feature contains an x, y location. At 640x480 resolution, the x
and y values can be represented using 10 bits. 1000 20-bit values require 2,500
bytes. Hardware-BASIS uses 128 24x24 pixel basis dictionaries per channel.
Each pixel in these basis dictionaries is one byte. There are 73,728 pixels total
in a basis dictionary for a given channel. To hold all three basis dictionaries in
memory requires 221184 bytes. Finally the described feature list is also stored
in BRAM. This described feature list contains 384 18-bit descriptors (9 ternary
digits) and the (x, y) location of the feature for a total of 6932 bits per feature.
With 500 features, this requires 433250 bytes for the described feature list.

The FPGA we have used for our research is a Virtex-6 VLX195T. The Virtex-
6 VLX195T contains 688 18 Kb BRAMs, for a total of 12.384Mb of block ram
on chip. We store the image buffers, feature list, and basis dictionary in BRAM.
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Figure 13: Resulting homography created by the bit-level-accurate version of
the BASIS descriptor.

We also store a portion of the resulting described feature list (before pushing it
out to external memory), the 9 regional BRAMs for the FRI and the 9 regional
BRAMs for the current BDI. These regional BRAMs hold 64 8-bit pixels each,
for a total of 64 bytes per BRAM, requiring 1,152 bytes for all 18 BRAMs. Also
stored in BRAM is the descriptor FIFO, which holds 384 descriptor elements,
for a total of 864 bytes. The available memory in BRAM on the VLX195T
allows us to satisfy all of the hardware-BASIS memory needs on chip in local
memory, avoiding costly memory bottlenecks.

Because we are able to implement all required memories in FPGA BRAM
or LUT-RAM, the Xilinx synthesis tools report that we are able to clock the
entire descriptor algorithm in hardware at 400MHz. A typical FPGA feature
detector will run at up to 60 frames per second, and the image sensor we use
for our research outputs 640x480 pixels on a 25MHz clock. The logic utilization
on the Virtex 6 is shown in Table 3. The descriptor system easily fits into the
logic in the Virtex 6, leaving room for the feature descriptor components, thus
providing a feature detection and description system that is wholly contained
in FPGA fabric.
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Avg. # of Average memory Homography
Algorithm features per image usage per image accuracy

SIFT 1200 819KB 32.099%
SURF 1200 819KB 60.000%
BASIS 1800 691KB 65.000%

Hardware-BASIS 1800 691KB 66.000%

Table 1: Accuracy results for all three software algorithms and the BASIS
hardware adaptation on the Idaho dataset.

Object Qty Size (bytes) Total Size
Image 1 614K 614K
Feature List 1 2,500 2.5K
Basis Dictionary 3 73.73K 221.2K
Described Feature List 1 433.3K 433.3K
Regional BRAM (BDI) 9 64 576
Regional BRAM (FRI) 9 64 576
Descriptor FIFO 1 864 864
Total: 1,273K

Table 2: Memory usage on the FPGA for the BASIS descriptor algorithm.

Slice Logic Utilization:
Number of Slice Registers: 986 out of 249,600 1%
Number of Slice LUTs: 2,177 out of 124,800 1%
Number used as Memory: 536 out of 48,640 1%
Number used as Dual Port RAM: 216
Number used as Single Port RAM: 320
Slice Logic Distribution:
Number of occupied Slices: 610 out of 31,200 1%
Number of LUT Flip Flop pairs used: 2,218
Number with an unused Flip Flop: 1,241 out of 2,218 55%
Number with an unused LUT: 41 out of 2,218 1%
Number of fully used LUT-FF pairs: 936 out of 2,218 42%
Number of unique control sets: 62

Table 3: FPGA device utilization report for the BASIS descriptor algorithm on
a Virtex 6 LXT195 FPGA.
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5 Conclusion

The BASIS descriptor provides a unique method of describing feature points
based on the characteristics they contain. The use of sparse coding algorithms
to obtain basis dictionaries provides the BASIS descriptor with a dictionary set
that resembles the receptive fields found in the visual cortex. These basis sets
were found to be very similar across a spectrum of natural and non-natural
training images. We have shown that BASIS descriptors perform well in the
task of frame-to-frame image registration. BASIS descriptors are more space
efficient than SIFT or SURF descriptors.

In this paper we have presented the hardware adaptation of the BASIS de-
scriptor for application on a Virtex 6 VLX195 FPGA platform. With very little
modification, we were able to implement the entire BASIS descriptor calculation
in FPGA fabric without the need for a CPU or soft core CPU. The simplicity
of the BASIS descriptor calculations allowed us to implement the entire BASIS
descriptor system in such a way that it will operate at high clock rates, allow-
ing the feature detector and image sensor to operate at full speed (60 fps in
our application). The BASIS descriptor bit-level accurate software implementa-
tion results show that modifying the BASIS descriptor for hardware application
resulted in no loss of accuracy.

Now that the entire detector and descriptor algorithms have been imple-
mented in hardware, our future work will involve developing a new correlation
method that can also be adapted to a hardware application. By developing
a hardware correlation system, the entire vision system can be implemented
in FPGA hardware, creating a complete system-on-a-chip solution for small,
light-weight, embedded platforms.
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