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Abstract

This paper presents the development of a new feature descriptor de-
rived from the BASIS descriptor that provides improvements in descriptor
size, computation speed, matching speed, and accuracy. The TreeBASIS
descriptor algorithm utilizes a binary vocabulary tree that is computed
off-line using basis dictionary images (BDIs) derived from sparse coding
and a test set of feature region images (FRIs), and the resulting tree is
stored in memory for on-line searching. During the on-line algorithm, a
feature region image (FRI) is binary quantized and the resulting quan-
tized vector is passed into the BASIS tree, where a Hamming distance is
computed between the FRI and the effectively descriptive BDI (EDBDI)
at the current node to determine the branch taken. The path the FRI
takes is saved as the descriptor, and matching is performed by following
the paths of two features and iteratively reducing the distance as the path
is traversed. Experimental results show that the TreeBASIS descriptor
outperforms BASIS, SIFT, and SURF on frame-to-frame aerial feature
point matching.

1 Introduction

Computer vision applications for low power, low resource, and embedded sys-
tems are becoming increasingly prevalent. Some examples of computer vision
applications that would be useful if implemented on low-power small micropro-
cessors or FPGAs are target tracking [1], object identification [2], optical flow [3],
stereo vision [4], super resolution [5], image stabilization [6], and image rectifica-
tion, localization, and pose estimation [1, 7, 8, 9, 10]. The initial step in most of
these applications is some level of high quality feature detection, descrption, and
matching. Computing feature descriptors is typically very computationally com-
plex, requiring square root, division, multiplication, and exponential operations.
The computation of these descriptors is challenging in low-power applications
[11]. For example, it is difficult to implement a full floating-point unit in a small
FPGA’s hardware logic, so some FPGA implementations of feature descriptors
off-load the actual descriptor computation to a CPU for complex mathemati-
cal operations [9, 12, 13] or perform other algorithmic simplifications (such as
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conversion to fixed point) in order to accommodate a hardware implementation
[14][3].

Feature descriptors take feature points obtained from a detector [15, 16,
17, 18], and compute a unique description of each point [15, 19, 20, 21]. A
good feature descriptor will uniquely describe a feature point allowing it to
be correctly identified and matched in subsequent images. These descriptors
typically require a large amount of storage space. For example, each 128-element
SIFT descriptor requires 1024 bytes per descriptor [15], and each 64-element
SURF descriptor requires 512 bytes [19]. These algorithms can easily return
more than 1,000 features from a 640×480 pixel resolution image, making storage
space an issue on a low-resource platform.

As the use of low resource platforms such as smartphones and FPGAs be-
comes more pervasive for vision applications, the need for low resource feature
detection and description algorithms will continue to increase. By reducing
the computational complexity of a feature descriptor algorithm and reducing
the descriptor memory footprint, we can reduce the amount of computational
power required and increase the speed at which low-resource systems can pro-
duce processed vision sensor information. With a feature descriptor specifically
designed for low-resource systems, we can bring high quality computer vision al-
gorithms into the realm of low-resource systems such as micro unmanned aerial
and ground vehicles (UAVs and UGVs).

The BAsis Sparse-coding Inspired Similarity (BASIS) descriptor, presented
in [22], was developed as a feature descriptor well-suited for low-resource appli-
cations. The premise behind the BASIS algorithm is that, if the basis function
set returned from sparse coding [23] is kept constant, the contribution of each
basis function can be used to uniquely describe a feature [24, 25]. These basis
functions comprise a dictionary of “feature characteristics” that can be weighted
and combined to uniquely reconstruct the region around any feature in an im-
age. BASIS computes descriptors by comparing the region around a feature
(FRI) to a set of basis dictionary images (BDIs) obtained using sparse coding.

The comparison of FRIs to BDIs provides a basis similarity measure (BSM)
matrix, which is broken into regions, thresholded, and stored as a descriptor
vector consisting of ternary-digits. Matching between features is achieved by
computing a carry-free, element-wise subtraction of each ternary digit in a de-
scriptor element and summing the resulting values to form a similarity indicator
sum (SIS). The cumulative SIS is then used as a distance metric between two
features. Features in one image are compared to features in another, and the
resulting matches are sorted by distance. The top match for each feature in
image 1 is retained, and after removing duplicates, the resulting list of matches
is returned from the BASIS algorithm. Because BASIS descriptors consist of
ternary-digits, standard distance metrics (Euclidean, Mahalanobis) are incom-
patible and make it difficult to compare matching accuracy between BASIS and
other detector/descriptor algorithms such as SIFT and SURF. In order to com-
pare descriptors, researchers in [22] computed a frame-to-frame homography
between images from the Idaho aerial image dataset using each algorithm and
compared the overall effectiveness. BASIS provides a 43% smaller descriptor
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memory footprint than that of commonly used detector/descriptor methods,
provides good descriptor matching accuracy for frame-to-frame feature match-
ing applications, and has been fully implemented in FPGA hardware.

In this paper we describe the development of a novel modification to the
original BASIS descriptor. Our new algorithm, TreeBASIS, creates a vocabulary
tree using a small basis dictionary to partition a training set of feature region
images (FRIs). This vocabulary tree is computed off-line and stored in the
algorithm for on-line descriptor computation and matching. Basis dictionary
images (BDIs) are quantized and their intensity values are represented using
a binary vector. TreeBASIS computes feature descriptors by quantizing the
feature region image (FRI), passing it through the tree, and recording its path.
Matching descriptors between images is achieved by traversing the descriptor-
paths of features from the first image and comparing each node to the descriptor-
path of the feature from the second image.

TreeBASIS provides a much smaller descriptor than BASIS, SIFT, or SURF,
requires less computation for creating descriptors, and includes a novel descrip-
tor matching algorithm that reduces processing time for matching descriptors.
It also provides improved feature point matching accuracy on the Idaho dataset
presented in [26]. Section 2 describes the TreeBASIS algorithm. In Section 3,
we provide a comparison between the BASIS and the TreeBASIS descriptors on
the Idaho dataset. Finally, in Section 4 we discuss our conclusions and future
work.

2 TreeBASIS

TreeBASIS features three major components: building the vocabulary tree,
computing descriptors, and matching descriptors between two images. The tree
can be created off-line, on standard desktop computing hardware. Once the
tree has been created, it can be loaded into memory and used in real time on
a low-resource platform to compute TreeBASIS descriptors and match them in
subsequent images.

2.1 Off-Line Tree Creation

The off-line tree creation stage of TreeBASIS utilizes a dictionary of basis images
returned from the K-SVD sparse coding algorithm [27] to partition a training
set of FRIs, F . The theory behind sparse coding states that if the K-SVD is
trained on a very large dataset of images, the basis dictionary, B, returned by
the K-SVD can be used to reconstruct a very large variety of natural images
[24]. An example basis dictionary, obtained from running the entire GoogleMaps
dataset [26] through K-SVD, is shown in Figure 1. According to sparse coding
theory, a basis dictionary set, B, similar to the one shown in Figure 1 will be
useful to describe any set of natural images, not just those from the GoogleMaps
dataset from which it was created.
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The dictionary set, B, is used to partition a training set, F . The training set
consists of a large quantity (50,000+) of FRIs (30×30 pixels) taken from various
images similar to those that are expected to be encountered during real-time
processing. We chose a BDI and FRI size of 30×30 pixels in order to provide
additional information about the pixels surrounding a feature point. A region
larger than 30×30 would run the risk of containing too much background data or
content not associated with the feature. Conversely, reducing the size may not
retain enough information to keep FRIs unique. In the hardware implementation
of BASIS [22], the size of the FRIs was reduced to 24×24 pixels which resulted
in a minor loss of accuracy.

Choosing a training set of images similar to those expected to be encountered
during on-line processing will improve accuracy. However, the generic nature
of the basis dictionary images, B, and the small 30×30 pixel size of the FRIs
provide some invariance to the differences between the training set images and
the images the algorithm may see in real-time, so F may consist of more generic
training images and the algorithm will still obtain a high degree of accuracy.

In order to reduce computation time during both off-line and on-line stages,
the BDIs and FRIs are divided into regions, averaged, and binary thresholded
(Figure 2). For our experiments, we set the number of regions for binary thresh-
olding to 100. This caused the 30×30 pixel FRIs and BDIs to be divided into
100 regions of 3×3 pixels. In order to threshold the BDI or FRI, first the average
gray value of the 30×30 pixel image is computed as

g =

∑
x,y

I(x, y)

p
(1)

where p is the number of pixels in the image (900 in our experiments), and
I(x, y) is the intensity value at pixel x, y. Next, the FRI or BDI is divided
into 100 3×3 pixel regions and the intensity values of each pixel in a region
are averaged. If the resulting average is greater than g, the value of the entire
region is set to one, otherwise the value is set to zero. This results in a 100-
element binary quantized vector that is then used in place of the original BDI
or FRI. The comparison against g provides invariance to shadows, shading, and
highlights. By using a binary vector, we reduce the number of comparisons
at each stage in our computation, along with drastically reducing the memory
footprint of each BDI and FRI.

The original BASIS algorithm compares each FRI from an image to each
BDI, which requires a lot of computation and memory to store the complete basis
dictionary and complete set of FRIs. In addition to quantizing the BDIs and
FRIs, TreeBASIS utilizes a binary tree structure which lets us avoid comparing
each FRI with every BDI.

Figure 3 illustrates the tree creation process. Each node of the tree is cre-
ated by taking a set F of training FRIs and determining the most effectively
descriptive BDI (EDBDI), βED, from the dictionary B. By most most effec-
tively descriptive we mean the BDI that most evenly partitions the training set
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Figure 1: The basis dictionary, B, returned from KSVD for the entire
GoogleMaps dataset.

F (see Algorithm 1). The EDBDIs are the BDIs that most effectively portray
important feature characteristics, because half of the FRIs match them closely,
while the other half do not. By building a tree in this way, we drastically reduce
the number of FRI-BDI comparisons because we are, in essence, training the
tree to only compare an FRI to the BDIs that will help it differentiate this FRI
from all other FRIs it may see.

Given sets B = {β0 . . . βn} and F = {f0 . . . fm}. For β ∈ B, we define the
entropy of over the set F with respect to β as

Eβ(F ) = −pL log2 pL − pR log2 pR (2)

where

pL =
|FL|
|F |
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(a) (b)

Figure 2: An example binary thresholding of an FRI. This reduces the memory
footprint of the image from 900 8-bit pixels to a 100-bit vector, and comparison
requires 100 1-bit compares, instead of 900 1-byte comparisons.

pR =
|FR|
|F |

FL =

{
f

∣∣∣∣f ∈ F, h(f, β) ≤ |β|
2

}
FR =

{
f

∣∣∣∣f ∈ F, h(f, β) >
|β|
2

}
where h(x, y) returns the Hamming distance between x and y. Conceptually,
pL is the proportion of F whose hamming distance is less than or equal to
|β|
2 , while pR is proportion of F whose hamming distance is greater than |β|

2 ,
where |β| is the number of bits in β (the number of quantized regions). In
our implementation, |β| = 100. The Hamming distance was chosen in order
to retain spatial similarity information from the FRI-BDI comparisons. Simply
differencing fj from βi or using a method such as sum of absolute differences
(SAD) would average out the differences across the entire 30×30 pixel region,
and not indicate which regions of fj and βi are similar. By using the Hamming
distance, we are indicating how many of the 100 unique regions of fj are similar
to βi, rather than a simple average of the similarities and disparities.

Using Equation 2, we find the EDBDI for a node of the tree,

βED = argmax
β∈B

Eβ(F ) (3)

the β ∈ B which most evenly divides F . βED is chosen as the EDBDI for the
node, and B \ {βED} and FL are used to create the left child while B \ {βED}
and FR are used to create the right, recursively. Each node stores its βED used
for splitting (or the quantized version of βED), and a node number unique to
the entire tree.

The process continues until the remaining subsets of F can no longer be split.
The partitions at each node are not guaranteed to be perfectly even because
there is no guarantee that there exists a βi in the set B that perfectly divides
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Figure 3: The tree creation process. The most effectively descriptive basis
dictionary image (EDBDI) is chosed from the set B as the β that most evenly
divides the set of training FRIs, F . The tree is split using this EDBDI, and the
subsets of F are passed to the left and right children.

the set of F into equal halves. Because of this, the tree is not guaranteed to be
balanced. However, because the entire set of B is evaluated for it’s partitioning
ability, the best βi is chosen at each node to split the set as evenly as possible.
Once the tree has been constructed, it is saved to disk so that it can be re-loaded
for on-line processing.

Because we are using an efficient tree structure, our training set F can be
very large while still maintaining fast real-time comparison speeds. A binary tree
structure contains 2n unique paths, where n is the number of leaf nodes in the
tree. Even with a training set F , of 300,000 elements, a perfectly balanced tree
could divide the set into 300,000 leaf nodes at a depth of log2(300, 000) = 19. In
the on-line application, FRIs only need to be compared to the specific elements
of B along a single path through the tree, which means an FRI in this case
would only be compared against at most 19 elements of B. This gives the tree
the ability to provide many unique descriptors while the structure maintains an
efficient method for comparing FRIs to BDIs.

However, there is a tradeoff with very deep trees. The memory footprint of
the BASIS tree grows exponentially with each level, and the number of levels
is directly proportional to the number of training images used in its creation.
While a larger tree may allow for discrimination of a larger number of features,
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Algorithm 1 TreeBASIS algorithm pseudocode. B is the dictionary set of BDIs.
F is the training set of FRIs. c is a unique node ID number. Typical parameter
values: |B| = 64, |F | = 50, 000.

TreeBASIS(B,F, c)

ID ← c
MaxEnt← 0
FL ← ∅
FR ← ∅
for all β ∈ B do
L← ∅
R← ∅
for all f ∈ F do

if h(f, β) ≤ |β|
2 then

L = L ∪ f
else
R = R ∪ f

Eβ = − |L|
|F | log2

|L|
|F | −

|R|
|F | log2

|R|
|F |

if Eβ > MaxEnt then
MaxEnt = Eβ
βND = β
FL = L
FR = R

if |FL| = 0 then
Leaf ← 1
return

else
Leaf ← 0
TreeBASIS(B \ βND, FL, 2c+ 1)
TreeBASIS(B \ βND, FR, 2c+ 2)

the size of the tree grows exponentially and becomes intractable for a limited-
resource platform. Similarly, the number of BDIs used to split the tree affects
memory requirements and accuracy. If more BDIs are used, there are more
possibilities on how to split the tree, allowing for a greater distinction between
features. However, more BDIs require more storage space for the binary quan-
tized vectors for each BDI. Additionally, the BDIs are intended to represent
unique feature characteristics, and using too many BDIs runs the risk of unnec-
essarily representing duplicate feature characteristics. To ameliorate this, the
entropic approach to tree construction biases the algorithm to favor balanced,
less deep trees over unbalanced, deeper trees. However, the size of the initial
dictionary set B will still impact the tree depth.

In order to examine the effect of different BDI set sizes and different train-
ing set sizes on tree accuracy, an initial pool of 443 basis dictionary images
was created by running the KSVD on seven distinct video sequences. From
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this initial pool, we selected a random group of 32, 64, and 128 BDIs, and
then hand-selected an additional set of 32 BDIs that appeared to be the most
distinct among the entire pool for our basis dictionary, B. For the train-
ing set F , we randomly selected sets of 3,000, 6,000, 50,000, 175,000 and
300,000 FRIs from the GoogleMaps dataset [26], which contains a total of
300,000 FRIs. The GoogleMaps dataset was created using the Google maps API
(http://code.google.com/apis/maps/). The Google maps API allows a user to
download a satellite or high-resolution aerial image of a location given the lati-
tude, longitude, and zoom level (altitude). Images were retrieved from the maps
API using specific latitude and longitude coordinates. These coordinates were
then varied slightly and a new image was captured. To provide feature rich im-
ages, the initial latitude and longitude coordinates were chosen to be inside rural
areas where buildings and landmarks are easily visible. The GoogleMaps dataset
was created using the Google maps API (http://code.google.com/apis/maps/).
The Google maps API allows a user to download a satellite or high-resolution
aerial image of a location given the latitude, longitude, and zoom level (alti-
tude). Images were retrieved from the maps API using specific latitude and
longitude coordinates. These coordinates were then varied slightly and a new
image was captured. To provide feature rich images, the initial latitude and
longitude coordinates were chosen to be inside rural areas where buildings and
landmarks are easily visible.

We built a tree using each of these BDI sets and training sets and found
that the set of 64 randomly selected BDIs, when paired with the 50,000 element
training set provided a tree that performed accurately on the Idaho dataset [26]
(Figure 4) while using a manageable training set size. The resulting tree has a
maximum depth of 17, implying that the maximum size of any path taken in this
tree will be 17 elements long. The trees created using the hand-selected B did
not perform any better than the randomly selected set of 32 B, demonstrating
that, first, each BDI does contain important characteristics that can be useful
in discriminating FRIs, and second, that a BDI we see as being a potential
EDBDI may not truly be effective at partitioning the training set. All BDIs
are all outputs from the KSVD algorithm, which implies that the optimization
stage found each BDI to be useful in describing and reconstructing feature region
images. As such, it is difficult for us to place added emphasis on any individual
BDI by hand, and a random selection proved to be just as effective for creating
training set partitions.

With 64 EDBDIs we were able to partition the entire set of 50,000 FRIs
with a tree depth of 17 levels. A binary tree with 17 levels contains 217 − 1
nodes, meaning each of the 64 EDBDIs could be used, on average, over 2,000
times in the tree. This again demonstrates the effectiveness of these BDIs at
partitioning features.

Even though the tree contains 217−1 nodes, the on-line portion of the Tree-
BASIS algorithm only needs to hold data for 64 EDBDIs, and the individual tree
nodes simply contain a reference to which EDBDI is used, along with pointers
to the left and right children. Table 1 lists the depth of the tree created for each
pair of B and F set sizes. If a tree was able to perfectly partition the set F in
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Min. Depth Required 32 random 64 random 128 random 32 handpicked
3000 11 12 11 11 12
6000 12 16 13 12 13
50000 15 19 17 17 18
175000 17 23 21 19 21
300000 18 22

Table 1: Tree depths for the various B and F set sizes. Recall that each tree
contains 2d − 1 nodes, where d is the depth of the tree. A larger tree depth
implies that it required more splits to fully partition the set F .

half at each node, it would require ceiling(log2
|F |
2 leaf nodes to represent the

tree. The division by 2 is due to the fact that once there are 2 FRIs or less in a
node, partitioning stops, so each node can contain 2 FRIs. Therefore, the depth
of a tree is a measure of its efficiency in splitting the set F . For the tree depths

in Table 1, each level more than ceiling(log2
|F |
2 ) implies reduced efficiency in

partitioning the tree due to the algorithm being unable to find an EDBDI in
the set of B that could partition F evenly.

Figure 4: Comparison of differing basis dictionary sizes (B, denoted by individ-
ual lines) and training set sizes (F , measured along the x-axis) versus perfor-
mance of the TreeBASIS descriptor. The tree used in our results was created
using a basis dictionary B of size 64, and a training set F of 50,000 elements.

Our chosen B and F were passed into our algorithm which created a tree
that was saved to disk. Each node in the tree contains only an index indi-
cating which of the 64 BDIs was used for partitioning, and pointers to its left
and right children. When the tree is re-loaded from disk, the quantized BDI
vector associated with the index can be loaded from memory when needed for
comparison.
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2.2 Calculating Descriptors

Now that we have created an efficient tree structure, descriptors can be quickly
computed in real-time. The BASIS descriptor is designed to be used in a frame-
to-frame feature point matching application for a UAV equipped with a low
power FPGA platform, and we have designed the TreeBASIS descriptor to per-
form the same function.

Only the on-line portion of the TreeBASIS algorithm needs to be imple-
mented on the target platform. The on-line portion of the TreeBASIS descriptor
algorithm, shown in Fig. 5, takes a list of features detected using the FAST fea-
ture detector [17] and returns a descriptor for each feature. The FAST detector
does not provide a dominant orientation or scale measurement. For our frame-
to-frame feature matching for UAV applications, the scale changes and rotation
between frames are small and can be ignored. This allows us to use a faster
detector, and avoid trade-offs associated with providing increased invariance
[28].

Figure 5: The on-line portion of the TreeBASIS algorithm takes a list of features
from the FAST feature detector and returns, as a descriptor, the path the FRI
traveled through the BASIS Tree.

For each feature returned from the detector, we obtain an FRI, which is
binary thresholded into the same number of regions that was used to construct
the tree, and the resulting vector is passed into the tree. At each node, a
Hamming distance h is once again computed between the FRI binary vector in
question and the binary EDBDI vector that was saved at the given node.

FRIs that are very similar to the current EDBDI (h > |β|
2 )) are passed to

the right child, and those that are dissimilar are passed to the left child. This
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is essential, because the fact that an FRI is dissimilar to a given BDI is just as
informative as an FRI that is very similar to the BDI. When the FRI reaches a
leaf node, the list of unique node numbers the FRI was compared to is returned
as the feature’s descriptor-path. Notice that because of the non-cyclical, binary
nature of the tree, rather than keeping a unique node number, a simple binary
value indicating a left branch (0) or right branch (1) at each node is sufficient
to retain the entire path’s information. The resulting descriptor length then
is equal to the depth of the tree. Because each level requires only one bit to
describe if the FRI went down the left branch or right branch of any given node
in the path, a 17-level tree will produce descriptor-paths that are at most 17 bits
long, compared to the 2,304 bits used in a BASIS descriptor, and the 8,192 bits
used to represent the double-precision floating point values of a SIFT descriptor.

2.3 Comparing Descriptors

Tree structures are commonly used by feature detectors during matching in order
to reduce the number of features that must be compared. An added benefit of
the TreeBASIS algorithm is that the tree was already used to compute the
descriptor, so the creation of an additional tree for matching is not necessary.
Recall that each node in the BASIS tree is represented by an EDBDI, which
represents an essential feature characteristic. Each node that an FRI passes
through represents a comparison and a determination as to whether the FRI
contains the given characteristic, or not. This means that, while comparing
the descriptor-paths of two features, if two features follow the same path, they
must contain the same feature characteristics represented by the EDBDIs they
passed through. Conversely, if two features’ descriptor-paths diverge, then they
differ on a given feature characteristic and do not match. The depth at which
the paths diverge is very important. The root node of the tree ideally splits the
training set of FRIs equally in half. This means there is a 0.5 probability that
any given FRI will go down the left or right branch. At each subsequent node,
that probability is divided in half. If two features diverge at the root node, they
are much more dissimilar than two features that diverge at a node much deeper
in the tree.

Also, due to the fact that the partitions at each node are not guaranteed to
be perfectly even, not all paths in the tree may progress to the deepest possible
level. Because of this fact, descriptors may have variable lengths. For example,
two FRIs, F1 and F2 may travel down paths of length n, while two other FRIs,
F3 and F4 may travel paths of length m, where m < n. If F1 and F2 match m
nodes correctly, that does not imply that they are as good a match as if F3 and
F4 match all m nodes. In the former case, the features may be a good match,
but not perfect, whereas the latter is a perfect tree match.

In order to accommodate these issues, given two features, the distance be-
tween the two features is computed as the paths are traversed. First, the dis-
tance is initially set to a large value. Next, the first element of each descriptor’s
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path is compared. If the path elements are equal, the distance is reduced by

d = d(1− p

m
) (4)

where p is the length of the path traversed so far and m is the total path length
of the shorter descriptor path. Thus if the two descriptors are equivalent, the
distance computation returns a value of zero. If the descriptors differ at any
element along the path, the distance computation halts and current value of d
is returned. In this way, the distance is a reflection of how much of the paths of
two descriptors are similar, normalized by the overall path length. Because each
descriptor ends when the path reaches a leaf node, two descriptors of differing
lengths are guaranteed not to match on the final node of the shorter-length de-
scriptor, and comparison will stop before passing the end of the shorter descrip-
tor. Because the maximum depth of the tree is known before the on-line portion
begins, each descriptor is allocated enough memory to store a maximum-depth
path, even though some descriptor paths may not require this much storage.

3 Results

There should be something here – you can’t start a section with a subsection.

3.1 Experiment Procedure

To create the Basis Tree for our evaluations, we used FRIs obtained from the
GoogleMaps dataset. By using the GoogleMaps dataset for training, we were
assured that there were no FRIs from the test dataset in our training set, so the
evaluation data was completely separated from the training data.

Our evaluation dataset was the Idaho dataset also presented in [26]. Figure
6 shows two example images from the Idaho dataset. Idaho was created from
real world images taken from a downward facing camera on an actual air flight.
The images in the Idaho dataset were taken from a camera running at 30 frames
per second, 640×480 pixel resolution. The Idaho test set features large blank
areas of fields with few features, populated urban scenes, and natural features
such as mountains and rivers. While the movement between frames is mostly
translation and rotation, obviously some perspective warping is present as a
result of the plane banking in the air. The images used for the dataset were
obtained from video frames that are one second apart to allow noticeable camera
movement.

In order to measure the performance of TreeBASIS, we performed the same
evaluation as that used on the original BASIS algorithm [26]. That is, a ho-
mography was computed from feature descriptors matched between images I1
and I2 using a RANSAC-based algorithm as follows. First, features were found
in I1 using the FAST feature detector. We computed TreeBASIS descriptors
for each feature, and the same process was repeated with I2. The descriptor
distance metric described in Section 2.3 was used to find the distance between
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(a) (b)

Figure 6: Sample images from the Idaho dataset.

each feature in I1 and all features in I2, and the matches whose distance was
0 (a perfect tree-path match) were kept. As a verification step, these features
from I1 and their associated match were input into the RANSAC algorithm in
order to compute a homography, H, relating I1 to I2. The feature points from
I1 could then be warped by the homography using

p2 = H ∗ p1, (5)

where p1 is a feature point in I1 and p2 is a feature point in I2.
Due to the nature of our dataset, we were able to assume that the homog-

raphy relating I1 and I2 was a basic affine transform of the form

x′ = HAx =

[
A t
0T 1

]
x (6)

Because the rotation between frames is very minor (due to the inability of the
airplane to make very sharp turns) along with the assumption that the airplane
maintained a relatively uniform altitude between frames, we can identify a cor-
rect homography as simply a significant translation along with an affine matrix
A that is almost equal to the identity matrix, I. If the resulting homography H
met these criteria, the result was considered an accurate match. Since the FAST
feature detector is used in our experiments, the repeatability rates of detectors
are not compared here, as those results can be found in previously published
articles [29].

3.2 Experiment Results

As described in the previous section, we ran the images from Idaho through
the TreeBASIS algorithm. TreeBASIS computed path-descriptors and saved
perfect path-matches (distance = 0) between subsequent images. Using this list
of perfect path-matches, we calculated a homography between each image pairs.
For each returned homography, H, our system compared the elements along the
diagonal of H to 1.0. If elements H1,1 and H2,2 were both within the range
[0.7, 1.3], we considered the homography computation successful. Values outside
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of the range [0.7, 1.3] would define a rotation or scale change much larger than
the aircraft could physically accomplish, which implies an incorrect homography.
Table 2 shows the results of the original BASIS algorithm alongside the results
of the TreeBASIS algorithm. In the original BASIS descriptor, each descriptor
is 128 ternary digits long, requiring 2,304 bits total per descriptor. The BASIS
software algorithm, using 2,304-bit descriptors, achieved an accuracy of 75.5%
on the Idaho test set using our metric. Our TreeBASIS algorithm, using 17-bit
descriptors, and a tree built using 64 BDIs and a training set, F of 50,000 FRIs
obtained an accuracy of 79.6% on the Idaho test set.

Average memory Homography
Algorithm usage per image accuracy

SIFT 1,024 Kilobytes 34.7%
SURF 512 Kilobytes 73.5%
BASIS 288 Kilobytes 75.5%

TreeBASIS 2.1 Kilobytes 79.6%

Table 2: Accuracy results and memory footprints for BASIS and TreeBASIS on
the Idaho dataset. Memory usage assumes 1,000 features per image are kept for
each algorithm.

It may be difficult to understand initially why a reduction in descriptor
size and computation would also provide an increase in matching accuracy.
Recall that the basis dictionary set created by sparse coding is non-orthogonal.
As stated in [26], due to the non-orthogonality of the basis set, many basis
dictionaries may prove to be repetitive. That is, more than one BDI will describe
the same “feature characteristic”. In TreeBASIS, the development of the tree
and the use of the entropy function guarantees that the only BDIs used are
effectively descriptive BDIs (EDBDIs), which provides three distinct advantages.

First, by using only EDBDIs, we remove the redundancy inherent in the
basis dictionary. The BDIs used in the BASIS tree are not redundant because
describing the same feature characteristic would result in a poor division of
the training set F which, by definition, would imply that the BDI is not an
EDBDI. Second, the EDBDIs are the most effective BDIs of the entire basis
dictionary, and by using them in the proper order (which order is developed due
to the way the tree is created), fewer BDIs are required to discriminate between
FRIs. Third, the tree structure reduces the number of comparisons required
to discover the same information that the original BASIS descriptor computed.
By comparing an FRI to an EDBDI at a node in the tree and branching based
on that comparison, we remove an entire subset of EDBDIs that do not provide
any necessary discrimination to the current FRI. This can be thought of as
being similar to computing a full BASIS, SIFT, or SURF descriptor, but during
matching, only looking at specific descriptor values in a pre-defined order and
halting comparison when the descriptor values are no longer similar.
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4 Conclusion

In this paper we have presented the development of the TreeBASIS feature de-
scriptor algorithm. The TreeBASIS descriptor provides a unique method of
describing feature points based on the prominent feature characteristic compo-
nents they contain. The use of sparse coding algorithms to obtain basis dic-
tionaries provides the TreeBASIS algorithm with a sparse coding dictionary set
that resembles the receptive fields found in the visual cortex, and that are gener-
ically applicable across a wide range of natural images. TreeBASIS improves
upon the original BASIS algorithm by computing a vocabulary tree based on
essentially descriptive basis dictionary images (EDBDIs). These EDBDIs allow
us to create a tree that drastically reduces the number of FRI - BDI compar-
isons required to compute a descriptor, and provide a unique descriptor-path
that allows for very fast descriptor computations, comparisons, and matching.

The intended application of our TreeBASIS descriptor is for UAV frame-
to-frame feature matching. We tested our TreeBASIS algorithm against the
original BASIS algorithm on the Idaho test set and found that it provides an
increased homography accuracy over BASIS. TreeBASIS descriptors also have a
much smaller memory footprint than existing descriptors such as SIFT, SURF,
and even BASIS.

The original BASIS algorithm has been modified to fit into hardware on
an FPGA platform for embedded and low-resource vision systems. Our future
work will consist of modifying and implementing the TreeBASIS descriptor into
hardware to provide a complete description and matching vision system for low-
resource applications. By developing a hardware correlation system, the entire
vision system can be implemented in FPGA hardware, creating a complete
system-on-a-chip computer vision solution for small, light-weight, embedded
platforms.
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