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Abstract—In this paper, we explore the problem of how to
learn spectral (e.g., Fourier) models for classification problems.
Specifically, we consider two sub-problems of spectral learning:
(1) how to select the basis functions that will be included in the
model and (2) how to assign coefficients to the selected basis
functions. Interestingly, empirical results suggest that the most
commonly used approach does not perform as well in practice
as other approaches, while a method for assigning coefficients
based on finding an optimal linear combination of low-order basis
functions usually outperforms other approaches.

I. INTRODUCTION

Spectral learning methods based on Fourier, wavelet, and
other transforms have been successfully applied in both applied
and theoretical domains [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. The common theme of these approaches is the
end goal of representing the target function in a particular
spectral representation. However, several different approaches
to spectral learning have been used, and it is not clear which
are most effective in typical machine learning scenarios.

In this paper, we explore the problem of how to best learn
spectral representations for classification problems. In doing
so, we compare and analyze new and old approaches to the
two main phases of the spectral learning process: determining
which basis functions to include in the model and determining
the coefficients to assign to each basis function.

II. BACKGROUND

Spectral representations provide an alternative representa-
tion of a function. For example, consider the Fourier spectrum.
Suppose f : {0, 1}n −→ R. Then the Fourier spectrum of f ,
denoted f̂ , is given by

f̂(α) =
1
2n

∑
x∈{0,1}n

f(x)χα(x) (1)

where α ∈ {0, 1}n labels basis function χα, defined as

χα(x) =
{

+1 : if
∑
i αixi is even

−1 : if
∑
i αixi is odd (2)

where αi and xi denote the ith binary digits of α and x. Each
Fourier coefficient f̂(α) corresponds to a basis function, χα,
and the sign and magnitude of f̂(α) indicate the correlation
between f and χα. Large positive and negative coefficients
indicate significant positive and negative correlations, respec-
tively, while small coefficients indicate little correlation.

Any f can be recovered from its Fourier representation by:

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x) (3)

As Eq. 3 shows, the Fourier spectrum provides a representation
of f as a linear combination of the Fourier basis functions.

In the case of an n-dimensional Boolean-input function,
the Fourier basis functions are XOR functions, each returning
−1 iff the XOR of a particular subset of the inputs is true. The
subset is implicitly defined by α in Equation 2. Since αixi = 0
when αi = 0 and αixi = xi when αi = 1, the output of χα
depends only inputs for which αi = 1. The order of any χα is
given by

∑
i αi, the number of inputs that are relevant to χα.

By changing the basis function definition, instead of XORs,
we obtain new bases of AND (ξ) and OR (ζ) basis functions:

ξα(x) =
{

+1 : if
∑
i αixi <

∑
i αi

−1 : if
∑
i αixi =

∑
i αi

(4)

ζα(x) =
{

+1 : if
∑
i αixi = 0

−1 : if
∑
i αixi > 0 (5)

By replacing the Fourier basis functions in Equation 1 with ei-
ther of these sets of basis functions, we obtain new “correlation
spectra” —the coefficients reveal the correlation between f and
either the AND or OR functions, just as the Fourier coefficients
do for the XOR functions. Note, however, that unlike in the
XOR case, the coefficients obtained from Equation 1 will not
generally give the linear combination of AND or OR functions
that equals f . There is another transform equation that gives
the linear combination (but not the correlation); however, only
the correlation spectrum will be of interest here.

III. SPECTRAL LEARNING METHODS

Given a set X of 〈x, f(x)〉 examples, a spectral learning
algorithm attempts to learn a spectral representation of f that
approximates it well. Since the number of basis functions is
exponential in the number of inputs to a function, a spectral
learning algorithm will typically select a subset of basis
functions to use in its model, implicitly assigning coefficients
of 0 to the remaining basis functions. If A is the set of labels of
basis functions included in the model, then a spectral learner’s
approximation of f is given by the following:

f̃(x) =
∑
α∈A

f̂(α)φα(x) (6)

where φα is a general basis function reference that could be
replaced by any of the basis functions defined above.



Spectral learning algorithms can be applied to Boolean
classification problems by encoding the outputs of positive and
negative examples as −1.0 and 1.0, respectively, and using the
sign of the model’s output to make classifications:

f̃(x) =
{
false : if

∑
α∈A f̂(α)φα(x) ≥ 0

true : if
∑
α∈A f̂(α)φα(x) < 0

(7)

The task of a spectral learner is to determine which basis
functions to include in the model and what coefficient values
to assign to each basis function.

A. Selecting Basis Functions

Three approaches to basis function selection are considered
in this paper: Most-Correlated, Low-Order, and AdaBoost.

1) Most-Correlated: The most common approach to basis
function selection is to select the basis functions that are
most correlated with f , or, equivalently, that have the largest
coefficients in the correlation spectrum of f (Equation 1)
[11], [1], [2], [3], [8], [10]. Although the true coefficients are
unknown, they can be estimated from X:

˜̂
f(α) =

1
|X|

∑
〈x,f(x)〉∈X

f(x)φα(x) (8)

Stated precisely, the Most-Correlated selection method used in
this paper selects basis functions according to rule:

φα is preferred to φβ iff:
(|f̂(α)| > |f̂(β)|) ∨

(|f̂(α)| = |f̂(β)| ∧
∑
i αi <

∑
i βi)

Note that ties in coefficient size are broken in favor of lower-
order basis functions (further ties are broken randomly).

For any basis, the Most-Correlated approach makes sense
from a feature selection perspective, as basis functions that are
correlated with f should be better features. For a basis in which
the correlation spectrum gives the representation of a function
in that basis, such as the Fourier spectrum, this approach can
also be motivated by the goal of trying to approximate the
true representation of f in that basis, with the sensible strategy
being to select the basis functions with large coefficients, as
they carry the most “weight” in the linear combination.

2) Low-Order: Another reasonable approach to basis func-
tion selection is to use the low-order basis functions (e.g., to
select all basis functions for which

∑
i αi ≤ k) [12], [9]. The

Low-Order approach used in this paper selects basis functions
according to the following rule:

φα is preferred to φβ iff:
(
∑
i αi <

∑
i βi) ∨

(
∑
i αi =

∑
i βi ∧ |f̂(α)| > |f̂(β)|)

Note that basis functions of the same order are selected in
order of highest correlation with the training data. (If there is
still a tie, it is broken randomly.) Thus, the Low-Order and
Most-Correlated methods both favor low-order functions and
high correlations, and they differ only in which criterion is
considered more important.

SelectBasisFunctions–AdaBoost(X , T )
(1) A← ∅
(2) for each 〈x, f(x)〉 ∈ X
(3) w〈x,f(x)〉 ← 1

|X|
(4) for t = 1 to T
(5) Xt ← {〈x,w〈x,f(x)〉f(x)〉 : 〈x, f(x)〉 ∈ X}
(6) φαt ← SelectCorrelatedFunction(Xt)
(7) A← A ∪ φα
(8) εt ←

P
{〈x,f(x)〉:φαt (x)6=f(x)}

w〈x,f(x)〉
(9) for each 〈x, f(x)〉 ∈ X s.t. φαt(x) = f(x)
(10) w〈x,f(x)〉 ← w〈x,f(x)〉(

εt
1−εt )

(11) z ←
P
〈x,f(x)〉∈X w〈x,f(x)〉

(12) for each 〈x, f(x)〉 ∈ X
(13) w〈x,f(x)〉 ← w〈x,f(x)〉/z
(14) return A

Fig. 1. The AdaBoost basis function selection procedure.

One motivation for preferring low-order functions is that
it seems reasonable to expect that in practice f is more likely
to be correlated with lower-order functions. (In fact, a low-
order approach can be viewed as a most-correlated approach
with the prior assumption that lower-order functions will be
more correlated with f .) Low-order functions may be more
correlated with f because they are defined over fewer inputs
and therefore represent a simpler interaction between inputs.
It also seems reasonable to expect that lower-order functions
will be more likely to generalize well.

3) AdaBoost: An alternative approach to basis function
selection is to select basis functions in conjunction with a
boosting algorithm [5], generating an ensemble of learners
that makes classifications by weighted vote. The learners
are trained iteratively, typically with the first learner trained
on the original data set and subsequent learners trained on
weighted data sets in which examples that were misclassified
by previously-trained learners receive more weight. If the
learners are spectral learners whose models consist of a single
basis function, then the result is just a spectral representation
in which the basis functions (and possibly coefficients) were
selected in conjunction with a boosting algorithm.

The AdaBoost basis function selection approach used in
this paper is based on the AdaBoost.M1 algorithm [13], and is
illustrated in Figure 1. In each boosting iteration t, the weights
for each example are used to create a weighted data set, Xt

(line 5), in which the weights are implicitly represented by
converting the f(x) values from ±1 to ±w〈x,f(x)〉. Then, a
basis function that is highly correlated with Xt is selected (line
6) and added to the solution (line 7). The distribution of weight
over the examples is initially uniform (line 3), but it is updated
each iteration (lines 8-13) so that examples that are classified
correctly by the most recently added basis function receive
less weight (lines 9-10). (Note: For simplicity, the algorithm in
Figure 1 is presented as if each φαt is positively correlated with
Xt. However, if φαt is negatively correlated, each occurrence
of φαt(x) in lines 8 and 9 should be replaced with (−φαt(x)).)

B. Assigning Coefficients

Three methods of assigning coefficients to selected basis
functions are considered in this paper: Data-Estimate, Min-
Squared-Error, and AdaBoost.



1) Data-Estimate: The Data-Estimate approach, or some
variation of it, is by far the most common method for assigning
coefficients to basis functions [11], [12], [1], [2], [8], [9], [10].
In its basic form, each basis function is assigned the coefficient
that is estimated from training data. Typically, this is done by
Equation 8, which is also the method used here.

If the goal is to approximate the true spectral representation
of f , then setting each coefficient to the value estimated from
the training data would be a natural choice, especially if the
basis function selection approach is motivated by the same
goal. Regardless of how basis functions are selected, however,
the Data-Estimate method can be reasonably motivated as an
ensemble-building approach that weights each basis function
in proportion to its classification accuracy over X .

2) Min-Squared-Error: The Min-Squared-Error coefficient
assignment method can be motivated by viewing spectral
learning from a feature selection perspective. Basis function
selection can be thought of as the task of identifying a good
set of features, while coefficient assignment can be thought of
as the task of learning an “optimal” linear combination of the
features, without regard to whether the resulting combination
resembles the true spectral representation of the function. In
the Min-Squared-Error approach, the optimal linear combina-
tion of the set A of selected basis functions is the one that
minimizes the squared error over the training data:

argmin
˜̂
f(α1),...,

˜̂
f(α|A|)

 ∑
〈x,f(x)〉∈X

(
f(x)−

∑
α∈A

˜̂
f(α)φα(x)

)2


Motivations for using squared error as the metric for optimality
in the linear combination include the fact that it generalizes
naturally to regression problems and that it is easily computed.
Other common metrics, such as the number of misclassifica-
tions or the distance from the decision surface to the nearest
training examples of each class are not considered here.

Note that there may not be a unique solution to the least-
squares problem, indicating that with respect to the data there
is redundancy in the set of selected basis functions. To resolve
this issue, basis functions are considered for inclusion in the
model iteratively (either in the order defined by the preference
function or the order in which they were added to the model
by AdaBoost), and any basis functions whose inclusion would
introduce redundancy are not added to the model.

3) AdaBoost: The AdaBoost coefficient assignment
method makes sense only in the context of the AdaBoost
basis function selection method. In the AdaBoost.M1
algorithm, each learner is assigned a coefficient whose
magnitude is proportional to the learner’s accuracy on its
weighted set of training data. In terms of the AdaBoost
basis function selection method described in Figure 1, each
coefficient is given by the following:

f̂(αt) = ± log
(

1− εt
εt

)
(9)

where εt is the (weighted) misclassification rate of φαt and
the sign of f̂(αt) is negative iff

∑
〈x,f(x)〉∈Xt f(x)φαt(x) < 0

(i.e., if φαt is negatively correlated with Xt).

IV. EMPIRICAL RESULTS

In this section, the basis function selection and coefficient
assignment methods are compared on nine Boolean classi-
fication problems [14] with each of the previously defined
spectral representations (i.e., the AND, OR, and XOR bases).
For each learning problem, the data was partitioned 100 times
into training and test sets (with 10% used for testing), and the
average classification accuracy on the test set when training
on the corresponding training set was recorded. Each method
used the same 100 splits of data, and results were averaged
over those 100 trials. Statistically significant differences were
measured pair-wise by a paired permutation test, with signifi-
cant differences defined as those for which p ≤ 0.01.

For each spectral learning approach there is a single free
parameter: T , the number of basis functions to include in
the model. This parameter was set automatically as part of
the learning process. Specifically, each learner would split its
training data into training and validation sets (with 10% held
out for validation), and would then estimate its generalization
performance with each number of basis functions from 1 to
Tmax. After repeating this on 10 random partitions of the
training data and averaging results, T was set to the number
of basis functions that maximized classification accuracy on
the validation set (with ties broken in favor of fewer basis
functions). Then, the learner would train on the entire training
set with the selected T value.

The following sections present pair-wise comparisons of
the spectral learning approaches, and tables of results focus on
those cases where statistically significant differences between
methods were observed. A complete listing of the results can
be seen in Table VIII at the end of the paper.

A. Assigning Coefficients

Tables I and II show the average test accuracy when
using the Data-Estimate and Min-Squared-Error coefficient as-
signment methods with Low-Order and Most-Correlated basis
function selection. Of the 27 possible combinations of data set
and basis, the tables show only those cases for which a statis-
tically significant difference between methods was observed.
In each case, the higher accuracy is bolded. Where there
were significant differences, the Min-Squared-Error approach
is usually superior to the Data-Estimate approach.

One advantage of the Min-Squared-Error approach is that
it has more flexibility in modeling functions. In the Data-
Estimate approach, the coefficients are assigned independently,
without regard to what other basis functions may be in the
model. In the Min-Squared-Error approach, the coefficients are
set as a group to be “optimal” with respect to the selected set of
basis functions. Of course, the minimum squared error linear
combination is not certain to be better, and increased flexibility
can increase the likelihood of overfitting, which may explain
why the Min-Squared-Error approach occasionally performed
worse. However, it seems to be a better approach in general.

Table III shows a comparison of the three coefficient
assignment methods when AdaBoost is used to select basis
functions. In general, the AdaBoost coefficient assignment
method gives the best results.



TABLE I. COMPARISON OF COEFFICIENT ASSIGNMENT METHODS FOR
THE LOW-ORDER BASIS FUNCTION SELECTION APPROACH. WHERE
SIGNIFICANT DIFFERENCES WERE OBSERVED (SHOWN BELOW), THE

MIN-SQUARED-ERROR APPROACH IS USUALLY SUPERIOR.

DATA SET BASIS DATAEST MINSQERR
CHESS AND 87.2% 95.2%
CHESS OR 86.8% 96.6%
CHESS XOR 87.0% 94.9%
GERMAN AND 69.9% 73.1%
GERMAN OR 70.8% 73.7%
GERMAN XOR 70.4% 73.2%
PIMA XOR 72.6% 73.5%
SPECT AND 79.3% 81.9%
SPECT OR 79.0% 81.9%
SPECT XOR 77.3% 81.6%
VOTING AND 95.4% 95.8%
VOTING XOR 95.3% 95.9%
WISC1 AND 95.5% 96.0%
WISC1 OR 96.3% 95.8%
WISC1 XOR 95.6% 96.2%
WISC2 AND 75.5% 71.5%
WISC2 OR 75.6% 72.4%
WISC2 XOR 76.3% 72.6%
WISC3 AND 91.3% 94.3%

TABLE II. COMPARISON OF COEFFICIENT ASSIGNMENT METHODS FOR
THE MOST-CORRELATED BASIS FUNCTION SELECTION APPROACH.

WHERE SIGNIFICANT DIFFERENCES WERE OBSERVED (SHOWN BELOW),
THE MIN-SQUARED-ERROR APPROACH IS USUALLY SUPERIOR.

DATA SET BASIS DATAEST MINSQERR
CHESS AND 80.7% 81.0%
CHESS OR 77.6% 89.0%
CHESS XOR 75.5% 83.2%
GERMAN AND 69.6% 70.9%
HEART AND 79.2% 81.5%
PIMA AND 74.1% 73.3%
PIMA OR 72.5% 73.6%
SPECT OR 83.7% 82.6%
VOTING AND 95.5% 95.8%
WISC1 AND 93.2% 96.0%
WISC3 AND 90.8% 92.8%

Since both the Data-Estimate and AdaBoost methods as-
sign coefficients that are proportional to classification accu-
racy, with the primary difference being whether accuracy is
measured with respect to the original data or a weighted
version of the data, it may be surprising that AdaBoost gave
a significantly better result so often. However, an impor-
tant difference is that while the Data-Estimate coefficients
are assigned independently, the iteratively-assigned AdaBoost
coefficients are each dependent on previously-added basis
functions. In AdaBoost, the weighted data sets implicitly carry
information about previously added basis functions, which
allows the assigned coefficients to be “optimized” in a sense
with respect to previously added basis functions. As with the
Min-Squared-Error approach, however, this extra flexibility
may lead to overfitting in some cases.

There were few significant differences between the Min-
Squared-Error and AdaBoost coefficient assignment methods.
Interestingly, however, in those cases where there was a
difference, the AdaBoost method is always superior.

TABLE III. COMPARISON OF COEFFICIENT ASSIGNMENT METHODS
FOR THE ADABOOST BASIS FUNCTION SELECTION APPROACH. WHERE

SIGNIFICANT DIFFERENCES WERE OBSERVED (SHOWN BELOW), THE
ADABOOST COEFFICIENT ASSIGNMENT METHOD IS USUALLY SUPERIOR

TO THE OTHER APPROACHES.

DATA SET BASIS ADABOOST DATAEST
CHESS AND 97.6% 94.0%
CHESS OR 96.1% 93.9%
CHESS XOR 97.7% 94.8%
GERMAN AND 72.7% 71.7%
GERMAN OR 72.6% 71.4%
HEART AND 81.3% 79.1%
HEART OR 81.5% 78.2%
SPECT AND 83.5% 78.7%
SPECT OR 82.3% 83.9%
WISC1 AND 95.9% 92.8%
WISC3 AND 93.9% 92.7%
WISC3 OR 94.8% 92.8%
WISC3 XOR 91.6% 92.8%

DATA SET BASIS ADABOOST MINSQERR
CHESS AND 97.6% 95.8%
CHESS OR 96.1% 95.4%
CHESS XOR 97.7% 96.4%
HEART AND 81.3% 79.4%
WISC1 OR 96.0% 95.5%

TABLE IV. COMPARISON OF THE LOW-ORDER AND
MOST-CORRELATED BASIS FUNCTION SELECTION METHODS. WHERE
SIGNIFICANT DIFFERENCES WERE OBSERVED (SHOWN BELOW), THE

LOW-ORDER APPROACH IS CONSISTENTLY SUPERIOR.

DATA SET BASIS LOW-ORDER MOST-CORR
CHESS AND 95.2% 81.0%
CHESS OR 96.6% 89.0%
CHESS XOR 94.9% 83.2%
GERMAN AND 73.1% 70.9%
GERMAN OR 73.7% 70.1%
GERMAN XOR 73.2% 71.6%
HEART OR 83.2% 78.4%
SPECT AND 81.9% 77.9%
SPECT XOR 81.6% 78.0%
VOTING XOR 95.9% 95.4%
WISC1 OR 95.8% 94.9%
WISC2 AND 71.5% 73.8%
WISC3 AND 94.3% 92.8%
WISC3 OR 94.4% 92.8%
WISC3 XOR 94.0% 91.8%

B. Selecting Basis Functions

Tables IV, V, and VI provide pair-wise comparisons of
the AdaBoost, Low-Order, and Most-Correlated basis function
selection methods when each is combined with its preferred
coefficient assignment method (i.e., Min-Squared-Error co-
efficient assignment for the Low-Order and Most-Correlated
selection methods, and AdaBoost coefficient assignment for
the AdaBoost selection method). Again, only cases for which
there was a statistically significant difference between methods
are shown, and the higher accuracy in each case is bolded.

Table IV reveals a clear superiority of the Low-Order
approach over the Most-Correlated approach. This result is
interesting, as the Most-Correlated approach would seem to
have an advantage: it can select correlated basis functions



TABLE V. COMPARISON OF THE ADABOOST AND
MOST-CORRELATED BASIS FUNCTION SELECTION METHODS. WHERE
SIGNIFICANT DIFFERENCES WERE OBSERVED (SHOWN BELOW), THE

ADABOOST APPROACH IS USUALLY SUPERIOR.

DATA SET BASIS ADABOOST MOST-CORR
CHESS AND 97.6% 81.0%
CHESS OR 96.1% 89.0%
CHESS XOR 97.7% 83.2%
GERMAN AND 72.7% 70.9%
GERMAN OR 72.6% 70.1%
HEART OR 81.5% 78.4%
HEART XOR 79.3% 82.7%
PIMA AND 74.0% 73.3%
PIMA OR 72.3% 73.6%
SPECT AND 83.5% 77.9%
WISC1 OR 96.0% 94.9%
WISC1 XOR 94.8% 95.9%
WISC3 AND 93.9% 92.8%
WISC3 OR 94.8% 92.8%

TABLE VI. COMPARISON OF THE ADABOOST AND LOW-ORDER
BASIS FUNCTION SELECTION METHODS. WHERE SIGNIFICANT

DIFFERENCES WERE OBSERVED (SHOWN BELOW), THE LOW-ORDER
APPROACH IS USUALLY SUPERIOR.

DATA SET BASIS ADABOOST LOW-ORDER
CHESS AND 97.6% 95.2%
CHESS OR 96.1% 96.6%
CHESS XOR 97.7% 94.9%
GERMAN OR 72.6% 73.7%
GERMAN XOR 71.8% 73.2%
HEART OR 81.5% 83.2%
HEART XOR 79.3% 83.3%
PIMA OR 72.3% 73.4%
SPECT AND 83.5% 81.9%
SPECT XOR 78.7% 81.6%
VOTING XOR 95.3% 95.9%
WISC1 XOR 94.8% 96.2%
WISC3 XOR 91.6% 94.0%

from any part of the spectrum, while the Low-Order method
is restricted to low-order functions. As mentioned previously,
it seems reasonable to expect that low-order functions will
typically exhibit higher correlation. Thus, we might expect
that the two approaches would perform similarly, as both
would tend to select low-order functions. However, the results
indicate that the Most-Correlated approach often selects high-
order functions that are individually most correlated with X ,
but the end result is a set of functions that is collectively less
correlated with f . Two possible reasons for this are (1) the
higher-order functions do not generalize as well or (2) the
most correlated basis functions are less effective as a set of
features than other sets of basis functions.

Further analysis points to the second reason. Empirical
results show that although low-order basis functions tend to
be more correlated with X (and f ) on average, the error in
training-data estimates of correlation do not seem to be worse
for high-order basis functions than low-order basis functions.
Thus, the highly correlated high-order basis functions may
not necessarily be bad features. However, the results in Table
VII suggest one problem with the Most-Correlated approach.
For each data set and basis combination shown in Table IV,
Table VII shows the average correlation, measured over the

TABLE VII. AVERAGE CORRELATION (OVER THE TRAINING DATA)
BETWEEN THE FIRST 10 BASIS FUNCTIONS SELECTED BY EACH

SELECTION METHOD. THE MOST-CORRELATED APPROACH TENDS TO
SELECT BASIS FUNCTIONS THAT ARE HIGHLY CORRELATED WITH EACH

OTHER, WHICH CAN HAMPER LEARNING.

DATA SET BASIS ADABST LOWORD MOSTCO
CHESS AND 0.232 0.242 0.996
CHESS OR 0.356 0.242 0.484
CHESS XOR 0.156 0.240 0.992
GERMAN AND 0.332 0.358 0.794
GERMAN OR 0.292 0.364 0.892
GERMAN XOR 0.106 0.322 0.818
HEART OR 0.256 0.270 0.720
SPECT AND 0.382 0.292 0.566
SPECT XOR 0.104 0.286 0.290
VOTING XOR 0.184 0.498 0.622
WISC1 OR 0.644 0.614 0.914
WISC2 AND 0.408 0.404 0.942
WISC3 AND 0.488 0.710 0.862
WISC3 OR 0.472 0.704 0.994
WISC3 XOR 0.268 0.688 0.916

training data, between the first 10 basis functions selected
by each method. The results indicate that the most correlated
basis functions tend to also be very correlated with each other.
Consequently, it is likely that although the Most-Correlated
approach picks basis functions that are highly correlated with
X (and probably f ), they may tend to be so correlated with
each other that there is little gained by combining them.

The performance advantage of the AdaBoost approach over
the Most-Correlated approach (Table V) is also interesting, and
may also be explained in part by Table VII. Both methods
are based on choosing correlated basis functions. However,
AdaBoost’s selection of basis functions that are correlated
with weighted data sets naturally de-correlates the selected
functions and results in a set of basis functions that are
correlated with different local regions of f .

Finally, Table VI shows that the Low-Order approach
usually outperforms the AdaBoost approach when there is a
significant difference. Thus, the Low-Order approach seems to
be the best approach overall. However, the AdaBoost approach
gave the best result on two of the nine data sets (Chess and
SPECT), and may therefore be worth considering. The Most-
Correlated approach, on the other hand, would seem to be less
useful to consider, as it is often worse than the others and it
was never significantly better than both of the others.

V. CONCLUSION

Spectral approaches to machine learning have been suc-
cessfully applied in several domains, and different methods
for learning spectral representations have been proposed. In
this paper, we have compared the fundamental approaches
to selecting basis functions and assigning coefficients. Inter-
estingly, empirical results suggest that the spectral learning
approach that is most common, selecting the most correlated
basis functions and estimating their coefficients from data,
which is motivated by a desire to estimate the function’s true
spectral representation, may be the worst approach for typical
machine learning problems. On the other hand, attempting



TABLE VIII. COMPLETE TABLE OF RESULTS FOR THE VARIOUS COMBINATIONS OF BASIS FUNCTION SELECTION METHODS (MOST-CORRELATED,
LOW-ORDER, AND ADABOOST) AND COEFFICIENT ASSIGNMENT METHODS (DATA-ESTIMATE, MIN-SQUARED-ERROR, AND ADABOOST).

MOSTCO+ MOSTCO+ LOWORD+ LOWORD+ ADABST+ ADABST+ ADABST+
DATA SET BASIS DATAEST MINSQERR DATAEST MINSQERR DATAEST MINSQERR ADABST
CHESS AND 80.7% 81.0% 87.2% 95.2% 94.0% 95.8% 97.6%
CHESS OR 77.6% 89.0% 86.8% 96.6% 93.9% 95.4% 96.1%
CHESS XOR 75.5% 83.2% 87.0% 94.9% 94.8% 96.4% 97.7%
GERMAN AND 69.6% 70.9% 69.9% 73.1% 71.7% 72.2% 72.7%
GERMAN OR 70.7% 70.1% 70.8% 73.7% 71.4% 71.9% 72.6%
GERMAN XOR 71.4% 71.6% 70.4% 73.2% 72.1% 72.1% 71.8%
HEART AND 79.2% 81.5% 83.2% 82.4% 79.1% 79.4% 81.3%
HEART OR 79.3% 78.4% 83.2% 83.2% 78.2% 81.3% 81.5%
HEART XOR 81.6% 82.7% 82.9% 83.3% 80.8% 79.4% 79.3%
PIMA AND 74.1% 73.3% 74.1% 73.6% 74.1% 74.1% 74.0%
PIMA OR 72.5% 73.6% 73.6% 73.4% 71.7% 72.6% 72.3%
PIMA XOR 72.9% 73.1% 72.6% 73.5% 73.7% 72.9% 73.2%
SPECT AND 78.1% 77.9% 79.3% 81.9% 78.7% 83.1% 83.5%
SPECT OR 83.7% 82.6% 79.0% 81.9% 83.9% 82.1% 82.3%
SPECT XOR 78.4% 78.0% 77.3% 81.6% 78.9% 79.1% 78.7%
VOTING AND 95.5% 95.8% 95.4% 95.8% 95.3% 95.8% 95.8%
VOTING OR 95.4% 95.5% 95.5% 95.7% 95.4% 95.4% 95.2%
VOTING XOR 95.1% 95.4% 95.3% 95.9% 95.4% 95.4% 95.3%
WISC1 AND 93.2% 96.0% 95.5% 96.0% 92.8% 96.0% 95.9%
WISC1 OR 95.1% 94.9% 96.3% 95.8% 95.9% 95.5% 96.0%
WISC1 XOR 95.8% 95.9% 95.6% 96.2% 94.4% 94.6% 94.8%
WISC2 AND 74.6% 73.8% 75.5% 71.5% 73.0% 72.4% 73.1%
WISC2 OR 72.4% 72.0% 75.6% 72.4% 72.6% 71.6% 72.3%
WISC2 XOR 71.7% 71.0% 76.3% 72.6% 70.7% 70.9% 71.5%
WISC3 AND 90.8% 92.8% 91.3% 94.3% 92.7% 93.8% 93.9%
WISC3 OR 93.0% 92.8% 93.8% 94.4% 92.8% 94.3% 94.8%
WISC3 XOR 91.7% 91.8% 93.7% 94.0% 92.8% 92.3% 91.6%

to learn an optimal linear combination of low-order basis
functions appears to be a more effective approach.

Although the results presented in this paper suggest that a
spectral learner will perform better if it limits itself to low-
order basis functions (even if there are higher-order basis
functions that appear to be more highly correlated), not all
functions can be approximated well by only low-order basis
functions, and it seems reasonable to expect that in some cases
a spectral learner would perform better if it could use some
useful higher-order basis functions. An important direction for
future work will be to determine how to recognize and take
advantage of useful higher-order basis functions without losing
the good generalization performance of a low-order approach.
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