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Abstract Right-heart catheterization is the most ac-
curate method for measuring pulmonary artery pres-
sure (PAP). It is an expensive, invasive procedure, ex-
poses patients to the risk of infection, and is not suited
for long-term monitoring situations. Medical researchers
have shown that PAP influences the characteristics of
heart sounds. This suggests that heart sound analysis
is a potential method for the noninvasive diagnosis of
pulmonary hypertension. We describe the development
of a prototype system, called PHD (pulmonary hyper-
tension diagnoser), that implements this method. PHD
uses patient data with machine learning algorithms to
build models of how pulmonary hypertension affects
heart sounds. Data from 20 patients was used to build
the models and data from another 31 patients was used
as a validation set. PHD diagnosed pulmonary hyper-
tension in the validation set with 77% accuracy and 0.78
area under the receiver-operating-characteristic curve.

Keywords Learning systems · Blood pressure ·
Cardiovascular system

1 Introduction

Measuring the pulmonary artery pressure (PAP) is im-
portant because it is “a very useful parameter for the
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clinical evaluation of many cardiac diseases” [1]. Right-
heart catheterization and Doppler echocardiography can
both be used to measure PAP. These methods are not
ideal for some patients and under some circumstances;
consequently, heart sound analysis is being studied as
an alternative method for PAP estimation. In this pa-
per we develop a system that diagnoses abnormally high
PAP (i.e., pulmonary hypertension, or PH) using heart
sound analysis.

Right-heart catheterization gives the most reliable
and accurate measurement of PAP [1][11]. It is per-
formed by threading a Swan-Ganz catheter through a
vein until it reaches the pulmonary artery, at which
point a PAP measurement can be made. Disadvantages
of this approach include high expense, risk of infection,
and risk of physical harm to internal bodily structures.

Doppler echocardiography uses ultrasound technol-
ogy and the Doppler effect to measure the speed and di-
rection of blood flow within the heart. Doppler echocar-
diography is noninvasive, safe, and relatively cheap. The
disadvantage is that it cannot be used to estimate PAP
“in approximately 50% of patients with normal PAP,
10-20% of patients with increased PAP, and 34-76% of
patients with chronic obstructive pulmonary disease”
[15].

Heart sound analysis is noninvasive, inexpensive,
safe, can be used on most if not all patients, and may
be automated using computer software. It has the po-
tential to provide PAP estimates without the disadvan-
tages of right-heart catheterization and Doppler echocar-
diography. However, heart sound analysis is still in an
experimental stage and has not yet matured enough to
replace the other methods of PAP estimation.

Heart sound analysis is based on the idea that PAP
levels have an effect on the characteristics of the heart
sounds, especially S2 (the second heart sound). Theo-
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retical considerations and experimental results support
this idea [1][4][15]. For example, Aggio notes that PAP
is “known to influence the characteristics of the second
heart sound (S2): a rise of PAP is associated with an en-
hancement of its pulmonary component” [1]. This and
other relationships can be exploited to estimate PAP
by analyzing heart sounds.

The system described in this paper uses machine
learning algorithms to implement heart sound analysis
for pulmonary hypertension diagnosis. The relationship
between PAP and heart sounds is not fully understood
and may be quite complex; consequently, an analytical
solution would be difficult to implement. In contrast,
machine learning algorithms can infer from example
patient data complex models of the PAP/heart sound
relationship.

1.1 Previous Work

Several studies have measured patient data (e.g., S2 fea-
tures paired with PAP values) and then modeled this
data using curve fitting techniques. Statistical measures
such as the correlation coefficient are used to measure
how well the curve models the data. A primary goal in
these studies is to determine which heart sound features
can be used to build good models of the data. Aggio et
al. studied various characteristics of the frequency spec-
trum of P2 (the pulmonic component of S2) [1]. Chen
et al. looked at additional S2 frequency spectrum char-
acteristics [4]. Xu et al. looked at the splitting interval
between A2 (the aortic component of S2) and P2 [15].
Many of the features from these studies will be used in
this paper (see Sect. 2.2 for specifics).

The approach taken here is different from the typi-
cal approach used in previous studies. We use machine
learning algorithms to infer models of the data instead
of curve fitting. We use the models to classify test data
instead of measuring the correlation between a model
and the data. Classifying test data provides us with an
estimate of the model’s predictive accuracy on future
patients.

Tranulis et al. used a time-frequency representa-
tion of S2 to train a multilayer perceptron for PAP
estimation and patient diagnosis [12]. This approach
is similar to our approach, building a data model us-
ing a machine learning algorithm and estimating the
model’s predictive accuracy using test data. Unfortu-
nately, their model’s reported accuracy is overly opti-
mistic; it does not reflect the model’s performance on
real-world patients. This is because the heart sounds of
each patient in the study were randomly shuffled and
then split into two groups, with one group ending up
in the training set and the other in the test set. In a

real-world situation, a model will not have been trained
using data from a patient that needs to be diagnosed.
In this paper we will use two disjoint sets of patients to
create training and test sets.

1.2 Patient Data

Patient data collection was done under IRB approval
and all patients provided written informed consent. An
Audicor machine (Inovise Medical, Inc.) was used to
record phonocardiogram (PCG) and electrocardiogram
(ECG) traces from 51 patients undergoing right-heart
catheterization. Patient PAP values were measured us-
ing a Swan-Ganz catheter, and a patient is considered
as having pulmonary hypertension if his/her mean PAP
is greater than or equal to 25 mmHg. The 51 patients
are split into two sets: a set of 20 patients and another
set of 31 patients. The set of 31 patients is used as
a hold-out set for final validation of our models. The
mean and standard deviation (M±SD) of the mean
PAP values for the 20 patients is (23.8 ± 10.9); for the
31 patients it is (25.2± 11.1); and for all 51 patients it
is (24.6± 10.9).

2 Method

This paper describes the development of a prototype
pulmonary hypertension diagnosis system which we call
PHD (pulmonary hypertension d iagnoser). We constrain
the design space of PHD to three sets of parameters:
chest wall location, heart sound features subset, and
machine learning algorithm. Designing PHD is equiva-
lent to choosing values for these parameters. The next
three subsections describe the parameters and the val-
ues that can be assigned to them.

Choosing values for the three design parameters is
complicated by the fact that the parameters are not
independent of one another. We cannot decompose the
design task into a search for the optimal value of the
first parameter, then the second, then the third. We
are forced to evaluate many parameter settings to find
a good one.

2.1 Chest Wall Locations

Heart sound characteristics change depending on the
chest wall location that is used to record the sound.
When building and testing classifier models for PHD we
use data from a single chest wall location, which allows
us to compare the performance of PHD as a function of
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chest wall location (see Fig. 2) and determine which lo-
cations are most useful for PH diagnosis. The PCG and
ECG traces were recorded for each of the following five
chest wall locations: the V3 position, the V4 position,
the second interspace left parasternal position, the left
parasternal pulmonic region, and the right parasternal
aortic region.

2.2 Heart Sound Features

We extract 46 features for each recorded heart sound in
the PCG traces. These candidate features include many
that are described in the medical literature, some that
are derivatives of these features, features calculated by
Inovise, and some miscellaneous features. A summary
description of all the candidate heart sound features
appears in Table 1. PHD’s performance is dependent
on the features used; finding a suitable subset of these
features is an important design challenge.

Engineers at Inovise provided us with proprietary
heart sound features which we have named as follows:
cS1, iS1, wS1, cS2, iS2, wS2, iS3, sS3, iS4, and sS4. These
features correspond to the intensity or width of the four
heart sounds (S1-S4). S3 and S4 are, respectively, the
third and fourth heart sound. S4 is always abnormal
and S3 is an early sign of heart disease in patients over
40 years in age.

We calculate the seven spectral features described
by Chen et al. [4] (two of which were also studied by
Aggio et al. [1]). These include the dominant frequen-
cies of S2, A2, and P2 (FS2, FA2, and FP2 respectively),
the quality of resonance of A2 and P2 (QA2 and QP2

respectively), and the following ratios: FP2/FA2 and
QP2/QA2. Mathematical descriptions of these features
appear in Table 1.

The splitting interval of the second heart sound and
ventricular systole durations are also extracted. The
splitting interval (SI) and normalized splitting interval
(NSI) were studied in [15]. The SI is the time between
the beginning of A2 and beginning of P2. The NSI is
the SI normalized by the heart rate.

Left and right ventricle systole durations are esti-
mated and used as features. These features are selected
based on the idea that a higher PAP leads to a pro-
longed systole duration and/or a greater percent of the
cardiac cycle being required for systole. The hypothesis
is that a longer period of time is required to pump blood
through high-pressure, stiff arteries and capillaries.

The ventricle systole durations are calculated as fol-
lows. Either the R-wave time or the S1 start time is
used to mark the start of systole. The end of left and
right ventricle systole are marked by the start of the A2

Table 1 Heart Sound Features. PHD uses these features to di-

agnose PH. In this table sig can be one of the following heart

sound signals: HB, S1, S2, A2, or P2, where HB is the whole
heart sound signal. Terms such as tP2start are the onset times

of the indicated heart sound component. tR is the ECG R-wave

time and δRR is the time between two successive R-waves.

Category Features Description

Inovise
Features

cS1, iS1, wS1,
Heart Sound
Intensity/Width

cS2, iS2, wS2,

iS3, sS3, iS4, sS4

Dominant
Frequencya

FHB , FS1, FS2, argmax
k

F(sig)k
FA2, FP2

Quality of
Resonanceb

QHB , QS1, QS2,
Fsig/(Rsig − Lsig)

QA2, QP2

Powerc
PHB , PS1, PS2 1

T

∑
x∈sig

|x|2
PA2, PP2

Splitting
Interval

SIS1 tT1start − tM1start

SIS2 tP2start − tA2start

NSIS1
SIS1×HR

600

NSIS2
SIS2×HR

600

Ratios

R
FP2
FA2

FP2/FA2

R
QP2
QA2

QP2/QA2

R
PP2
PA2

PP2/PA2

R
PA2
PS2

PA2/PS2

R
PP2
PS2

PP2/PS2

R
PA2
PS1

PA2/PS1

R
PP2
PS1

PP2/PS1

R
PS2
PS1

PS2/PS1

Systole
Duration

DA2
R tA2start − tR

DP2
R tP2start − tR

DA2
S1 tA2start − tS1start

DP2
S1 tP2start − tS1start

D̃A2
R DA2

R /δRR

D̃P2
R DP2

R /δRR

D̃A2
S1 DA2

S1 /δRR

D̃P2
S1 DP2

S1 /δRR

Heart Rated HR m/
∑m

i=1 δ
i
RR

a F(sig)k is the kth frequency sample of the DFT of sig.
b Rsig and Lsig are, respectively, the frequencies to the right

and to the left of Fsig at which the value of the DFT drops to

half of the maximum.
c T is the length of sig.
d m is the number of surrounding heartbeats to include in

the calculation.

sound and the start of the P2 sound, respectively. This
results in the following features, where the systole begin
time is indicated by the subscript and the systole end
time is indicated by the superscript: DA2

R , DP2
R , DA2

S1 ,
DP2

S1 . The percent of the heartbeat duration taken by
systole is calculated by dividing the systole duration
features by the length of the corresponding heartbeat
(δHB). These features are denoted with a tilde sign, and
include the following: D̃A2

R , D̃P2
R , D̃A2

S1 , D̃P2
S1 .

We also extract general audio features of the heart
sounds. Specifically, the power of the S2, A2, and P2
sounds (PS2, PA2, and PP2 respectively) are calculated.
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The following ratios are also calculated: PP2/PA2, PA2/PS2,
PP2/PS2, PA2/PS1, PP2/PS1, and PS2/PS1.

We calculate additional features mainly because it
is simple to do so. The dominant frequency, Q-factor,
and power for the whole heart sound and for the S1
sound is added (FHB , QHB , PHB , FS1, QS1, and PS1).
The splitting interval and normalized splitting interval
of the S1 sound (SIS1 and NSIS1) is added as well as
the quality of resonance of the S2 sound and the heart
rate (QS2 and HR).

2.3 Learning Algorithms

We select PHD’s classification model generator from a
set of five candidate machine learning algorithms: de-
cision tree, k–nearest neigbhors, multilayer perceptron,
naive Bayes, and support vector machine. These are all
well-known and well-understood algorithms that per-
form inference and build models in different ways.

The decision tree algorithm (J48) is an implementa-
tion of the C4.5 algorithm developed by Quinlan [10]. It
generates the decision tree by splitting on features that
maximize information gain. The k–nearest neighbors
(KNN) algorithm is an instance-based learning method
[2] that builds a local model using lazy evaluation. The
multilayer perceptron (MLP) is a connectionist model
that is trained using the Backpropogation algorithm.
Naive Bayes (NB) is a probabilistic model that makes
the assumption of conditional independence between
feature given the target value [8] [6]. Support vector ma-
chines (SMO) find a margin-maximizing decision sur-
face (a hyperplane) within a high-dimensional space to
which input vectors are (implicitly) mapped in a non-
linear or linear fashion [9] [3]. In this paper we used a
linear support vector machine, which can be thought
of as an optimized linear perceptron. For all algorithms
we used the implementation found in WEKA [13].

2.4 Experiments

In the experiments described in this section we build
PHD systems and evaluate their performance. The train-
ing data for the validation experiments (Sect. 2.4.4)
comes from 20 of the 51 patients in this study and the
test data comes from the other 31 patients. In all other
experiments the training and test data come from the
set of 20 patients. Each PHD system is built using a
selected location, a set of features, and a learner. We
define the term “PHD configuration”, or just “config-
uration” to mean a tuple that includes a location, list
of features, and a learner. It may also refer to a PHD
system built using the tuple.

Fig. 1 Experiments Overview. We reduce the number of can-
didate PHD configurations using results from a series of experi-

ments.

The design space for PHD is large; the total number
of possible PHD configurations is about 1,759 trillion
(5 locations × 246 − 1 feature subsets × 5 learners).
We use several methods to reduce the size of this search
space; Fig. 1 gives an overview of this process. We ap-
ply a feature selection algorithm (Sect. 2.4.1) to select
a subset of the possible configurations. Results from
the search are combined (Sect. 2.4.2) to form an even
smaller subset. From this smaller subset we select 25
configurations using a modified form of bootstrapping
(Sect. 2.4.3) that we call exhaustive bootstrapping. Two
of these 25 configurations outperform the rest at clas-
sifying the 31 validation-set patients (Sect. 2.4.4).

The experiments in Sections 2.4.1, 2.4.3, and 2.4.4
estimate the real world performance of many PHD con-
figurations. Cross-validation was used in Section 2.4.1
and exhaustive bootstrapping was used in Section 2.4.3.
In Section 2.4.4 configurations were trained on a train-
ing set and tested on a validation set.

With an unlimited amount of (i.i.d.) data, the per-
formance estimation method of Section 2.4.4 would suf-
fice. However, this method produces biased results when
used with a small dataset, which is the case in these ex-
periments. We have data from 51 patients, 31 of which
were reserved for the experiment in Section 2.4.4. Even
if no patients were held out, 51 patients is still a small
dataset size. To get less biased performance estimates
using our small dataset, we use the (non-ideal) cross-
validation and bootstrapping methods [5].

Cross-validation and bootstrapping differ in the way
that the dataset is split in each iteration. Cross-validation
“folds” the dataset into roughly equal-sized sets. One
set is used as the test set while the other sets are com-
bined to form the training set. This is repeated, with
a different set being used as the test set, until all sets
have been used as the test set exactly once. Bootstrap-
ping creates a training set by randomly selecting a given
percent of the data; it creates a test set using the rest
of the data. This is repeated as often as necessary.
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2.4.1 Greedy Forward-Selection Search

We use a feature subset selection algorithm [7] to se-
lect a group of feature subsets from the feature subset
search space, whose size is 246− 1. We use the wrapper
approach [7] and 10-fold cross-validation for evaluat-
ing subsets. Using the wrapper approach makes sense
since the performance of PHD is dependent on both
the selected learning algorithm and the selected feature
subset.

The search method for our feature subset selection
algorithm is a greedy forward-selection (GFS) search.
A forward-selection search begins with an empty set of
features; features are added to this set as the search
progresses. This differs from the backward-elimination
search which starts with all possible features and elim-
inates features from the set during the search. The
search is greedy because it iteratively adds the single
feature that will improve performance the most; it does
not consider adding higher-order sets of features.

We perform 25 GFS searches, one for each of the lo-
cation/learner pairs. The searches run for 30 iterations,
producing 30 feature subsets (25× 30 = 750 subsets in
all).

2.4.2 Feature Ranking

We rank all 46 features from Section 2.2, producing a
ranked feature list, by assigning a score to each fea-
ture. This is done using the 25 feature lists that result
from the GFS searches. The feature scoring uses two
assumptions about features in the 25 feature lists. The
first assumption is that features chosen early in a GFS
search are more important than features chosen later
in the search. The second assumption is that features
appearing in more of the 25 lists are more important
than features appearing in fewer of the 25 lists. (Each
of the 25 lists contained 30 of the 46 features, so every
feature did not appear in every list.)

The following equation is used to score a feature:

fscore =
∑
l∈L

30− f l
rank

where fscore is the feature score, L is the set of lists in
which the feature appears, and f l

rank is the position in
the list, l, in which the feature appears.

2.4.3 Exhaustive Bootstrapping

The configurations that we evaluate in the exhaustive
bootstrapping experiments use one of only 46 candidate
feature subsets (a large reduction from the original 246−
1 candidate subsets). The subsets are created using the

ranked feature list. The first feature in the list is the
first subset; the first two features in the list are the
second subset, and so on with the 46th subset being
all 46 features. Combined with the five locations and
five learners, we end up still having 46 × 5 × 5 = 1150
candidate configurations to evaluate.

We use a modified version of bootstrapping (which
we call exhaustive bootstrapping) to evaluate the con-
figurations. We repeatedly split the set of 20 patients
into training and test sets. Each split consists of 18 pa-
tients in the training set and two patients in the test set.
Unlike normal bootstrapping where splits are formed
randomly and repeatedly a given number of times, we
systematically split the data in all possible ways in
which there are two patients in the test set. Splitting
patients in this way leads to

(
20
2

)
= 190 different splits,

creating 190 different test sets each of size two. Each
patient appears in 19 of the test sets and is paired with
a different patient each time. Consequently we calculate
19 performance evaluations per patient and each evalu-
ation is associated with a slightly different training set.

Exhaustive bootstrapping is used to mitigate the
effects of working with a small dataset. It allows us
to produce more configuration performance estimates
than cross-validation or a typical use of bootstrapping.
More estimates may lead to a more accurate final es-
timate (which is an average of the estimates). Also,
unlike regular bootstrapping, exhaustive bootstrapping
avoids producing duplicate evaluation results by pre-
venting two results from being produced by the same
training set and test set.

The exhaustive bootstrapping experiments produce
380 performance evaluations for each of the 1150 config-
urations. The average of each set of 380 evaluation re-
sults is taken as the classification accuracy for its associ-
ated configuration. Also, the 380 accuracy measures are
used to form a receiver-operating-characteristic (ROC)
curve and to calculate the area under the curve (AUC).
For each location/learner pair, we select the configura-
tion with the highest AUC.

2.4.4 Validation

We classify the holdout set of 31 patients using the
25 selected configurations. This is done by having each
configuration classify all heartbeats from each patient;
a patient is classified as sick (i. e. having pulmonary hy-
pertension) if the percentage of the patient’s heartbeats
that are classified as sick crosses a calculated threshold.

Each of the 25 configurations uses a different thresh-
old, which is calculated using the configuration’s associ-
ated ROC curve. Each point on the curve is associated
with a false-positive rate (FPR), a true-positive rate
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(TPR), and a threshold. We want a low FPR and a
high TPR so we calculate a score for each point us-
ing the following equation: score = TPR − FPR. The
configuration uses the threshold with the highest score.

3 Results

3.1 Ranked Feature List

The feature lists resulting from the GFS searches were
combined (see Sect. 2.4.2) to create a ranked feature
list, shown in Table 2. The features are ranked in de-
scending order from most important to least important
feature.

Physiological considerations lead us to expect that
features extracted from the S2 sound are helpful in clas-
sifying a patient. On the other hand we expect that
other features, such as those extracted from the S1
sound or the whole heart sound, are less helpful. The
ranked feature list confirms these expectations, although
some exceptions do occur.

The features extracted from the whole heart sound
were not very helpful. FHB , QHB , PHB , and HR are
all ranked in the second half of the list. The features
wholly-dependent on the S1 sound (iS1, cS1, QS1, PS1,
SIS1, wS1, FS1) were also all ranked in the second half
of the list. Together, these features make up 11 of the
23 features in the second-half of the list.

The ventricular systole duration estimates (DA2
S1 ,

DP2
S1 , DA2

R , and DP2
R ) were not predictive, as indicated

by their ranking in the ranked feature list. They oc-
cupied the 41st ranking and the last three rankings.
However, simply dividing these duration times by the
whole heartbeat time increased the predictivity. The
features D̃A2

R , D̃P2
R , D̃A2

S1 , and D̃P2
S1 occupy the 5th, 7th,

16th, and 25th rankings. Thus, the percentage of the
heartbeat taken for ventricular systole was much more
predictive than the absolute duration time of ventricu-
lar systole.

Statistical analysis in [4] found that, for their data,
FA2, QA2, and QP2/QA2 did not have a significant
influence on pulmonary artery systolic pressure. The
ranked feature list gives these features more credit, rank-
ing them, respectively, at 13th, 8th, and 6th.

Many of the features in the ranked feature list are
ranked in accordance with reasonable expectations based
on medical knowledge. The RPP2

PA2
feature is a powerful

predictive bedside tool for diagnosing pulmonary hy-
pertension. SIS2 is also expected to be a useful feature.
On the other hand, heart rate, systolic ejection period,
and S1 splitting are not expected to be useful and this
is reflected in the ranked feature list. One surprise is
that the heart sound resonance (the Q-features) did not

Table 2 Ranked Feature List. This list of ranked features
was produced by combining the feature lists from the 25 GFS

searches.

Rank 1 2 3 4 5 6

Feature R
PP2
PA2

sS4 R
FP2
FA2

iS4 D̃A2
R R

QP2
QA2

Rank 7 8 9 10 11 12

Feature D̃P2
R QA2 R

PP2
PS2

SIS2 sS3 R
PA2
PS2

Rank 13 14 15 16 17 18

Feature FA2 cS2 wS2 D̃A2
S1 PS2 PA2

Rank 19 20 21 22 23 24

Feature FP2 R
PP2
PS1

QP2 R
PA2
PS1

PP2 iS3

Rank 25 26 27 28 29 30

Feature D̃P2
S1 PHB R

PS2
PS1

iS1 QS2 cS1

Rank 31 32 33 34 35 36

Feature NSIS2 QS1 PS1 QHB FS2 SIS1

Rank 37 38 39 40 41 42
Feature iS2 wS1 FHB HR DA2

S1 FS1

Rank 43 44 45 46

Feature NSIS1 DP2
S1 DA2

R DP2
R

seem to have more predictive value. QA2 was the only
Q-feature with good predictive value.

3.2 Parameter Performance

In this subsection we average the results from the ex-
haustive bootstrapping experiments across each param-
eter of the system design space. Doing this allows us
to compare the possible parameter values to determine
which values, in general, lead to good performance and
which do not.

Fig. 2 plots the average accuracy and average AUC
for all configuration evaluations as a function of loca-
tion. This graph clearly indicates that Location 3 and
Location 4 are not as suited for PH diagnosis as the
other three locations. Location 1 and Location 5 have
roughly equivalent performance and Location 2 is only
slightly worse.

Fig. 3 plots the average accuracy and average AUC
for all configuration evaluations as a function of learner.
The graph indicates that the J48 learning algorithm
performs at a much lower level than the other learn-
ers. Naive Bayes is clearly the best-performing learner.
KNN and MLP perform at about the same level. SMO’s
accuracy is comparable to KNN and MLP but its aver-
age AUC measure is significantly worse.

Fig. 4 plots the average accuracy and average AUC
for all configuration evaluations as a function of feature
subset. As the size of the feature subset grows, the per-
formance initially increases quickly and then gradually
decreases.

It is interesting to note which features, when added
to the feature subset, cause a significant increase in per-
formance. The first major increase happens when sS4 is
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Fig. 2 Location Performance. Results from the experiments de-

scribed in Section 2.4.3 are grouped based on location. The aver-

age accuracy (solid line) and average AUC values (dashed line)
are plotted here.

Fig. 3 Learner Performance. Results from the experiments de-
scribed in Section 2.4.3 are grouped based on learner. The average

accuracy (solid line) and average AUC values (dashed line) are

plotted here.

added. The second increase is due to adding iS4. This
is somewhat surprising since most of our attention is
on the S2 features, but the presence of an S3 and/or S4
sound can be useful in assessing pulmonary hyperten-
sion.

The third major increase in performance occurrs
when SIS2 is added to the feature subset. We expect
this feature to be useful in PH diagnosis because of its
demonstrated utility elsewhere [15]. The fact that it ini-
tiated a large a jump in performance is further evidence
of its usefulness in PH diagnosis.

Three more minor increases in performance are ini-
tiated by the addition of cS2, wS2, and PS2. Each of
these is a feature of the S2 heart sound alone. This
supports the hypothesis that features of the S2 heart
sound are useful in PH diagnosis.

Table 3 Validation Results: Accuracy and AUC. We classified

31 patients (the holdout set) using each of the 25 selected config-

urations. The accuracy (number on the left) and AUC (number
on the right) are shown for each configuration. The AUC values

have been multiplied by 100 to make them easier to read.

J48 KNN MLP NB SMO

Location 1 55/55 58/52 65/66 77/78 65/66

Location 2 52/58 61/67 58/61 55/59 58/62

Location 3 42/50 42/50 48/53 45/51 61/66

Location 4 55/47 39/45 58/61 68/67 65/59

Location 5 55/55 42/50 65/63 65/62 74/74

3.3 Holdout Set Classification

Table 3 shows results from the validation experiments
(see Sect. 2.4.4). In these experiments we classify the
31 holdout patients using the 25 selected configura-
tions. The accuracy and AUC are shown for each con-
figuration. These numbers estimate the real-world per-
formance of each configuration and we analyze them
to select the best-performing configurations. The name
L1NB is used to refer to the configuration associated
with location 1 and the NB algorithm. Similar names
are used for other configurations.

It is obvious from looking at Table 3 that L1NB is
the best configuration and that L5SMO is only a little
worse. The selection of L1NB and L5SMO is somewhat
surprising because they differ from the results of the
exhaustive bootstrapping experiments, which predict a
high-performing L5NB and an average-performing L5SMO.
The validation experiment results show L5NB doing
worse than expected and L5SMO doing better than ex-
pected.

One possible reason for the success of L1NB and
L5SMO is that both used learning algorithms that avoid
overfitting the training data. Overfitting is a particu-
lar challenge when the training data is sparse, which
is the case in our experiments. The naive Bayes algo-
rithm and SMO algorithm avoid overfitting by produc-
ing simple decision surfaces (a linear SVM was used in
L5SMO) that are unable to conform too closely to the
training data. For example, the decision surface used
by L5SMO is a hyperplane that cuts through the input
feature space.

A PHD system built using L1NB, L5SMO, or one of
the other configurations would, of course, need further
testing and verification before enough confidence could
be placed in the system to use it in real-world situations.
This is another consequence of not having enough data
in our datasets. However, our results give us confidence
that a dependable PHD system can be built.
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Fig. 4 Feature Performance. Results from the experiments described in Section 2.4.3 are grouped based on feature subset. The average
accuracy (solid line) and average AUC values (dashed line) are plotted here.

4 Conclusion

Using tools from machine learning, we developed a pro-
totype heart sound analysis system for noninvasive PH
diagnosis, a system that could help lower diagnostic
costs by replacing the use of right-heart catheteriza-
tion on some patients. Developing PHD involved run-
ning several experiments geared toward answering three
questions. What chest wall location should be used in
recording heart sounds? What learning algorithm should
be used to diagnose PH? What set of heart sound fea-
tures should be used as input to the learning algorithm?
The experiments resulted in at least two promising con-
figurations of the PHD system.

We did not focus much effort on calculating high-
quality feature values from the heart sounds. Typically
the quickest and easiest method was used. In particular,
our method of calculating SIS2 is not as advanced as
the methods described in [14] and [15]. Incorporating
these methods into PHD could lead to better SIS2 val-
ues and, presumably, better performance. This is true
of the other heart sound features as well. We also made
little effort to throw away features that could be con-
sidered noisy. We did not hand-pick the heartbeats we
used in the datasets, instead trusting the machine learn-
ing algorithms to perform well despite the noisy data;
but noise removal may improve the performance of a
future PHD system.

The point is that we spent little time and effort on
performing preprocessing of any kind. The fact that
PHD performs as well as it does without any special
tweaking speaks to its robustness. Moreover, various
preprocessing steps may improve PHD’s performance
and reliability.

The promising configurations found in this paper
all use somewhat large feature subsets (20 to 30 fea-
tures). Finding a smaller feature subset that still pro-
duces good performance is an important goal for future
work. Doing so would aid in the development of a phys-

iological theory for how and why PHD works and would
increase PHD’s interpretability.

Currently, PHD does not try to estimate a precise
PAP value; it simply tries to determine whether the
PAP is above or below a certain threshold, where the
threshold is the pressure above which a patient is con-
sidered to have pulmonary hypertension. It would be
useful for future systems to produce an actual PAP
value instead. This would provide doctors with valuable
information about the severity of a patient’s pulmonary
hypertension or about the likelihood of a patient devel-
oping pulmonary hypertension.

As a quick attempt at implementing a PHD sys-
tem that produces PAP values, we trained an L5MLP
configuration using PAP values instead of pulmonary
hypertension diagnoses. We measured the performance
of the L5MLP configuration using the standard error
of estimate (SEE1). On the holdout set of 31 patients
it has an SEE of 11.7 mmHg. On the training set (the
set of 20 patients) it has an SEE of 5.1 mmHg, which
is better than the results reported by Xu et al. [15]; the
SEE for the humans in that study is 5.8 mmHg. These
results indicate that one focus of future work should be
the development of a reliable and accurate PHD system
that produces PAP values.

The configurations in this paper need to undergo
more testing before being used in a clinical setting.
This will require more patient data. Having more train-
ing data to train the classifiers would potentially lead
to better classifiers. And testing the configurations on
larger test sets is needed for calculating more reliable
and more accurate performance estimates.

1 SEE =
√∑

(PAPest − PAPact)2/(N − 2), where PAPest

is the estimated PAP value, PAPact is the actual PAP value,

and N is the number of estimate/actual PAP value pairs.
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