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Robust Manifold Learning With CycleCut
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Many manifold learning algorithms utilize graphs of local neighborhoods to estimate manifold
topology. When neighborhood connections short-circuit between geodesically distant regions
of the manifold, poor results are obtained due to the compromises that the manifold learner
must make to satisfy the erroneous criteria. Also, existing manifold learning algorithms have
difficulty unfolding manifolds with toroidal intrinsic variables without introducing significant
distortions to local neighborhoods. An algorithm called CycleCut is presented which prepares
data for manifold learning by removing short-circuit connections, and by severing toroidal
connections in a manifold.
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1. Introduction

In the last decade, manifold learning has become a significant component of ma-
chine learning, data mining, vision, and robotics. In machine learning and data
mining, manifold learning can be used to reduce dimensionality, which otherwise
presents a significant challenge for many algorithms. In vision and robotics, man-
ifold learning is used to reduce a sequence of images to a corresponding sequence
of “intrinsic variables”, which can be used to estimate the state from which the
images were obtained.
Many manifold learning algorithms, including Locally Linear Embedding, Lapla-

cian Eigenmap, Hessian LLE, Local Tangent Space Alignment, Maximum Variance
Unfolding, Manifold Sculpting, and others, rely on graphs of local neighborhoods to
estimate manifold topology. These algorithms seek to “unfold” a collection of sam-
ples from the manifold to occupy fewer dimensions, while preserving distances (or
other relationships) between points in local neighborhoods. The quality of the re-
sults obtained from these algorithms is limited by the quality of the neighborhood
graphs. If the local neighborhoods contain connections that short-circuit across
manifold boundaries, the manifold learner will seek a compromise embedding that
satisfies each neighborhood relationship with varying degree, including the short-
circuit connection. Such compromise solutions constitute poor results.
We present an algorithm called CycleCut, which identifies and “cuts” the neigh-

borhood connections that short-circuit across the manifold. In contrast with exist-
ing algorithms, CycleCut efficiently finds a minimal set of connections for removal
such that there are no topological holes represented in the manifold. It guarantees
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not to segment the graph, and under common conditions (which we define in Sec-
tion 3.1), it also guarantees to remove all short-circuiting connections. Even when
these conditions do not hold, it tends to exhibit desirable behavior for improving
the results of manifold learning. This paper is layed out as follows: Section 2 re-
views related work. Section 3 presents the CycleCut algorithm. Section 4 gives an
analysis of this algorithm, including a complexity analysis, and empirical results.
Section 5 concludes by discussing future work.

2. Related work

It has long been known that manifold learning algorithms have difficulty when lo-
cal neighborhood connections short-circuit (or shortcut) across the manifold (Bal-
asubramanian and Schwartz 2002, Varini et al. 2006). A simple solution is to use
smaller local neighborhoods, but this risks breaking connectivity, and often reduces
the quality of results from manifold learning.
A better approach to mitigate this problem involves adaptively selecting local

neighborhoods (Wei et al. 2008). This can make the neighborhood graphs more ro-
bust to difficult topologies, but it cannot handle the case where the closest neighbor
of a point cuts across the manifold. An approach called manifold denoising (Hein
and Maier 2006) has been used to reduce noise in the data, and thus decrease the
risk of shortcut connections. This technique, however, does directly seek to remove
shortcut connections, and does not provide any guarantees.
Perhaps the most effective method currently used for identifying shortcut con-

nections is based on Edge Betweenness Centrality (EBC) (Brandes 2001). EBC
is a metric that counts the number of times that the pair-wise shortest paths
between every pair of points pass over each edge. Because shortcut connections
join geodesically distant regions of the manifold (by definition), they tend to have
higher EBC values than other edges (Cukierski and Foran 2008). The drawbacks
of this approach are that it sometimes removes edges that are not shortcuts, and it
provides no inherent stopping criteria, requiring that heuristics be used to decide
when shortcut edges have been removed. By contrast, we show that graphs with
shortcut connections necessarily contain large cycles, and CycleCut guarantees to
remove a minimal set of edges to remove all large cycles in the graph.

3. CycleCut

The CycleCut algorithm is inspired by max-flow/min-cut methods for graph parti-
tioning. These methods identify the minimal cut to partition a graph by simulating
flow across the graph in order to identify the minimal set of edges that limit the
flow as illustrated in Figure 1. The max-flow min-cut theorem ensures that a cut
which removes only the limiting edges is optimal with respect to minimizing the
sum capacity of the cut edges (Ford and Fulkerson 1962).
Instead of simulating flow across a graph, CycleCut simulates flow around a

topological hole in order to find a minimal cut that breaks the cycles that enclose
the hole, as illustrated in Figure 2.
There are three common cases when topological holes occur in sampled manifolds:

shortcut edges, toroidal intrinsic variables, and unsampled regions. These cases are
illustrated in Figure 3. We will describe these cases using an example of a robot
which uses a camera to explore a park. The images that this robot obtains with its
camera may be considered to be samples on a manifold. If these samples are “well-
behaved”, manifold learning can be used to obtain a sequence of intrinsic variables
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Figure 1. Max-flow/min-cut methods simulate flow across a graph to identify a minimal set of edges that
limit the flow.

Figure 2. CycleCut simulates flow around a topological hole to identify a minimal set of edges that limit
the flow.

that correspond with the sequence of images. These intrinsic variables will include
a representation of the robot’s estimated position within the park, which would be
useful information for many tasks.
Case 1: Suppose there are two benches in this park with similar appearance.

Images of these benches would constitute samples on the manifold with a large
geodesic distance, but a small observed distance. Thus, the neighborhood graph of
these samples will contain shortcut connections between these observations. These
shortcut connections create a topological hole in the sampled manifold. CycleCut
will remove the minimal set of edges, such that the topological hole is eliminated.
This enables the manifold to be learned without trying to preserve superfluous
distances between points.
Case 2: Suppose that the robot has the ability to rotate yaw-wise. Because rota-

tion inherently repeats, the manifold sampled by the robot’s images will connect to
itself to form an open cylinder topology. Such manifolds cannot be projected into
their tangent-space dimensionality without either introducing distortions or break-
ing continuity. If the cylinder is tall, then using distortion is a particularly poor
solution. CycleCut finds a minimal break in continuity to enable the manifold to
be unfolded with little distortion. When CycleCut is not used, resulting points are
crowded together near the inner circumference and stretched apart near the outer
circumference. Distortion-free estimates of a state space are particularly important
for planning purposes because the effectiveness of generalization is limited by the
consistency within the representation of state.
Case 3: Suppose there is a large pond in the park into which the robot wisely does

not advance. This creates an unsampled region which appears to be a topological
hole in the manifold, even though the true manifold is continuous. In this case,
it would be better not to use CycleCut prior to manifold learning because it is
desirable to preserve the unsampled hole as an artifact in the results. If CycleCut
is used in this case, it will cut along the shortest path that connects the unsampled
region with the outside area. This cut is superfluous, but it will leave a larger
amount of edges intact to define the manifold structure. The impact that such a
superfluous cut will have on results depends on how much “load” or “tension” is
represented in the cut edges. Fortunately, unlike case 2, case 3 typically involves
edges that carry little such tension, so results are generally degraded very little.
Thus, if case 1 or case 2 is known to also exist in a sampled manifold, or if the
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Figure 3. Case 1: For manifolds with a topological hole due to shortcut edges, CycleCut reduces distortion
in the results. Case 2: For manifolds with topological holes due to toroidal intrinsic variables, CycleCut
reduces distortion at the cost of continuity in the results. Case 3: For manifolds with topological holes due
to unsampled regions, CycleCut has little effect on results.

nature of a collection of samples is unknown, we recommend using CycleCut prior
to manifold learning because the potential cost is low, while the potential benefit
is high.
If there are no large sample holes, CycleCut has no effect on results.

3.1. The CycleCut algorithm

In graph theory, a chord is an edge that connects two non-adjacent vertices in a
cycle. Cycles with no chords are called induced cycles, chordless cycles, or holes.
We generalize the notion of a chord by defining an n-chord to be a path of length
n which connects two vertices in a cycle, where n is less than the length of the
shortest path on the cycle between the vertices. We refer to a cycle with no n-
chords as an atomic cycle. For example, the graph shown in Figure 4 contains 3
chordless cycles, but only two of them are atomic cycles.
The problem of finding large holes in a graph (as defined by a large chordless
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Figure 4. This graph contains 3 cycles. All 3 of them are chordless, but only two of them are atomic.

function CycleCut(V,E) Comments

λ← 12 Default cycle length threshold
1. for each {a, b} ∈ E do: Wa,b ← 1 Initialize edge capacities

R← empty list R stores removed edges
loop: For each large atomic cycles

2. C ← find large atomic cycle(V,E, λ) See Figure 6
if C = null: If no large atomic cycles
break Exit the loop. Go to *

3. h← min{a,b}∈C Wa,b Find the bottle-neck in the cycle

4. for each {a, b} ∈ C: For each edge in the cycle
Wa,b ←Wa,b − h Reduce the remaining capacity

5. if Wa,b = 0: If the edge is fully saturated
remove {a, b} from E Cut the edge
append {a, b} → R Remember the removed edges

6. continue Go to the start of the loop
7. for each {a, b} ∈ R: * Repair unnecessary cuts

add {a, b} → E Tentatively restore the edge
C ← find large atomic cycle(V,E, λ) See Figure 6
if C 6= null: If the edge creates a cycle
remove {a, b} from E Remove it again

Figure 5. Pseudo-code for the CycleCut algorithm. V is a set of vertices. E is a set of edges. (For conve-
nience, an implementation of CycleCut is included in the Waffles (Gashler 2011) machine learning toolkit,
and a switch to invoke it has been integrated with each manifold learning algorithm in that toolkit.)

cycle) has been well-studied (Spinrad 1991, Nikolopoulos and Palios 2004). For the
application of preprocessing high-dimensional data for manifold learning, however,
large atomic cycles are better indicators of topological holes than large chordless
cycles. In high-dimensional space, irregularly distributed samples frequently create
sub-structures like the one shown in Figure 4. If only 1-chords are considered, then
large cycles with n-chords (n > 1) will be falsely interpreted to indicate that there
is a topological hole in the graph, resulting in unnecessary cuts.
Pseudo-code for the CycleCut algorithm is given in Figure 5. This algorithm can

be briefly summarized as follows:

1. Equip each edge with a capacity value.
2. Find a large atomic cycle, C, else go to Step 7.
3. Find the smallest capacity, h, of any edge in C.
4. Reduce the capacity of every edge in C by h.
5. Remove all edges with a capacity of zero.
6. Go to Step 2.
7. Restore all removed edges that do not create a large atomic cycle when

restored.

The first step of CycleCut equips each edge with a “capacity” value that indicates
the a priori confidence that it represents a good neighbor connection. In this paper,
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uniform capacities are used, but non-uniform capacities may be used if additional
information is available. The second step finds a large atomic cycle in the graph.
(We note that this step could be modified, such that any other undesirable structure
would be identified and removed from the graph, but in this paper, we are only
interested in removing large atomic cycles.) Section 3.2 gives a detailed description
of how large atomic cycles are identified. Step 3 finds the minimum capacity, h, of
any edge in the large atomic cycle. Step 4 simulates flow by reducing the remaining
capacity of every edge in the large atomic cycle by h. Step 5 removes all edges that
have become fully saturated. These edges are stored in a list, R. Steps 2 through
5 are repeated until there are no more large atomic cycles in the graph. Finally,
Step 7 restores any edges that were unnecessarily removed in step 5. Each edge in
R is tentatively restored to the graph. If restoring the edge creates a large atomic
cycle, then it is removed again. The resulting cut is guaranteed to be minimal
with respect to the sum of capacity values, such that all atomic cycles with a cycle
length ≥ λ are broken.

3.2. The find large atomic cycle routine

Large atomic cycles are found by iterating over all the atomic cycles in the graph,
and returning when one with a cyclelength ≥ λ is found. Pseudo-code for this
routine is given in Figure 6. The atomic cycles in a graph are enumerated using a

function find large atomic cycle(V,E, λ) Comments

Q← empty queue; S ← ∅; T ← ∅ S, T = visited vertices, edges
choose a random vertex, v0 from V Pick a random seed point
enqueue v0 → Q; add v0 → S Seed the outer BFS queue
while |Q| > 0: Do the outer breadth-first-search
. dequeue a← Q Visit the next vertex
. for each neighbor b of a: Follow every edge
. if b ∈ S: If a cycle is detected
. . Pb ← null P = parent vertices
. . I ← empty queue; U ← empty set U =vertices visited by inner BFS
. . enqueue b→ I; add b→ U Seed the inner BFS queue
. . while |I| > 0: Do the inner breadth-first-search
. . dequeue c← I Visit the next vertex
. . for each neighbor d of c: Follow every edge
. . if d /∈ U and Ec,d ∈ T : Limit the inner BFS
. . Pd ← c Store the parent of every vertex
. . enqueue d→ I; add d→ U Advance the inner BFS
. . if d = a: If an atomic cycle is found
. . Y ← empty list Y = vertices in the atomic cycle
. . while d 6= null: Build the list of vertices
. . . append d→ Y Add to the list
. . . d← Pd Advance to parent vertex
. . if |Y | ≥ λ then return Y Return the large atomic cycle
. . else break twice Exit inner BFS. Go to *
. else If b has not been visited before
. . enqueue b→ Q; add b→ S Advance the outer BFS
. add Ea,b → T * Flag this edge as visited
return null There are no large atomic cycles

Figure 6. Pseudo-code to find an atomic cycle with a cycle length ≥ λ edges in a graph comprised of
vertices V , and undirected edges E.
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breadth-first-search (BFS) nested within another BFS. We refer to these as “the
outer BFS”, and “the inner BFS”. The purpose of the outer BFS is to define a
region in which the inner BFS is constrained during its search. Whenever the outer
BFS detects a cycle (by finding an edge that connects to a vertex that it has
already discovered), the inner BFS begins searching from that point. The inner
BFS is only allowed to follow edges that the outer BFS has already followed (not
including the edge that detected the cycle). The inner BFS terminates when it
finds a cycle because subsequent cycles that it would discover would either be the
same size, or non-atomic.

3.2.1. Proof of correctness

We now give a proof that this routine will find an atomic cycle with a cycle length
≥ λ, if some atomic cycle C, |C| ≥ λ, is reachable from the seed point. Let e be the
last edge in C to be traversed by the outer BFS, and let T be the set of edges that
had been traversed by the outer BFS just before e was traversed. When the outer
BFS traverses e, the destination vertex of e is discovered for at least the second
time. This event triggers the inner BFS to find a shortest path, P , from one vertex
of e to the other, following only edges in T . Let B ≡ P ∪{e}. B must not have any
n-chords, or else the inner BFS would have arrived at the vertex earlier by cutting
across the n-chord. If |B| = |C|, then B satisfies the proof, whether or not B ≡ C,
and the routine returns. To complete the proof, we show that “|B| 6= |C|” is an
impossible condition. If |B| > |C|, then the inner BFS would have found C first, so
B ≡ C, which is a contradiction. If |B| < |C|, then let A ≡ (B∪C)\(B∩C), where
“\” denotes exclusion. A must have been discovered previously, or else e would not
close both B and C. Further, A must be an atomic cycle, or else either B or C
would have already been closed. If |A| ≥ |C|, then |A| ≥ λ, so the routine would
have returned when it found A. If |A| < |C|, then A∩B is an n-chord of C, which
contradicts the assumption that C is atomic.

4. Analysis and validation

In this section, we analyze the CycleCut algorithm. In Section 4.1, we demonstrate
that it is easy to find a good value for λ. In Section 4.2, we give a complexity
analysis of CycleCut. In Section 4.3, we demonstrate the use of CycleCut to remove
shortcut connections. In Section 4.4, we demonstrate the use of CycleCut to unfold
a manifold with a torroidal intrinsic variable.

4.1. The λ threshold

Shortcut edges will always create a large atomic cycle because, by definition, they
connect geodesically distant regions of the manifold. As demonstrated in Figure 3
Case 3, it is typically not a problem if a few good connections are cut, but it can
cause significant problems if bad connections are not cut. Thus, a good value for
λ need only be smaller than the cycles caused by shortcut edges. To show that
CycleCut is very robust to the value of λ, we sampled a square region of 2D space
with 106 uniformly distributed random points, and connected each point with its
10-nearest neighbors. (Many manifolds can be viewed as an embedding of this or a
similar structure in higher-dimensional space.) We measured the distribution of the
cycle lengths of the atomic cycles in this structure. Figure 7A shows the cumulative
distribution, with atomic cycle lengths along the horizontal axis and the portion of
atomic cycles along the vertical axis. We repeated this experiment with a variety
of conditions. In Figure 7B, 5 neighbors were used instead of 10. In Figure 7C, 15



8 Gashler and Martinez
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Figure 7. The cumulative distribution of the cycle lengths of the atomic cycles from various random
distributions of points. In every case, the threshold λ = 12 includes nearly all of the atomic cycles.

neighbors were used. In Figure 7D, the region was sampled with 100 times fewer
points. In Figure 7E, the sampled region was much wider than tall. In Figure 7F,
samples were drawn from a Gaussian distribution, instead of a uniform distribution.
In Figure 7G, samples were drawn in 3 intrinsic dimensions. In Figure 7H, samples
were drawn in 4 intrinsic dimensions. In every case, the cumulative distribution was
approximately the same. This shows that the threshold value λ is robust across a
large variety of conditions. As can be seen in each of the charts in Figure 7, the
value λ = 12 is sufficiently large to handle almost all cases. Thus, we used this
value in all of our experiments, and it consistently produced good results. In most
cases, smaller values, such as λ = 8, produced identical results as those obtained
using λ = 12.

4.2. Complexity

The find large atomic cycle subroutine contains an inner BFS nested within an
outer BFS. The outer BFS will visit every edge in the graph. The inner BFS will
terminate before following a constant number, kλ, of edges, except for the last time
it is called, which will terminate before following |E| edges, where E is the set of
edges. Thus, the asymptotic computational complexity of find large atomic cycle
is O(|E|). The number of times that this subroutine must be called depends on
the number of shortcut connections in the graph, so the complexity of CycleCut is
bounded between O(|E|) and O(|E|2). If there are few or no shortcuts, CycleCut
scales linearly, so it is well-suited to be used as a “safety-net” prior to manifold
learning. If there are no shortcut connections, as is typically assumed, then little
cost is incurred for performing the check, and if there are some shorcut connections,
CycleCut can guarantee to catch them.

4.3. Removing shortcuts

We sampled the manifold {sin(2α) + α
2 ,−2 cos(α), β} with 1000 random values

for α and β, where α ∼Uniform(−π, π), and β ∼Uniform(0, 2). Each point was
connected with its 14-nearest Euclidean-distance neighbors. 63 of these connections
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Figure 8. Left: 1000 points are shown connected with each of their 14-nearest neighbors. 63 of the con-
nections shortcut to geodesically distant regions of the manifold. Right: CycleCut removed all of these
shortcut connections without removing any other connections.

Figure 9. A: An image of rocky terrain. We uniformly took 4680 samples from the manifold of 50 × 50
pixel sub-images with 3 color channels of this terrain. Because a certain region on one side of this image
is visually similar to a certain region on the other side, this manifold approaches very close to itself. B:
Results obtained using the Isomap NLDR algorithm with 12 neighbors to reduce these 4680 samples into 2
dimensions. These values are a poor estimate of the window position. In many cases, it ambiguously predicts
similar window positions for very different sub-images. C: Results obtained using the same algorithm and
the same number of neighbors, but also using CycleCut to preprocess the neighborhood graph. These
results are a better estimate of the window position, and are sufficiently unambiguous that a model could
easily be trained using this data to map from window position to the image, or from the image to the
window position.

shortcut to geodesically distant regions of the manifold, as shown in Figure 8-left.
These shortcut connections would significantly affect the results of most manifold
learning algorithms in a negative manner. CycleCut correctly detected and removed
all 63 shortcut connections. (See Figure 8-right.) No other connections were cut.
(This is an example of case 1 from Figure 3.)
In another experiment, we sampled a manifold by uniformly drawing 50 × 50

pixel sub-images from a larger image of rocky terrain. (See Figure 9.A.) Because
a certain region on one side of this image was made visually similar to a certain
region on the other side, this manifold approaches very close to itself. Figure 9.B
shows results obtained using Isomap with 12 neighbors to reduce 4680 sample
sub-images into 2 dimensions. These values are a poor estimate of the window
position. In many cases, it ambiguously assigns similar window positions for very
different sub-images. Much better results were obtained using the same algorithm
and parameters when the neighborhood graph was preprocessed with CycleCut.
(See Figure 9.C.) CycleCut removed the connection between some of the images,
even though they were very similar, because they created an atomic cycle in the
graph. The results with CycleCut are a better estimate of the window position,
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Figure 10. Top: A 40× 30 pixel window was sampled with 3 color channels at 225× 31 window positions
within a panoramic image of a courtyard. (Image derived from a photo by Rich Niewiroski Jr. from
the Wikimedia Commons.) Left: A projection of this data by Isomap (Tenenbaum et al. 2000) with 12
neighbors into 2 dimensions. Each point is colored according to the vertical position of the window. Right:
A projection by the same algorithm after CycleCut was applied to the neighborhood map. These values
are more meaningful with respect to the yaw and pitch represented by the window.

Figure 11. A: A panoramic image of Barrage de Malpasset, courtesy of Wikimedia Commons. We uni-
formly sampled a manifold by drawing sub-images from this panoramic image. Each sub-image corresponds
with the image that a camera would view from this location if pointed in a particular direction. B: We used
Isomap to estimate the window position (or camera direction). In this case, Isomap made its projection
by flattening most of the predicted positions, but stretching a certain region of them to connect to both
ends. Unfortunately, this results in positions having non-unique meaning. C: CycleCut minimally severed
the manifold such that it could be unfolded without ambiguity. (The “ripples” that appear in these results
are due to an assumption Isomap makes that distances in observation space are proportional to distances
in state space. CycleCut does not correct faulty assumptions made by NLDR algorithms.)

and are sufficiently unambiguous that a model could easily be trained using the
resulting data to map from window position to the sub-image, or from the sub-
image to the window position.

4.4. Toroidal manifolds

We sampled a panoramic image of a courtyard using a 40×30 pixel sliding window
with 3 color channels at 225 × 31 unique window positions. (See Figure 10.) We
then used Isomap with 12 neighbors to reduce this data from 3600 to 2 dimensions,
both with and without CycleCut. (This is an example of case 2 from Figure 3.) In
the case where CycleCut was not used, Isomap returned results that ambiguously
represented multiple window positions in several regions of the reduced space.
When CycleCut was used, it returned results that approximately corresponded to
the yaw and pitch represented by the sliding window.
We repeated this experiment using a different panoramic base image. In this

case, we used an image of Barrage de Malpasset, courtesy of Wikimedia Commons.
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(See Figure 11.A.) As in the previous experiment, each sub-image corresponds with
the image that a camera would view from this location if pointed in a particular
direction. We used Isomap to estimate the window position (or camera direction) by
reducing the collection of sub-images to two dimensions. These results are plotted
in Figure 11.B. In this case, Isomap made its projection by flattening most of the
predicted positions, but stretching a certain region of them to connect to both
ends. Unfortunately, this results in positions having non-unique meaning. When
CycleCut was used, however, it minimally severed the manifold such that it could
be unfolded without ambiguity. (See Figure 11.C.) The “ripples” that appear in
these results are due to the assumption Isomap makes that distances in observation
space are proportional to distances in state space. (CycleCut does not correct any
assumptions made by NLDR algorithms. It only corrects topological issues in the
manifold itself.)

4.4.1. When not to use CycleCut

In cases where intrinsic variables are torroidal, CycleCut reduces distortion with
the cost of preserving continuity. Consequently, the choice of whether to use Cycle-
Cut when torroidal intrinsic variables exist depends on which is more important.
In visualization tasks, for example, it may be desirable to present results both with
and without CycleCut. If the two visualizations differ, then the one produced with
CycleCut is likely to represent local structure more faithfully, while the one with-
out CycleCut is likely to present a better global view of the continuity within the
data. In tasks where it is desirable to separate intrinsic variables into meaningful
attributes, such as the state estimation tasks that we demonstrate in this paper,
CycleCut tends to lead to results that exhibit a more linear structure. In such cases,
the original neighorhood graph can be used to provide the continuity information
that CycleCut rejects. Finally, as we demonstrate in the next section, if it is known
that all large atomic cycles in the graph are due to unsampled regions, then there
is little value in using CycleCut.

4.5. Unsampled Regions

We sampled a Swiss Roll manifold, {(8α+ 2) sin(8α), (8α+ 2) cos(8α), 12β}, with
2000 random points. A star-shaped region of this manifold was excluded from be-
ing sampled. We then used Manifold Sculpting (Gashler et al. 2011) to reduce the
dimensionality of these points. Figure 12.A shows the original points. Figure 12.B
shows the results obtained from reducing the dimensionality to 2, without using
CycleCut. Figure 12.C shows results when CycleCut was used to preprocess neigh-
borhood connections. The results obtained with CycleCut were nearly identical to

Figure 12. A: 2000 sample points on the surface of a Swiss Roll manifold with a star-shaped region
excluded from sampling. B: Results obtained by reducing this dataset to two dimensions with Manifold
Sculpting (Gashler et al. 2011). C: Results obtained with Manifold Sculpting after CycleCut was applied.
In this case, 28 neighbor connections were cut, but the results are nearly identical to those obtained without
CycleCut. This shows that CycleCut has little adverse effect in cases where it is not needed.
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Figure 13. A: We simulated a robot navigating within a warehouse environment by sampling this image
within a window. We simulated forward and reverse movement my changing the size of the window, and we
simulated lateral movement by moving the window horizontally. Linear interpolation was used to produce
a uniform-sized view from the perspective of the simulated robot. We applied 4000 random actions from
the set {move forward, move back, move left, move right} to this robot and collected the corresponding
images. We simulated a physical obstacle by preventing this robot from entering a rectangular region near
the middle of its state space. We also injected Gaussian noise into both the transitions and the observations.
B: We used Temporal NLDR to reduce these images to a estimates of the robot’s position. C: We repeated
this procedure with the addition of CycleCut. In this case, the ideal results would be unchanged. Although
CycleCut did change the results somewhat, the overall structure of the state estimates is very similar
whether or not CycleCut was used. The most significant difference occurs near the top region, where only
a small number of samples were taken (because the robot only wandered into that region one time).

those obtained without it. This shows that CycleCut often has little adverse effect
in cases where it is not needed. (This experiment is an example of case 3 from
Figure 3.)
In another experiment, we simulated a robot navigating within a warehouse en-

vironment by sampling in a windowed region from an image of a warehouse. (See
Figure 13.A.) We simulated forward and reverse movement by changing the size
of the window, and we simulated lateral movement by moving the window hori-
zontally. Linear interpolation was used to produce a uniform-sized view from the
perspective of the simulated robot. We applied 4000 random actions from the set
{move forward (scale down the window size), move back (scale up the window size),
move left, move right} to this robot and collected the corresponding images from
its view. We simulated a physical obstacle by preventing this robot from entering
a rectangular region near the middle of its state space. We also injected Gaussian
noise into both the transitions and the observations to simulate unreliable hard-
ware. Specifically, we added a random value from a Gaussian distribution with a
standard deviation of 5 percent of the channel range to each color channel of each
pixel in each observed sub-image. We also added Gaussian noise with a standard
deviation of 5 percent of the step length to each state transition, such that the
simulated robot would transition to a state only near to the one specified by the
actions that it performed. After collecting 4000 observation images, we used the
Temporal NLDR algorithm (Gashler and Martinez 2011) to reduce them to corre-
sponding estimates of the robot’s position. These results are plotted in Figure 13.B.
The “hole” in the center of these results indicates that the robot did not collect any
observations in that region of its state space, as intended. We then repeated this
experiment with the addition of CycleCut to pre-process the neighborhood graph.
The results with CycleCut exhibited similar overall structure, as shown in Fig-
ure 13.C. Some differences, however, appear in the upper region of this result. This
occured because that portion of the state space was poorly sampled, because the
robot only wandered into that region one time, so the manifold learning algorithm
had little structural information to preserve in that region.
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5. Conclusions

We presented an algorithm called CycleCut, which finds a minimal cut necessary
to break the large atomic cycles in a graph. We demonstrated, both theoretically
and empirically, that this algorithm is useful for preparing neighborhood graphs
for manifold learning. With many typical problems, neighborhood graphs contain
no large atomic cycles. In such cases, CycleCut has no effect on the results. When
neighborhood graphs do exhibit large atomic cycles, however, dimensionality re-
duction can be difficult. In these cases, CycleCut finds a minimal set of connections
that must be cut to eliminate all large atomic cycles from the graph.
CycleCut makes existing non-linear dimensionality reduction algorithms robust

to a wider range of problems. Using CycleCut to preprocess neighborhood graphs
incurs little cost because it scales well, it has little adverse effect on results in the
case where large atomic cycles are expected in the neighborhood graphs, and it
guarantees never to break connectivity. When shortcut connections exist, Cycle-
Cut guarantees to remove them, and when the manifold connects back to itself,
CycleCut has the beneficial effect of removing the minimal number of connections
such that the manifold can be unfolded without introducing local distortions.
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