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This paper presents a method for constructing multilayer perceptron networks (MLPs) called 
DMP3 (Dynamic Multilayer Perceptron 3).  DMP3 differs from other MLP construction 
techniques in several important ways.  The motivation for these differences and how they can lead 
to improved performance are discussed in detail in this paper.  The DMP3 algorithm constructs 
MLPs by incrementally adding network elements to the output node of the network.  Dependent 
upon the reduction in network error, the complexity of new elements that are added to the network 
can increase slightly with each growth cycle of the algorithm.  As new elements are added to the 
network, the existing network structure is frozen and only the weights of the new elements are 
trained.  In addition, the weights which link the new elements to the existing network structure are 
initially set to predetermined values, which predisposes each new network element to perform a 
particular function in relation to the existing network structure which can decrease the amount of 
time required for training the new elements.  Information gain rather than error minimization is 
used to guide the growth of the network, which increases the utility of newly added network 
elements and decreases the likelihood that a premature dead end in the growth of the network will 
occur.  A short, improvement driven training cycle is used to train new network elements which 
naturally helps to prevent over learning and memorization.  The performance of DMP3 is 
compared with that of several other well-know machine learning and neural network learning 
algorithms (c4.5, cn2, ib1, CV based MLP architecture selection, c4, id3, perceptron, and mml) on 
9 real world data sets taken from the UCI machine learning database.  Simulation results show 
that DMP3 performs better (on average) than any of the other algorithms on the data sets tested. 

 

1.  Introduction 

 One of the first neural models used in the field of neural networks was the single layer perceptron model 

(Rosenblatt 1960; Rosenblatt 1962).  The well understood weakness of single layer perceptron networks is that they 

are able to learn (with one hundred percent accuracy) only those functions that are linearly separable.  Despite this 

weakness, using a modified learning algorithm single layer perceptron networks have been shown to work well in 

terms of generalization accuracy in relation to other learning models on many learning problems (Andersen and 

Martinez 1999).  However, since many problems of interest do not exhibit aspects of linear separability, the upper 

bound on the generalization performance of a single layer perceptron for such problems is lower than it is for 

learning models that are capable of rendering arbitrary decision surfaces, such as multilayer perceptron networks 

(MLPs).  Since MLPs are capable of going beyond the limited set of linearly separable problems and solving 

arbitrarily complex problems (assuming that the computational resources are unbounded), a great deal of effort has 

been devoted to the development of MLP training algorithms.   

 A primary drawback to many of the current MLP training methods is that they require the specification of 



the network architecture a-priori (make an educated guess as to the appropriate number of layers, number of nodes 

in each layer, connectivity between nodes, etc.).  With a pre-specified network architecture there is no guarantee 

that it will be appropriate for the problem at hand, and it may not even be capable of converging to a solution.  This 

has led to the development of several MLP training algorithms that do not require the user to specify the network 

architecture a-priori.  Some of these include network construction techniques such as Cascade Correlation (Fahlman 

and Lebiere 1990), DCN (Romaniuk and Hall 1993), node splitting (Wynne-Jones 1992), ASOCS (Martinez and 

Vidal 1988; Martinez and Campbell 1991), DNAL (Bartlett 1997) Upstart (Frean 1990), Meiosis (Hanson 1990), 

Perceptron Cascade (Burgess 1994), the Tower and Inverted Pyramid algorithms (Gallant 1986), Tiling (Mezard 

and Nadal 1989), and Extentron (Baffes and Zelle 1992).   All of these methods are error driven approaches that 

dynamically generate a network structure for solving the given training set during the training phase.   

 Other approaches to the architecture selection problem include minimum message length (MML) based 

methods, which use a complexity/accuracy tradeoff to determine the appropriate network architecture (Murata and 

Yoshizawa 1994; Fogel 1991; Hochreiter and Schmidhuber 1997; Lappalainen 1998; Leonardis and Bischof 1998; 

Rissanen 1986; Rissanen 1987).  Cross validation uses the performance of the network on a holdout set to determine 

the optimal architecture.  There are also techniques, such as Bayesian training (MacKay 1999; Neal 1996; Barber 

and Bishop 1997; Bishop 1995), early stopping (Amari et all 1997; Finnof, Hergert, and Zimmermann 1993; Sarle 

1995; Wang, Venkatesh and Judd 1994), connection pruning algorithms (Mozer and Smolensky 1988; Karnn 1990; 

Reed 1993; Solar, Le Cun, and Denker 1990; Stork and Hassibi 1993; Won and Pimmel 1991; Weigend, Rumelhart, 

and Huberman 1989) and weight decay (Bartlett 1997; Krogh and Hertz 1999), that seek to obviate the need to 

specify an 'optimal' MLP architecture, instead using the most complex architecture that can be practically 

implemented. 

 This paper presents a dynamic method for incrementally constructing multilayer-layer perceptron networks 

called DMP3 (Dynamic Multilayer Perceptron 3), which is an improvement of the DMP1 (Andersen and Martinez 

1996A) and DMP2 (Andersen and Martinez 1996B) algorithms.  The basic DMP3 algorithm cycles between two 

phases, a training phase and a growth phase.  Initially, DMP3 starts with a single node in the network (the root 

node).  If, after the training phase, the network network has failed to reduce the error to an acceptable level then the 

algorithm enters the growth phase.  During this phase new network elements are connected to the existing network 



structure.  The existing network weights are frozen, and the weights that connect the new elements to the existing 

network are initialized to predetermined values.  This creates a predefined niche for the new elements to fill as the 

elements are trained to add to the information that is embodied by the current network weights.  Information gain is 

used to guide the growth of the network and the training of network elements.  If the addition of new elements does 

not produce any improvement in information gain over the old network, then a small increase is made in the 

complexity of the new network elements and the elements are retrained.  The algorithm terminates when it cannot 

improve the information gain of the network without a large jump in the complexity of the network structure.  

Section 2 discusses aspects of the DMP3 algorithm in detail, and also gives a formal description of the algorithm.   

 DMP3 incorporates several strategies that differ from the approaches employed by other MLP construction 

techniques.   

• DMP3 naturally prevents overlearning by ceasing to grow the network structure when the current network 

error cannot be reduced by an incremental increase in the complexity of the current network 

structure. 

• DMP3 does not connect the outputs of previously allocated units to the new network elements, which helps 

to prevent the new elements from overlearning by limiting their fan in. 

• The output node of the network does not change from one iteration to the next.  Also, once trained the 

weights which connect elements of the network to the output node are frozen and are not allowed 

to change as new elements are added to the network.  Rather, DMP3 augments the existing 

knowledge of the output node through small, incremental addition of network elements as 

required. 

• When required, DMP3 provides for a modest increase in the complexity of newly allocated network 

elements, which helps newly allocated elements to assist the network as it becomes increasingly 

difficult to decrease the remaining network error.   

• The MLP construction algorithms which are most similar to DMP3 use a divide and conquer approach that 

partitions the training set, training each network element with only a portion of the available data, 

which can reduce the reliability of individual network elements.  With DMP3 each network 

element is trained on the entire training set.   



• Information gain rather than error minimization is used to guide the training of network elements.  This 

tends to produce more useful feature detectors for strategies such as DMP3 that grow the network 

in an incremental fashion. 

The differences between DMP3 and other MLP construction techniques along with other related work are discussed 

in detail in section 3. 

 The DMP3 algorithm is tested on 9 real world data sets obtained from the UCI machine learning database.  

The performance of DMP3 is compared with several other learning methods, which include c4.5, cn2, ib1, c4, id3, a 

single layer perceptron network, and mml.  DMP3 is also compared against a CV based MLP architecture selection 

strategy.  The reason for choosing to compare DMP3 with a CV based MLP architecture selection is that CV does 

not require the fine tuning of any adjustable parameters, nor does it require that a strategy be implemented to avoid 

overlearning.  DMP3 is not compared empirically with other network construction techniques due to the number of 

tunable parameters that must be adjusted for most of these algorithms and the choices that must be made (such as 

which method to use to prevent the network from overlearning) in order to produce good results, which is beyond 

the scope of this paper.  Also, many of the algorithms are not given with sufficient to detail to allow for an accurate 

implementation.  The results that are reported in this paper show that the individual networks produced by DMP3 

have on average better generalization performance than the other, learning algorithms on the data sets tested.  Due 

to the large number of algorithms and data sets tested, this result is sufficient to show the utility of the DMP3 

algorithm from an empirical standpoint.  It is also shown that it is possible to significantly improve the performance 

of DMP3 by using bagging to combine several DMP3 networks, which improves the performance of DMP3 on 

every data set tested.  This indicates that DMP3 networks, while capable of good individual performance, are also 

good candidates for bagging.  Section 4 discusses the data sets and methods and details the results of the 

experiments.  The conclusion is given in Section 5. 

2.  DMP3 (Dynamic Multilayer Perceptron 3) 

2.1  The Basic DMP Algorithm 

 While it is a simple matter to extend the DMP algorithm to handle multiple output classes, in the following 

it is assumed that the learning problem has a single, 2 state output in order to simplify the discussion.   

 The basic DMP algorithm begins with a network composed of a single node (the output node).  An 



example of what the network looks like at this point can be seen in figure 1 (Iteration 1).  With this example, in the 

first iteration the network is composed of a single node, and the learning problem has two input features, f1 and f2.  

The network is trained to minimize an appropriate error function, at which point all of the weights in the network 

are frozen.  If after training the network fails to correctly classify some portion of the examples in the training set, 

then two child nodes are allocated and connected to the output node (Iteration 2 of figure 1).  The two new child 

nodes will be trained to assist the output node in correctly classifying the misclassified examples.  In order to 

accomplish this, one of the child nodes (which we label the left child) is biased to assist the network with any 

misclassified positive examples by initializing the weight that connects it to the output node to a positive value.  

Conversely, the weight that connects the right child to the output node is initialized to a negative value, which 

biases the right child to assist the network with negative training examples.  Training of the network then resumes.  

However, the only weights that are allowed to change are the weights of the newly allocated children and the 

weights that connect the newly allocated children to the output node.  This is represented graphically in figure 1 by 

bolding the links that have updateable weights.  If, after the new children have been fully trained the network still 

fails to classify a sufficient number of the examples in its training set, then two additional children are allocated and 

connected to the output node of the network (Iteration 3 of figure 1).  As before, during the training phase only the 

most recently added weights are modified, and all other weights (the non-bolded links in iteration 3 of figure 1) are 

frozen.  This process can continue until either the network error falls below some threshold, or until the addition of 

more children fails to significantly reduce the network error. 
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Figure 1.  Progression of the DMP algorithm. 

 The intuition behind the DMP approach is to correct misclassified training examples by adding nodes to 

the network that are specifically targeted at examples from a particular class.  So, if the network incorrectly 

classifies a subset of positive training examples from its training set, then a new node (the left child) should be 

allocated with the specific purpose of assisting the parent when it sees such an example.  Conversely, if the network 

incorrectly classifies some of the negative training examples, a new node (the right child) should be allocated to 

assist the parent whenever a misclassified negative example is encountered.  This forces a structure on the network 

that helps each new child to quickly find a niche to occupy in assisting the network in classifying elements of the 

training set.   

 

2.2  Important Elements of the DMP algorithm 

 There are several details that must be considered in order for the DMP algorithm to produce networks that 

exhibit good generalization performance: 

• The choice of the error function 

• The types of child nodes to add to the network 

• Setting the child to parent weights 

• Where to grow the network 

• How to train sibling nodes 

These details are discussed in sections 2.2.1 through 2.2.6. 

 

2.2.1 The Error Function - Guiding the Network Growth 

 The choice of which function to minimize with the training algorithm is a critical element of the DMP 

algorithm.  A standard approach is to minimize the error (the difference between the network output and the desired 

response), but this approach can create problems with the growth of the network.  When error minimization is used 

as the basis for training the network it is possible for the growth of the network to reach a premature dead end, in 

which case the network will fail to correctly classify all (or as many as possible) of the examples in the training set.  

Also, if the reduction that each child node makes to the total network error is small, the size of the network can 



become large. 

 Figure 2 illustrates how the use of error minimization partitions the training set for each child.  In this 

figure there are examples from two different output classes, X's and O's.  The training set for the network is shown 

in the leftmost box.  The best partition (in terms of number of misclassifications) that a single perceptron can do for 

this particular problem is represented by the line which separates the examples in this box, with the examples on the 

left of the line classified as X's and the examples on the right side of the line classified as O's.  The O's on the left 

side of the line are misclassified, and a left child will be allocated to assist the network in classifying these 

examples.  In order to assist the network in classifying the misclassified O's, the left child must be able to identify a 

few of the O's from the X's.  In this sense, a de facto training set is defined for the left child, shown in the box 

located in the upper right hand corner of this figure, which is the set of misclassified O's along with the entire set of 

X's from the parent node's training set.  Conversely, the right child must assist in correctly classifying the 

misclassified X's, which problem is represented by the instances contained in the box in the lower right hand corner.   
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Figure 2.  Example training sets for the left and right child. 

 Figure 2 reveals an inherent problem that is often seen when using error minimization to guide the growth 

of MLP networks, which is that the children are often not capable of making an appreciable reduction of the 

network error.  Looking at the 'training sets' in figure 2, it is difficult to see how the children are going to be able to 

reduce the network error any further.  This problem is demonstrated by trying to find a 1-d hyperplane (a line) that 

both maximizes classification accuracy for a child while also identifying at least one of the parent node's exceptional 

cases.  The difficulty is that the examples of each class that the network misclassifies tend to be the hardest 

examples to separate from the opposite class.  In other words, the network already handles all of the easy examples 

and passes the hardest examples off on its children.   

 Depending upon the training algorithm, this problem can lead to a dead end in the growth of the network.  

In the example shown in figure 2, if the child nodes are perceptrons like the parent then the best the left child can 

do, assuming the children are trained so as to minimize network error, is to classify all examples as X's.  The right 



child is faced by a similar problem, and can do no better than classify all of the examples in its training set as O's. 

Neither child by itself is capable of correcting the classification of any of the incorrectly classified examples.  

Following the next step of the DMP algorithm new children will be allocated to handle the misclassified examples.  

But the set of misclassifed examples will be exactly the same as in the previous iteration, and if the new children are 

identical to the children allocated during the last iteration it is unlikely that they will perform any differently, and so 

the network has reached a dead end.  Even when network growth doesn't reach a dead end, in order for the network 

to progress towards a solution in a timely fashion each child must correct the output of at least one training example, 

otherwise the size of the network could become arbitrarily large.   

 Due to dead ends encountered in the growth of the network structure, training each node to maximize 

classification accuracy does not always produce a network with the maximum possible classification accuracy on 

the entire training set. Therefore, if the goal is to incrementally grow a network that is both small and maximizes 

classification accuracy on the training set, some criteria other than minimization of training set error should be used 

to evaluate the performance of the individual nodes that are incrementally added to the network architecture.  

Obviously, in general the primary goal is not to maximize training set accuracy, but to maximize generalization 

performance.  In some cases it may be desirable to quickly terminate the growth of the network.  But for many cases 

training each node to minimize its training set error will make it difficult for the network to learn an appropriate 

decision surface for complex problems. 

 With this in mind it is informative to consider the amount of information that each node contributes to the 

current network knowledge.  Figure 3 shows a training set with two possible hyperplanes (or lines for the two 

dimensional case) passing through the input space.  If the hyperplanes are viewed as decision surfaces, with the 

arrow indicating the side of the hyperplane in which examples are classified as O's, then the leftmost hyperplane of 

figure 3 maximizes classification accuracy for the training set of this particular problem.  However, if each 

hyperplane is viewed as a partition of the set of training examples, then the rightmost hyperplane provides the 

network with the most information. 

 



O

X
X

XX
O

O

O

O

O
O O

OO

O

O

O

OO

O

O
O

O
O

O

X XX

O O

O

O

O

O

O

O

O

O

O

O

OO O

O

O

 
Figure 3.  Possible decision surfaces for a simple training set. 

The formula for calculating the information contained in a set of examples with N possible output classes is given 

by, 

  ∑−=
N

i
ii PPI 2log       (1) 

where Pi is the probability of class i.  This is the same formula that is used as the splitting criteria for id3 (Quinlan 

1986).  For the two-class problem, this formula reduces to 

 

  I( p,n ) = −
p

p + n
log2

p
p + n

−
n

p + n
log2

n
p + n

   (2) 

where p is the number of positive examples in the training set and n is the number of negative examples.  When the 

set of training examples is partitioned by the network into two sets (those with high output and those with low 

output), then the formula for calculating the amount of information that the partition has is 

 

  I( partition) =
phigh + nhigh

p + n
I phigh ,nhigh( )+

plow + nlow
p + n

I plow , nlow( ) (3) 

where phigh, nhigh is the number of positive/negative examples respectively for which the network has a high 

output, and plow, nlow is the number of positive/negative examples for which the network output is low.  The 

information gain for a given partition of the training set is then 

  I(p,n) - I(partition)      (4) 

(Since I(p,n) is independent of the partition we can ignore it, the goal then is to maximize I(partition)).  The 

information gain for the leftmost hyperplane of figure 3 is 0, while the rightmost hyperplane has an information gain 



of 0.085.  From the standpoint of information gain the rightmost hyperplane is clearly better than the leftmost 

hyperplane.   
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Figure 4.  2nd step of DMP using info-gain. 

The reason why the rightmost hyperplane is a better choice for the network as a whole becomes evident at the next 

few steps of the DMP algorithm.  Assuming the hyperplane that maximizes information gain is chosen, at the next 

step DMP will allocate a left child which will be expected to assist in correcting the output for the misclassifed 

examples from the O output class (since there are no misclassified X's there may be little for the right child to do in 

this case), which problem corresponds to the examples illustrated in figure 4.   

 Of the two hyperplanes shown in figure 4, the horizontal hyperplane produces a larger information gain 

(0.194) than the vertical hyperplane that maximizes classification accuracy for the left child’s training set (info gain 

of 0).  If the left child generates the hyperplane with the largest information gain, then it is possible for the network 

to correct its output on all of the O examples that are below the hyperplane.  At this point, the only misclassified O's 

that are left are shown in figure 5.  At the next step of the DMP algorithm two more children will be allocated and 

the left child will be expected to assist in separating these remaining misclassified 0's from the X examples.  This 

can be accomplished if the left child generates the hyperplane shown in figure 5 (which is the hyperplane that 

maximizes both classification accuracy and information gain), at which point the network has converged to a 

solution and the algorithm is finished. 
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         Figure 5.  Last step of DMP.            Figure 6.  The final solution. 

 For this example, the final solution generated by DMP using information gain instead of error 

minimization is the three hyperplanes shown in figure 6.  These three hyperplanes completely separate the set of X's 

from the O’s that surround them.   

 

2.2.2  Increasing the Computational Power of the Children 

 If a child has the same computational power as its parent it can be difficult for the child to assist in the 

identification of any of the parent node's errors.  Since new children are required to assist the network on the more 

difficult parts of the training set it makes sense to increase the computational power of the children as training 

progresses.  In general there is no need to restrict a child to be a single perceptron node (or even to restrict the initial 

network structure to be a single perceptron node for that matter).  New children can be made computationally more 

powerful by letting the children be small MLP networks, and then providing for small increases in the number of 

nodes in the hidden layer of new children that are being added to the network as required.  As the network grows 

and it becomes increasingly difficult for new children to boost the performance of the network, the computational 

complexity of children that are added to the network can be increased by increasing the number of nodes in their 

hidden layer(s) by one or two hidden nodes.   

 The increase in the complexity of new children should not be unbounded, and should only be done when 

required to improve the performance of the network.  It is always possible to increase the complexity of the children 

(or initial network structure) to the point that it completely solves the training set, but this approach suffers from 



over learning and memorization.  On the other hand, if the increase is too small then a child might not identify any 

of the parent's errors, which results in a dead end in the growth of the network.  A dead end in the growth of the 

network will not always be detrimental, however, since it naturally limits the complexity of the network and can 

help to prevent over learning.   

 The appropriate increase in the complexity of a child over that of the parent is an open question.  This is a 

difficult problem, and it is possible that a single, optimal solution (for all types of 'interesting' learning problems) 

does not exist.  But in keeping with the incremental nature of DMP, and in order to avoid over learning, the increase 

in the complexity of a child as training progresses is kept small.  If, despite a small increase in computational ability, 

a child is unable to identify any of the parent's errors then it is acceptable for the network to cease to grow at that 

point.  This amounts to a form of bias that favors networks that can be grown easily and incrementally.  When the 

network's errors are too difficult for new children to identify without a large increase in the complexity of the new 

children then these errors are assumed to be noise and ignored, and the growth of the network at that point is halted. 

 

2.2.3  Using Small, Trainable Parent to Child Weights 

 The organization of neurons into a predefined, highly constrained network structure where each neuron (or 

group of neurons) is assigned a relatively specific task in relation to the other neurons in the structure is often seen 

with biological systems.  This approach makes sense when it is known in advance the approximate type of function 

that each neuron should perform, and the predefined structure enables each network element to learn the appropriate 

function better and more efficiently than would otherwise be possible.  For many real world problems of interest the 

only information about the problem domain that is available is a finite set of pre-classified examples, in which case 

it is extremely difficult to specify an 'optimal', highly constrained network structure a-priori.  Nevertheless, it is 

possible to realize some of the benefits of a constrained network structure by partially constraining the structure as 

occasion permits during the training process, and this is the approach that DMP employs. 

 With the DMP approach, one child, which we have labeled the 'left' child, is responsible for assisting the 

parent when it detects a positive example that has been misclassified, and the other child (or 'right' child) is 

responsible for assisting with the negative exceptions.  This means that the weight between the left child and the 

parent should be positive, since a positive weight will push the network towards a positive output.  Similarly, the 



weight between the right child and the parent should be negative.  By maintaining the positive and negative values 

of the left and right child weights, this forces a structure on the network where each child is assigned a relatively 

specific task.  Furthermore, aside from the weights of the newly added left and right child, all of the other weights in 

the network are fixed during the training cycle.  This makes it less difficult for newly added children to discover 

what function they should perform in relation to the other elements of the network, which greatly reduces the time 

needed to train the children and can also reduce the total time needed to train the network.   

 The weights between a child and the parent should initially be set to a value which is large enough to 

guarantee that the child will fill the desired niche in the network structure, but should not be so large that the 

network becomes overly sensitive to the child's output.  In addition, the training algorithm should be allowed to 

adjust the child to parent weight so that the child can be of maximal benefit to the network.  With DMP, the parent 

to left child weight is initialized to a positive value, and the parent to right child weight is initialized to a negative 

value.  These weights, along with the other weights of the newly added children, can then be updated with the 

training algorithm while all other weights in the network are frozen.  The initial values for the parent to child 

weights bias the left and right children to detect positive examples and negative examples, respectively.  Having the 

parent to child weights trainable does make it possible that the weights could change sign, but in practice this does 

not occur and the final values for the parent to child weights are generally near their initial settings.   

 

2.2.4  Only Grow at the Root Node 

 If a child node fails to correct all of the network error that it has been assigned then it is possible to correct 

the remaining network error by allocating more children and connecting them directly to the child node.  If in turn 

these new children fail to correct all of the network error then their output can be corrected by adding children to 

them.  This process can continue until the network converges to a solution.   

 However, instead of adding children to children in many cases it may be better to only add children to the 

root node of the network.  With the approach used in this paper, if the network (root node along with its current set 

of children) does not correctly classify all of the examples in the training set, then more children are allocated and 

connected to the root node in an attempt to correct the network's remaining error.  By connecting the children 

directly to the root node of the network, the output of the children have a more direct effect on the output of the 



network, and the training time for the children is expedited since the error is not diluted by being propagated 

through multiple network layers. 

 

2.2.6  Train Siblings Together 

 It is possible for the children to be trained separately from the network and from each other if desired.  

However, with the DMP3 approach the newly added children are trained together using standard backpropagation, 

where the only weights that are updated are those of the newly added children.  By so doing, the left and right child 

can cooperate to achieve better performance than is possible when they are trained separately.  For example, when 

the left child incorrectly outputs high on a negative example it may cause the network to commit an error that it 

would not have otherwise committed.  In this case the right child can help counteract the detrimental high output of 

the left child if the right child's output is also high (since when both children output high their outputs will tend to 

cancel each other), thus restoring the network to the original (correct) output.  By training the two children at the 

same time using backpropagation, each sibling can detect when it might be able to help the other in this fashion, and 

adjust its weights accordingly.  This leads to a quicker reduction in the total network error, and smaller networks in 

general. 

 

2.3  DMP3 

2.3.1  The DMP3 Algorithm 

 A pseudo code version of the implementation of the DMP algorithm used for this paper, which we call 

DMP3, is given in figure 7.  In order to prevent the choice of a network which has settled into a sub-optimal local 

minima, with each training phase three copies of the current network (each copy has its trainable weights initialized 

to small, random values) are trained using information gain, and the copy of the network that has the best 

information gain is chosen and the other two copies are discarded.  The weights of the current best network are 

frozen, a copy of the network is made, and the new network is augmented (if needed) by connecting a newly 

allocated left and right child to the output node.   

 The child to parent weights of the left child are initially set at +10.0, and the weight which connects the 

right child to the parent is set to -10.0.  Three copies of the augmented network are then trained with IDT using 



info-gain, and the copy with the best info gain is chosen.  The only weights that are allowed to change during 

training are the weights of the newly allocated children, and the weights that connect the newly allocated children to 

the root node of the augmented network.  If after training the augmented network exhibits greater info-gain than the 

current best network, then the current best network is replaced with the augmented network.   

 Initially, new left and right children added to the network have zero hidden nodes.  However, if an 

augmented network does not improve the info-gain over the current best network, then the complexity of newly 

allocated children is increased by adding 1 hidden node to the hidden layer of each child, and the process is repeated 

(each node of the child is fully connected to the original input features).  Initially, the base level of complexity for 

newly allocated children is set at 0 hidden nodes, but as the network grows the base level of complexity can be 

incrementally increased.  For example, if the current iteration of the DMP3 algorithm requires children with 2 

hidden nodes to decrease the network error, then the next iteration will start with the complexity level for new 

children set to 2 hidden nodes.  The next iteration will first try children with 2 hidden nodes, and if that fails to 

reduce the network error it will try children with 3 hidden nodes, and finally children with 4 hidden nodes (the 

algorithm terminates when 3 contiguous cycles of the algorithm fail to improve the info gain of the current best 

network).  This corresponds to the belief that the problem of reducing the remaining network error tends to become 

more difficult with each iteration of the algorithm, and so each iteration ought to start with the complexity set at 

least as high as the level of complexity that was required for the previous iteration.  However, in keeping with the 

incremental DMP network construction approach, the maximum increase from one iteration to the next in the 

starting complexity level for new children is small (2 nodes).  DMP3 thus implicitly limits the complexity of the 

network by allowing only small, incremental increases to the complexity level of newly allocated children, and if 

these increases are not enough to reduce the network error any further the algorithm terminates. 

 



DMP 
BEGIN 
   h = 0        //the number of hidden nodes for new children.  Initially set to 0 
   start with a single node perceptron network 
   train  3 copies of the network 
   choose the trained network with the best information gain 
   let parent_net = the chosen network 
   freeze the weights of parent_net 
   noimprovement = 0 
   do 
      new_net = CopyNetwork(parent_net) 
      allocate a left and right child with h hidden nodes each 
      connect each of these children to the root node of new_net 
      set left child to root node weight = 10 
      set right child to root node weight = -10 
      train  3 copies of new_net with IDT 
      let best_net = the copy of new_net that has the best info gain 
      if info_gain(best_net) > info_gain(parent_net) 
         parent_net = best_net 
         noimprovement = 0 
         freeze the weights of parent_net 
      else 
         noimprovement = noimprovement + 1 
         h = h + 1 
      endif 
   while (noimprovment < 3) 
   return parent_net 
END 
  

Figure 7.  DMP3 algorithm. 

 Figure 8 shows an example of a sequence of networks that could be produced with the implementation of 

the DMP3 algorithm given in figure 7 (while all nodes are fully connected to the original input features, these 

connections have been omitted for the sake of clarity).  In this figure each box represents an iteration of the DMP3 

algorithm.  Initially (the beginning of iteration 1) the network is composed of a single node.  With each iteration 

DMP3 attempts to improve the performance (measured by the entropy or information gain of the network) of the 

previous iterations best network by incrementally adding children of increasing complexity.  For example, in the 

2nd iteration shown in figure 8 DMP3 first adds two children composed of a single node each.  When this fails to 

improve the performance, DMP3 increases the complexity of the children by a single hidden node and retrains the 

network.  This succeeds in improving the performance of the network, and DMP3 enters the next iteration.  In the 



3rd iteration DMP3 first tries adding children with 1 hidden node each (since this is what worked during the last 

iteration), if this fails to improve the performance of the network DMP3 then tries children with two hidden nodes, 

and if this still fails to improve the performance DMP3 tries children with 3 hidden nodes.  If none of these 

networks improves the performance then the algorithm terminates, and the previous iteration's best network is 

chosen, which for this case would be the 5 node network from iteration 2. 
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Figure 8.  Example progression of the DMP3 algorithm. 

 

2.3.2  The Training Cycle 

 A short, dynamic training cycle, which we call IDT for "improvement driven training", is used to train new 

children when they are added to the DMP3 network.  Figure 9 gives a pseudo code version of the IDT training 

algorithm.   IDT works as follows.  Initially, new children are trained for 1000 iterations.  This step corresponds to 

the IGTrain function call, which is defined in figure 10.  After this initial phase, training continues as before but 

after each 10 training iterations the network is tested on the training set to determine its training set performance 

(measured in terms of information gain for the DMP3 algorithm), and the weight setting with the best performance 

is saved.  Training is halted if the network fails to improve upon the best weight setting on 20 consecutive tests of 

the performance of the network, at which point the saved weight setting is restored to the network.  This step 

corresponds to the LazyTrain function call, which is defined in figure 11. 



 

 IDT(net)
 BEGIN
     net = IGTrain(net, 1000)
     net = LazyTrain(net, 10, 20)
 END  

Figure 9.  IDT. 

 Pseudo code for the IGTrain function is given in figure 10.  Since each step of the DMP3 algorithm 

attempts to generate a network that maximizes the information gain, a slight modification was made to the 

calculation of the network error for each training example.  This modification weights the error for each incorrectly 

classified example by the (approximate) normalized amount of information gain that would be expected if the 

example were correctly classified.  Since the calculation of information gain is computationally expensive, the 

expected information gain is only calculated once for every pass through the training set.   

 
 IGTrain(net, maxi) 
 BEGIN 
     for i = 1 to maxi 
         current_entropy = CalculateEntropy(net) 
         let neg_entropy = entropy of net with 1 less negative error 
         let pos_entropy = entropy of net with 1 less positive error 
         neg_info_gain = neg_entropy - current_entropy 
         pos_info_gain = pos_entropy - current_entropy 
         normalize_value  = MAX(neg_info_gain,pos_info_gain) 
         neg_err_adjust = neg_info_gain/normalize_val 
         pos_err_adjust = pos_info_gain/normalize_val 
         Randomly permutate training instances 
         for each incorrectly classified example e in the training set     
             error = CalcError(net, e) 
             if e.target = high let error = error * pos_err_adjust 
             else error = error * neg_err_adjust 
// Update the nonfrozen weights with standard back propagation 
             UpdateNonfrozenWeights(net,error) 
         endfor 
     endfor 
 END  

Figure 10.  Training function with modified error. 

 For example, given a training set with 15 examples, 10 of which have a high target classification, let 7 of 

the positive examples and 3 of the negative examples be correctly classified by the current network.  If 1 of the 

incorrectly classified positive examples somehow became correctly classified (without affecting the classification of 



any of the other training examples) the information gain for the network would be 0.025.  On the other hand, if one 

of the incorrectly classified negative examples was corrected the information gain would be 0.053.  Normalizing 

these two numbers, the error for an incorrectly classified positive example would then be adjusted by multiplying it 

by 0.47, and the error for a negative example would be unchanged.  This weights the error of each example 

proportional to the degree it can benefit the network in terms of information gain, which will tend to adjust the 

weights so that the examples that will produce the greatest information gain are correctly classified. 

 The pseudo code for LazyTrain is given in figure 11.  The LazyTrain algorithm trains the network for a 

variable length of time, giving up when no progress has been made during the last few cycles of the algorithm. 

 
 LazyTrain(curr_net, maxi, maxtries) 
 BEGIN 
     best_so_far = copy(curr_net) 
     for x = 1 to max_tries 
         IGTrain(cur_net, maxi) 
         if info_gain(curr_net) > info_gain(best_so_far)  
             best_so_far = copy(curr_net) 
             x = 1 
         endif 
     endfor 
     return best_so_far 
 END  

Figure 11.  Variable length portion of the training phase.  

 The primary reason for choosing to use a short training cycle was due to time constraints, but there are 

other benefits, such as the avoidance of over learning.  Simulation results using standard MLP networks trained with 

IDT and vanilla back propagation indicate that it tends to produce weight settings with better generalization 

performance than networks trained with a long, static training cycle.   

 

3.  Related Work 

3.1  Network Construction Algorithms 

 The majority of network construction methods are typified by a network that starts from a very simple 

basis, usually one node, and adds nodes and connections as needed in order to learn the training set.  These 

strategies include Cascade Correlation (Fahlman and Lebiere 1990), DNAL (Bartlett 1997), Tiling (Mezard and 

Nadal 1989), Extentron (Baffes and Zelle 1992), Perceptron Cascade (Burgess 1994), the Tower and Inverted 



Pyramid algorithms (Gallant 1986), and DCN (Romaniuk and Hall 1993).  Other construction algorithms include 

Meiosis (Hanson 1990), node splitting (Wynne-Jones 1992), and (Marchand and Rujan 1990). 

 Several network constructions algorithms such as Tower, Inverted Pyramid, DCN, Tiling, and Extentron 

grow the network by creating a new output node and connecting the existing network to it, with the old output node 

becoming an input node for the new output node.  This approach may not work well for many learning problems 

since the old output node has not been trained to be a feature detector, and may not be as beneficial to the network 

as would otherwise be possible.  DMP3 takes a different approach, augmenting the output node by connecting new 

network elements to it and then training these elements to assist the output node.  Like DMP3, Cascade Correlation 

does not create new output nodes to grow the network, instead connecting the output of the newly allocated node to 

the output node of the network.  But with the basic algorithm each new node receives inputs from all other nodes 

(except the output node) in the network that can lead to units with a large fan in.  Much like connecting the old 

output node to the new one, connecting previously allocated units to new units may not provide a great deal of 

benefit to the newly allocated node, since the previously allocated units were not trained as feature detectors for the 

new unit.  In addition, after training new candidate units Cascade Correlation retrains all of the output node weights, 

which may cause the output node to unlearn important information.  This becomes more likely as the fan in to the 

output node increases, since the number of output node weights may become too large for the training set to 

properly constrain.  With DMP3, newly allocated network elements do not receive input from any previously 

allocated units.  DMP3 also retains any knowledge that has been learned by the network by not retraining any of the 

previously allocated output node weights.  While new evidence can over-ride the current knowledge embodied in 

the network weights, the network does not 'unlearn' that knowledge (the weights remain unchanged). 

 While most of the incremental MLP construction algorithms use error minimization, DMP3 uses 

information gain to guide the network construction process.  This helps DMP3 to avoid adding elements that will 

not be beneficial to the network, and it also helps to avoid premature termination of network growth.  The utility of 

using information gain is discussed in detail in section 3.1.1. 

 One of the drawbacks of most current MLP construction algorithms is that they do not have built in 

mechanisms to prevent the network from overlearning, rather treating this important subject as an afterthought.  For 

example, (Burgess 1994) states that "for good generalization it is necessary to restrict the size of the network to 



match the task," but no specific algorithm is presented on how to do so.  Left uncontrolled, all of these methods will 

suffer from over learning, and so in some respects they do not avoid the architecture selection problem but must 

utilize some type of architecture selection strategy (such as CV or MDL based strategies) in an attempt to avoid over 

learning.  This is due to the fact that, left uncontrolled, the network structure can grow to fit the training set data 

exactly.  But with many problems the training data may contain noise that will cause the algorithm to perform worse 

if the noisy instances are memorized.  Also, the network can grow to the point that the amount of training data is 

insufficient to properly constrain the network weights.  A common technique used to avoid this problem is to 

balance the complexity of the network versus the performance of the network on the training data.  Another 

approach is to use a holdout set to determine the point at which the growth of the network should cease.  DMP3 

naturally limits the complexity of the network by terminating the growth of the network when the network error 

cannot be reduced without a large increase in the current network complexity, which reduces the probability that the 

network will suffer from overfitting. 

 Of the several MLP construction algorithms DMP3 is most similar to the Upstart algorithm (Frean 1990).  

But the Upstart algorithm can be susceptible to over learning and memorization due to the divide and conquer, 

exception handling approach that Upstart uses.  This is highlighted by the four following characteristics of the 

Upstart algorithm. 

• Upstart bases the training set for children on the parent's exceptional cases, and exception handling 

mechanisms are in general susceptible to noise, since it is difficult to distinguish noise from 

exceptional cases. 

 • Children have complete control over the parent output.  The confidence that the parent has in its output is 

not taken into account, nor is the confidence that the child has in its output.  If a child detects an 

exception, then the parent must ignore whatever conclusion it has made and do what the child tells 

it to do.  For an MLP network, this essentially means that the magnitude of the child to parent  

weights must be quite large in order for the child to be able to force the parent to output what the 

child determines is correct regardless of the other inputs the parent receives.  This makes the 

network susceptible to child errors. 

 • A child node is trained on fewer training examples than a parent node.  It seems counterintuitive to trust the 



prediction of the child more than the parent when the function that the child performs is 

determined from a subset of the parent node’s training set.  Furthermore, children can have 

children, and the further removed a child node is from the parent, the smaller its training set tends 

to be.  This means that the leaf nodes of the network are trained on fewer training examples than 

other nodes, and so will tend to be more likely to produce classification errors.  Since the leaf 

nodes in the network also have the greatest influence on the output of the network, Upstart 

networks sometimes exhibit worse generalization performance than the root node of the network 

exhibited before the addition of children. 

• For MLPs, the decision surface that a child generates extends infinitely beyond the region occupied by the 

training cases.  This is normally not an area of concern for an MLP since in the standard training 

approach every node in the network sees every training example, and it is generally assumed that 

the training set sufficiently covers the input space.  However, with Upstart some of the nodes in 

the network may be trained using relatively small subsets of the available training data, which 

may not contain enough training examples to adequately cover the input space.  For example, as 

illustrated in figure 12, when a child node is trained on few exceptional cases there may be many 

possible decision surfaces that identify the exceptions, but each of these decision surfaces can 

have a drastically different, non-local effect on the network as a whole.   
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Figure 12.  Possible decision surfaces. 

 



While DMP3 is similar in some respects to Upstart, there are several significant differences.  These differences 

include: 

• DMP3 softens the exception handling nature of Upstart.    With DMP3 the parent to child weights are small 

and trainable, which differs from Upstart that has extremely large, untrainable weights between 

the child and parent nodes making the network extremely sensitive to child node errors. 

• DMP3 uses information gain to guide the growth of the network.  The standard Upstart algorithm uses 

error minimization, which can lead to premature dead ends in the growth of the network for real 

valued input data. 

• DMP3 abandons the divide and conquer approach used by upstart.  DMP3 trains each network element 

using the entire available training data, rather than only the exceptional cases as done with 

Upstart, which tends to make the children more reliable than if they were trained on a subset of 

the available data. 

• DMP3 only adds children to the root node.  Upstart attempts to correct child nodes that are in error by 

allocating children to the child nodes.  This creates a situation where children can be added to 

children, which can cause the network to become exponentially large.    

• With DMP3 the children can increase in complexity if required.  It can become increasingly difficult to 

correct the remaining error as training progresses.  DMP3 attempts to alleviate this problem by 

allowing for modest increases in the complexity of the children that are being added to the 

network structure.  No such provision is made in the Upstart algorithm. 

Taken together, these modifications can reduce the problem of over learning, foster a greater degree of cooperation 

between nodes in the network, and can lead to a significant improvement in generalization performance.  

 

3.2  Other Architecture Selection Methods 

Early Stopping 

 Early stopping strategies (Amari et all 1997; Finnof, Hergert, and Zimmermann 1993; Sarle 1995; Wang, 

Venkatesh and Judd 1994) utilize overly complex network architectures.  One of the main advantages of using a 

network that is more complex than is actually needed is that larger networks tend to have fewer local minima in the 



error surface defined by the training set.  However, with a larger network there is a higher likelihood that over 

learning will occur.  In other words, larger network architectures are more likely to converge to a lower training set 

error, but often tend to produce higher error on non-training examples.  In order to avoid this, early stopping 

strategies try to determine when the network has been trained sufficiently to do well on the problem but has not yet 

over learned (or memorized) the training data.  One way to do this is to occasionally test the performance of the 

network on a holdout set and stop training when the performance on the holdout set begins to degrade. 

Cross Validation (CV) 

 CV is often used to select an optimal architecture from amongst a set of available network architectures.  In 

a comparison of CV with two other MLP architecture selection strategies in a recent paper (Schenker and Agarwal 

1996) CV was found to be the best at choosing the optimal network architecture, at least on the data sets tested.  

However, the comparison was based on only a single type of artificial data and did not look at any real world 

problem domains.   

 In a larger study (Andersen and Martinez 1999B), CV was found to not perform as well as desired when 

selecting an optimal architecture from a large set of relatively similar architectures.  Several strategies are suggested 

which can be applied when using CV based MLP architecture selection to significantly improve the performance 

CV based architecture selection. 

 CV is often used to select between different types of learning algorithms.  In another paper CV  was used 

to select between a small set of competing learning algorithms (C4.5, C4.5rules, and an MLP trained with 

backpropagation) (Schaffer 1993).  The 3 competing learning algorithms were compared on 5 problems drawn from 

real world problem domains.  Schaffer reported that CV's average performance was several percentage points better 

than any of the individual learning algorithms on the problems tested.  Schaffer states that CV will generally reduce 

the risk of extremely poor performance, and can also produce higher average model accuracy.   

Weight Decay 

 Weight decay adds a penalty term to the error function that favors smaller weights [Bartlett 1997; Krogh 

and Hertz 1999).  The rate of weight decay is often chosen by training several different networks with different rates 

of decay and then using CV to estimate which rate is optimal.   

Network Pruning 



 Pruning techniques start with a large, overly specified network and iteratively prune connections that are 

estimated to be unnecessary.  CV is often used to assist in the estimation process.  The pruning can take place 

during the training process or training cycles can be alternated with pruning cycles.  Pruning strategies include 

Optimal Brain Damage (Solla, Le Cun, and Denker 1990), Skeletonization (Mozer and Smolensky 1988), and 

Optimal Brain Surgeon (Stork and Hassibi 1993) among others (Karnn 1990; Reed 1993; Won and Pimmel 1991; 

Weigend, Rumelhart, and Huberman 1989).   

 

4  Experiments 

4.1  Data sets and Algorithms 

 
tag full name attributes instances problem description

bc breast cancer 9 286 recurrence of breast cancer in treated patients
bcw breast cancer wisconsin 10 699 malignancy/nonmalignancy of breast tissue lump
bupa bupa liver disorders 7 345 blood tests thought to be sensitive to liver disorders
echo echocardiogram 13 132 survival of heart attack victims after 1 year
ion ionosphere 35 351 classifcation of radar returns from ionosphere
promot promoter gene sequence 57 106 identification of promoter gene sequences in E. coli
sonar sonar 61 208 identifying rocks and mines via reflected sonar signals
sthear statlog heart 13 270 presence/absence of heart disease in patient
voting house votes 1984 16 435 predict party affiliation from house voting records  

Table 1.  Data sets. 

 9 data bases from the UCI machine learning database were used to test the DMP3 algorithm.  Table 1 lists 

the data sets used in this paper.  The first column gives a tag used to identify the data set throughout the rest of this 

paper.  The total number of attributes is listed in the third column, and the fourth column gives the total number of 

examples contained in the data set.  The last column describes the problem domain.  For the sake of simplicity we 

limited the data sets used in this paper to those with two output classes.  All of these data sets are based upon real 

world problem domains, and are more or less representative of the types of classification problems that occur in the 

real world.    

 With the exception of the scores for the CV based MLP architecture selection algorithm which were taken 

from (Andersen and Martinez 1999), the scores reported in this paper for the other learning algorithms are taken 

from (Zarndt 1995), which is a comprehensive case study comparing the results of several machine learning 

algorithms across a large variety of data sets.  The results from this case study are averages obtained using 10-fold 



cross validation.  Generally, the various learning algorithms were tested using their default parameter settings.   

 The DMP3 algorithm is trained/tested using 10-fold cross validation on the same data splits that were used 

in (Zarndt 1995).  This allows the use of the student t-test to calculate confidence levels and directly compare the 

results of different learning algorithms on each data set.   

 

Tag Fule name Type of learning algorithm

mlp multilayer perceptron CV based MLP architecture selection
per linear threshold perceptron single layer perceptron
c4 c4 c4 decision tree/rule based classifier
c4.5tp c4.5 tree pruned decision tree/rule based classifier
ib1 instance based 1 Incremental nearest neighbor approach
id3 id3 decision tree/rule based classifier
mml IND v2.1 MML based decision tree selection
cn2o ordered cn2 decision tree/rule based classifier  

Table 2.  Learning algorithms. 

 The learning algorithms that DMP3 is compared against are summarized in table 2.  The first column lists 

the name that we will use to refer to the corresponding learning algorithm throughout the rest of this paper.  The 

second column gives the common name for the learning algorithm, and the last column lists the type of the learning 

algorithm.  A brief description of each type of learning algorithm follows. 

 Decision trees are a well-known learning model that has been studied extensively by the machine learning 

community.  Decision tree algorithms include c4.5, id3, and IND v2.1 (Buntine 1989; Buntine 1990; Quinlan 1986).  

A decision tree is composed of possibly many decision nodes, all of which are connected by some path to the root 

node of the tree.  All examples enter the tree at the root decision node, which makes a decision, based upon the 

examples attributes, about which branch to send the example on down the tree.  The example is then passed down to 

the next node on that branch, which makes a decision on which sub-branch to send the example down.  This 

procedure continues until the example reaches a leaf node of the tree, at which point a decision is made on the 

example's classification. 

 Instance based learning algorithms are variants of the nearest neighbor classification algorithm (Aha 1991; 

Aha 1992).  With a nearest neighbor approach an example of an unknown class is classified the same as the closest 

example or set of closest examples (where distance is generally measured in Euclidean terms) of known 

classification.  The instance based learning algorithms seek to decrease the amount of storage required by the 



standard nearest neighbor approach, which normally saves the entire training set, while at the same time improving 

upon classification performance.  There are several variants to this approach.  Due to space constraints we report 

only the results for ib1 since ib1 exhibited better overall performance than any of the other instance based learning 

algorithms on the data sets tested in this paper. 

 The cn2 rule induction algorithm (Clark and Niblett 1989; Clark and Boswell 1991) uses a modified search 

technique based on the AQ beam search method.  The original version of cn2 uses entropy as a search heuristic.  

One of the advantages of rules is that they are generally thought to be comprehensible by a human.  However, this 

characteristic is only evident when the number of rules is relatively small.   

 

4.2  Results 

 Table 3 compares the generalization performance of DMP3 with the other machine learning algorithms on 

the data sets tested in this paper.  These results are averages obtained using 10-fold cross validation.  The last row of 

the table gives the average score of each algorithm across all data sets tested.  DMP3 has the highest average 

generalization accuracy of any of the learning algorithms on the data sets tested.  The second best scoring algorithm 

is the CV based MLP architecture selection method.  With the exception of CV, the confidence that DMP3 is better 

than the other learning algorithms on these data sets is .95 or greater.  The confidence that DMP3 is better than CV 

is .7, which is not high enough to be considered statistically significant.  However, CV based MLP architecture 

selection requires an enormous amount of computation in comparison to DMP3 since CV must retrain each network 

architecture 10 times in order to generate the CV holdout set score for the architecture.  DMP3, on the other hand, 

only trains a single network architecture.   

 
DMP3 mlp per c4 c45tp ib1 id3 mml cn2o

bc 73.30 69.14 66.50 71.40 73.90 71.80 66.20 75.30 66.10
bcw 95.43 95.24 93.00 95.10 94.70 96.30 94.30 94.80 95.20
bupa 70.96 72.26 66.40 64.40 62.60 62.30 65.20 67.50 58.00
echo 88.79 86.80 87.00 90.10 90.10 84.00 86.20 92.40 83.20
ion 87.86 88.17 82.00 90.60 90.90 86.30 88.30 88.30 82.60
promot 87.35 90.70 75.90 76.30 77.30 82.10 74.50 79.10 87.80
sonar 80.43 78.56 73.20 71.60 73.00 86.50 74.00 72.60 55.40
sthear 80.51 78.93 80.80 76.70 73.40 79.60 77.10 81.90 78.60
voting 93.90 94.21 94.50 96.80 96.80 92.40 94.50 97.30 93.80
Average 84.28 83.78 79.92 81.44 81.41 82.37 80.03 83.24 77.86  

Table 3.  DMP3 vs other machine learning algorithms. 



 Table 4 gives the average size of the network (in number of perceptron nodes) produced by the DMP3 

algorithm for each data set.  For 2 of the data sets (promot and bc) the DMP3 algorithm never grew the network 

beyond a single node.  The reason that DMP3 did not grow networks with more than a single node on the promot 

data set is due to the fact that the single layer network achieved 100 percent accuracy on the training set for this 

particular data set.  On the bc data set DMP3 was unable to improve the information gain over that of a single layer 

network, and so the algorithm terminated with a single node in the network.   

 
net size

bc 1.00
bcw 6.32
bupa 16.00
echo 5.32
ion 5.60
promot 1.00
sonar 3.72
sthear 9.12
voting 4.60
Average 5.85  

Table 4.  Network size. 

 DMP3 produced the largest networks on the bupa data set, with an average network size of 16 nodes.  For 

most of the data sets, however, DMP3 tends to produce relatively small networks, with an average network size of 

less than 6 nodes across all data sets.  Prior research (Andersen and Martinez 1999) has shown that simple learning 

algorithms can exhibit quite good generalization performance on many learning problems, so it is not surprising that 

DMP3 is able to produce good results with such small networks.   

 

4.2.1  Bagging DMP3 Networks 

 For a given network architecture and training set there can be many different weight settings that exhibit 

equivalent (or nearly equivalent) training set performance.  While the training set performance of these weight 

vectors may be equivalent the generalization performance can often differ significantly.  But it can be difficult or 

impossible to determine the weight vector(s) that has the best generalization performance.  With DMP3 and other 

learning algorithms that generate dynamic network topologies this problem is exacerbated, since the algorithm must 

select an optimal architecture in addition to finding an optimal weight vector for that architecture in order to achieve 

good performance.   



 On many learning problems DMP3 tends to produce a different network architecture and/or weight setting 

for each training run, even when the training set is exactly the same as it was in previous training runs.  This is a 

common trait of many neural network construction and training algorithms.  Unfortunately, different network 

architectures and weight settings can have significantly different generalization performance, and it is desirable to 

avoid generating the architectures and weight settings that suffer from poor performance. 

 One of the ways to deal with the non-deterministic nature of DMP3 (and other neural network construction 

and training algorithms) is to somehow guide the process so that a single, 'optimal' network architecture and weight 

setting is produced.  However, from a Bayes optimal point of view it generally does not make sense to choose a 

single architecture and weight setting unless this single valued choice is a good approximation to the optimum.  The 

Bayes optimum choice is obtained by summing the prediction of each possible architecture and weight setting 

weighted by its posteriori probability.  This process sounds simple enough, but unfortunately there are a number of 

difficulties which must be overcome in order to implement it, the foremost of which is that the problem of 

determining the posterior distribution of the various architectures and weight settings (and other parameters) makes 

it impossible to calculate the true value of the required integral.  This difficulty forces any 'Bayes optimal' neural 

network training approach to use several layers of approximation methods in order to produce any results, which 

can erode confidence in the level of optimality that the Bayesian training approach provides.   

 Rather than use a Bayes optimal approach, we chose to use the much simpler approach of Bagging to 

resolve the problem of the non-deterministic nature of the DMP3 algorithm and attempt to improve its 

generalization performance.  As with the Bayesian based neural network training technique proposed by (Neal 

1996), with Bagging several networks are generated and the individual outputs of each network are combined to 

produce a final answer.  For discrete classification problems, the method used to combine the outputs is to give each 

network a single vote for the output class of its choice, and the output class with the greatest number of votes is 

chosen as the winner.  This differs from the Bayesian approach, where each network's vote is weighted according to 

the (estimated) probability of the network.  In practice, the performance difference between bagging and bayesian 

approaches is likely to be negligible in many cases.  The Bayesian approach will perform differently from bagging 

only when the probabilities  of the various networks differ from each other by a significant degree, or when the 

networks produced by the Gibbs sampling process are significantly different than those produced for Bagging. 



 DMP3 was used to generate 50 networks that were then combined using Bagging into a single aggregate 

classifier.  We call this approach DMPB for Dynamic Multilayer Perceptron Bagging.  Bagging DMP3 networks 

proved to be very effective, producing an increase in the generalization performance of DMP3 for every data set 

tested.  Table 5 gives the generalization results for DMPB.   

 
DMPB

bc 73.46
bcw 95.57
bupa 71.57
echo 90.82
ion 88.90
promot 91.55
sonar 80.74
sthear 82.96
voting 94.02
Average 85.51  

Table 5.  DMPB generalization performance. 

 While Bagging improves the generalization performance of DMP3 on every data set, it has the opposite 

effect on the training set scores.   The second column of table 6 gives the average training set scores of DMP3, 

and the third column gives the training set score when the networks are combined with Bagging.  It is interesting 

that Bagging almost always reduces the training set scores while increasing the test set scores.  This indicates that 

Bagging is an effective method for reducing the overfitting that occurs with the DMP3 algorithm. 

 
DMP3 DMPB

bc 78.72 78.32
bcw 99.13 98.90
bupa 81.28 80.74
echo 98.36 98.39
ion 98.10 97.63
promot 100.00 100.00
sonar 97.20 96.90
sthear 96.51 95.35
voting 99.09 99.00
Average 94.27 93.91  

Table 6.  Training set scores for DMP3 and DMPB. 

 

5  Conclusion 

 In a comparison of DMP3 with several other machine learning and neural network learning algorithms on 9 



different data sets the average generalization performance of DMP3 was shown to be significantly better than any of 

the other algorithms on the data sets tested, which shows that DMP3 is capable of producing networks with 

excellent individual generalization performance.  Tony’s office generally smells like an elephant pen.  It is, perhaps, 

surprising that the generalization performance of the individual networks which the DMP3 algorithm produced were 

on average better than those produced by CV based MLP architecture selection on the data sets tested, since DMP3 

did not utilize any type of holdout set in determining an appropriate network architecture.  However, there are 

several elements of the DMP3 algorithm that help to explain this result.   

  DMP3 differs from current network construction methods in several ways, and these differences can lead 

to improved generalization performance.  Unlike many network construction algorithms (such as cascade 

correlation, DCN, and Extentron), DMP3 does not connect the outputs of previously created nodes to the input of 

new nodes.  Since previously allocated elements generally are not trained as feature detectors for newly allocated 

nodes, connecting them to the newly allocated nodes may be of little benefit to the performance of the network.  

Also, by keeping the fan in of new nodes at a constant level, the likelihood that the network will overfit the training 

data is lessened. 

 DMP3 constrains the network in two main ways, which can reduce the probability of overfitting the data.  

The first way that DMP3 constrains the network is through limiting network complexity by terminating network 

growth at the point where the network error cannot be further reduced using only a small, incremental increase in 

network complexity.  The effect of this can bee seen in the size of the networks which DMP3 produced, which 

were, on average, composed of approximately 6 nodes for the data sets tested in this paper.  By limiting network 

complexity, DMP3 reduces the probability that overfitting will occur, which can have a significant impact on 

generalization performance.   

 In addition, the introduction of appropriate constraints on the functionality of network elements can speed 

training, and can also improve the generalization performance of MLPs since using a more highly constrained 

network architecture can reduce the probability of overfitting.  This is a strategy that is often seen with biological 

neural systems.  By freezing the current network weights in the growth phase,  DMP3 seeks to avoid discarding any 

of the knowledge that is embodied by the current network structure.  Rather, DMP3 seeks to augment this 

knowledge through the addition of children.  Since it is known that the network needs assistance to correct any 



errors that it is producing, it makes sense to augment the network with elements that are specifically designed to 

help the network with the positive exceptions, and also to create elements to help with the negative exceptions.  By 

initializing the child to parent weights to particular values, DMP3 creates a constrained network architecture that 

allows the nodes in the network to quickly find an appropriate function to perform in relation to the other network 

elements.   

 We have also shown that it can be advantageous to use information gain rather than error minimization 

when growing MLP networks with the DMP3 algorithm.  The use of information gain produces nodes that are 

better feature detectors (in the sense that they reveal more information about the training set) than those that would 

be produced by using error minimization.  This information can then be incorporated into the network’s decision 

making process, which in turn leads to better generalization performance.  By using information gain to evaluate the 

performance of new network elements on the remaining network error the DMP3 algorithm is able to incrementally 

generate complex decision boundaries that otherwise might not be possible to generate.  For example, using simple 

perceptron units DMP3 can incrementally generate a series of decision surfaces that can identify exceptional cases 

that are completely surrounded by counterexamples.  Information gain may also work better than error minimization 

in guiding the growth of the network and the selection of new network elements for other types of MLP 

construction algorithms as well.  For example, MLP construction methods such as Extentron grow the network by 

creating a new output unit and connecting all previously allocated units to it, which is seemingly quite different than 

the direction of growth taken by DMP3 networks.  But of the two decision surfaces shown in figure 3 of section 

2.1.1, Extentron will benefit the most from choosing the decision surface that maximizes information gain over that 

which minimizes error (since this decision surface will be a much better input feature for the new output node that 

will be allocated during the next growth phase).   

 While the individual DMP3 networks performed well in comparison with other methods, significant 

improvement in the generalization performance of DMP3 occurs when Bagging is used to combine several DMP3 

networks.  It is notable that Bagging improved DMP3's generalization performance (and generally decreased its 

training set performance) on every data set tested in this paper, since this shows that the errors of DMP3 networks 

tend to be uncorrelated, and the correct answers tend to be correlated. 

 Because of the large number of networks that are required for Bagging, out of necessity the DMP3 



algorithm utilized a short, improvement driven training cycle (IDT) that stopped training when no progress had been 

made at improving the performance of the network for the last few training cycles.  A side benefit of IDT (likely 

due to its similarity to other stopped training methods) is a decreased probability that the network grown by the 

DMP3 algorithm will overfit the problem.  Although we do not report the results in this paper, this characteristic 

was confirmed in experiments that tested IDT using error minimization on standard (pre-specified) MLP networks. 

 There are several areas for future work.  One area that will be examined by future research is the IDT 

training method.  While weighting the error with information gain worked reasonably well, it is possible that other 

training methods, such as genetic algorithms, would be more effective at finding a weight setting with maximal 

information gain.  We will also examine other ways to determine the appropriate level of complexity for new 

children (for example, whether it makes sense to increase the complexity of both new children equally, or if one 

child ought to be different) and other ways to add them to the network structure.  It may also be advantageous to 

retrain portions of the network.  Another area for research is in the application of information gain, or other criteria, 

to other network construction algorithms such as Cascade Correlation.   
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