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Preface 

:elcome to the Si[th International Conference on Computational Creativity, ICCC 2015� 

Computational Creativity is the art, science, philosophy and engineering of computational 
systems which, by taking on particular responsibilities, e[hibit behaviours that unbiased observers would 
deem to be creative. The ICCC conference series has been organi]ed annually by the Association for 
Computational Creativity since 2010, and was preceded by workshops since 2004. It is the only scientific 
conference that focuses on computational creativity and also covers all aspects of it. 

Papers were submitted to ICCC in five categories: �1� technical papers advancing the state of art 
in research, �2� system and resource description papers, ��� study papers presenting enlightening novel 
perspectives, �4� cultural application papers presenting the usage of creative software, and �5� position 
papers arguing for an opinion. 

The conference received 55 submissions from all over the world. The submissions were evaluated 
for their merits according to their category. Every submission was reviewed by three to four Program 
Committee Members and then discussed among the reviewers, if needed, to resolve controversial and 
borderline cases. Senior Program Committee Members led discussions and also prepared 
recommendations based on the reviews and discussions. In total, over 200 reviews were carried out in the 
process. 

Based on the reviews and discussions, 28 submissions were accepted for presentation. In an 
attempt to include more papers with interesting but possibly immature content, this year another 1� papers 
were accepted conditionally, subMect to small revisions formulated and checked by the Senior Members. 
Eventually, all these papers were accepted in their revised forms. 

The papers accepted to ICCC 2015 cover a large variety of topics. As a field of research, this area 
is thriving, with progress in formalising what it means for software to be creative, along with many 
e[citing and valuable applications of creative software in the sciences, the arts, literature, gaming and 
elsewhere. 

The threeandahalfday conference program of ICCC 2015 consists of e[citing sessions 
consisting of presentation of the selected papers, a keynote on interactive narrative and participatory 
drama by Emily Short, some additional short talks, and a rich social program. This year, we are proud to 
host our very first workshop ± Computational Creativity 	 Games ± taking place immediately before the 
main conference. ICCC 2015 takes place -une 29 ± -uly 2 in Park City, Utah, USA, on historic Main 
Street at the Treasure Mountain Inn. 

:e would like to thank all those who invested their substantial efforts into making this 
conference what is: authors of the submissions for the e[cellent and interesting content of the conference, 
the �� Program Committee members and the additional 10 Senior Program Committee members for their 
insight and efforts in the paper selection and shepherding process, Emily Short for a thoughtprovoking 
keynote, the workshop authors and organi]ers for interesting content to complement the main conference 
program, and the local organi]ation in Utah for taking care of the practical arrangements. 

:e hope you are inspired by the papers and presentations� 

Hannu Toivonen Dan Ventura Michael Cook Simon Colton 
Program Chair Local Chair Publicity Chair General Chair 

-une 2015 
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General Chair: Simon Colton, Goldsmiths College, University of London 
Program Chair: Hannu Toivonen, University of Helsinki, Finland 
Publicity Chair: Michael Cook, Goldsmiths College, University of London 
Local Chair: Dan Ventura, Brigham Young University 

/RcaO 2rJaQL]LQJ &RPPLWWee 

Thea Leonard, Gordon Billings, -en Bonnet, -enny Thornton, Martin Mumford, Simon Cho, .imberly 
-enkins, Brian Pugmire, Lynn Patten and Ye Liang 

6eQLRr PrRJraP &RPPLWWee 

Oliver Bown, University of Sydney 
F. Amtlcar Cardoso, University of Coimbra 
Pablo Gervis, Universidad Complutense de Madrid 
Rafael Ppre] y Ppre], Universidad Autynoma Metropolitana at CuaMimalpa 
Nick Montfort, Massachusetts Institute of Technology 
Tony Veale, University College Dublin 
Graeme Ritchie, University of Aberdeen 
Geraint :iggins, 4ueen Mary University of London 
Rob Saunders, University of Sydney 

PrRJraP &RPPLWWee 

-osep Blat, Universitat Pompeu Fabra 
Alberto Dia], Universidad Complutense de Madrid 
Diarmuid O¶Donoghue, National University of Ireland, Maynooth 
Liane Gabora, Neological / UBC 
Ashok Goel, Georgia Institute of Technology 
Hugo Gonoalo Oliveira, CISUC, University of Coimbra 
-eremy Gow, Goldsmiths, University of London 
.a]Mon Grace, University of North Carolina at Charlotte 
Andrps Gyme] de Silva Gar]a, Instituto Tecnolygico Autynomo de Mp[ico 
RaTuel Hervis, Universidad Complutense de Madrid 
Bipin Indurkhya, Akademia Gyrnic]noHutnic]a im. S. Stas]ica w .rakowie 
Anna -ordanous, University of .ent 
Amy .. Hoover, University of Central Florida 
Robert .eller, Harvey Mudd College 
Nada Lavraþ, -o]ef Stefan Institute 
Carlos Leyn, Universidad Complutense de Madrid 
Antonios Liapis, IT University of Copenhagen 
Ramon Lope] De Mantaras, IIIA ± CSIC 
Brian Magerko, Georgia Institute of Technology 
Neil Maiden, City University London, Centre for HCI Design 
Ruli Manurung, University of Indonesia 
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David Meredith, Aalborg University 
Ale[andre Miguel Pinto, University Of Coimbra 
Santiago NegreteYankelevich, Universidad Autynoma Metropolitana 
Francois Pachet, CSL Sony Paris 
Philippe PasTuier, Simon Fraser University 
Matthew Purver, 4ueen Mary University of London 
Mark Riedl, Georgia Institute of Technology 
Adam M. Smith, University of :ashington 
Oliviero Stock, FB.IRST 
-ulian Togelius, New York University 
Tatsuo Unemi, Soka University 
Lav Varshney, University of Illinois at UrbanaChampaign 
Georgios Yannakakis, University of Malta 
Frank van der Velde, University of Twente 
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0achine ,mSroYiVation on a +uman�$uthoreG 6criSt� %eyonG 9erVu �������������������������������������������������� Yiii 
Emily Short 

&reaWLYe $XWRQRP\ 

7he man behinG the curtain� 2Yercoming VNeSticiVm about creatiYe comSuterV ������������������������������������ � 
Martin Mumford and Dan Ventura 

Generating CoGe Ior ([SreVVing 6imSle PreIerenceV� 0oYing 2n )rom 
+arGcoGing $nG 5anGomneVV ����������������������������������������������������������������������������������������������������������������� � 

Michael Cook and Simon Colton 
$ttributing CreatiYe $gency� $re Ze Going it right" ����������������������������������������������������������������������������� �� 

Oliver Bown 

(YaOXaWLRQ LQ $rWV 
8Ving +uman ComSutation to $cTuire 1oYel 0ethoGV Ior $GGreVVing 9iVual $nalogy 
ProblemV on ,ntelligence 7eVtV ��������������������������������������������������������������������������������������������������������������� �� 

David -oyner, Darren Bedwell, Chris Graham, :arren Lemmon, Oscar Martine] and Ashok .. 
Goel 

$ccounting Ior %iaV in the (Yaluation oI CreatiYe ComSutational 6yVtemV� 
$n $VVeVVment oI '$5C, ����������������������������������������������������������������������������������������������������������������������� �� 

David Norton, Derrall Heath and Dan Ventura 
4uantiIying CreatiYity in $rt 1etZorNV ������������������������������������������������������������������������������������������������� �� 

Ahmed Elgammal and Babak Saleh 

&reaWLYe 0ecKaQLVPV 
,V %iologically ,nVSireG ,nYention 'iIIerent" ����������������������������������������������������������������������������������������� �� 

Ashok .. Goel 
7he role oI blenGing in mathematical inYention ������������������������������������������������������������������������������������� �� 

Feli[ Bou, Marco Schorlemmer, -oe Corneli, Danny Gome] Ramire], Ewen Maclean, Alan 
Smaill and Alison Pease 

8nZeaYing 7he Le[ical 5ainboZ� GrounGing LinguiVtic CreatiYity in PerceStual 6emanticV ������������� �� 
Tony Veale and .halid AlnaMMar 

/aQJXaJe 
),G85(�� $ 1oYel 6yVtem Ior Generating anG (Yaluating )iguratiYe Language ������������������������������� �� 

Sarah Harmon 
Game oI 7roSeV� ([Sloring the Placebo (IIect in ComSutational CreatiYity ���������������������������������������� �� 

Tony Veale 
20G 85 )unny� ComSuter�$iGeG +umor Zith an $SSlication to Chat ����������������������������������������������� �� 
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Miaomiao :en, Nancy Baym, Omer Tamu], -aime Teevan, Susan Dumais and Adam .alai 
 
(YaOXaWLRQ Rf &reaWLYLW\ 
$ 6emantic 0aS Ior (Yaluating CreatiYity �������������������������������������������������������������������������������������������� �� 

Frank van der Velde, Roger A. :olf, Martin Schmettow and Deniece S. Na]areth 
+uman ComSetence in CreatiYity (Yaluation �������������������������������������������������������������������������������������� ��� 

Carolyn Lamb, Daniel G. Brown, Charles L.A. Clarke 
0eaVuring cultural Yalue uVing Vocial netZorN analyViV� a caVe VtuGy on  
Yaluing electronic muVicianV ���������������������������������������������������������������������������������������������������������������� ��� 

Anna -ordanous, Daniel Allington and Byron Dueck 
ConceStuali]ing CreatiYity� )rom 'iVtributional 6emanticV to ConceStual 6SaceV ��������������������������� ��� 

.at Agres, Stephen McGregor, Matthew Purver and Geraint :iggins 
 
0XVLcaO ,QWeracWLRQ 
Player 5eVSonVeV to a LiYe $lgorithm� ConceStualiVing comSutational creatiYity Zithout  
recourVe to human comSariVonV"  �������������������������������������������������������������������������������������������������������� ��� 

Oliver Bown 
CollaboratiYe ComSoVition Zith CreatiYe 6yVtemV� 5eIlectionV on the )irVt 0uVebot (nVemble ������� ��� 

Arne Eigenfeldt, Oliver Bown and BenMamin Casey 
GeneratiYe 0uVic Ior LiYe 0uVicianV� $n 8nnatural 6election ���������������������������������������������������������� ��� 

Arne Eigenfeldt 
 
&RQceSWXaO %OeQGLQJ 
Generali]e anG %lenG� ConceSt %lenGing %aVeG on Generali]ation� $nalogy� anG $malgamV ���������� ��� 

Tarek R. Besold and Enric Pla]a 
9iVmantic� 0eaning�maNing Zith ,mageV �������������������������������������������������������������������������������������������� ��� 

Ping Xiao and Simo Linkola 
7he GooG� the %aG� anG the $+$� %lenGV �������������������������������������������������������������������������������������������� ��� 

Pedro Martins, TanMa Urbancic, SenMa Pollak, Nada Lavrac and Amtlcar Cardoso 
8Ving $rgumentation to (Yaluate ConceSt %lenGV in Combinatorial CreatiYity �������������������������������� ��� 

Roberto Confalonieri, -oe Corneli, Alison Pease, Enric Pla]a and Marco Schorlemmer 
 
9LVXaO $rWV 
9iVual ,nIormation 9aVeV� 7oZarGV a )rameZorN Ior 7ranVmeGia CreatiYe ,nVSiration �������������������� ��� 

Britton Horn, Gillian Smith, Rania Masri and -anos Stone 
7he Painting )ool 6eeV� 1eZ ProMectV Zith the $utomateG Painter ���������������������������������������������������� ��� 

Simon Colton, -akob Halskov, Dan Ventura, Ian Gouldstone, Michael Cook and Blanca 
Pere]Ferrer 

 
&KLOOLQJ� JaPeV� PXVLc� aQG cRcNWaLOV 
0aNe 6omething 7hat 0aNeV 6omething� $ 5eSort 2n 7he )irVt ProceGural Generation -am ��������� ��� 

Michael Cook 
608G� 6cientiIic 0uVic Generator ����������������������������������������������������������������������������������������������������� ��� 
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Marco Scirea, Gabriella A. B. Barros, Noor Shaker and -ulian Togelius 
GeneratiYe 0i[ology� $n (ngine Ior Creating CocNtailV �������������������������������������������������������������������� ��� 

-ohnathan Pagnutti and -im :hitehead 
 
&reaWLYLW\ VXSSRrW 
6timulating anG 6imulating CreatiYity Zith 'r ,nYentor ��������������������������������������������������������������������� ��� 

Diarmuid O'Donoghue, Yalemisew Abga], Donny Hurley, Francesco Ron]ano and Horacio 
Saggion 

CaVual CreatorV ����������������������������������������������������������������������������������������������������������������������������������� ��� 
.ate Compton and Michael Mateas 

,nteraction�baVeG $uthoring Ior 6calable Co�creatiYe $gentV ������������������������������������������������������������ ��� 
Mikhail -acob and Brian Magerko 

 
,PaJLQaWLRQ aQG &XrLRVLW\ 
,magining ,magination� $ ComSutational )rameZorN 8Ving $VVociatiYe 0emory 0oGelV anG  
9ector 6Sace 0oGelV ���������������������������������������������������������������������������������������������������������������������������� ��� 

Derrall Heath, Aaron Dennis and Dan Ventura 
PreconceStual CreatiYity ���������������������������������������������������������������������������������������������������������������������� ��� 

Tapio Takala 
6SeciIic curioVity aV a cauVe anG conVeTuence oI tranVIormational creatiYity ������������������������������������ ��� 

.a]Mon Grace and Mary Lou Maher 
 
&R�creaWLYLW\ 
ComSutational Poetry :orNVhoS� 0aNing 6enVe oI :orN in ProgreVV ����������������������������������������������� ��� 

-oseph Corneli, Anna -ordanous, Rosie Shepperd, Maria Teresa Llano, -oanna Mis]tal, Simon 
Colton and Christian Guckelsberger 

,nteraction (Yaluation Ior +uman�ComSuter Co�creatiYity� $ CaVe 6tuGy ���������������������������������������� ��� 
Anna .antosalo, -ukka M. Toivanen and Hannu Toivonen 

,mSact oI a CreatiYity 6uSSort 7ool on 6tuGent Learning about 6cientiIic 'iVcoYery ProceVVeV ������ ��� 
Ashok .. Goel and David A. -oyner 

,ntentionally Generating ChoiceV in ,nteractiYe 1arratiYeV ��������������������������������������������������������������� ��� 
Michael Mateas, Peter Mawhorter and Noah :ardripFruin 
 

/aQJXaJe ,, 
³,n reality there are aV many religionV aV there are SaSerV´ �± )irVt 6teSV 7oZarGV the  
Generation oI ,nternet 0emeV ������������������������������������������������������������������������������������������������������������� ��� 

Diogo Costa, Hugo Gonoalo Oliveira and Ale[andre Miguel Pinto 
$ chart generation VyVtem Ior toSical metrical Soetry ������������������������������������������������������������������������ ��� 

Berty Chrismartin Lumban Tobing and Ruli Manurung 
7he5iGGler%ot� $ ne[t VteS on the laGGer toZarGV creatiYe 7Zitter botV ������������������������������������������� ��� 

Ivan Guerrero, Ben Verhoeven, Francesco Barbieri, Pedro Martins and Rafael Ppre] y Ppre] 
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0achine ,mSroYiVation on a +uman�$uthoreG 6criSt� %eyonG 9erVu 
Emily Short 
 

 

%LRJraSK\� Emily Short is a narrative design consultant with a special interest in interactive dialogue. 
She is the primary author of over two do]en works of interactive fiction, including Galatea and Alabaster, 
which focus on conversation as the main form of interaction� Mystery House Possessed, which creates a 
mystery with a randomly chosen, AIdriven murderer on each playthrough� and First Draft of the 
Revolution, an interactive epistolary novella. Her more pu]]lefocused work includes the critically 
acclaimed wordplay game Counterfeit Monkey. 
 
She has provided a variety of content creation, worldbuilding, and narrative systems design services for 
large and small clients including ngmoco:�, ArenaNet, and Failbetter Games, as well as finished 
whitelabel games for advertising and publishing clients. She is also part of the team behind Inform 7, a 
naturallanguage programming language for creating interactive fiction, where she assisted in feature 
design and wrote over �00 code e[amples included in the standard manual. 
 

$EVWracW� Versu is a system for interactive narrative built around AIdriven agents who can choose 
among various preauthored options for how to act� the largest story built in Versu is Blood 	 Laurels, a 
piece with over 150. words of content which could be combined in response to character and player 
actions into individual playthroughs running to about 15,000 words each. This proMect presented a number 
of challenges around authoring recombinable segments, setting the limits on permitted computer 
improvisation, and providing sufficiently fle[ible te[t to reflect the comple[ity of the underlying world 
model. 
 
This talk reviews some of the challenges and successes of that proMect as well as the author¶s subseTuent 
te[t generation work, all of which aims to produce participatory drama with playful, apt, and surprising 
Mu[tapositions of humanmade te[t. 
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Abstract

The common misconception among non-specialists is
that a computer program can only perform tasks which
the programmer knows how to perform (albeit much
faster). This leads to a belief that if an artificial sys-
tem exhibits creative behavior, it only does so because
it is leveraging the programmer’s creativity. We review
past efforts to evaluate creative systems and identify the
biases against them. As evidenced in our case studies,
a common bias indicates that creativity requires both
intelligence and autonomy. We suggest that in order
to overcome this skepticism, separation of programmer
and program is crucial and that the program must be
the responsible party for convincing the observer of this
separation.

Introduction
Demonstrations of computational creativity are often viewed
with intense skepticism – much like a Victorian-era magi-
cian’s trick full of smoke and mirrors. After all, creativity
is regarded in many circles as a uniquely human characteris-
tic, and so the claim of a creative computer invites immedi-
ate and often passionate skepticism. Even when an artificial
system exhibits convincing creative behavior, the credit usu-
ally rests on the programmer as the true creative individual
behind the act.

What can be done to convince the audience that there are
no strings attached – that a program is being creative inde-
pendently from its programmer? How far should they be
allowed to probe, to test, and to know about the system’s
workings to be convinced?

It is important to motivate the separation of programmer
and program in computational creativity applications. Con-
sider a piece of software designed to monitor the landing
gear on an aircraft. This software likely utilizes planning or
decision-making algorithms, based on relevant conditions.
If the software malfunctions in-flight, the aircraft may be
damaged. Complex though the software may be, it cannot
take the blame for following the instructions of its program-
ming. Now consider a creative joke generator which tweets
a new joke each day. One day, a generated joke happens
to be highly offensive, and sparks criticism. This criticism
cannot be targeted at the program, but at the programmer
instead, for it is perceived to be following complex coded

instructions. This is especially important as technology be-
comes more complex, and the general public becomes less
aware of the specific details of its implementation. After all,
as the science fiction author Arthur C. Clarke puts it:

“Any sufficiently advanced technology is indistinguish-
able from magic.”

This leaves us with a powerful motivator to understand
how people perceive the division of creativity between cre-
ator and creation. Because computers are currently per-
ceived as incapable of autonomy and thought, as program-
mers, we will be credited for and be held accountable for
what our programs do.

In this paper we focus on the issues of perception and
skepticism regarding artificial creativity. This discussion is
hardly new but rather a modern revival motivated by recent
progress in the field. As creative systems become more ad-
vanced, exhibiting more compelling creative behaviors, and
applications begin to appear in the wild, the discussion be-
comes relevant again.

We outline a high-level review of suggested properties
of creative systems, as well as previously proposed tests
for evaluating the creativity of a system. We then report
on a brief case study illustrating the impact of interactiv-
ity on perception. This is supplemented by a survey taken
by software engineers, computer scientists, as well as non-
specialists, which exposes some of the primary obstacles in
the public perception of artificial creativity. We also offer
an example from popular culture which highlights the issue
of perceived autonomy as it relates to creativity. Finally, we
discuss the impact of these perceptions on the potential di-
rection and progress of the field.

A History of Skepticism
The Lady Lovelace, upon hearing about the possible creativ-
ity of Charles Babbage’s Analytical Engine, put forth the
same argument that is still used today – as quoted in (Dart-
nall 1994), that “[Machines] have no pretensions whatever
to originate anything,” having no autonomous thought, and
thus cannot be considered creative.

Nearly two hundred years later, despite significant ad-
vances in machine learning and computational creativity,
this remains the dominant perception, with some degree of
truth. In an attempt to address the question of whether or not
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computers have the capacity for creative acts, several char-
acteristics of creativity have been put forth by behavioral and
computer scientists.

Necessary and Sufficient Conditions
The search for qualities of creative systems is rooted in the
question “What is creativity?” While an ill-formed and hotly
contested question, it has nevertheless motivated scholars
to seek out some of the necessary conditions to determine
whether a system should be considered creative. The prop-
erties put forth so far are still subject to debate, and far from
sufficient or exhaustive, but offer a guiding set of character-
istics by which to begin judging the creativity of a system.
An artificial system possessing many of these characteris-
tics could be persuasively argued to be creative, because it
shares those attributes with creative humans.

Properties of the Artefact The most straightforward way
to judge a system is by the artefacts it produces. This re-
quires no knowledge of system process, and success is often
measured by comparing human-generated and computer-
generated artefacts side-by-side or in a blind preference test.

Creative qualities artefacts should exhibit have included
quality (Wiggins 2006; Colton 2008b), novelty or imag-
ination (Ritchie 2007; Wiggins 2006; Colton 2008b), ro-
bustness or variability, and typicality (Ritchie 2007; Colton
2008b).

Properties of the System In addition to the artefacts, the
process of creation itself has been suggested as a major fac-
tor in judging creative acts. Some of the aspects of the
process include: appreciation or aesthetics (Colton 2008b;
Colton, Pease, and Charnley 2011), individual style, inten-
tionality, the ability to explain or justify decisions (Colton,
Pease, and Charnley 2011), social context in a larger com-
munity of creators (Saunders and Gero 2001; Jennings
2010), and taking the audience into account (Maher, Brady,
and Fisher 2013). Recent work has even been done on meta-
evaluation – the evaluation of creative evaluation frame-
works (Jordanous 2014).

Furthermore, we understand that the ability to learn is in-
tertwined with the ability to create. A system that can learn
its own fitness function for an aesthetic measure, for exam-
ple, is arguably more creative than one that must have it ex-
plicitly specified by the developer, and some work has been
done on automatically learning aesthetics (Colton 2008a).

Tests of Computational Creativity
A few general psychological creativity tests exist but are of-
ten in a format inaccessible to computers. For example, the
Torrance Tests of Creative Thinking (TTCT) involve many
verbal and drawing tasks which are beyond the abilities of
modern computer vision and natural language processing.
And so, in addition to a set of essential qualities for cre-
ativity, academics have sought to define a “Turing Test” for
creativity more suited to computers.

Even if a convincing, well-defined test existed, the con-
cept itself has been criticized (Pease and Colton 2011)
as limiting the potential style and variety of creativity in

computers, much as the original psychological counterparts
(Kim 2006) have been criticized.

Turing Tests have been subject to scrutiny by the Chinese
Room argument (Searle 1980), which appears to coincide
with the most common criticism of creative systems – that
no matter how creative they may seem, their internal work-
ings could still comprise some form of Searle’s rule-book.
The Lovelace Test (Bringsjord, Bello, and Ferrucci 2003)
tries to address this issue by dealing with the separation of
programmer and program, rather than focusing on the sys-
tem exclusively. Specifically, one of the requirements of the
Lovelace Test is that the programmer cannot explain how
an artefact was generated by the system, even when given
ample time to do so.

Notably, Bringsjord implies that the Lovelace Test can
only essentially be passed when a system is perceived of
as ‘thinking for itself’, and ‘having a mind’. The perception
of creativity is thoroughly entangled with the perception of
intelligence and autonomy. While programmer surprise and
inability to explain can help to establish the system as a sepa-
rate entity, such surprise can be faked. Overcoming residual
skepticism may require methods that establish the autonomy
of a system without the need to rely on programmer reac-
tions.

Modern Skepticism
In its current state, the field of Computational Creativity
continues to face heavy skepticism from non-specialists.
This is actually quite healthy for our field, as such skepticism
provides a motivation to build systems that are not only theo-
retically sound, but convincingly demonstrable and socially
acceptable. We explored the primary complaints and biases
against the notion of creative computers, with the intent to
discover the core issues that need to be addressed. This ex-
ploration revolved around the question, “What would it take
to subjectively convince someone of a system’s creativity?”

Man behind the curtain: A case study
In order to explore what it would take to alter people’s per-
ception, we created a simple analogy-making program, the
output of which might be considered creative. This program
was presented in three stages to 35 participants who were
told that it was powered by a creative artificial intelligence.

• Stage one: No interactivity. The user presses a button and
the computer produces a random analogy.

• Stage two: Selective interactivity. The user selects two
nouns from a short list, and the computer produces an
analogy between them.

• Stage three: Full interactivity. The user inputs any two
concepts, and the computer produces an analogy.

The first two stages only appear to be creative – but in re-
ality the computer is selecting from a pool of pre-generated
analogies. Although the analogies could have been retrieved
nearly instantly, a loading screen was presented to give the
appearance of processing happening ‘behind the curtain.’

The pre-generated analogies were created by hand using
two seemingly unrelated concepts, and connected in a clever
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and humorous way using similar properties between the two.
For example, ‘cats are like lawnmowers: temperamental and
destructive.’ For stage two, items could be selected from two
lists of five, making 25 possible analogies in the pool.

Since we did not actually construct a creative analogy
generator, the only way to provide full interactivity was to
utilize a human operator using a networked device to ‘re-
spond’ to analogy requests. In our case we actually placed a
man behind a curtain – the operator was sitting behind a par-
tition nearby as users participated. In order to ensure consis-
tent quality and style of analogies between different stages,
the writer of the analogies for the first two stages also served
as the operator for the third.

Users were asked at random to either participate in one of
the three tiers, or to move through all three consecutively.
After observing the analogies that were ‘generated’ by the
computer, they were asked to evaluate the creativity of the
task in general, as well as to determine where they felt the
attribution of creativity belonged on a 5-point Likert scale
from programmer to program.

First, we observed that as the degree of allowed interactiv-
ity increased, the users were more inclined to test the system
for patterns or trickery. When asked to split the attribution
of creativity between programmer and program, a 1.0 on the
scale represented ‘all programmer’ and 5.0 represented ‘all
program’, where 3.0 represented an equal responsibility be-
tween the two. The average placement was 2.25 for stage 1,
2.46 for stage 2, and 3.1 for stage 3, showing an improved
willingness to attribute creativity to the computer.

Second, we observed that those who tried successively
more interactive levels attributed dramatically more creativ-
ity to the system (more so than those participating in indi-
vidual tests). This is likely because they had to revise their
own assessments multiple times.

Finally, among the highly skeptical, we found that a clear,
repeated input-output pattern caused any and all creativity
of the system to be discounted. Because the first two tests
simulated a creative system by drawing from a pool of pre-
generated analogies, and that pool was not particularly deep,
astute users would probe the system until it eventually pro-
duced a duplicate. Each user who discovered a duplicate
would invariably rate the system as having low creativity.

Conflicts
There also exist a few ‘double-edged swords’ in a creative
system that can subjectively decrease or increase the percep-
tion of creativity.

Knowledge of System Keeping the system as a black-box
(no knowledge) forces the user to evaluate the system based
on the artefacts alone. Unfortunately this can mask the true
creativity or lack of creativity in a system. For some individ-
uals, keeping the system internals unknown is crucial, based
on the notion that creative people produce artefacts ex nihilo,
or that the creative process is fundamentally mysterious and
cannot be explained. To expose the process might disrupt
the appearance of creativity for these individuals.

For example, it is trivial to implement a genetic algorithm
to evolve a painting of the Mona Lisa, simply by setting the

fitness function to be a pixel-by-pixel comparison between
the phenotype and a picture of the Mona Lisa. Yet watching
the painting evolve and take form in real time, it is easy for
an outside observer to attribute to the program some level of
intelligence and creativity. Of course, had the curtain been
pulled back and the process exposed to the observer, they
would have been disappointed at the naive way in which the
system randomly combines and mutates.

Exposing the high-level workings of the system allows the
observer to make judgments about the process itself. How-
ever, exposing all of the system’s process could remove the
mystery of the process, leading to the perception that the
program is ‘merely following instructions,’ no matter how
complex they may be.

In our analogy-making experiment, several technically-
minded users attempted to discover the internal workings,
inventing progressively harder requests meant to probe for
templates and patterns. These individuals were impressed if
they could not determine a consistent pattern, and remained
unconvinced if they could imagine a clear process by which
the artefacts were generated.

Humanized Process People tend to project human emo-
tions and behaviors onto non-human objects. A process that
seems more ‘human’ (pausing as if in thought, backtracking,
slight errors, etc.) can improve the perception of creativity.
As Colton observes (2008b),

“...it is apparent that being able to watch The Painting
Fool create its paintings means that people project more
value onto them than they would if the paintings were
rapidly generated through, say, an image filtering pro-
cess. This seems to be because they can project criti-
cal thought processes onto the software, and empathise
with it more.”
On the other hand a process with elements that appear

highly computer-like (superhuman speed, enormous scale,
lack of mistakes, logical explanations, etc.) can sometimes
lend strength to the perception that a computer is doing all
the work. Ultimately, the most persuasive portrayal might
incorporate aspects of both philosophies.

The Creative Threshold
We conducted three surveys among different audiences ask-
ing about computers and creativity. Each participant was
asked to rate whether computers were currently capable of
creativity, and whether they will someday be capable of cre-
ativity, on a Likert scale from 0 to 10. They were then asked
to define what they thought were essential requirements or
characteristics of creativity. Finally, they were asked to de-
scribe what behavior or characteristics a system should have
to convince them that it was creative. The exact questions
and selected responses can be found in Appendix A.

We first sought to understand the opinion of those that
were technologically literate, but unfamiliar with program-
ming and code. This survey was conducted on Reddit (a
social bulletin board website) and had 75 respondents. We
did not collect demographic information, but general statis-
tics of Reddit users are can be found elsewhere (Duggan and
Smith 2013) for those interested.
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Figure 1: Quantitative analysis of responses by group: each
boxplot shows the first quartile (left), median (bold) and
third quartile (right).

For comparison, the same survey was given to a group
of 26 software engineers working in the industry, and again
to a group of 37 computer science professors and graduate
students at Brigham Young University.

We originally anticipated that people familiar with pro-
gramming or AI would have a deeper understanding of its
potential, and thus show less skepticism at the concept of
computational creativity. Academics, being the most famil-
iar with current research and progress were expected to show
the strongest optimism. However, the academics surveyed
displayed somewhat more skepticism than any other group.
More surprising still, the programmers demonstrated a dis-
proportionately high level of confidence.

Among the open-ended responses in all three groups
about the requirements for creativity, eight broad classes
emerged:

• Lateral Thinking: Often described as ‘outside the box’,
including methods of thinking that ‘do not rely on logic,’
going beyond formal inductive and deductive reasoning.

• Flexibility: The ability to work within arbitrary con-
straints and handle many kinds of tasks.

• Aesthetics: Taste, or the ability to judge quality and dis-
cern good artefacts from bad ones.

• Novelty: Producing artefacts which are original, unique,
or different from what has been seen before.

• Analogy: The ability to make interesting analogies be-
tween seemingly unrelated concepts, or to combine or
otherwise transform old concepts into something new.

• Self-Improvement: The ability to learn from experience
over time.

• Autonomy: Often described as ‘independent thought’,
‘unique intelligence’, or emphasizing a lack of pre-
defined rules.

• Human Emotions: bravery and curiosity were the most
common human emotions listed.

Particularly among the most skeptical participants (those
who rated it unlikely that computers are or ever will be cre-
ative), autonomy was the top priority for creativity. Re-
sponses such as, ‘agency’, ‘choose for itself’, ‘independent
intellectual ability’, and ‘independent thought’ suggested
that the system must be autonomous to convince them. Con-
sider the following responses specifically about code: ‘not
based on algorithms’, ‘not a result of programming’, ‘create
its own programs’, ‘no explicit code detailing what to do’,
and ‘write the program on its own’.

Of course, computer programs can already exceed their
original programming, through machine learning for exam-
ple. Decades ago, classical AI algorithms were already ca-
pable of learning things that their creators did not know,
and acquiring skills that their creators did not possess.
The observed unwillingness to acknowledge a program as
an independent entity appears to stem from a philosophi-
cal standpoint, even among other computer scientists, that
code merely follows instructions (albeit extremely complex
ones). This is a valid point of debate, though a particularly
fuzzy one, since even creative humans could be argued to
be following a complex set of chemical and psychological
instructions.

This need for an intelligent autonomous entity separate
from the programmer sparks interesting questions. Is it pos-
sible for a computer system to possess all of the creative
attributes typically outlined in our field (appreciation, skill,
novelty, typicality, intentionality, learning, individual style,
curiosity, accountability), and yet still not be creative? Al-
ternatively, can a machine be creative without being intel-
ligent? More broadly, is general or strong artificial intel-
ligence necessary before people become comfortable with
ascribing creativity to a machine?

We are not prepared to claim that general intelligence is
required for creative behavior, but instead observe that peo-
ple are generally unwilling to attribute creativity to a system
until it appears to be a separate, intelligent entity.

In popular culture
We turn to a portrayal of creative computing in popular cul-
ture to demonstrate the perception that in order to be cre-
ative, a computer must have autonomous thought and exceed
its programming.

In an episode of the television series Star Trek: Voyager, a
trial is conducted to determine whether a computer program
(the holographic doctor) should retain the rights to the cre-
ative work (holonovel) which he created. Part of the trial
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appeals to the argument that attributes of the artefact are
enough to deem a computer creative:

BROHT:A replicator created this cup of coffee. Should
that replicator be able to determine whether or not I can
drink it?
TUVOK: But I have never encountered a replicator that
could compose music, or paint landscapes, or perform
microsurgery. Have you? Would you say that you have
a reputation for publishing respected, original works of
literature?
BROHT: I’d like to think so.
TUVOK: Has there ever been another work written
about a hologram’s struggle for equality?
BROHT: Not that I know of.
TUVOK: Then in that respect, it is original.
BROHT: I suppose so.
TUVOK: Your honour, Section seven ... defines an
artist as a person who creates an original artistic work.
Mister Broht admits that the Doctor created this pro-
gramme and that it is original. I therefore submit that
the Doctor should be entitled to all rights and privileges
accorded an artist under the law.
However, the appeal to originality was ultimately not

enough evidence to convince the judges. The winning ar-
gument rested on the doctor’s autonomy and independent
thought:

KIM: He decided it wasn’t enough to be just a doctor,
so he added command subroutines to his matrix and
now, in an emergency, he’s as capable as any bridge of-
ficer.
ARBITRATOR: That only proves the Doctor’s pro-
gramme can be modified.
KIM: Your honour, I think it shows he has a desire to
become more than he is, just like any other person.
JANEWAY: Starfleet had programmed him to follow
orders. The fact that he was capable of doing otherwise
proves that he can think for himself.
In this fictional case, as with the personal biases discov-

ered in the survey, the deciding factor is intelligent, au-
tonomous thought. This gives rise to several open questions
for discussion:
• In what way are different aspects of intelligence interre-

lated with different aspects of creativity?
• Is intelligence necessary for creativity?
• If so, is artificial general intelligence necessary for gen-

eral creativity?
• Is the threshold of evaluating creativity arbitrarily lower

for humans or living beings such as crows (which have
been shown to solve problems creatively) than for inani-
mate systems like programs?

• Though increasing the intelligence of our creative pro-
grams could boost creative perception, would it neces-
sarily have a positive impact on the true creativity of the
system, or the quality of artefacts it produces?

• How best can we convincingly demonstrate the autonomy
of a creative system?

Future Skepticism
There are many current approaches we can utilize to over-
come some of the perceptual barriers, one of which is the
capacity for a program to code parts of itself. Work is al-
ready being conducted in creative code generation (Cook
2013), which could boost the perception of autonomy by
non-specialists. Metaprogramming (writing code that writes
code) does not necessarily translate to more creative pro-
grams, but it certainly lends credence to the idea that the pro-
gram is separate from the programmer. This in turn provides
an entity other than the programmer to which creativity can
be attributed. Additionally, using machine learning methods
to improve a system’s aesthetic sense, cognitive ability, or
skill level strengthens the claim that it is able to ‘exceed its
original programming’.

More broadly, we need to consider the impact of these
perceptual issues on the goals of our field as a whole. To
what extent should public opinion factor into our goals?
Several of the requirements for creativity are already shared
by both public opinion and computational creativity re-
searchers. A heavier emphasis on boosting perception may
only serve as a motivation for trickery and selective meth-
ods of presentation, which would not necessarily increase
the creativity of our systems or the quality of artefacts they
produce.

Consider the difference between the aircraft landing gear
software and the joke generator in the introduction. We un-
derstand there is a creative difference between aircraft soft-
ware and a joke generator. Aircraft software was designed
to be predictable and react to very particular situations in
very particular ways – a clear mapping from inputs to out-
puts. Thus a software failure is likely to be the fault of the
programmer. However, a joke generator is ideally unpre-
dictable – that’s the point. Its creator may be surprised at
the jokes it generates, but the audience cannot necessarily
ascribe this to the generator program being an autonomous
entity. It could then be argued that the programmer is indeed
responsible for the offensive joke, but unknowingly so, be-
cause the programmer was unaware of the range of possible
jokes that the program could generate.

A parent is socially responsible for the behavior of their
child, but they cannot take credit for the child’s creative
acts or creative capacity, and nor can a mentor or teacher.
However this relationship changes dramatically in software,
where the programmer is not merely training an existing
system, but making architectural decisions about the way it
should think. If we could manipulate or condition the human
brain to be more creative, or to deliberately specify how the
thought process works, would the credit for the individual’s
creative acts rest partly on us?

A primary goal of our field is to shift the burden of cre-
ativity from ourselves to our programs. However, our level
of direct involvement in the minds of our machines makes
this transference difficult, despite our best efforts to facil-
itate it. The philosophical question to ask is whether this
difficulty is entirely a matter of perception, in which case
it is a problem of persuasion, or whether more of ourselves
resides in the machine than we would like to admit. This
entanglement between creator and creation may be unavoid-
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able, until our creative systems can be considered separate,
intelligent entities with independent thought, at which point
we open an entirely different can of worms.
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Appendix A: Survey Responses

• Question 1: Do you think that computers are currently capable of being creative?

• Question 2: Do you think computers will ever be capable of creativity?

• Question 3: Name a couple of capabilities or traits required for someone to be considered ‘creative’

• Question 4: Briefly, what would a computer program have to do to convince you that it (not the
programmer) was being creative?

Selected responses:

Q1 Q2 Q4 Q5
0 1 Predictive capacity, Agency, Contex-

tual analysis
Prove to me it has agency to choose for
itself

6 8 Iterative thinking and creation, abil-
ity to change direction mid-production,
show work

Show steps, come to di�erent conclu-
sions when fed similar data/asked sim-
ilar questions

3 5 must be a sentient being since the AI would likely learn through
formulas/programs created by the pro-
grammer, if it could create its own pro-
grams that are beyond human compre-
hension then that would be creative

9 10 New Ideas, Take an old idea and adapt
it to a new situation

Maybe create a recognizable graphic
from lines or circles or something Or re-
spond to questions asked in ways that
were unexpected and unpredictable

7 9 Come up with a new and unseen
“thing” or take something old and use
in a new or di�erent way

Do not know

6 7 problem solving solve a problem using non-data inputs
or observations

0 3 Original thought, inspiration Come up with an idea that hadn’t been
thought of before

7 10 Not merely following rules, a�ect and
logic combined

It would have to modify its own pro-
grams

3 4 capable of thinking ”outside the box”,
coming up with innovative solutions to
various problems

manifest fully independent intellectual
ability

10 10 free thought adapt to change
10 10 something able to come up with new

ideas
respond to complex questions and prob-
lem solve

5 6 Think of ideas and new things on your
own

Write the program on its own to show
its creativity

4 9 innovation, unorthodox solutions create a new idea
3 6 Inventive, open minded, designer Synthesize to make something unique

and relative to a need, feeling, etc. May
have an aesthetic component

4 6 free choice make something creative w/o human
input
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Abstract

Software expressing intent and justifying creative deci-
sions are important considerations when building sys-
tems in the context of Computational Creativity. How-
ever, getting software to express subjective opinions
like simple preferences is difficult without mimick-
ing existing people’s opinions or using random choice.
In this paper, we propose an alternative way of en-
abling software to make meaningful decisions in small-
scale subjective scenarios, such as choosing a favourite
colour. Our system uses a combination of metrics as a
fitness function for evolving short pieces of code that
choose between artefacts. These ‘preference functions’
can make choices between simple items that are neither
random nor based on an already existing opinion, and
additionally have a sense of consistency. We describe
the system, offer some example results from the work
and suggest how this might lead to further developments
in generative subjectivity in the future.

Introduction
Computationally creative software usually makes many de-
cisions in the process of producing an artefact. These de-
cisions are often in the context of problems for which ‘no-
tions of optimality are not defined’ (Eigenfeldt, Burnett, and
Pasquier 2012) and so there is no definitive equation or ob-
jective measure that can guide them to the ‘best’ answer. As
a compromise, the developers of such software provide ways
to guide the software in making these decisions: sometimes
by providing predetermined heuristics; sometimes by allow-
ing the software to create models trained on decisions made
by people; sometimes using random chance.

In many of these creative decisions there are no right or
wrong answers. For example, in (Veale 2013) a system
writes poetry by first generating several potential metaphors
to work from. These metaphors are all considered good can-
didates that could produce poems – the system selects one
at random, because it has no meaningful reason to choose
between them. This is a small decision within a much larger
system, and in many ways it is insignificant compared to the
larger creative act the software performs. In this paper, how-
ever, we argue that there are two important consequences
to relying on random choice or predetermined heuristics for
decisions such as this. Firstly, we prevent our software from

intelligently discussing these choices in framing informa-
tion, and as a result miss out on opportunities to add value to
the artefacts created or raise the perception of our software
as creative (Colton, Charnley, and Pease 2011). Secondly,
when observers discover or are informed that these choices
are made due to external factors or randomness, then we
contend that their perception of the software as creative is
lowered significantly, even if the decision in question seems
trivial.

Software is not human – it does not have emotional attach-
ments, it does not have childhood memories, it does not have
biochemical reactions. This does not mean, however, that
we must shy away from providing software with the ability
to make and justify subjective decisions. If the claims that
it makes about its preferences are consistent, defensible and
reasonable, we believe that this will add to the perception of
the software being creative without deceiving the observer
about the software’s lack of humanity.

We describe here a system that can generate simple snip-
pets of code, which we call preference functions, that take
as input two objects of some type and express an ordering
on them – in other words, they express what amounts to a
preference between the two objects. This system works by
evolving code segments, using a particular combination of
metrics, which we also introduce here, as a fitness function.
These metrics have been carefully designed to be domain ag-
nostic, and to limit our influence as designers on the output
the system ultimately produces in terms of the subjectivity it
expresses. While this process is not perfect, we believe this
work represents an encouraging first step towards software
making meaningful subjective decisions. To illustrate this,
we provide several examples of generated functions in dif-
ferent domains, including colour selection and videogame
design, that highlight how this technique might be used in
software. We then discuss what further work is needed to
integrate this technique into the framing and context of com-
putationally creative software.

Background
Framing and Subjectivity
Framing is the name given to the process by which software
produces text or perhaps other content to provide context
to a generated artefact. Thus far in Computational Creativ-
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ity this generally takes the form of a ‘wall text’-like com-
mentary that appears alongside the artefact in order to help
explain the creative process, as in (Colton, Goodwin, and
Veale 2012). According to (Colton, Charnley, and Pease
2011), the authors claim that the act of framing can increase
the ‘value’ of generative acts undertaken by software in sev-
eral ways, one of which is ‘by providing calculations about
the concepts/expressions [in an artefact] with respect to the
aesthetic measures’. In (Colton, Goodwin, and Veale 2012),
for example, the software generates commentaries which ex-
plains why it chose particular poetic styles or focused on
particular words.

In (Charnley, Pease, and Colton 2012), the authors con-
sider three particular aspects of a creative work that framing
can tackle: motivation, intention and process. The authors
summarise these as ‘Why did you do that?’, ‘What did you
mean when you did that?’ and ‘How did you do that?’ re-
spectively. Of motivation, they say:

[it is] distinctly human in nature and it currently makes

limited sense to speak of the life or attitudes of software

in any real sense.

However, the authors also point out later that ‘framing need
not be factually accurate’, and that ‘the motivation of a soft-
ware creator may come from a bespoke process which has
no basis in how humans are motivated’. We claim that it
is reasonable for software to possess arbitrary or subjective
preference about elements of its creative process, for the pur-
poses of framing and justifying its motivation and output.
The technique we outline in this paper has no basis in how
people are motivated, as in the quote above, but it does aim
to offer a form of motivation for software’s actions that is
satisfying to the observer and may withstand limited inter-
rogation through framing or even dialogue.

Randomness and Believability
In (Colton and Wiggins 2012) the authors define Computa-
tional Creativity as the creation of systems which ‘exhibit
behaviours that unbiased observers would deem to be cre-
ative’ (paraphrased). The mention of unbiased observers
is crucial to the definition, since Computational Creativity
is highly reliant on the perception of creativity. A com-
mon criticism of creative software is that the designer of
the software is a major contributor to the software’s creativ-
ity. (Colton 2009) proposes a process of ‘climbing the meta-
mountain’ to overcome this, whereby creative software is
iteratively improved to remove the influence of the original
designer on the software, instead adding in new subsystems
which take the place of the designer’s involvement and allow
the software to make the same decisions for itself.

The danger of removing designer influence for removal’s
sake is that the system that replaces the designer’s involve-
ment may not actually increase the perception of creativity.
There is anecdotal evidence to suggest that people distrust
the actions of software, even in cases where the software
is proactively explaining that its decisions were intelligently
motivated. The work described in (Cook and Colton 2014),
for example, provoked an angry response from one member
of the public who wrote ‘AI, or just basic random number

generation?’ in response to the software framing its choice
of a piece of music.

There are many explanations for why people might be bi-
ased against software in some instances, one being that they
have good cause to be suspicious: random choice is used
very often in the design of intelligent systems, including
those in Computational Creativity. Moreover, as we have
already stated, researchers are not afraid to have their soft-
ware tell stories that are ‘not factually accurate’ in order to
explain their decisions. This is not a dying practice, either:
examining system description papers from the 2014 Inter-
national Conference on Computational Creativity alone, we
identified seven systems which explicitly mention random
decision-making in their description (omitting cases where
random selection might be part of a search-specific process,
such as evolution) such as (Rashel and Manurung 2014),
a poetry generator which randomly selects an output from
any poems which meet a minimum quality, or (Tomašič,
Žnidaršič, and Papa 2014) which breaks ties in slogan se-
lection using random choice. Other systems described rely-
ing on hand-crafted metrics for making subjective decisions
which inherit their decision-making capacity directly from
the system’s designer.

We believe that the underlying cause for this bias against
software making decisions independently is not that people
believe that software cannot make such decisions, but rather
that random choice is not satisfying as a context for these
decisions. Random choice cannot be interrogated or under-
stood, does not form a long-term pattern of decision-making,
and is also not something that people often do – even when
people may in fact be making pseudorandom decisions, we
often justify them post-hoc, particularly in the case of cre-
ative activity – see (Charnley, Pease, and Colton 2012) for
examples. Most importantly, random choice cannot be eas-
ily framed through commentary on a creative artefact, be-
cause it has no context to reveal. This limits the software’s
ability to explain itself after the fact.

A System For Generating Preferences
If we acknowledge that inheriting decisions from a person
damages the perception of software as being creative, but
also accept that random decision-making is unsatisfying and
can be equally damaging to perceptions, it leaves us in an
awkward position whenever our software must tackle deci-
sions which are subjective or where the factors involved are
hard to quantify. Ideally, we would like our software to be
able to provide meaningful reasons for small, subjective de-
cisions. By meaningful, we mean that the decision is defen-

sible in some way: there is a reasoning behind it, even if that
reasoning is ultimately arguable (as subjective opinions of-
ten are, by their nature). In this section we will describe an
evolutionary system that generates code to provide the ba-
sis for such decisions, with the primary aim being that these
decisions are defensible, despite being subjective.

The system we describe here generates what we call pref-

erence functions – small snippets of code which express a
preference of some kind between two objects of the same
type. They are based on the concept of Comparators in Java
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which are used to express orderings over lists. A Compara-
tor takes two objects and returns either -1, 0 or 1 if the first
object is less than, equal to, or greater than the second object
respectively according to some ordering. Our functions act
similarly, where a preference can be thought of as an order-
ing over the set of objects of a particular type. More for-
mally, we define a preference function p as a function which
takes two arguments t1, t2 of type T , and returns one of three
integer values r 2 {�1, 0, 1}. The return value indicates the
following three situations:

p(t1, t2) =

8
<

:

1 t1 >p t2
0 t1 =p t2

�1 t1 <p t2

Where ⇤p is an ordering according to preference, i.e. t1 <p

t2 states that t1 is preferred over t2 in some way. The com-
parator can therefore be used to order a list LT of objects of
type T .

Before we describe the operation of the evolutionary sys-
tem, we will go into some detail about the fitness function
that evaluates a particular preference function. Earlier, we
claimed that our intention was to limit the influence of a per-
son’s opinion over the system’s eventual decisions. Below
we will propose metrics which direct the search for prefer-
ence functions – in some sense we are defining the kinds of
preferences the system looks for. We will try to justify our
decisions and show that these metrics are flexible, domain-
agnostic, and aim for defensibility without specifying any-
thing about what kinds of preference should be expressed.

Fitness Metrics
In this section we describe several metrics that can be used to
assess certain qualities of a preference function. This does
not make a judgement about the ‘goodness’ of the prefer-
ence expressed; a preference function which scores higher
on these criteria is not objectively better than one with lower
scores. Rather, we aim to identify meta-level properties of
preference functions in order to search for spaces of interest-
ing, valid or defensible preferences. As a result, we’ve tried
to avoid the use of emotive or judgemental vocabulary when
describing the metrics.

Specificity The specificity of a preference function p for a
set of objects O is defined as:

1� |Np|
|P |

with

P = {(a, b) | (a, b) 2 O ⇥O ^ a 6= b}
Np = {(a, b) | (a, b) 2 P ^ p(a, b) = 0}

In other words: the specificity of a preference function for
a particular list of objects is the proportion of the list for
which it returns a nonzero result, i.e. a definite preference.
Note that this excludes identity preferences (you can’t prefer
something to the same thing), but it does not assume transi-
tivity on p and it includes reflexive preference, i.e. p(a, b)
and p(b, a).

Transitive Consistency The transitive consistency of a
preference function p for a set of objects O is defined as:

|Tp|
|Q|

with

Q =

⇢
(a, b, c)

(a, b, c) 2 (O ⇥O ⇥O)
^ a 6= b ^ b 6= c ^ a 6= c

�

Tp = {(a, b, c) | (a, b, c) 2 Q ^ tightp(a, b, c)}

Where tightp holds for a triple (a, b, c) if the triple is tran-
sitively non-contradictory under the preference function p.
That is:

a �p b ^ b �p c =) a �p c

In other words, transitive consistency is a measure of how
much the decisions made by the preference function con-
firm one another when compared alongside each other. A
high transitive consistency means that the preference is well-
ordered. As with other metrics, this is not inherently good
or bad. Low transitive consistency can imply that the pref-
erence selects based on unconnected or competing features
in the artefacts, which is not uncommon in everyday prefer-
ences.

Reflexivity The reflexivity of a preference function p for a
set of objects O is defined as:

|Pr|
|P |

with

Pr = {(a, b) | (a, b) 2 P ^ p(a, b) = �p(b, a)}

In other words, reflexivity is a measure of how dependent p
is on the ordering of its arguments. A high reflexivity sug-
gests that the preference being expressed is not dependent
on the arguments being supplied to it. This metric is use-
ful specifically because of how we generate code, since it is
possible to generate functions which make decisions based
on the ordering of their parameters (always preferring the
first parameter, for example). High reflexivity means that no
parameter is preferred over another simply because of the
order they are passed in.

Agreement Agreement is a special metric for comparing
two preference functions. This isn’t used to generate prefer-
ences, but can be used to compare them, or generate func-
tions in opposition to one another. Two preference functions
p1 and p2 are said to be in {k,n}-agreement iff:

k  |Pp1,p2 |
|P |

with

Pp1,p2 =

8
<

:(a, b)
(a, b) 2 P ^✓
p1(a, b) = p2(a, b) _
p1(a, b) = 0 _ p2(a, b) = 0

◆
9
=

;

With P and O as before, and where |O| = n. In other words,
agreement measures how closely the definite decisions of
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two preference functions are the same – the proportion of
pairs (a, b) for which p1 and p2 either evaluate the same
value or one of them is zero, is greater than k for a list of
objects of size n. This is a good measure of how close two
preference functions are on the same sample of inputs.

To summarise, the first three metrics judge preference
functions along several dimensions: how often they make a
definite (nonzero) judgement on two objects, how consistent
their judgements are across a list of objects, and how depen-
dent the decisions are on the random ordering of inputs. The
final metric, agreement, can be used to model how similar
or dissimilar two preference functions are on the same set of
inputs. We will now describe the preference function gen-
eration system, which uses a combination of the first three
metrics in its evaluation.

Representing Preference Functions
In the following subsections we describe an evolutionary
system implemented in C# which uses the CodeDOM API
to generate code segments which act as the body of a pref-
erence function. The language and library are arbitrary
choices for convenience, and should be transferable to any
platform for which code generation is possible.

CodeDOM is an API within Microsoft’s .NET library that
allows for the high-level (and extremely verbose) represen-
tation of code, which can later be exported to .cs files and
then compiled into executable assemblies within C#. The
code below is equivalent to (p && q) in C#, where p and
q are local variables:
new CodeBinaryOperatorExpression(

new CodeVariableDeclarationStatement("p"),
CodeBinaryOperatorType.BooleanAnd,
new CodeVariableDeclarationStatement("q"));

CodeDOM compilation units can be exported to code pro-
gramatically, and these files can be compiled and executed
at runtime using C# CodeProvider classes. CodeDOM rep-
resents almost every aspect of the C# language, but for our
purposes we do not extend the code generation to the entire
C# specification, as this yields diminishing returns and is too
large a state space for this stage of experimentation. Gener-
ation of the preference functions described here is limited
to:

Expressions
• Primitive expressions containing int, bool or String

types.
• References to the object parameters given to the function.
• Boolean binary operations including && and ||.
• Numeric binary operations.
• Type casts between certain compatible types.
• Array index references.
• Field accesses in objects.

Statements
• Conditional control flow statements (if statements)
• Assignment

• Return of either �1, 0 or 1.
We define a code segment as a list of one or

more statements. This can be put inside a Code-
DOM representation of a method. We define a
generic abstract template class which defines a method
public int compare(int a, int b)1. Gener-
ated code segments are put inside a class which extends
this abstract template, providing an implementation for the
compare method.

Evolving Preference Functions
A population of code segments is randomly generated, and
evaluated using the following objective function:

fitness(p) = 0.5⇥ reflexivity(p)

+ 0.25⇥ specificity(p)

+ 0.25⇥ consistency(p)

This objective function was developed through manual
experimentation, but again we stress that this is not consid-
ered optimal in any way. Specificity may be more important
in some domains, while totally unimportant in others, for in-
stance – it depends on the nature of the preference functions
that the programmer wishes to generate. In our case, reflex-
ivity was found to be important in ensuring a perception of
defensibility in the resulting preference functions. A high
weighting for reflexivity might be preferable in many appli-
cation domains, we will determine this in further develop-
ment and use of these criteria, and we expect variation to be
found in the other metrics as well according to the needs of
the individual system.

Because of the nature of code generation, particularly our
code generator’s implementation, it is possible for a code
segment to either fail compilation, or to throw exceptions
during evaluation. We catch and ignore any errors in this
process and assign a negative fitness to the code segment.

Crossover of two code segments uses one-point crossover
on the list of code statements making up the segment. This is
currently acceptable for the subspace of the C# specification
we cover, although once local variables are introduced, this
approach will need revision to avoid constantly introducing
scope errors (where a local variable is referenced in the lat-
ter half of a function but its declaration was not carried over
during crossover). Mutation is applied by randomly regener-
ating one of the code statements in the list of statements. As
with crossover, once the system’s focus moves to more com-
plex method constructions, a finer-grained mutation process
may be required that is capable of making small changes to
individual statements in a method.

In order to speed up the evolutionary system, we compile
an entire population of preference functions simultaneously,
passing each comparator as a separate file along with the
template comparators they inherit from. If errors are thrown
during the compilation of a particular comparator, they do
not affect the compilation of the other files passed. Testing

1The types of the parameters to the function are changed from
int depending on what type the system is evolving comparators
for.
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of this method showed it was far more efficient than single-
file compilation, even when done in parallel, because most
of the overhead of compilation is in initialising and shutting
down the compiler itself. This may change in the case of
generating extremely large code blocks, but we do not ex-
pect it to be an issue in the near future.

Results
In this section we give several example results from the sys-
tem, for different domains. We begin with some simple
examples for comparing integers, then show two more ap-
plied examples: preference functions which decide between
colours expressed in RGB format, and preference functions
which compare pieces of game content embedded as part of
a simple videogame. In each case, we give the code of the
preference function, and an English description of the code.

These are hand-selected preference functions, however
the curation coefficient – that is, the proportion of the sys-
tem’s output which we would be happy to show to others,
as in (Colton and Wiggins 2012) – is extremely high. So far
we have not seen any high-fitness comparators (>0.95 fit-
ness) that would not act as justifiable, if simple, preferences
in some way. Curation is necessary only to avoid showing
the same function twice, because the system frequently gen-
erates comparators with identical functionality but very dif-
ferent code, as we do not yet implement a novelty search
(Lehman and Stanley 2010).

Basic Preference Examples
The results shown in Figures 1 and 2 were generated with
a population of 20 code segments, a test set of 100 random
integers in the range {�500, 500} to evaluate the preference
functions, and 15 generations of evolution. We found this to
be sufficient to evolve high-fitness (0.95 or higher) functions
that compared integers.

Figure 1 shows a preference function which prefers nega-
tive numbers over positive ones. This is expressed in a rather
awkward way: by adding the two arguments together and
comparing them with one of the arguments on its own. The
else case in this conditional statement returns the opposite
ordering instruction (-1), meaning that this function has a
high consistency while also being precise.

Figure 2 shows a more standard ordering on integers, from
smallest to largest. Both this method and Figure 1 have large
amounts of unreachable or redundant code. This is expected,
given that the system is concerned with the function of code
rather than its design. The unnecessary code is not impossi-
ble to filter out with the right interpretation of compiler mes-
sages, since the C# compiler recognises many of these issues
and will present warnings to the system when attempting to
compile. We touch on this topic in the discussion section.

In a further experiment, we expanded the expressivity of
the code generation to include the char primitive type as
well as the notion of casting to a type. Evolving high-fitness
results for this target domain was more difficult and required
a larger evolutionary run than with integer types. We ran
populations of 30 code segments, a test set of 100 random
chars whose ASCII codes fall in the range {0, 128} to eval-

public int compare(int i, int j) {
if ((i < i)) {

return 0;
return 0;

}
if (((j + i) < j)) {

i = i;
return -1;

}
else {

j = -491;
return 1;

}
return 0;

}

Figure 1: If i is negative, it is preferred over j; the second
conditional check is true if i < 0.

public int compare(int i, int j) {
if ((i <= j)) {

return -1;
j = ((i * 335) % j);

}
else {

return 1;
j = j;

}
return 1;
return -1;

}

Figure 2: Orders numbers from largest to smallest. The first
conditional returns a reverse ordering (-1) if the first argu-
ment is smaller than the second. Note the copious amount
of unreachable code. This constitutes a compile-time warn-
ing in C#, which is suppressed here.

uate the preference functions, and 15 generations of evolu-
tion. Figure 3 shows a function which sorts chars in re-
verse lexicographic order. We increased the population size
because usable preferences were proving difficult to evolve
– as one can see, this is most likely because type casting was
required to produce the simplest preference functions, which
makes the code much longer and therefore harder to evolve.

Object Preferences
Figure 5 shows a preference function evolved for compar-
ing a more complex type – in this case, an object with four
fields representing a Monster from a simple game. The class
skeleton for the object is shown in Figure 4. These exam-
ples were also evolved with a population of size 40, run for
30 generations, with a test set size of 100. Evolving pref-
erence functions for objects gives the system a wider state
space to explore with more interesting comparisons avail-
able to it, with the potential to generate preference functions
which compare along two axes simultaneously.

We are building a prototype game, I Like This Monster

that uses preference generation as part of a process of auto-
mated game design. Choosing one particular kind of game
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public int compare(char i, char j) {
if ((((int)(j)) <= ((int)(i)))) {

return 1;
return -1;

}
else {

i = ((char)(((((int)(i)) -
((int)(i))) * (((int)(j)) -
((int)(j))))));
return -1;

}
return 0;
return 0;

}

Figure 3: Reverse lexicographic ordering on characters.
Note that explicit casts to int types has caused a lot of ex-
cess bracketing.

element over another has a large component of subjectivity
to it, particularly if the game content is already balanced for
difficulty and fun. Rather than randomly choosing certain
game elements, or choosing them according to a fixed de-
signer preference, the game generates a preference for cer-
tain game elements like monsters. This preference is then
used to select from a database of pre-generated game content
to decide what is included in the game. This is analogous to
generating multiple poems and choosing between them as in
(Rashel and Manurung 2014) – but unlike random choice,
the use of preference functions means that the decision can
be framed and given a justification. We discuss how one
might generate text from preference functions below.

For a more visual example of a preference function, Fig-
ure 8 shows another example. In this case, a preference func-
tion is generated for an object representing RGB colours,
with three int fields representing each colour component.
A preference function was generated which prefers colours
with more red in them. Figure 8 shows the effect this
has: the top row shows a randomly generated line of RGB
colours, and the bottom row shows the same line ordered
from least preferred on the left to most preferred on the right.
The preference is very simplistic – it doesn’t quite correlate
to a visual language of ‘redness’, but the software can jus-
tify its decision on a code level even if it does not directly
corresponding to visual processing in people.

In all of the results given in this section, we found that re-
flexivity is the metric which was maximised quickest. This
is likely because it is the simplest to satisfy, as it primar-
ily safeguards against particular bad patterns of code being
generated (as long as the function does not return an answer
based on the ordering of the arguments, it is always max-
imised). If the target is high specificity, this is often max-
imised next, as this requires the preference function simply
return nonzero values. However, more complex specificity
requirements may require branching and non-constant return
statements. In this case, it is much harder to maximise than
transitive consistency. These observations largely apply here
because the domains we are considering are relatively sim-
ple and the preference functions we are generating are low

public class Monster{
public string name;
public int health;
public int damage;
public boolean poisonous;

}

Figure 4: A dummy class specification used for generating
preference functions. health cannot have a negative value,
but damage can (some monsters heal by attacking).

public int compare(Monster i, Monster j){
i.name = j.name;
if ((j.health > i.health)){

i = j;
return 1;

}
else{

return -1;
j.name = j.name;

}
i.damage = (i.health / i.health);

}

Figure 5: An ordering on Monster objects based on their
health variable.

in complexity and length. We expect this to change in fu-
ture – functions which compare multiple variables simulta-
neously, for example, are far more likely to be transitively
inconsistent, while functions which return variable values or
have high branching are more likely to have lower speci-
ficity. This raises the question of how to find these functions
over evolving simpler preferences – it may be that additional
‘interestingness’ metrics are required, or it may simply be
that asking for longer preferences or a novelty search pow-
ered by agreement will be enough to promote the evolution
or more complex preferences.

Related Work
No work we are aware of directly tackles the problem of
generating meaningful, defensible preferences for creative
agents across arbitrary domains. However, the idea of

public override int compare(RGB i, RGB j){
if(((j.r * j.r) > (j.r + (i.r - j.r)))){

j = i;
return -1;

}
else {

return 1;
}

}

Figure 6: An ordering on RGB objects based on their r (red
component) variable.
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Figure 7: A screenshot from I Like This Monster, showing a
level where a particular kind of enemy - poisonous creatures
- has been selected because of a preference for monsters with
the poisonous field set to true.

Figure 8: A random colour palette (top row) and an ordering
of the same palette according to a preference about RGB
colors which prefers colours with more red in them (bottom
row, preferred colours towards the right).

computationally representing subjective decisions has some
precedent. In (Saunders and Gero 2001) the authors de-
scribe a community of creative agents which are designed
to have some concept of novelty and interestingness. Each
agent possesses a neural network which learns by viewing
artworks generated by agents in the community. This can be
used to gauge novelty for a given artwork by assessing how
much the artwork differentiates itself from the network’s
current state. Interestingness is based on a Wundt curve cal-
culation in which the most interesting artefacts lie between
the extremes of high and low novelty.

(Saunders and Gero 2001) can be seen as a form of pref-
erence modelling, in that the agents are armed with a way
of making decisions about creative works, if we interpret
interestingness to be a subjective quota. Our work is differ-
ent in a few important ways: it generates a range of prefer-
ences based on different factors that vary according to the
objects being considered, whereas the community of agents
only work in the realm of novelty. The work is also more
prescriptive, in our opinion, than the metrics we propose -
although we should stress that the authors do not claim to be
investigating the generation of varied preferences, the work
has other objectives, but we have cited it here as an interest-
ing piece of related work.

Similarly, (Maher, Fisher, and Brady 2013) presents a

computational model of surprise, which could be considered
to be a form of preference if applied to selection or evalua-
tion (as the authors propose). Similar to (Saunders and Gero
2001), we differentiate ourselves from this work primarily
because our aim is to produce a higher-level system which
can generate a variety of preferences based on different fac-
tors, rather than primarily basing it on surprise or novelty.

The automatic creation of code by software is not a new
concept. Code generation, or ‘unrolling’ of code, is a com-
mon concept in software engineering, used for purposes
such as optimisation, or the automatic reconfiguration of
code in response to dynamically changing execution envi-
ronments. This is often highly template-based, and the code
is generated for precise functional objectives that are nor-
mally known well in advance.

Code-generating systems also exist in artificial intelli-
gence. Machine learning software, for example, can be
viewed as producing programs as their primary output. De-
cision trees, neural networks or inductive logic programs
can all be seen as forms of computer programs, sometimes
(such as the case of ILP or evolutionary programming) quite
explicitly. Machine learning techniques have been seen in
Computational Creativity on many occasions. For instance,
(Morris et al. 2012) uses machine learning as the basis for
a computationally creative soup recipe inventor, trained on
a corpus of existing soup recipes, and (Colton 2008) uses
machine learning in a module within The Painting Fool, a
computationally creative artist.

The generation of code is perhaps most explicitly present
in Computational Creativity in (Cook et al. 2013), in which
we presented Mechanic Miner, a system which explores,
modifies and executes the codebase for a simple videogame,
in order to discover new concepts for game mechanics and
rules. The system was capable of generating single lines
of code, modifying the existing game’s code to include this
new instruction, and then playing the game to evaluate the
effect of the generated code on gameplay. In doing this, the
system rediscovered several existing game design concepts,
previously invented and used by game designers. It was also
capable of surprising us as the creators of the system, by
presenting solutions which were highly unexpected or took
advantage of the system’s detailed use of code to perform
unexpected operations on the target videogame. This notion
of generating directly executable, readable program code in
an everyday programming language is one of the motiva-
tions for the work we have described here.

Discussion
The preference functions presented in this paper represent a
first step towards a system which can reliably generate inter-
esting preferences for arbitrary targets. We believe it repre-
sents a promising new avenue for exploration, and one that
could greatly enhance the quality of framing that Computa-
tional Creativity systems are able to provide.

Generating code which claims to represent ‘preference’ is
potentially controversial. The reason for many decisions be-
ing randomised or guided by hand-designed heuristics in the
first place is that software does not hold personal opinions
and is not human. We would argue, however, that we are in
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the business of perception – recall the definition of Compu-
tational Creativity from earlier as being dependent on ‘unbi-
ased observers’. Whether we like it or not, our software is
judged on how it presents itself, and our first-hand experi-
ence of building systems and presenting them to the public
has shown us that random decision-making and heuristics
inherited from people are as damaging to expectation and
perception as any amount of personification.

Furthermore, we would argue that having software ex-
press a preference is not necessarily in bad faith. Represent-
ing a random decision as having a basis in personhood is de-
ceiving the observer, but with a preference function there is
a chain of reasoning, a process that is itself accountable and
can be framed, that shows where this preference has origi-
nated from. This preference can be interrogated, an observer
can present new examples to it to try and better understand
what it prefers and why. The software is not claiming to
have an emotional basis for this – it is simply stating a pref-
erence that it used to guide its decision-making process. Of
course this does not offer a perfect solution to all the prob-
lems of subjective decision-making in creative software, but
we believe it offers a new way of exploring the issue.

It is worth noting that these preferences are, in some ways,
equivalent to random choice. They are arbitrary, domain-
agnostic, they do not care about their impact on the viewer
(unless we used the agreement to be contrarian, perhaps).
We are not claiming here that these preferences provide a
benefit to the code over randomly choosing something, nor
do we even claim that it makes the system more creative in
terms of its functionality. We do believe, however, that they
provide a benefit to the perception of the software as cre-
ative if its decisions can be justified, if we can claim that no
random number generation is involved, and if its decision-
making process can be inspected and interrogated by ob-
servers.

There are several important areas of future work to be un-
dertaken in order for the system described in this paper to
be able to work in large computationally creative systems.
Some of these topics have already appeared earlier in this
paper. Firstly, the system should be expanded with a larger
state space to explore in terms of code generation, so that
more complex functions can be generated. This may be
possible with existing techniques simply by applying it at a
larger scale, however the state space explosion is significant
once more complex programming features – like method in-
vocation – are taken into account. It may be that evolution
is not the best approach for generating code at this scale, or
that the process requires alteration in order to be more effi-
cient for this kind of optimisation problem.

A second point of future work is automatic simplification
of generated preference functions. This is an achievable
goal, and many optimisation processes for program com-
pilation already do this. We mention it here because it is
particularly important for code generation in the context of
Computational Creativity, as we explained in (Cook et al.
2013). Compressing a piece of code by removing unreach-
able or non-functional code makes it easier to understand,
easier to compare, and also has the important side effect of
making it easier to explain, which is a third future work task.

Being able to explain the function of a piece of code is
crucial to this work – in the examples we gave in the Results
section there was a lack of textual framing to the visual ex-
amples. In some senses it is possible to interpret the effect of
the preferences simply by looking at the content produced,
but in general it is desirable to be able to have the system it-
self express ‘I prefer redder colors’. Producing English ren-
derings of the function of code is complex – we are currently
exploring possibilities which use some metadata tagging on
the code prior to generating preferences, but there are many
more and better approaches yet to be discovered.

Finally, representing preference functions in a higher-
level mathematical language may be advantageous for this
work. Many of the problems we have encountered are direct
consequences of the code-based representation, such as the
presence of unreachable code and functionally identical gen-
eration. We hope to look into more abstract representation
formats for future versions of our system.

Conclusions
In this paper we introduced a series of criteria for assessing
functions that describe preferences, motivated by a desire
to provide non-random justifications for small creative de-
cisions that don’t rely on other people. We showed how an
evolutionary system can use these criteria as the basis for
a fitness function that evolves code which act as preference
functions. We gave examples of preference functions we
evolved using these criteria for comparing various types, in-
cluding videogame content and colours, and discussed the
issues it raises for Computational Creativity, in terms of the
code itself and the nature of generated preferences.

The perception of creativity in software is a defining prob-
lem for our field. We hope that the work we have described
here offers a new avenue to explore for framing decisions
made by the software we build. Even the smallest of de-
cisions are affected by people’s perceptions of software as
arbitrarily random, or clones of their designers. We believe
that the future of decision-making in software lies beyond
random choice and modelling human opinion – we need to
give our software independence and remove the influence
of other people on it. We acknowledge that we have by
no means managed to remove ourselves from the process
of decision-making – we have designed the system which
produces preference functions, defined its metrics and pro-
vided it a fitness function. But we hope that we have offered
a way to take one step further into the background, leaving
our software to stand alone at the fore.
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Abstract

When contemplating the creativity of computational
systems, a host of factors have been taken into consider-
ation, many of which people have attempted to measure
or otherwise operationalise: novelty, value, P-creativity
versus H-creativity, exploration versus transformation,
the subjective evaluation and contextualisation of the
artefact, and so on. Whilst of equal importance, the
systematic and rigorous attribution of creative agency
to different actors in the production of a specific output
has been given less attention. It is common to make the
simplifying assumption that the most direct contributor
to an artefact is that artefact’s sole author, but arguably
this is never the case: all human creativity occurs in the
context of networks of mutual influence, including a cu-
mulative pool of knowledge.
This paper looks at how we might better formalise cre-
ative authorship such that for any artefact, a set of agents
could be precisely attributed with their relative contribu-
tions to the existence of that entity. It asks only what the
nature of this formalisation should be, and concludes
that a more critical approach is needed to the creative
agency of human actors, and thus the expected creative
agency of machines.
I draw on two critical notions that can inform a method-
ology for the ascription of creative origins in computa-
tional creativity: becoming, and the agency of networks
of interaction.
I look at a example from both historical human creativ-
ity and computation creativity, to consider how we can
break down creative agency and ascribe it to different
sources. Practical implications are dicsussed.

Introduction
In contemplating creativity, we are comfortable with taking
at face value statements such as “Ludwig van Beethoven
composed Beethoven’s Fifth Symphony” or “Leonardo da
Vinci painted the Mona Lisa”. At the same time, we are
well aware that such attributions are rough at the edges when
scrutinised. Creativity does not occur in a vacuum. All cre-
ators are subject to influence from their culture or environ-
ment, and other forces at play in the creative process include
chance, the influencing of opinions such as value attribu-
tion, the emergence of outcomes through collective action,
and the need to consider the potentially active role played

by passive objects, as discussed most famously by Latour
(1996) and Clark (2003), but with recently renewed interest
by Malafouris (2007), Miller (2010) and Ingold (2007).

Longstanding theories of creativity have successfully
managed these apparently conflicting perspectives, most no-
tably the work of Simonton (2003) and Csikszentmihalyi
(1999). In both cases, creativity is properly understood as a
process that operates at a macro level (sometimes described
as a network or systems level). For Csikszentmihalyi the
macro perspective is critical because the process of creativ-
ity involves the interaction between heterogenous groups of
participants, and for Simonton it is because creativity is best
modelled as a stochastic process across a population, which
cannot be properly understood when looking at single in-
stances.

However, it has been difficult to translate such knowledge
into practical methods for evaluation in computational cre-
ativity, which despite its strong acknowledgement of such
theories does not successfully draw on this macro-level per-
spective in evaluating individual systems. In this paper I
present this challenge in terms of recurring misconception
that evaluation can be performed on isolated individuals, i.e.,
at a micro-level, which I refer to as the “islands of creativity”
view. Drawing on literature from creativity research, philos-
ophy and the social sciences, I consider how a macro-level
view of creativity can work in the applied task evaluating
computationally creative systems.

I suggest that a critical step is to recognise how the objects
of evaluation are dynamic, in flux, and have boundaries that
shift at different stages in their history, as they interact with
other people and things.

I propose a “dynamic analysis” of any system, which de-
tails (i) the fluid and temporary boundaries between enti-
ties, and when these aggregations act as agents, (ii) when
and where influence occurs, (iii) what constitutes an output.
Such an analysis, it is proposed, could help us better attribute
creative agency in the evaluation of computationally creative
systems, by clarifying how novelty and value are determined
(by whom) and what influences feed into the creative system
at different times.

Simonton’s macro-creativity model
Simonton, for example (Simonton, 2003), showed through
quantitative analysis of scientific achievements that the
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arrival of creative breakthroughs was sufficiently unpre-
dictable as to be effectively random. This does not mean to
say that a member of the population chosen at random might
make an advance in quantum physics. Naturally, strategies
for creative success involve becoming expert in a field, fo-
cusing on problems, working hard, knowing what to look
for, and so on. Indeed, Simonton showed that success was
proportional to activity: the more active you were in a field
the more likely you were to produce creative outcomes, but
equally the more likely you were to produce uncreative ones.
What remained stable was the rate of success, measured as
the ratio between successful output and total output.

From this perspective, in computational creativity what
we might describe as strictly micro level focus – privileging
the creative agency of individual creators without consider-
ing how these agents interact with each other and with other
elements in the world – is a detrimental but seductive sim-
plification, which is often assumed to be reasonable where
in fact it is problematic. Simonton’s micro-level view of cre-
ativity tallies with his macro-level view: at the micro-level
an individual iterates through many trial-and-error attempts
at a solution, understood in creativity research through cog-
nitive processes such as incubation. This trial and error is
the best that can be done in an unknown search space; there
aren’t reliable analytical or inductive approaches available
to the kinds of problems that we would define as creative,
because the problem spaces are unknown – at least, in the
case of Boden’s ‘transformational’ creativity (Boden, 1990).
Thus we may imagine a population of individuals search-
ing for solutions to the same problem, working at the same
rate. When one individual discovers the solution, in Simon-
ton’s view, we should not leap to the conclusion that there
is anything fundamentally different about the creative pro-
cess used by that individual. Simonton also draws on evi-
dence from ‘simultaneous scientific discoveries’ to support
this view, arguing that the common occurrence of such dis-
coveries is due to the fact that it is the discovery context,
and not the creative ability of the discoverer, that is key to
the arrival of the discovery.

Such work is widely acknowledge in computational
creativity research, but this macro-level thinking remains
largely absent in the methods that we apply to the evalua-
tion of computationally creative systems.

The “islands of creativity” problem
Such approaches have been successfully applied in the con-
text of studies of traditional human (i.e., not computational)
creativity. But in computational creativity, although we fre-
quently pay homage to these macro theories, we have yet to
find a way to incorporate them into a working methodology
in the complex area of evaluation. I suggest that a signif-
icant obstacle to computational creativity evaluation lies in
the idea of “islands of creativity”, the idea that creativity is
situated in specific systems (mostly humans, now also com-
puters), without any fluidity between these systems and the
rest of the world:

Definition: The “islands of creativity” problem in cre-
ativity is the misuse of the simplifying view that individ-
ual human actors (or individual computer actors) are sole

originators of specific creative artefacts. It conflicts with
the more holistic view that stochastic and network macro
processes involving interactions between heterogeneous el-
ements underlie the big picture of creative production.

Is this view actually a misconception, and what have been
the implications of holding it? Would our approach to evalu-
ation benefit from avoiding it, and shifting towards thinking
about creation occurring through the relationships between
entities? I will argue that looking at creativity only by ref-
erence to the human cognitive capacity for creativity contin-
ues to be problematic for computational creativity, not least
because the kinds of computational systems that will do cre-
ative things in the near future may not do them in particu-
larly human-like ways. Rejecting the “islands of creativity”
problem is a necessary part of stepping away from a human-
centric frame.

Specifically, the embrace of an alternative, macro-level
theoretical framework may enable two important contribu-
tions to computational creativity: (i) in the way we under-
stand what we mean by human cultural activities such as art
and music. There is a tendency to trivialise such questions
in pursuit of simple computable targets, whereas these ar-
eas of activity are some of the most ethnographically rich
that humans exhibit, so as to be far from easily reducible;
and (ii) by providing practical methods to help us attribute
creative agency properly when asking questions of the form
“did system x do something creative?”

Defining creative production in terms of
interaction

In the words of Heraclitus, via Nietzsche, “the whole flows
as a river”, the river’s evident dynamism, by which it is
constantly in a state of re-creation in the movement of wa-
ter, is an apt way to understand those less obviously fluid
things in our environment: “being is an empty fiction” (Ni-
etzsche, 1998). We tend to take the consistency of objects
at face value, but for practical, not only philosophical, rea-
sons it can be preferable to view things not as entities that
have the property of being; instead their existence is in con-
stant re-creation, captured through the notion of ‘becoming’.
Viewing things without this frame of dynamism, as neat
bounded entities, may be a practical way of simplifying and
understanding the world in the everyday, but risks missing
the myriad ways in which entities transform, influence each
other, have porous boundaries and fuse and fissure. Such
thinking has been applied successfully in the social sciences,
and may be helpful in thinking about evaluation in computa-
tional creativity, particularly in how we frame the notion of
a creative agent.

Creative agents
Theorists have embraced the idea of fluidity in the context of
social systems, which are more evidently fluid, using a net-
work interaction approach, most famously the actor network
approach of Latour (1996) and Law (1992) and the extended
mind theory of Clark (2003). More recently, Malafouris
(2007) makes a terse argument for the abandonment of the
human as a privileged category of agency. For Malafouris,
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much as for Clark, if a blind man can be said to ‘see’ with
his stick, then the physical matter of the stick is exactly to
the blind man what the optic nerve is to the sighted. For as
long as the blind man is using the stick, we can designate
a transient entity of the form blind-man+stick which is in
some sense capable of sight. Importantly, the stick is part of
that unit, not apart form it. The man does not see with the
stick; the man+stick sees.

Similarly, he argues, as a potter shapes clay on a wheel,
one cannot successfully draw neat lines of causality that
show the potter’s hands influencing the clay, and not vice
versa. The potter is responsive to the clay, and in her adap-
tivity, allows causality to flow back in the opposite direction
from clay to action. The right way to understand the result-
ing creation of a pot, Malafouris posits, must not presume
potter as agent and wheel and clay as other, but to conceive
of a unity in interaction between them.

In his words:

“If human agency is then material agency is, there is
no way that human and material agency can be dis-
entangled. Or else, while agency and intentionality
may not be properties of things, they are not prop-
erties of humans either: they are the properties of
material engagement, that is, of the grey zone where
brain, body and culture conflate.” (original emphasis).
(Malafouris, 2007, p. 22).

The purpose of this thought experiment is to preempt and
thus interrogate the implied objection: “surely we can see
that the potter is the active, intelligent agent in this inter-
action, whilst the wheel and clay are passive non-agents,
there to be operated or shaped”. This presents a problem:
although it seems mistaken to start to talk of the agency or
intentionality of clay and mechanical wheels, how else can
we handle the fact that the resulting pot owes its form to clay
and wheels, and not merely to a single human actor?

I understand Malafouris as saying here, as with the blind-
man and his stick, that it would be more correct to say that
the temporary interaction of potter+wheel+clay is responsi-
ble for the creation of the pot, than to say that the potter
created the pot using the wheel and the clay. Although ap-
parently a trivial distinction, the question of agency has been
shifted in a way that significantly transforms discussions of
creative authorship in computational creativity, and equally
resolves the “islands of creativity” problem. This is a more
palatable option than talking about the agency of inanimate
objects, and is particularly apt in the context of machines,
for which the perception of agency might slide easily up
and down a scale. It also takes care of collaborative action
between individuals, whether in a clearly bounded working
unit such as a band, or a fluid genre movement.

Turning to computational creativity, we see that attention
to this detail concerning the existence of bounded agents is
generally overlooked. In major mathematical and logical
formulations such as those of Ritchie (2007) and Wiggins
(2006), understandably, this would be a complex step. Here
the focus is more on artefacts anyway. In other work where
the focus is on the individual and the process of production,
there is still little in terms of acknowledging the fluid bound-

aries between components of a creative system.

Dividing individuals
Further to this, thinking from philosophy of mind, AI, evolu-
tionary psychology, anthropology, and other disciplines, has
in different ways converged on a notion that human agents,
equally, should not be viewed as unitary in action, but con-
sist of networks of interaction themselves. This thinking
can be found in Minsky’s society of mind (Minsky, 1988),
Baars’ global workspace theory (Baars, 2005), Barkow, Cos-
mides and Tooby’s (Barkow, Cosmides, and Tooby, 1992)
multi-domain model of the evolved mind, and many psycho-
logical accounts that reveal conflicting drives and processes
and dedicated channels of activity. In anthropological theory
we have the notion of the ‘dividual’ (Marriott, 1976). This
concept was initially specific to an ethnographic analysis of
how South Asians viewed personhood, but it may also de-
scribe Western conceptions if we admit them to have more
variability:

“Single actors are not thought in South Asia to be ‘in-
dividual’, that is, indivisible, bounded units, as they
are in much of Western social and psychological the-
ory, as well as in common sense. Instead, it appears
that persons are generally thought by South Asians to
be ‘dividual’ or divisible. To exist, dividual persons
absorb heterogeneous material influences. They must
also give out from themselves particles of their own
coded substances, essences, residues, or other active in-
fluences that may then reproduce in others something
of the nature of the persons in whom they have orig-
inated . . . What goes on between actors are the same
connected processes of mixing and separation that go
on within actors.”

(Marriott, 1976, p. 111)
Although framed in terms of a distinction between Indian

and Western perspectives, it is fair to say that in all world
views there is some freedom to flip between different con-
ceptions of personhood and individuality. It is common to
talk about feeling like you are ‘defined’ by your family or
friends or the objects you possess. We are also familiar with
the idea expressed at the end of the quote, that two peo-
ple can ‘think together’, for example through brainstorming,
and that this is in some way isomorphic to the same process
happening within an individual.

In our computationally creative systems, this fluidity is
more evident. A piece of software is itself an assemblage
of subsystems and may communicate beyond its nominal
boundaries to form supersystems, including with humans.
We should expect that in some cases it is clear that agency
is more strongly associated with a specific subsystem than
with others, whereas in other cases, agency takes the form
of interaction between subsystems or the system and its en-
vironment.

An evolutionary framework
As others have discussed (Dawkins and Krebs, 1978; Boyd
and Richerson, 1985; Aunger, 2000; Shennan, 2002), Dar-
winian evolutionary theory provides a good template, recog-
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nising in natural evolution exactly that agency lies in ‘pro-
cesses of interaction’ rather than in specific entities (Niet-
zsche was also heavily inspired by Darwin). It is interesting
to contemplate the non-human creativity of evolution in con-
trast to what we typically think of when considering human
creativity. Given a specific organism and asking, “what cre-
ated that organism?” we see very clearly that such an act of
creation can only be understood as a continuous process of
interaction between organisms and their environment, and
amongst individual organisms. We cannot pin our form on
the creativity of our parents, nor even on our entire ancestral
history. This view naturally takes into account the the many
interesting cases of coevolution, runaway sexual selection,
niche construction and, in humans, gene-culture coevolution
which produce things through diverse forms of interaction.

When we talk of function in such systems we are actu-
ally referring to teleofunctions (Sperber, 2007), specifically,
functions that serve their own existence. This is in contrast
to the functions of things we build, which are imposed upon
them and are external to the existence of the thing. But cul-
tural traits and artefacts can and often do have teleofunctions
too and can come about in ways that are more or less sim-
ilar to evolutionary processes occurring at a cultural level.
Sperber (Sperber, 2007) discusses the interesting case of the
perception of suntanning. Furthermore, machines that learn
or evolve can have teleofunctions by virtue of the fact that
their goals can be adaptive, but mostly, today, are built with
regular functions.

Dynamic analysis of fluidity in creative systems
Our earliest efforts at building machines that create have re-
sulted in superlatively weak creative agents when held up
against human beings, as would be expected. But the con-
temporary language of creativity is geared towards the su-
perlative creativity of humans. It does not do well at de-
scribing the simple forms of computational creativity we are
developing today. For this reason, an “islands of creativity”
view, that works for humans, needs to be replaced by a more
fluid conception of creativity that will work equally well for
computational systems. By comparison, a view of this pro-
cess of production based on networks of interaction between
elements (whether brain, body and culture, as Malafouris
suggests (Malafouris, 2007), or some other active ingredi-
ents) makes less of a conceptual meal of that scenario.

Even if these various perspectives may be technically
true, is it any use to try to use them to rethink evalu-
ation in computational creativity? It would be counter-
productive to take clearly delineated elements and blur them
into a loosely defined muddle of interaction purely for
the sake of being more accurate. A danger with adopt-
ing this perspective is that useable categories disappear to
dust. Evoking a Beethoven-piano-stave-pen-church-king-
orchestra-etc.-etc. network complex to explain the creation
of the Fifth Symphony may not have any practical value and
if so, should not be pursued. But as part of a wider investi-
gation into how qualitative, situated human science methods
can contribute to the understanding of evaluation in com-
putational creativity (Bown, 2014, 2012; McCormack et al.,

2014), I believe that it will be necessary to take on the “is-
lands of creativity” problem by introducing such thinking to
form a method of “dynamic analysis” of creative systems.

As a first step in a dynamic analysis approach, we would
need to look at where we have pre-emptively identified cre-
ative agents. Mostly, these will be either individual people,
or the computational systems we have built. For each pre-
sumed agent, we should investigate what assumptions we
hold about their boundedness, their autonomy (any cases in
which we say the system did something “on its own”) and
the origins or their actions. We can also investigate where
different systems might be seen to unite in co-action or break
down into interacting components, and we can look at how
each system is influenced to change its state or structure over
time. In each case, this will be a temporal process where
different system boundaries are recognised over time. In
the case of many computationally creative systems, the full
analysis of such a process would include the role of the sys-
tem developer, observing outcomes and iterating their de-
sign in order to improve it (what Colton, Pease, and Ritchie
(2001) refer to as “fine tuning”). We may also find that the
process is so widely distributed across elements that such
descriptions take on a more statistical nature, as we have
seen in both Simonton’s theories (Simonton, 2003), and in
Darwinian evolutionary thinking. In this case, it should be
fine to attribute some degree of creativity to a macro-level
stochastic process itself.

Through the examples below it is proposed that a simple
but effective way to dynamically analyse creative events is
through simple dot-point timelines that discuss sequences
of events, the influence of systems on each other, and the
potential coupling of systems. This is relatively crude, but
may have the potential to feed ultimately into more formal
frameworks such as that of Wiggins (2006).

Application
Without adopting a strong cultural Darwinism – which is
contrary to what I would argue for, and what Sperber’s arti-
cle (Sperber, 2007) emphatically argues against – it follows
from all of the above that every creative act should be framed
in terms of processes of interaction. The issue still remains
of showing that this is practically useful. I consider the fol-
lowing instances and how such an approach serves to clarify
the creative agency.

The Violin
In a recent article (Nia et al., 2015) evidence was given
to support the theory that the shape of sound holes in vi-
olins emerged through an essentially evolutionary process
whereby apprentices copied their masters’ designs with ran-
dom variation, and those designs with louder sounds, due
to the shape of the holes on the body of the violin, were
over time more successful. The winning design, the famil-
iar f-shape that we know today, maximises the ratio between
the perimeter of the hole and its size, providing greater am-
plification of the sound, whilst providing a pleasing visual
appearance. Who designed the violin as we know it today?
If the above account is correct we could answer as we would
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with the design of organisms in the biological world, that
there is no one designer, and there are not really any design-
ers in the sense of psychological creative discovery. The
design came about through a macro-level process. Indeed,
we could go so far as to say that the design of the optimised
sound holes was not due in any way to a human creative
capacity, although, difficulty arises when we ask whether
a given luthier’s new design was actually a conscious im-
provement, or a random variation that turned out to be suc-
cessful. As with Simonton (2003), we may be mistaken in
attributing creativity to the individual mind instead of to the
broader cultural process.

The creative process, as described by Nia et al. (2015),
might look something like the following if represented as a
dynamic analysis timeline:

1. An existing design is copied and modified in ways that do
not explicitly attempt to optimise sound amplification

2. Given time, the louder designs make more money, and
these workshops grow and reproduce whilst the work-
shops responsible for the quieter designs diminish.

Paul Hession / Arne Eigenfeldt Live at Cafe Oto
At a recent concert of live algorithms1, drummer Paul Hes-
sion and flautist/saxophonist Finn Peters performed with
a number of live algorithms. I consider the performance
between Paul Hession and Arne Eigenfeldt’s (Eigenfeldt,
2014) system2 (a discussion of the factors underlying such
concerts can be found in Bown et al. (2013)). Clearly, as
an improvised duet, the interaction between the two partic-
ipants is critical to understanding the creative output. Mu-
sical improvisation is possibly the most unambiguous case
of a process of interaction underlying a creative result. But
over a longer timescale we can consider Eigenfeldt’s devel-
opment of the system, and his interaction with Hession dur-
ing rehearsal as part of the creative process. It has been pro-
posed in various ways (e.g., McLean and Wiggins, 2010),
that creative software development involves a cycle of in-
teraction between developer and software, and we can see
this as directly analogous to the case of the potter described
by Malafouris, with the same arguments applying. Such no-
tions have also been discussed in the case of Cohen’s work
with AARON (McCorduck, 1990).

A full picture of the development of the outcome might
look something like the following. Through discussions
with many live algorithm developers, this seems typical, and
really it is just a specific case of what any musicians do in
preparing for a collaborative performance:

1. Designer takes on project, listens to recordings of Musi-
cian in order to approach design of System;

2. Designer iteratively develops System;

3. Designer, System and Musician rehearse;

4. System and Musician perform.

1Cafe Oto, London, June 29th 2014, as part of the New Inter-
faces for Musical Expression 2014 Conference.

2https://www.youtube.com/watch?v=vL6Jty5hOFc

In this we can look at the moments where there is influ-
ence. Of interest, in Stage 1, the musician has influence on
the System. In Stage 2, the system has influence on the de-
signer, and in Stage 3 the System has influence on the musi-
cian, influencing how they might choose to perform. Under
Malafouris’ framework, these interactions, no matter how
consciously or authoritatively the subject of the influence is
receiving this input, imply that boundaries between these en-
tities are fluid, or porous. We should be aware that that de-
sign of the system contains iterative, hence albeit minutely
autopoietic, development, and the final form of both system
and musician are the result of a longer-term interaction.

Still, does this matter? It is not burningly evident that it
does. But it provides a more complete analysis than if we say
that a system, all of a sudden, stands alone as an autonomous
agent and ‘produces’ things. A rich qualitative description
takes account of the actual pathways that lead to something
being produced.

Conclusion
In this paper I consider what is still, despite its long standing
in social sciences, quite a radical approach to thinking about
attributing creative agency. This view removes the privilege
of the human actor, making place for the idea of humans and
other actors forming temporary networks of interaction that
produce things. It does not unfortunately offer us a powerful
analytical framework that makes agency attribution easy or
formulaic, but asks us to avoid making mistaken and simple
agency attributions, whether to humans or to creative ma-
chines.
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Abstract 

The Raven's Progressive Matrices (RPM) test is a 
commonly used test of intelligence. The literature sug-
gests a variety of problem-solving methods for address-
ing RPM problems. For a graduate-level artificial intel-
ligence class in Fall 2014, we asked students to develop 
intelligent agents that could address 123 RPM-inspired 
problems, essentially crowdsourcing RPM problem 
solving. The students in the class submitted 224 agents 
that used a wide variety of problem-solving methods. In 
this paper, we first report on the aggregate results of 
those 224 agents on the 123 problems, then focus spe-
cifically on four of the most creative, novel, and effec-
tive agents in the class. We find that the four agents, us-
ing four very different problem-solving methods, were 
all able to achieve significant success. This suggests the 
RPM test may be amenable to a wider range of prob-
lem-solving methods than previously reported. It also 
suggests that human computation might be an effective 
strategy for collecting a wide variety of methods for 
creative tasks.  

 Introduction 
The Raven's Progressive Matrices (RPM) tests are a group 
of intelligence tests based on visual analogy problems (Ra-
ven, Raven, & Court 1998). In these problems, a matrix of 
visual frames is presented with a blank space; six or eight 
options are presented for filling in this space. Performance 
on RPM has been shown to correlate well with other intel-
ligence tests (Snow, Kyllonen, & Marshalek 1984). Thus, 
although wholly visual, the RPM tests measure general 
human intelligence, and are often used as the psychometric 
measure of choice in educational and clinical settings. 
 Hunt (1974) suggested that humans use multiple prob-
lem-solving methods to address RPM problems, including 
“analytical”   and   “Gestalt”   methods. Bringsjord & 
Schimanski (2003) have proposed intelligence tests such as 
RPM as a method of measuring the effectiveness of AI 
techniques. AI research has developed a variety of methods 
for addressing RPM and similar visual analogy problems, 

including both “analytical” methods that typically use 
propositional representations (Evans 1968; Lovett, Forbus, 
& Usher 2009; O’Donoghue, Bohan & Keane 2006; Prade 
& Richard 2011; Ragni & Neubert 2014), and "Gestalt" 
methods that often use imagistic representations (Dastani, 
Induskhya & Scha 2003; Kunda, McGreggor, & Goel 
2013; McGreggor & Goel 2014; Schewring et al. 2009). 
Another way of classifying the various methods is by con-
trol of processing. For example, some methods for address-
ing RPM problems, such as the affine method (Kunda, 
McGreggor & Goel 2013), first generate an answer based 
on the (partial) matrix, and test this answer by comparing it 
with each available choice; other methods, such as the frac-
tal method (McGreggor, Kunda & Goel 2014), test each 
available answer by computing the degree of fit in the ma-
trix. While it may appear that generation of answers is a 
necessary part of creativity, we posit that generating expla-
nations for available answers is also creative. 

The Raven's Test and Creativity 
 One major component in the value of the RPM test is its 
connection not only to intelligence, but also to creativity. 
Hunt (1974) laid the foundation for the creative nature of 
problem-solving methods on this test in identifying the two 
broad categories of methods mentioned previously, "Ge-
stalt" and "analytical". Kirby & Lawson (1983) argued 
further that it is the diversity of problem-solving methods 
that makes the RPM test a valuable tool for assessing intel-
ligence in humans. If creativity is in part the ability to de-
velop novel, useful, and effective methods to a problem, 
then the RPM test's admission of multiple methods adds to 
its value as a tool for studying creative problem solving. 
 Second, Keating & Bobbitt (1998) argue that addressing 
many RPM problems requires metacognitive abilities to 
select among the available problem-solving methods, to 
monitor the progress of the selected method, to suspend or 
abandon the current method and move to a different meth-
od, and to combine insights from the use of multiple meth-
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ods into one final answer choice. Third, the normatively 
correct choices for some RPM problems are often non-
obvious, sometimes even unexpected, such as in the prob-
lem shown in Figure 1. Thus, from the perspective of both 
process (metacognitive processing) and product (unexpect-
edness of the answer), the RPM test measures not only 
intelligence, but also creativity. 
 One potential critique of the RPM test for studying crea-
tivity is that a set of answer choices are presented to the 
test-taker. However, this implies that the creative task nec-
essarily entails generating a novel answer. The structure of 
the RPM problems turns this notion of creativity around: 
rather than generating an answer, the test-taker instead 
creatively generates an explanation for a particular answer 
choice. In Figure 1, for example, the most obvious answer 
would be a large square; however, none of the answer 
choices match this obvious answer. The presence of an-
swer choices constrains the activity and forces the test-
taker to creatively generate not an answer, but an explana-
tion for why one of the presented choices is most compel-
ling. This explanation is as much the output of the creativi-
ty process as the answer itself. 
 From the perspective of computational creativity, the 
above analysis makes the RPM test an excellent choice for 
designing, evaluating, and comparing new AI methods not 
only for intelligence, but also for creativity: the task admits 
a wide variety of AI methods characterized by different 
knowledge representations and different controls of pro-
cessing. The question then becomes: how can we identify 
the novel techniques that may effectively address RPM 
problems?  
 We postulate that one strategy for acquiring new meth-
ods for addressing visual analogy problems on the RPM 
test is through crowdsourcing (Howe 2008), or, more accu-
rately, human computation (Law & von Ahn 2011). Alt-
hough crowdsourcing has typically been used for acquiring 

domain knowledge, human computation also admits acqui-
sition of problem-solving methods. Yet, it is also important 
to acquire new methods for addressing visual analogy 
problems not from any crowd, but from intelligent, educat-
ed, high-achieving humans who themselves are likely to do 
well on the RPM test. 

The Experiment 
 In Fall 2014, we offered a new online Georgia Tech 
graduate-level CS 7637 course titled "CS 7637 
Knowledge-Based AI: Cognitive Systems" as part of the 
new Georgia Tech Online MS in CS Program (Goel & 
Joyner 2014; Goel & Joyner 2015). We also offered an in-
person class in parallel, with the two classes sharing the 
same syllabus and structure. The course describes its learn-
ing goals as, "to develop an understanding of (1) the basic 
architectures, representations and techniques for building 
knowledge-based AI agents, and (2) issues and methods of 
knowledge-based AI." Toward this end, students cover 
several knowledge representations (semantic networks, 
frames, scripts, formal logic), reasoning strategies (case-
based reasoning, rule-based reasoning, model-base d rea-
soning), and target domains (computational creativity, de-
sign, metacognition). More comprehensive information on 
the structure and content of the class is available at the link 
above. 
 In previous offerings of the in-person class, we had used 
variants of problems on the RPM test to motivate the class 
projects (Goel, Kunda, Joyner, & Vattam 2013). Thus, we 
knew class projects based on the RPM test stimulated stu-
dent engagement while providing an authentic opportunity 
to explore cutting-edge research. Therefore, in Fall of 
2014, we again designed the class projects based on vari-
ants of problems on the RPM test.  Students in both the 
online and in-person sections were asked to complete four 
projects that addressed 123 RPM-inspired problems in all, 
culminating in Project 4, wherein students designed agents 
that could answer all 123 problems using visual input. 224 
students completed Project 4, addressing all the problems 
using the raw imagistic input. We collected all the data on 
these 224 Project 4 submissions, including the designs of 
the agents and their performance on the 123 problems.  
 In this paper, we will describe the results of this experi-
ment. First, we will present at a high level the results of the 
224 agents that were developed to address these RPM-
inspired visual analogy problems. Second, we will examine 
in greater detail the design of four of the most creative and 
effective agents developed for the project. These agents 
operate according to four significantly different methods 
for reasoning about these problems. In describing these 
agents, we will clarify their relationship to elements of 
human creativity operationalized and instantiated in AI 
agents. 

 
Figure 1: A 2x1 visual analogy problem. Although RPM tests do 
not have 2x1 problems, 20 2x1 problems are used as a soft intro-
duction to solving visual analogies. 
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RPM-Inspired Visual Analogy Problems  
 The standard set of Raven's Progressive Matrices test is 
made of 60 visual analogy problems: 24 of the problems 
are 2x2 matrices, and 36 of the problems are 3x3 matrices. 
For copyright reasons, we have not yet been able to use 
actual RPM in these class projects.  Instead, we have 
developed a set of 123 RPM-inspired problems. These 
problems are broken into three categories: 27 2x1 matrices 
(as shown in Figure 1), 48 2x2 matrices (as shown in 
Figure 2), and 48 3x3 matrices (as shown in Figure 3). 
Although there are no 2x1 matrices in the actual RPM test, 
these are included in our set to provide a simpler initial set 
of problems for students to address before moving on to 
more difficult problems. 
 To develop these RPM-inspired problems, we examined 
individual problems on the actual RPM tests (both the 
standard and the advanced test) and wrote problems to 
have a close correspondence with the problems on the 
actual tests. Although the individual shapes and their 
properties differ, these RPM-inspired problems mimic the 
same transformations and problem types as the actual 
standard and advanced RPM tests. These correspondences, 
however, only exist at the level of individual problems; not 
every RPM has a corresponding RPM-inspired problem in 
our problem sets, and some types of problems are present 
more often in our problem sets than in the actual RPM 
tests. Therefore, no claim is made that our RPM-inspired 
problem sets are equivalent to the RPM tests as a whole; 
we only claim that the individual problems capture the 

same reasoning as problems on the original RPM tests. We 
are presently running two previously-designed agents 
(Kunda. McGreggor & Goel 2011; McGreggor, Kunda & 
Goel 2014) for solving the actual RPM tests against these 
new RPM-inspired problems in order to establish a 
conversion factor between the two sets. 

The Projects 
In the Fall 2014 version of the KBAI class, students com-
pleted a series of four projects. In the first three projects, 
students designed agents that could address 2x1, 2x2, and 
3x3 matrix problems. During these projects, the input into 
these agents was propositional representations of the 123 
RPM-inspired visual analogy problems. The propositional 
representations were written by the instructors of the 
course to prevent students from building inferential ad-
vantages into the representations. During the design of 
their agents, students could see 83 of these problems: the 
remaining 40 were designated 'Test' problems and were 
hidden from students in order to test their agents for gener-
ality. Thus, students were encouraged to construct agents 
with general problem-solving ability rather than agents that 
would tightly fit a small set of previously-seen problems. 
 By the end of project 3, students had completed an agent 
that could solve 2x1, 2x2, and 3x3 visual analogy problems 
based on  propositional input. In project 4, students de-
signed an agent that could solve these same problems using 
visual input. Here, students' agents read in the images di-
rectly from .PNG files, with one file representing each 
frame from the problem. Students' agents were run against 
the same 123 problems. Students' grades were dependent 
on performance on 100 of these problems (the remaining 
23 were provided as challenge problems with no credit 
granted for correct answers), and 40 of these 100 problems 
were withheld as 'Test' problems. This paper focuses only 
on the agents designed in project 4, which took visual in-
put.  

 
Figure 2: A 2x2 visual analogy problem, inspired by Raven's 
Progressive Matrices. In this paper, individual squares in a prob-
leP   aUe   called   µIUaPes’�   Zhile   indiYidual   shaSes   Zithin   each  
IUaPe  aUe  called  µoEMects’� 

 
Table 1: Performance on the eight sets of RPM-inspired problems 

(123 problems in all). "n" gives the number of problems in that 
set. "Avg." gives the average number of correct answers in that 

set for the 224 agents. "1", "2", "3", and "4" give the performance 
of the four agents described in further detail under 'Four Agents', 

below. 
 n Avg 1 2 3 4 

2x1 Basic 20 8.8 18 14 17 12 
2x1 Extra 7 1.5 4 1 7 2 
2x2 Basic 20 8.8 18 16 20 14 
2x2 Extra 8 2.5 7 4 7 7 
2x2 Test 20 7.2 17 16 14 12 

3x3 Basic 20 11.0 19 17 20 15 
3x3 Extra 8 1.5 2 0 6 4 
3x3 Test 20 7.9 16 15 11 13 
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Aggregate Results 
Students in the KBAI class submitted 224 agents, each of 
which ran against the 123 problems. The percentage of 
agents answering an individual problem correctly ranged 
from 87% (fo r the easiest 3x3 problem, which involved no 
transformations between frames) to 8% (for the hardest 
3x3 problem, which demanded reasoning about the sum of 
the number of sides of multiple shapes). Among the prob-
lems completed for credit, one Test problem was correctly 
answered by only 10% of agents; this 2x2 problem in-
volved two transformations ± change-fill and remove-
shape ± that conflicted with one another.  
 Table 1 previously shows the performance of the agents 
as a whole, as well as the performance of the four agents 
highlighted below. The table is broken up by the eight dis-
tinct problem sets students addressed: 'Basic' sets were 
provided to students during the design of their agents and 
were evaluated for the project grade; 'Test' sets were not 
provided to students for the design of their agents and were 
evaluated for the project grade; 'Extra' sets were provided 
to students during the design of their agents but were not 
evaluated for the project grade. Agents' scores on the Basic 
and Test sets comprised 70% of students' project grades. 
 Perhaps surprisingly, students' agents performed better 
on 3x3 problems than on 2x2 problems. While 3x3 prob-
lems allow more complex problem structures, such as 

transformations in which two frames together determine 
the contents of a third, students noted that 3x3 problems 
gave their agents more information with which to work. 
With more information, their agents performed better, even 
on more complex problems. 

Four Agents 
After evaluating the aggregate results, we examined the 
problem-solving methods of several of the best-performing 
agents and identified a number of particularly novel and 
successful methods for addressing these RPM-inspired 
problems. The majority of the 224 submitted agents oper-
ated by first writing a propositional representation based on 
shape recognition, and then solving the problem proposi-
tionally; we describe the most successful agent using this 
method below, which combines contour recognition with 
problem classification. However, we also identified several 
other methods to solving these problems. Here, we de-
scribe three additional creative methods to solving RPM-
inspired problems based on imagistic representations. 

Agent 1: Contour Recognition &  Reasoning 
Agent 1 uses an intermediate propositional knowledge rep-
Uesentation  IoU  ZoUNing  PePoUy�  ,n  the  agent’s  UeSUesenta-
tion, each frame in an RPM consists of objects, and each 
object consists of the following attributes: shape, size, fill, 
rotation, and relative-position to other shapes. A library of 
shapes was available to the agent, storing 20 basic shapes 
and IeatuUes  such  as  syPPetUy  and  coUneU  count�  $gent  �’s  
method has three phases: symbol extraction, top-down 
recognition, and bottom-up recognition. 
 Phase 1 uses image processing to extract a propositional 
representation for each problem. First, objects are found by 
isolating connected components, after which they are clas-
sified into shapes based on attributes of the object like cor-
ner count, edge lengths, and convexity. Other object attrib-
utes, including fill, rotation, size, and relative position are 
also computed in this phase. 
 Phase 2 uses top-down pattern finding. 19 pattern recog-
nizers look for simple patterns that will be combined to 
foUP   a   SatteUn   IingeUSUint�   5ecogni]eUs   include   “constant  
Uotation  acUoss  oEMects   in   IUaPe”   �as   seen  EetZeen   IUaPes  
$   and   &   in   )iguUe   ��   and   “oEMect   count   aUithPetic   se-
Tuence�”  )oU  each  SUoEleP  PatUi[�  SatteUns  aUe   Iound and 
combined for all in-row, -column, and -diagonal relation-
ships. The agent then chooses the answer with the largest 
set of matchers. In the event of a tie, Phase 3 begins. 
 Phase 3 performs bottom-up reasoning by splitting each 
problem into 2x1 sub-problems: 2 for 2x2 matrices and 29 
for 3x3 matrices (including diagonal sub-problems). The 
agent solves each sub-problem, producing multiple answer 
choices, then uses majority-rule to make a final answer 
selection. 

 
Figure 3: A 3x3 visual analogy problem, inspired by Raven's 
Progressive Matrices. Individual objects within frames in an 
530  can  Ee  said  to  haYe  µSUoSeUties’�   IoU  e[aPSle�  soPe  oI   the  
triangles in this problem have a 180° rotation as a property. 
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 To solve a 2x1 sub-problem, (1) all object pairs from 
frame A to frame B are created; (2) all object pairs from 
frame C to the answer choices are created; (3) all mappings 
between object pairings from step one and step two are 
created; and (4) each mapping is given a score. The scoring 
function includes the intuitiveness of the transformation in 
step two and the strength of analogy in step three. For ex-
ample, a mapping would be scored highly for intuition for 
mapping a triangle from frame A to a triangle in frame B. 
However, if a triangle in frame A instead mapped to a 
square in frame B, the best analogy would map triangles 
from frame C to squares in frame D. The highest scoring 
mapping is the most intuitive analogy. In the worst case, 
phase 3's runtime is O((n!)3), where n is object count per 
frame. To offset this, time limits were imposed. 
 To take the problem shown in Figure 3 as an example: 
during Phase 1, 31 shapes and 14 frames would be repre-
sented in a fashion similar to the following: frames: [{id: 1, 
objects:[{id: 1; shape: triangle; fill: yes; angle: 0; left-of: 
[2, 3]; size: medium},{id: 2; shape: triangle; fill: yes; an-
gle: 180; left-oI�  >�@�  si]e�  PediuP`«@`�  «@� 
 During Phase 2, each potential answer is inserted into 
the last cell of the matrix, and each pattern matcher runs. 
Here�  the  PatcheU  laEelled  “UePaining  shaSes  aIteU SaiUing”  
will match: each upright triangle in the first cell of a row or 
column is paired with a flipped version in the second cell, 
and the remaining triangles are checked to see if they 
match those of the third cell. Other matchers may also 
match the inserted choice, creating a more complex pat-
tern. In the end, each potential answer will have a list of 
matchers associated with it, and the one with the longest 
list of matchers is selected. For this problem, the agent 
would choose the first answer choice. Because the problem 
would be solved in Phase 2, Phase 3 would not execute. 
 Agent 1 performed exceptionally well, correctly answer-
ing 101 of the 123 problems (88 of the 100 problems for 
credit). Agent 1's general method of generating a  represen-
tation based on prior shape knowledge also reflects the 
most common approach used in the class (as well as an 
approach used in prior literature, e.g. O'Donoghue, Bohan, 
& Keane 2006)�  hoZeYeU�  $gent  �’s  classiIication  oI  Pul-
tiple problem types goes beyond what the majority of 
agents attempt and plays a large role in its success. 
 Connecting with computational creativity, Agent 1 pos-
sesses the ability to creatively generate its own answers. 
Presently, Agent 1 operates by substituting each answer 
choice in the empty frame and evaluating its degree of fit 
to the problem's transformations; however, implicit here is 
the idea of an 'optimal' fit for the remaining frame. Were 
the agent deprived of the answer choices, it could instead 
generate the optimal solution for the empty frame. Agent 1 
is limited in this regard, however, in that it could only pro-
duce solutions that are comprised of the shapes in its shape 
library; Agent 1 cannot deal with novel shapes. 

Agent 2: Shape-Agnostic Transformation 
Recognition 
The second agent, Agent 2, operates in two stages. First, 
the agent detects and analyzes individual objects to pro-
duce a  propositional representation, similar to Agent 1. 
The agent uses the individual properties to find relation-
ships between objects in pairs of frames, and chooses the 
answer that best fits the relationships that are found. Agent 
�’s  high-leYel  SUocess   thus  UesePEles  $gent  �’s   in   its   ini-
tial phase of translating imagistic representations into  
propositional ones; however, it differs in that it does not 
rely on prior shape knowledge. Agent 2 derives the struc-
ture and content of the problem from within the problem, 
rather than based on prior knowledge of shapes and fea-
tures. 
 The agent begins by recording visual measurements for 
each object in the problem and using a simple clustering 
method to partition similar objects into shape groups. The 
agent records the width/height ratio of an object and the 
aPount  oI  ZhitesSace  “outside”  oI  the  oEMect’s  EoundaUies  
in its cropped region. Without predefined knowledge of 
triangles and squares, the agent instead categorizes shapes 
based on these properties and gives them arbitrary names. 
For example, the agent may laEel  all  tUiangles  as  “shaSe�”  
and  all  sTuaUes  as  “shaSe�”�  eYen  iI   the  indiYidual  oEMects  
vary in size and other properties across the problem, based 
on these measurements. To account for variations in the 
measurements, objects are rotated to optimize an arbitrary 
scoring function. This also helps determine relative rota-
tion angles between objects which are necessary in certain 
problems. 
 To take an example, in Figure 1, there are no overlap-
ping objects in the frames. Individual objects are easily 
isolated, and the shapes of these objects are distinguished 
by the relative outside whitespace. Other properties, such 
as relative size and position, are also computed. In frames 
A and B, the agent records as the target relationship that 
the single object in frame B has the same shape (shape2) as 
both of the objects in frame A and the same size as the 
larger object in frame A. The agent then compares frame C 
with each answer frame to find the closest match to this 
relationship. An exact match is not possible because frame 
C contains two different shapes (shape1 and shape3) rather 
than a single shape. The correct answer, frame 2 with the 
large triangle (shape3), is chosen because it matches all 
aspects of the target relationship other than the object 
matching the shape of the smaller object. Thus, the concept 
of shape is used to mark objects as being different from or 
similar to other objects, and as long as the agent correctly 
observes those differences in the visual analysis portion it 
will have enough information to solve the problem. 
 The process for the problems in Figures 2 and 3 is simi-
lar, although the addition of rotating objects demands the 
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agent’s   Uotation   logic�   )or example, in the first frame of 
)iguUe  ��   the  tZo  outeU  tUiangles  aUe  alUeady  at   the  “ideal”  
rotation angle and are given an angle value of 0 degrees, 
ZheUeas   the  Piddle   tUiangle  Zould  Ueach   the  saPe  “ideal”  
value after being rotated 180 degrees. As noted before, the 
primary difference between Agent 1 and Agent 2 is that 
while Agent 1 relies on prior knowledge of shapes and 
their potential properties, Agent 2 takes a grounded method 
to identifying shapes in a frame. Thus, while Agent 1 will 
fail to recognize previously unseen shapes, Agent 2 is 
equipped to address previously unidentified shapes. 
 Agent 2 performed exceptionally well, correctly answer-
ing 83 of the 123 problems (78 of the 100 problems for 
credit)�   ,t   is   notaEle�   though�   that   $gent   �’s   SeUIoUmance 
lagged  Eehind  on   the   µ([tUa’   SUoEleP  sets�  Pany  oI   these  
sets included  transformations, such as counting the sides 
of a shape, for which $gent   �’s   PoUe   Yisually-oriented 
method does not account. We also hypothesize Agent 2 
would show greater success on problems featuring previ-
ously unseen shapes that humans could similarly address, 
but no such problems were included here. 
 Like Agent 1, Agent 2 can also generate novel answers 
rather than select them from a set of possible answers. The 
paragraph above acknowledged that on the problem pre-
sented in Figure 1, the most-obvious answer to Agent 2 is 
not present among the answer candidates. To have a 'most 
obvious' answer prior to examining the choices, Agent 2 
must generate its own solutions. This also reveals how the 
presence of candidate answers can encourage creativity by 
introducing new constraints. It is creative to generate novel 
solutions from scratch, but it is also creative to generate 
arguments for available non-obvious solutions. 

Agent 3: Visual Heuristics 
In contrast to Agents 1 and 2, Agent 3 does not derive any  
representation of the visual analogy problems. Agent 3 
begins from the supposition that it is fundamental to reduce 
the input space to something both manageable and 
meaningful for the agent to be able to compute and 
correctly guess an answer from the given choices. Agents 1 
and 2 do so by reducing the input space to a propositional  
representation; Agent 3 reduces the input space to sets of 
contiguous non-white pixels. 
 Agent 3 takes each possible answer choice and computes 
the likelihood it is correct. To do so, the agent takes a 
series of measurements capturing the relationship between 
each training pair, which is described by any two adjacent 
cells in the matrix. It then compares those measurements 
against each of the test-answer pairs, the combinations of 
any cell adjacent to the empty slot and each answer choice. 
Each comparison, if significant enough, casts a vote for the 
current answer as the likely answer with a weight directly 
proportional to the believed similarity of the cells. The 
most-voted answer is selected as the agent's answer. 

 Many relationship measurements were evaluated, such 
as grid-based similarity, histogram-based similarity, and 
affine transformations. After multiple iterations, few 
measures were needed to yield the best performance. In the 
final design, the agent only uses the following two 
measurements: 

x Dark pixel ratio: the difference in percentage of the 
number of dark-colored pixels with respect to the 
total number of pixels in the contiguous pixel sets of 
two matrix cells. 

x Intersection pixel ratio: the difference in 
percentage of the number of dark-colored pixels 
present at the same coordinates with respect to the 
total number of dark-colored pixels in both matrix 
cells for a given set of contiguous pixels. 

 For example, in Figure 1, the intersection pixel ratio 
would lead the agent to vote for the answers containing an 
outer square; this is analogous to the most logical answer 
to the problem, an outer square with the inner object 
removed. Counterintuitively, the correct answer is just the 
expanded triangle, but the agent would also vote for that 
answer based on the dark pixel ratio's similarity to the most 
logical answer. Hence, thanks to the simple metrics used, 
the   agent   is   “iPPune”   to   SUoElePs   that   Pay   aSSeaU  
deceiving at first glance or may involve convoluted 
transformations. Although for this particular example, the 
agent picked answer 6, the correct answer was evaluated to 
be only 6.76% less likely to be correct. 
 Agent 3 performed exceptionally well, correctly answer-
ing 102 of the 123 problems (82 of the 100 problems for 
credit). Agent 3 gave the most correct answers of any 
agent, although a greater proportion of its correct answers 
were previously-seen pUoElePs   than   $gent   �’s   siPilaUly  
high performance. This may suggest that the iterations 
examining the effectiveness of multiple measures of 
siPilaUity  Pay  haYe  oYeUIit   the  agent’s   Ueasoning   to   those  
problems, and that further development with more 
problems may expand the set of desirable measurements. 
 Unlike Agents 1 and 2, Agent 3 does not have the 
capability of generating an answer choice rather than 
selecting from a set of presented answer choices. This is 
because while Agents 1 and 2 operate under an implicit 
ranking of possible choices culminating in an ideal choice, 
Agent 3 might find numerous options equally ideal, and 
thus could generate thousands of candidate selections. 

Agent 4: Hybrid Reasoning 
Agents 1 and 2 use  propositional representations of the 
target problem while Agent 3 uses purely imagistic repre-
sentations; Agent 4, by contrast, leverages both and takes a 
hybrid method. This method asks the question: can an 
agent quickly find patterns and relationships in a problem 
through a high-level visual comparison? If the agent can 
find high-level visual relationships quickly, it can efficient-
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ly formulate a solution without any further  propositional 
understanding of the problem. If no such visual relation-
ships are found, the agent may look for lower level propo-
sitional relationships present in the problem. 
 Thus, Agent 4 starts by examining frames for visual 
relationships and transformations that can be quickly de-
tected by visual inspection. The agent uses image similari-
ty to detect rotation, vertical and horizontal reflection, the 
identity transformation, image addition, XOR, and NOR. If 
this process detects the presence of one of these relation-
ships within a matrix problem, the agent generates a pro-
spective solution and looks for a matching answer. For 
example, in Figure 1, the transformation between frame A 
and frame B would be identified through the XOR trans-
formation, which searches for pixels present in only one of 
two frames. Similarly, in Figure 2, the transformation be-
tween frame A and frame B would be identified through 
the rotation transformation; the agent would (successfully) 
identify frame 3 as a frame that would complete the same 
rotation transformation when paired with frame C. 
 This imagistic method was successful in finding solu-
tions to over 20% of the problems, and it was much more 
computationally efficient compared to extracting proposi-
tional  representations from the images; this is notable in 
that it acknowledges the different levels of effort applied 
by humans in solving these problems. Results could be 
further improved by searching for more types of high-level 
relationships and transformations, by applying transfor-
mations at a lower granularity than at the image level, and 
by improving the image comparison. For example, at pre-
sent, Agent 4 is unable detect the visual transformations 
between parts of frames in Figure 2. 
 This visual method has difficulty finding relationships 
that cannot be represented through affine transformations, 
such as problems involving prior knowledge of shapes and 
properties represented in the frames. When the agent is 
confronted with problems like these, it will try to find low-
level relationships using contour recognition to identify 
shapes and object properties, ultimately leading to a  meth-
od similar to Agent 1. 
 Agent 4 performed exceptionally well, correctly answer-
ing 79 of the 123 problems (66 of the 100 problems for 
credit). Although these scores are the lowest among these 
four agents, they are in the top 10% of agents submitted. 
Moreover, Agent 4 may represent the best approximation 
of human reasoning; humans can discuss problems in both 
visual and propositional terms (Kunda, McGreggor & Goel 
2011), and Agent 4 similarly can do both. 
 As noted in the description above, during the first phase 
of its reasoning, Agent 4 generates prospective solutions 
and compares those prospective solutions to the answer 
choices. Thus, it already engages in creative answer gener-
ation and compares the generated answers to the candidate 
solutions.  

Discussion 
Agents 1 and 2 above e[ePSliIy  +unt’s  ������  analytical�    
propositional reasoning strategies for addressing RPM 
problems. Agent 1 extracts  propositonal representations 
that describe the shapes, spatial relations, and transfor-
mations from the input images, and then operates on those  
representations. Agent 2 also extracts  propositional repre-
sentations, but these representations are grounded in the 
transformations between objects: it has no prior knowledge 
of shapes, but rather the ability to generate  representations 
of the transformations themselves. Agents 3, on the other 
hand�  e[ePSliIies  +unt’s  “Gestalt”  Yisual  Ueasoning  stUate-
gy for RPM. It uses visual abstractions over problems to 
approximate the answer even without precise knowledge of 
the transformations between frames. Agent 4 combines the 
two methods: it first leverages the immediately-identifiable 
"intuitive" answer that can be established from accessible 
visual transformations before resorting to more complex  
propositional reasoning strategies. Thus, Agent 4 demon-
strates the possibility of creatively combining methods. As 
far as we know, the precise strategies used by these agents 
have not appeared in the literature on the RPM test. 
 These four agents, along with the 220 other agents de-
veloped over the course of this project, reflect the ability of 
AI agents to succeed on a test of human intelligence that 
relies on creative and flexible problem-solving. This exper-
iment suggests that there may be no one single “Uight”  
problem-solving strategy for the RPM test, that creativity 
on the RPM test may entail a large number of problem-
solving strategies, and that we have so far discovered only 
a subset of creative problem-solving strategies. Future re-
search along these same lines will test future agents against 
the authentic RPM test; examine patterns of errors in 
agents' performance for comparison to human performance 
(Kunda et al. 2013) including atypical cognition (Kunda & 
Goel 2011); and better articulate the strengths and weak-
nesses of different methods (Lynn, Allik, & Irwing 2004; 
Kunda et al. 2013). We will also examine merging multiple 
agents into a single agent equipped with metacognitive 
ability to select among the different strategies, thus more 
closely approximating factors that determine human suc-
cess on such tests (Keating & Bobbitt 1978). 

Conclusions 
The RPM test admits many problem-solving methods, 
which in part is what makes it a good test of intelligence 
and creativity. The various problem-solving methods differ 
in both the knowledge representations and control of pro-
cessing they use. In this paper we described a human com-
putation strategy for acquiring novel problem-solving 
methods for addressing RPM-inspired visual analogy prob-
lems. This strategy resulted in the design of 224 AI agents 
for addressing 123 visual analogy problems. Some of the 
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agent designs were both novel and effective: we described 
four of these agent designs. 
 An important issue in computational creativity is how to 
acquire knowledge of creative methods. Our research sug-
gests that human computation may be a useful strategy for 
this acquisition, especially when the computation comes 
from intelligent, educated, high-achieving humans who 
themselves are likely to do well on a creative task. 
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Abstract

Recent investigations into the assessment and evaluation of
“creative” systems in the field of computational creativity
have disclosed several problems common to research within
the field. We perform a practical evaluation of the latest it-
eration of the creative system, DARCI, attempting to address
some of these problems using a specially designed, but gener-
alizable, online human survey. Of note, we address the com-
plications of evaluator bias that are present in all assessments
of creativity. Using our evaluation, we show that within its
narrow domain, DARCI is able to produce artifacts that are
rated at least as favorably as human counter parts across five
aspects of creativity. Further, these artifacts tend to be more
surprising and perceived as more difficult to produce than
those created by human artists.

Introduction
Recent investigations into the assessment of “creative” sys-
tems in the field of computational creativity have disclosed
several problems common to research within the field. The
first problem is properly focusing assessments to the in-
tended scope of a given creative system: how much should
an evaluation focus on the artifacts themselves—weak com-
putational creativity—and how much should it focus on the
processes involved in creating the artifacts—strong compu-
tational creativity (al Rifaie and Bishop 2012)? The sec-
ond problem is determining measurable assessment criteria
that can be used to determine if one version of a creative
system is an improvement over another, or to compare two
different creative systems (Colton et al. 2014). The third
problem is empirically grounding the ambiguous terminol-
ogy that is commonly used to describe and assess creative
systems (Brown 2014). The fourth problem is picking, or
designing, the best methodology to actually carry out the as-
sessment of a system (Jordanous 2014). The fifth problem,
and one that is not addressed in detail by researchers in the
field, is compensating for the effects of bias inevitably intro-
duced by human evaluators when assessing creative systems.

While the researchers exploring these issues have pre-
sented tantalizing theoretical solutions, few have imple-
mented practical solutions (a noted exception is Jor-
danous’ meta-evaluation of existing evaluation methodolo-
gies (2014)). In practice, as each of the researchers have
noted, there is no straightforward solution to any of these

problems. Here we perform a practical evaluation of the
latest iteration of the DARCI system, attempting to address
some of these problems using a specially designed, but gen-
eralizable, online human survey. Of note, we address the
complication of bias introduced by human evaluators that is
unaccounted for in current assessments of creativity.

There has been some reticence in the community towards
conducting human surveys as a means of evaluation. Brown
notes that human surveys often have wide variance making
them difficult to incorporate into established models of cre-
ativity (2014). In a study comparing several methods of
evaluation, Jordanous concludes that human surveys were
the least correct of the methods she explored (2014). She
suggests that this was because participants, unsure of the
definition of creativity, evaluated systems based on other
factors. However, anonymous online surveys can quickly
gather many responses from individuals outside of the com-
putational creativity community. Having this outside opin-
ion is valuable as it reduces biases that those within the
community inevitably bring to assessments. We evaluate
DARCI through such a survey, but, in order to reduce par-
ticipant confusion and response variance, ask participants to
evaluate a variety of explicitly defined artifact qualities (that
correspond to requirements for creativity) rather than asking
them to directly evaluate the system’s creativity.

Brown stresses the inadequacy of human surveys as em-
pirically grounding assessments since we don’t have an un-
derstanding of what the human responses mean (2014). In
order to gain that understanding on some level, we develop
a standard for judging the artifact qualities that we measure.
The standard is created by having survey participants assess
human artifacts (the standard) in addition to DARCI’s.

In order to evaluate a creative system from a strong com-
putational creativity standpoint, Colton et al. argue that the
process by which a system produces artifacts, in addition to
the artifacts themselves, must be evaluated (2014). While
our survey questions do focus on the artifacts, some are de-
signed to glean opinions about DARCI’s creative process.
Unfortunately, in order for survey takers to evaluate this pro-
cess, the survey cannot be blind. Participants in the survey
will know that they are evaluating an artificial system, and
bring with that knowledge unwanted biases. These biases
may be negative if the viewer feels that art is an inherently
human affair that automatically renders a computer’s efforts
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invalid. Or, they may be positive if the viewer feels that
the computer has an unfair disadvantage and should thus be
graded on a curve. Another possible source of positive bias
is potential viewer familiarity with computational creativity,
or even DARCI itself, and a concomitant desire for the study
to succeed.

In order to evaluate DARCI’s creative process while tak-
ing into consideration the effects of evaluator bias, we de-
sign the survey to detect the level of human/computer bias
in each survey taker. We then use this information to deter-
mine the effects of survey taker bias and adjust our conclu-
sions from the survey accordingly.

DARCI and Artifact Creation
DARCI is composed of several subsystems, each with its
own creative potential, and each designed to perform an in-
tegral step of image creation from conception of an idea,
to design, to various phases of implementation, to curation.
The most complete subsystem, and the one that is the fo-
cus of this paper, is called the image renderer. The image
renderer uses a genetic algorithm to discover a sequence of
image filters for rendering an image composition (produced
by another subsystem) so that it will reflect a given descrip-
tion (selected from yet another subsystem).

DARCI is designed to produce a rendering for a given
source image that reflects a given adjective(s) in an interest-
ing way. As detailed in previous research, by interesting we
mean that the rendering is different enough from the source
image so as to satisfy the creativity requirement of original-
ity while not being too different from the source image so as
to satisfy the creativity requirement of functionality (Norton,
Heath, and Ventura 2014).

To produce its artifact, DARCI first uses a system of ge-
netic algorithms to build a pool of candidate artifacts from
which to select the final rendering. Once these candidates
have been created, DARCI uses a heuristic to rank them and
then selects the top ranked candidate as the final artifact.

Candidate Artifact Creation
DARCI begins by training a binary artificial neural network
(ANN) for the given adjective. This neural network, called
here the adjective ANN, is trained to associate 51 image fea-
tures with the adjective using standard backpropagation and
a training set of hand-labeled images. The 51 image fea-
tures describe a variety of image qualities including color,
lighting, texture, and local interest points, and were cho-
sen from a larger set of 198 features using forward fea-
ture selection as described by Norton et al. (2015). Many
of these image features are the result of psychological stud-
ies analyzing the connection between color and various af-
fective words (Ou et al. 2004; Wang, Yu, and Jiang 2006;
Machajdik and Hanbury 2010). Others summarize local in-
terest point data that is typically reserved for object detection
in images (Norton, Heath, and Ventura 2015). Still other fea-
tures come from a publicly available1 set of widely accepted
global image features (King, Ng, and Sia 2004).

1http://appsrv.cse.cuhk.edu.hk/~miplab/discovir/

Once the adjective ANN is trained, DARCI uses a genetic
algorithm to discover the configuration and parameter set-
tings of Photoshop-like filters for rendering the source image
to reflect the given adjective. Candidate filter sequences are
evaluated by applying them to the source image and using
the resulting image as input to the adjective ANN. The out-
put of the adjective ANN is the fitness score. To increase the
variety of renderings discovered by the genetic algorithm,
speciation is introduced by including sub-populations.

After a number of generations of evolution (in our case
100) the renderings corresponding to the ten highest scoring
filter sequences discovered per sub-population are returned.
In these experiments, we use six sub-populations, yielding
60 images. These select images are ordered by fitness, then
added to the pool of candidate artifacts one at a time begin-
ning with the most fit image. Images are only added to the
candidate artifacts if they are determined to be sufficiently
unique. To identify those artifacts that are not sufficiently
unique, the system calculates the normalized cosine similar-
ity between the 51-element feature vector of each potential
candidate and the feature vector for each existing candidate.
If the similarity is greater than some threshold, the poten-
tial candidate is considered redundant and not added to the
candidate pool. For our experiments, based on preliminary
observations, we set this threshold to 0.95.

Once the candidate artifacts have been selected, another
epoch of evolution is performed. This time a neural net-
work we call the novelty ANN is trained to distinguish im-
ages novel to DARCI (the hand-labeled images mentioned
previously) from those produced by the system (the pool of
candidate artifacts). This process is similar to the process
employed by Machado et al. in training NEvAr to create
novel images (2007).

A new genetic algorithm is initialized using the combined
output of the novelty ANN and the adjective ANN as the fit-
ness function. To combine the output of the two neural nets,
the system selects the minimum output of the two classi-
fiers as described by Norton et al. (2014). The genetic algo-
rithm performs 100 generations of evolution using the new
fitness function. This forces DARCI to produce images that
reflect the given adjective and are distinct from the images
produced earlier. As before, the most fit artifacts are added
to the pool of candidate artifacts, provided they are not re-
dundant.

This process is repeated for several epochs, each adding
increasingly varied images to the pool of candidate artifacts
as the system attempts to optimize the changing fitness func-
tion. For our experiments, we perform a total of 8 epochs
including the initial novelty-ANN-free 0th epoch. Figure 1
illustrates how candidate artifacts vary from epoch to epoch
during one experiment with the adjective “cold” using the
image of Figure 2 as the source image.

Candidate Artifact Curation
Once the candidate pool has been created, DARCI selects a
single rendering to present as the finished product. Curat-
ing the candidates consists of two phases. In the first phase,
DARCI ranks the candidates by their similarity to the source
image and selects the top 10% (see Figure 3a - 3c), increas-
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(a) Epoch 0

(b) Epoch 1

(c) Epoch 2

(d) Epoch 3

(e) Epoch 4

(f) Epoch 5

(g) Epoch 6

(h) Epoch 7

Figure 1: Sample artifacts from each epoch of the candidate
building process for the adjective “cold” and source image
in Figure 2. Note that since the candidate pool is empty
during epoch 0, the novelty ANN is not used in the genetic
algorithm’s fitness function for this epoch.

Figure 2: The source image for all experiments in this paper.

Figure 3: The curation process for selecting a final arti-
fact from the pool of candidates (represented by a colored
bar). (a) Each artifact in the pool of candidates is assigned
a score of similarity to the source image (in this case Fig-
ure 2). (b) The candidates are ranked by this score (depicted
by the bar’s gradient). (c) The top 10% of ranked artifacts
are chosen for the next phase of curation. (d) The remaining
artifacts are given a score of how well they match the given
adjective. (e) The artifacts are ranked by the new score. (f)
The top image is selected as the final artifact to be returned.

ing the chance that the final rendering will make noticeable
use of the source image.

During curation, similarity to the source image is cal-
culated to preserve the content, rather than the color, of
the source image. Color usage has been shown to corre-
late with the affect of images (Wang, Yu, and Jiang 2006;
Li and Chen 2009; Norton, Heath, and Ventura 2013), and
we would actually like the color of the image to change in
order to match the adjective description while keeping ma-
jor objects within the source image recognizable. Therefore,
similarity is calculated by first extracting a 1000-element
histogram of visual words from the source image and each
candidate artifact (visual words are quantized local image
features commonly used in content-based image retrieval
approaches (Sivic and Zisserman 2003)). The similarity be-
tween two images is calculated by taking the cosine similar-
ity of the images’ visual word histograms, as this similarity
function has previously been used to successfully preserve
the source image (Norton, Heath, and Ventura 2014).

In the second phase of curation, DARCI ranks the remain-
ing candidates by their association with the given adjective
using the adjective ANN (see Figure 3d - 3f). The high-
est ranked image is then selected as the final artifact. This
second phase occurs after over-filtered images have been re-
moved in order to increase the chance that the final artifact
reflects the given adjective and to reduce the possibility of
returning an under-filtered image.
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(a) Human 1

(b) Human 2

(c) Human 3

(d) Human 4

Figure 4: Renderings of Figure 2 created by four human
artists. The renderings were created to depict, from left to
right, the adjectives “cold”, “eerie”, and “violent”.

Commissions
For our experiments, we commissioned DARCI and four hu-
man volunteers to produce renderings of the photograph in
Figure 2 that depict it as “cold”, “eerie”, and “violent”, re-
spectively. These adjective were chosen because DARCI
is able to associate them with images effectively (Norton,
Heath, and Ventura 2015), they are affective, and they
haven’t been used extensively in previous studies involv-
ing DARCI. In order to keep the rendering tools available to
DARCI and the human artists as similar as possible, human
artists were restricted to a subset of tools found in software
packages used for photo manipulation.

All four human volunteer artists have experience working
with photo manipulation software, and, for grounding, they
were shown examples of human-produced renderings from
a previous study. The 12 images they produced for our study
are shown in Figure 4.

We commissioned DARCI seven times for each of the
three adjectives. Each commission produced one artifact as
outlined in the previous section. In order to increase output
diversity across these commissions, the error threshold used
in training the neural networks was varied for several com-
missions. To match the number of human commissions, we
selected four of the artifacts DARCI produced for each ad-
jective. We made the final decision to ensure varied artifacts
and to eliminate potential outliers. Figure 5 shows all of the

(a) *DARCI 1

(b) *DARCI 2

(c) *DARCI 3

(d) *DARCI 4

(e) DARCI 5

(f) DARCI 6

(g) DARCI 7

Figure 5: Renderings of Figure 2 created by DARCI. The
first four sets (*) were selected for the study. The render-
ings were created to depict, from left to right, the adjectives
“cold”, “eerie”, and “violent”.

artifacts produced by DARCI and notes our chosen images.

Online Survey
In order to easily gather many responses, the survey was
anonymous and online. To our knowledge, prior to taking
the survey all participants were informed that the survey
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was to help with research regarding DARCI, “a computer
program we created”. Furthermore, the survey began by in-
forming volunteers that “the results will be used in research
exploring creativity in computational systems”.

The survey was separated into two parts. The first part
was designed to detect any pre-existing human/computer
bias in the survey taker as well as any bias the survey taker
may have towards our research in particular (given the sur-
vey preface and disclosure of our system). The second part
was designed to gather survey takers’ opinions about the ren-
derings created by DARCI and the human artists.

Part 1 Volunteers were presented with 15 pairs of images
from which they would indicate their preferences. All im-
ages were created by applying random filters from DARCI’s
toolset to random source images and selecting intriguing and
abstract creations from the thousands of random images. In
order to limit the number of factors survey takers would be
required to consider when making their selection, we paired
images together that seemed similar in some respect. These
image pairs were presented to volunteers in a random order
with random labels. The labels indicated that one of the im-
ages was created by a human, and the other was created by a
computer program. For each pair, the volunteers were asked
which they thought was the better image and given only 10
seconds to respond. Since the images were randomly labeled
as “human” or “computer”, unbiased volunteers should pick
the “human” and “computer” options approximately equally.

Part 2 All volunteers were randomly assigned to one of
three experiments: blind, basic, or detailed. The experi-
ments were identical except for the amount of information
that was presented to each volunteer. In all three experi-
ments volunteers were given the following instructions:

In this part, you will be presented with a total of seven images.
You will be asked to indicate your impressions of each image.
Each image was created by either a human artist or a computer
program called DARCI. The images were created using digital
tools to modify a specific source photograph so that it reflected
a given word.
As an example, observe how an artist modified the following
source photograph so that it reflected the word “happy”.

In the blind experiment, volunteers were never given the
name of DARCI (it was obfuscated from the above instruc-
tion) and were not told which images were produced by
DARCI and which were produced by a human artist. In the
basic experiment, volunteers were told the name of DARCI
and which images were produced by DARCI. In the detailed
experiment, volunteers were not only told which images
were created by DARCI, they were also given a detailed (for
the layman) description of how DARCI produced its images.
This description was followed by a simple one question quiz
to assess comprehension.

Aside from the noted differences, the three experiments
proceeded identically. Survey takers were presented with
the source photograph (Figure 2), noted as such, and then
six random images presented in random order: one image
from DARCI and one from a human artist for each of the
three adjectives (“cold”, “eerie”, and “violent”). Only six

of the twenty-four possible images were presented to reduce
fatigue. Volunteers were required to evaluate each image by
indicating how strongly they agreed or disagreed with a se-
ries of 7-point Likert items. To assist with these items, vol-
unteers were always allowed to view the source photograph.

For all images, except the source, the Likert items were
(adjective taking the place of the appropriate adjective):

“I like this image.” (like)
“This image is adjective.” (adjective)
“This image is a surprising modification of the source photo-
graph.” (surprising)
“This image would be difficult to create from the source pho-
tograph.” (difficult)
“This image makes good use of the source photograph.” (use)

For the source image we asked about all three adjectives,
and omitted the three items that referred to the source.

Participants were not asked to explicitly assess the cre-
ativity of artifacts since personal notions of creativity vary
widely. Instead, these five items were chosen to succinctly
capture certain qualities required to attribute creativity to a
system via the artifacts it produces, and to a small extent,
its creative process. Norton et al. have shown that a sim-
ilar set of Likert items are reliable (using Cronbach’s al-
pha) and correlate with participants’ opinions of creativity
as measured by an additional Likert item explicitly for “cre-
ativity” (2013).

Researchers in computational creativity have identified
several attributes necessary to attribute creativity or, as
Colton has stated, not attribute un-creativity to a system.
These attributes include Colton’s creative tripod (appreci-
ation, imagination, and skill) (2008), Ritchie’s 18 crite-
ria defined by functions of quality, novelty, and typical-
ity (2007), Jordanous’ 14 components of creativity (2012),
and the American Psychological Association’s functionality
and originality attributes.

Many of these attributes relate to the Likert items in
the survey. The like item relates to the attributes of skill,
quality, functionality, and Jordanous’ ‘domain competence’
and ‘value’ components. Adjective relates to the attributes
of functionality and Jordanous’ ‘intention and emotional
involvement’ and ‘social interaction and communication’
(particularly in the detailed experiments) components. Sur-
prising relates to the attributes of novelty, originality, and
Jordanous’ ‘originality’ and ‘value’ components. Difficult
relates to the attributes of skill and Jordanous’ ‘domain com-
petence’ component, and emphasizes the creation process.
Finally, use relates to the attributes of functionality, skill,
and quality. Since DARCI produces artifacts, all of the Lik-
ert items relate to Jordanous’ ‘generation of results’ compo-
nent, and for the detailed experiment where the creative pro-
cess is disclosed, all of the items relate to Jordanous’ ‘pro-
gression and development’, ‘thinking and evaluation’, and
‘variety, divergence, and experimentation’ components.

Results
After removing results from volunteers who indicated that
they had either taken the survey before or viewed someone
else taking the survey, 284 completed surveys remained. An
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additional 46 surveys in various stages of completion were
collected and included in calculating applicable results. 100
volunteers were assigned to the blind experiments, 111 to
the basic experiment, and 106 to the detailed experiment.
For evaluation, results from volunteers who failed the com-
prehension question were removed from the detailed results
and added to the basic results. This was 68 of the 106 vol-
unteers assigned to the detailed experiment.

Bias
A volunteer’s bias was calculated by subtracting the num-
ber of images they preferred labeled with “computer” from
those labeled with “human” in the first part of the survey.
Thus, a positive score indicates a bias in favor of humans.
Since the images were randomly labeled, the average bias
of all test takers should have been close to 0 if there was no
bias. However, the average bias was 0.901 with a standard
error of 0.185, indicating a small but substantial bias either
towards humans or against DARCI.

When analyzing results from the second part of the sur-
vey, we averaged the scores (between 1 and 7) for each Lik-
ert item across all artifacts produced by either humans or
DARCI for each group of experiments. These results, with
standard error, can be seen in Figure 6.

In order to discover the effect of bias on the results in the
second part of the survey, we calculated the Pearson correla-
tion coefficient, r, between bias and the average Likert item
scores for blind, basic, and detailed experiments. A positive
correlation between bias and a particular item for a given
artist (human or DARCI) would indicate that a bias towards
humans (or against DARCI) is correlated with an increase
in the item score for the artist. Table 1 shows these correla-
tion values and their p-values (calculated with a two tailed
Student’s t-test) for the three experiments.

Only the detailed experiment contained a correlation that
was statistically significant to p < 0.05. That was a pos-
itive correlation with the difficult item in human produced
images. This means that volunteers with a bias towards hu-
mans tended to give humans a boosted score for difficulty
when they understood how DARCI produced images. Even
though none of the other correlations were statistically sig-
nificant, it should be noted that in the two most informed
experiments, the correlations were generally more positive
towards humans and more negative towards DARCI (as one
might expect). But, the lack of significance indicates that
bias did not have a substantial impact on most results.

While one might expect no correlation between bias and
scores in the blind experiment, there was a clear trend to-
wards negative correlation across all items, both for humans
and DARCI (see Table 1). None of these correlation values
were statistically significant, but the fact that almost all of
the correlations were negative suggests that there may in-
deed be an overall negative correlation. This would imply
that those with a bias in favor of humans tended to give all
images a lower score when they didn’t know who produced
them. Perhaps these volunteers were concerned that an im-
age might be produced by DARCI. It would be interesting to
investigate this phenomenon in future studies.

Human blind basic detailed
Item r p-value r p-value r p-value
like -0.087 0.399 0.044 0.591 0.160 0.357
adjective -0.089 0.389 -0.011 0.892 -0.059 0.737
surprising -0.043 0.677 0.123 0.130 0.179 0.303
difficult 0.019 0.851 0.102 0.208 0.428 0.010
use -0.154 0.133 0.050 0.539 0.295 0.085

DARCI blind basic detailed
Item r p-value r p-value r p-value
like -0.047 0.651 -0.060 0.465 0.070 0.690
adjective -0.076 0.462 -0.0117 0.150 -0.012 0.944
surprising -0.045 0.661 0.068 0.405 -0.212 0.222
difficult -0.098 0.342 -0.036 0.662 -0.117 0.502
use -0.073 0.480 0.002 0.983 0.029 0.869

Table 1: The Pearson correlation coefficient, r, and associ-
ated p-value, between volunteer bias and item scores for the
three experiments (blind, basic, detailed). Positive correla-
tion indicates that a bias towards humans is correlated with
an increase in item score.

Evaluation
The average scores of the source image across its four Lik-
ert items were 5.873 (like), 2.260 (cold), 1.870 (eerie), and
1.377 (violent). Looking at Figure 6b we see that both hu-
mans and DARCI were able to reflect the adjectives more
effectively in their artifacts than did the original source
(though at the cost of a lower “like” score).

While the Likert scale is one of the most common evalua-
tion tools used in psychology and marketing research, it has
come under criticism for the unintended effects that it can
introduce, including cultural biases, memory effects, and
the loss of individual subjectivity when the scale is aver-
aged across participants. Recently, it has been demonstrated
that ranking or preference questionnaires have fewer neg-
ative effects (Yannakakis and Hallam 2011) and that con-
verting from a rating scale to preferences can reduce some
of the undesired effects of Likert questionnaires (Martı́nez,
Yannakakis, and Hallam 2014).

To augment the rating-based results of Figure 6, individ-
ual survey takers’ preferences were calculated from their
Likert scores. For each Likert item and for each partic-
ipant, we performed a pairwise comparison of all images
reviewed by the survey taker. We tabulated which images
scored higher (were preferred) and when ties occurred in
these pairwise comparisons. To summarize the results, we
have indicated the percentage of all pairwise tests for each
item where human art was preferred, DARCI’s art was pre-
ferred, and when ties occurred (Figure 7).

Looking at Figures 6 and 7 we see that DARCI clearly
scored higher than human artists in the surprising and dif-
ficult categories while humans did not score substantially
higher than DARCI in any category. These trends persisted
across all experiments despite the overall human bias of the
volunteers. In Figure 6, statistically significant differences
(p < 0.05 using a two tailed Student’s t-test) between hu-
mans and DARCI are starred (*).

While purely quantitative, these results suggest that
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(a) (b) (c) (d) (e)

Figure 6: The average scores of each Likert item across all artifacts produced by either humans (blue, left) or DARCI (red) for
each group of experiments (with standard error). (*) indicates statistical significance between human and DARCI results.

(a) (b) (c)

Figure 7: The result of every pairwise test, after converting Likert ratings to pairwise preferences. For each survey taker,
pairwise tests were conducted between every combination of images produced by a human and those produced by DARCI.

within this constrained domain of digital visual art, DARCI
is capable of producing renderings that are comparable to
human renderings in terms of appeal, while being signifi-
cantly more surprising and unusual. This is more than just
a functional evaluation of DARCI’s artifacts, it’s also an
evaluation of the creation process. The fact that DARCI
scored higher than humans in the difficulty category sug-
gests that volunteers felt that DARCI’s artifacts required
some skill to create. Additionally, volunteers given details
about DARCI’s creation process responded to its artifacts
very similarly to how those volunteers not given the details
responded—understanding how DARCI functioned did not
diminish the way the artifacts were perceived.

Somewhat surprisingly, the additional information pro-
vided to some of the survey participants had minimal ef-
fect on their responses. There was no statistically significant
difference between the results of any of the experiments ex-
cept between the basic and detailed experiments in the ad-
jective category (note the increased scores for both DARCI
and human for the detailed experiment of Figure 6b). In
this one case, understanding how DARCI produced artifacts
influenced how volunteers perceived the meaning of the im-
ages produced by both DARCI and humans. Since the de-
tailed group was told that DARCI learned to associate im-
ages with words through training by human teachers, vol-
unteers may have realized that all of the images they were
evaluating were essentially examples of what their peers as-
sociated with the given adjective. In other words, we suggest
that volunteers were incorporating Jordanous’ ‘social inter-
action and communication’ component into their evaluation.

Table 2 shows the top six images in each category for the
three experiments. Refer to Figures 4 and 5 to view the
actual images. Of note, DARCI’s artifacts have a slightly
greater representation amongst the highly rated images.

Conclusions
We have described recent improvements to a computational
system, DARCI, that generates renderings of images so that
they reflect an adjective and have presented a human-survey-
based instrument designed to evaluate DARCI’s artifacts and
creation process while taking participant bias into consider-
ation. The instrument uses human artists’ artifacts as a base-
line for analyzing DARCI’s results. Such a survey could be
generalized to many computational systems, though it would
need to be tailored to the specific domain in question.

By analyzing the survey results, we have shown that
across each of our criteria for creativity, DARCI’s artifacts
were rated comparably to artifacts produced by humans. Of
note, DARCI’s images were generally considered more sur-
prising and more difficult to create than their human counter-
parts. DARCI’s performance in the evaluation persisted even
when volunteers (shown to be biased against DARCI) were
aware of the process used to create the images.

While these results look remarkable on paper, we must
note that creativity is still ill-defined and our survey ques-
tions are clearly a simplification of what it means to be cre-
ative. We must also acknowledge that the artifacts were
very specific in nature and the human artists were heav-
ily restricted in there creative process in order to make the
comparison to DARCI fair. In a more practical setting, hu-
mans would have far fewer restrictions and would undoubt-
edly produce more interesting images. Finally, we must ac-
knowledge that the four sets of DARCI’s artifacts used in the
survey were selected from seven sets by a human—though
more than half of DARCI’s artifacts were included.

Despite these limitations, the results clearly indicate a
system capable of performing on par with humans within the
restricted domain. These results will also act as a baseline
for testing future improvements to the system.
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blind basic detailed
Like

DARCI 4 “cold” DARCI 4 “cold” DARCI 3 “cold”
DARCI 3 “cold” Human 1 “cold” Human 3 “eerie”
Human 1 “cold” Human 4 “violent” Human 1 “cold”
Human 2 “cold” DARCI 3 “cold” Human 4 “violent”
Human 4 “cold” Human 4 “eerie” Human 2 “cold”
DARCI 2 “eerie” Human 4 “cold” DARCI 2 “eerie”

Adjective
DARCI 2 “cold” DARCI 1 “cold” DARCI 3 “cold”
DARCI 4 “cold” DARCI 3 “cold” Human 2 “cold”
DARCI 3 “cold” DARCI 2 “cold” DARCI 2 “cold”
DARCI 1 “cold” Human 2 “eerie” Human 3 “eerie”

Human 2 “violent” Human 2 “cold” DARCI 1 “cold”
Human 2 “cold” DARCI 4 “cold” DARCI 4 “eerie”

Surprising
Human 3 “eerie” DARCI 2 “violent” DARCI 1 “violent”

DARCI 2 “violent” DARCI 1 “violent” Human 3 “eerie”
DARCI 1 “violent” Human 3 “eerie” DARCI 2 “violent”
DARCI 2 “eerie” DARCI 2 “eerie” DARCI 1 “cold”
DARCI 4 “cold” DARCI 4 “cold” Human 2 “violent”

Human 2 “violent” Human 2 “violent” DARCI 4 “eerie”
Difficult

DARCI 1 “violent” DARCI 2 “violent” DARCI 1 “violent”
DARCI 2 “violent” DARCI 1 “violent” Human 3 “eerie”
DARCI 2 “eerie” Human 3 “eerie” DARCI 2 “violent”

Human 2 “violent” DARCI 2 “eerie” Human 2 “violent”
Human 3 “eerie” Human 2 “violent” DARCI 2 “eerie ”
Human 2 “eerie” DARCI 4 “cold” DARCI 4 “violent”

Use
Human 3 “eerie” DARCI 4 “cold” Human 4 “eerie”
Human 4 “eerie” Human 1 “cold” Human 1 “cold”
DARCI 4 “cold” Human 4 “violent” Human 3 “eerie”
DARCI 3 “cold” Human 4 “cold” DARCI 1 “cold”
Human 1 “cold” DARCI 1 “cold” DARCI 3 “cold”

Human 4 “violent” DARCI 2 “eerie” DARCI 1 “eerie”

Table 2: The top six images (based on Likert rating) for each
item across the three experiments. Refer to Figures 4 and 5
to view images.
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Abstract

This paper proposes a computational framework for as-
sessing the creativity of products, such as paintings,
sculptures, poetry, etc. The proposed computational
framework is based on constructing a network between
creative products and using this network to infer about
the originality and influence of its nodes. Through a
series of transformations, we construct a Creativity Im-
plication Network. We show that inference about cre-
ativity in this network reduces to a variant of network
centrality problems which can be solved efficiently. We
apply the proposed framework to the task of quantify-
ing creativity of paintings (and sculptures). We exper-
imented on two datasets with over 62K paintings to il-
lustrate the behavior of the proposed framework.

Introduction
The field of computational creativity is focused on giving
the machine the ability to generate human-level “creative”
products such as computer generated poetry, stories, jokes,
music, art, etc., as well as creative problem solving. An
important characteristic of a creative agent is its ability to
assess its creativity as well as judge other agents’ creativ-
ity. In this paper we focus on developing a computational
framework for assessing the creativity of products, such as
painting, sculpture, etc. We use the most common definition
of creativity, which emphasizes the originality of the product
and its influential value (Paul and Kaufman 2014a). In the
next section we justify the use of this definition in contrast to
other definitions. The proposed computational framework is
based on constructing a network between products and us-
ing it to infer about the originality and influence of its nodes.
Through a series of transformations, we show that the prob-
lem can reduce to a variant of network centrality problems,
which can be solved efficiently.

We apply the proposed framework to the task of quan-
tifying creativity of paintings (and sculptures). The reader
might question the feasibility, limitation, and usefulness of
performing such task by a machine. Artists, art historians
and critics use different concepts to describe pantings. In
particular, elements of arts such as space, texture, form,
shape, color, tone and line. Artists also use principles of
art including movement, unity, harmony, variety, balance,
contrast, proportion, and pattern; besides brush strokes, sub-

ject matter, and other descriptive concepts (Fichner-Rathus
2008). We collectively call these concepts artistic concepts.
These artistic concepts can, more or less, be quantified by to-
day’s computer vision technology. With the rapid progress
in computer vision, more advanced techniques are intro-
duced, which can be used to measure similarity between
paintings with respect to a given artistic concept. Whether
the state of the art is already sufficient to measure similarity
in meaningful ways, or whether this will happen in the near
or far future, the goal of this paper is to design a framework
that can use such similarity measures to quantify our cho-
sen definition of creativity in an objective way. Hence, the
proposed framework would provide a ready-to-use approach
that can utilize any future advances in computer vision that
might provide better ways for visual quantification of dig-
itized paintings. In fact, we applied the proposed frame-
work using state-of-the-art computer vision techniques and
achieved very reasonable automatic quantification of cre-
ativity on two large datasets of paintings.

One of the fundamental issues with the problem of quan-
tifying creativity of art is how to validate any results that
the algorithm can obtain. Even if art historians would agree
on a list of highly original and influential paintings that can
be used for validation, any algorithm that aims at assigning
creativity scores will encounter three major limitations: I)
Closed-world limitation: The algorithm is only limited to
the set of paintings it analyzed. It is a closed world for the
algorithm where this set is every thing it has seen about art
history. The number of images of paintings available in the
public domain is just a small fraction of what are in muse-
ums and private collections. II) Artistic concept quantifica-
tion limitation: the algorithm is limited by what it sees, in
terms of the ability of the underlying computer vision meth-
ods to encode the important elements and principles of art
that relates to judging creativity. III) Parameter setting: the
results will depend on the setting of the parameters, where
each setting would mean a different way to assign creativ-
ity scores with different interpretation and different criteria.
However, these limitations should not stop us from develop-
ing and testing algorithms to quantify creativity. The first
two limitations are bound to disappear in the future, with
more and more paintings being digitized, as well as with the
continuing advances in computer vision and machine learn-
ing. The third limitation should be thought of as an advan-
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tage, since the different settings mean a rich ability of the
algorithm to assign creativity scores based on different cri-
teria. For the purpose of validation, we propose a methodol-
ogy for validating the results of the algorithm through what
we denote as “time machine experiments”, which provides
evidence of the correctness of the algorithm.

Having discussed the feasibility and limitations, let us
discuss the value of using any computational framework
to assess creativity in art. For a detailed discussion about
the implications of using computational methods in the do-
main of aesthetic-judgment-related tasks, we refer the reader
to (Spratt and Elgammal 2014). Our goal is not to replace art
historians’ or artists’ role in judging creativity of art prod-
ucts. Providing a computational tool that can process mil-
lions of artworks to provide objective similarity measures
and assessments of creativity, given certain visual criteria
can be useful in the age of digital humanities. From a com-
putational creativity point of view, evaluating the framework
on digitized art data provides an excellent way to optimize
and validate the framework, since art history provides us
with suggestions about what is considered creative and what
might be less creative. In this work we did not use any such
hints in achieving the creativity scores, since the whole pro-
cess is unsupervised, i.e., the approach does not use any
creativity, genre, or style labels. However we can use ev-
idence from art history to judge whether the results make
sense or not. Validating the framework on digitized art data
makes it possible to be used on other products where no such
knowledge is available, for example to validate computer-
generated creative products.

On the Notion of Creativity
There is a historically long and ongoing debate on how to
define creativity. In this section we give a brief description
of some of these definitions that directly relate to the no-
tion we will use in the proposed computational framework.
Therefore, this section is by no means intended to serve as
a comprehensive overview of the subject. We refer readers
to (Taylor 1988; Paul and Kaufman 2014b) for comprehen-
sive overviews of the different definitions of creativity.

We can describe a person (e.g. artist, poet), a prod-
uct (painting, poem), or the mental process as being cre-
ative (Taylor 1988; Paul and Kaufman 2014a). Among the
various definitions of creativity it seems that there is a con-
vergence to two main conditions for a product to be called
“creative”. That product must be novel, compared to prior
work, and also has to be of value or influential (Paul and
Kaufman 2014a). These criteria resonate with Kant’s def-
inition of artistic genius, which emphasizes two conditions
“originality” and being “exemplary” 1. Psychologists would

1Among four criteria for artistic genius suggested by Kant, two
describe the characteristic of a creative product “That genius 1) is
a talent for producing that for which no determinate rule can be
given, not a predisposition of skill for that which can be learned in
accordance with some rule, consequently that originality must be
it’s primary characteristic. 2) that since there can also be original
nonsense, its products must at the same time be models, i.e., exem-
plary, hence, while not themselves the result of imitation, they must

not totally agree with this definition since they favor asso-
ciating creativity with the mental process that generates the
product (Taylor 1988; Nanay 2014). However associating
creativity with products makes it possible to argue in favor
of “Computational Creativity”, since otherwise, any com-
puter product would be an output of an algorithmic process
and not a result of a creative process. Hence, in this paper
we stick to quantifying the creativity of products instead of
the mental process that create the product.

Boden suggested a distinction between two notions of
creativity: psychological creativity (P-creativity), which as-
sesses novelty of ideas with respect to its creator, and his-
torical creativity (H-creativity), which assesses novelty with
respect to the whole human history (Boden 1990). It follows
that P-creativity is a necessary but not sufficient condition
for H-creativity, while H-creativity implies P-creativity (Bo-
den 1990; Nanay 2014). This distinction is related to the
subjective (related to person) vs. objective creativity (related
to the product) suggested by Jarvie (Jarvie 1986). In this pa-
per our definition of creativity is aligned with objective/H-
creativity, since we mainly quantify creativity within a his-
torical context.

Computational Framework
According to the discussion in the previous section, a cre-
ative product must be original, compared to prior work, and
valuable (influential) moving forward. Let us construct a
network of creative products and use it to assign a creativity
score to each product in the network according to the afore-
mentioned criteria. In this section, for simplicity and with-
out loss of generality, we describe the approach based on a
network of paintings, however the framework is applicable
to other art or literature forms.

Constructing a Painting Graph
Let us denote by P = {pi, i = 1 · · ·N} a set of paintings.
The goal is to assign a creativity score for each painting, de-
noted by C(pi) for painting pi . Every painting comes with
a time label indicating the date it was created, denoted by
t(pi). We create a directed graph where each vertex corre-
sponds to a painting. A directed edge (arc) connects painting
pi to pj if pi was created before pj . Each directed edge is
assigned a positive weight (we will discuss later where the
weights come from), we denote the weight of edge (pi, pj)
by wij . We denote by Wij the adjacency matrix of the paint-
ing graph, where Wij = wij if there is an edge from pi to
pj and 0 otherwise. Note that according to this definition, a
painting is not connected to itself, i.e., wii = 0, i = 1 · · ·N .
By construction, wij > 0 ! wji = 0, i.e., the graph is
anti-symmetric.

To assign the weights we assume that there is a similar-
ity function that takes two paintings and produces a positive
scalar measure of affinity between them (higher value indi-
cates higher similarity). We denote such a function by S(·, ·)

yet serve others in that way, i.e., as a standard or rule for judging.”
(Guyer and Wood 2000)-p186
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Figure 1: Illustration of the construction of the Creativity Implication Network: blue arrows indicate temporal relation and
orange arrows indicate reverse creativity implication (converse).

and, therefore,

wij =

⇢
S(pi, pj) if t(pi) < t(pj).
0 otherwise.

Since there are multiple possible visual aspects that can be
used to measure similarity, we denote such a function by
Sa(·, ·) where the superscript a indicates the visual aspect
that is used to measure the similarity (color, subject mat-
ter, brush stroke, etc.) This implies that we can construct
multiple graphs, one for each similarity function. We de-
note the corresponding adjacency matrix by W a, and the
induced creativity score by Ca, which measure the creativ-
ity along the dimension of visual aspect a. In the rest of this
section, for the sake of simplicity, we will assume one sim-
ilarity function and drop the superscript. Details about the
similarity function will be explained in the next section.

Creativity Propagation
Giving the constructed painting graph, how can we propa-
gate the creativity in such a network? To answer this ques-
tion we need to understand the implication of the weight of
the directed edge connecting two nodes on their creativity
scores. Let us assume that initially we assign equal creativ-
ity indices to all nodes. Consider painting pi and consider an
incoming edge from a prior painting pk. A high weight on
that edge (wki) indicates a high similarity between pi and pk,
which indicates that pi is not novel, implying that we should
lower the creativity score of pi (since pi is subsequent to
pk and similar to it) and increase the creativity score of pk.
In contrast, a low weight implies that pi is novel and hence
creative compared to pk, therefore we need to increase the
creativity score of pi and decreases that of pk.

Let us now consider the outgoing edges from pi. Accord-
ing to our notion of creativity, for pi to be creative it is not
enough to be novel, it has to be influential as well (some
others have to imitate it). This indicates that a high weight,
wij , between pi and a subsequent painting pj implies that
we should increase the creativity score of pi and decrease
that of pj . In contrast, a lower weight implies that pi is not
influential on pj , and hence we should decrease the score for
pi and increase it for pj . These four cases are illustrated in

Figure 1. A careful look reveals that the two cases for the
incoming edges and those for the outgoing edges are in fact
the same. A higher weight implies the prior node is more
influential and the subsequent node is less creative, and a
lower weight implies the prior node is less influential and
the subsequent node is more creative.

Creativity Implication Network
Before converting this intuition to a computational ap-
proach, we need to define what is considered high and low
for weights. We introduce a balancing function on the graph.
Let m(i) denote a balancing value for node i, where for the
edges connected to that node a weight above m(i) is consid-
ered high and below that value is considered low. We define
a balancing function as a linear function on the weights con-
necting to each node in the form

Bi(w) =

⇢
w �m(i) if w > 0.
0 otherwise.

We can think of different forms of balancing functions that
can be used. Also there are different ways to set the param-
eter m(i) with different implications, which we will discuss
in the next section. This form of balancing function basi-
cally converts weights lower than m(i) to negative values.
The more negative the weight of an edge the more creative
the subsequent node and the less influential the prior node.
The more positive the weight of an edge the less creative the
subsequent node and the more influential the prior node.

The introduction of the negative weights in the graph, de-
spite providing a solution to represent low weights, is prob-
lematic when propagating the creativity scores. The intu-
ition is, a negative edge between pi and pj is equivalent to
a positive edge between pj and pi. This directly suggests
that we should reverse all negative edges and negate their
values. Notice that the original graph construction guaran-
tees that an edge between pi and pj implies no edge between
pj and pi, therefore there is no problem with edge reversal.
This process results in what we call “Creativity Implication
Network”. We denote the weights of that graph by w̃ij and
its adjacency matrix by fW . This process can be described
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mathematically as

B(wij) > 0 ! w̃ij = B(wij)

B(wij) = 0 ! w̃ij = 0

B(wij) < 0 ! w̃ji = �B(wij)

The Creativity Implication Network has one simple rule that
relates its weights to creativity propagation: the higher the
weight of an edge between two nodes, the less creative the
subsequent node and the more creative the prior node. Note
that the direction of the edges in this graph is no longer re-
lated to the temporal relation between its nodes, instead it
is directly inverse to the way creativity scores should prop-
agate from one painting to another. Notice that the weights
of this graph are non-negative.

Computing Creativity Scores
Given the construction of the Creativity Implication Net-
work, we are now ready to define a recursive formula for as-
signing creativity scores. We will show that the construction
of the Creativity Implication Network reduces the problem
of computing the creativity scores to a traditional network
centrality problem. The algorithm will maintain creativity
scores that sum up to one, i.e., the creativity scores form
a probability distribution over all the paintings in our set.
Given an initial equal creativity scores, the creativity score
of node pi should be updated as

C(pi) =
(1� ↵)

N
+ ↵

X

j

w̃ij
C(pj)

N(pj)
, (1)

where 0  ↵  1 and N(pj) =
P

k w̃kj . In this formula,
the creativity of node pi is computed from aggregating a
fraction ↵ of the creativity scores from its outgoing edges
weighted by the adjusted weights w̃ij . The constant term
(1� ↵)/N reflects the chance that similarity between two
paintings might not necessarily indicate that the subsequent
one is influenced by the prior one. For example, two paint-
ings might be similar simply because they follow a certain
style or art movement. The factor 1 � ↵ reflects the prob-
ability of this chance. The normalization term N(pj) for
node j is the sum of its incoming weights, which means that
the contribution of node pj is split among all its incoming
nodes based on the weights, and hence, pi will collect only
a fraction w̃ij/

P
k w̃kj of the creativity score of pj .

The recursive formula in Eq 1 can be written in a matrix
form as

C =
(1� ↵)

N
1+ ↵

ffWC, (2)

where ffW is a column stochastic matrix defined as ffW ij =
w̃ij/

P
k w̃kj , and 1 is a vector of ones of the same size as

C. It is easy to see that since ffW , C, and 1
N 1 are all column

stochastic, the resulting scores will always sum up to one.
The creativity scores can be obtained by iterating over Eq 2
until conversion. Also a closed-form solution for the case
where ↵ 6= 1 can be obtained as

C⇤ =
(1� ↵)

N
(I � ↵

ffW )�11. (3)

A reader who is familiar with social network analysis lit-
erature might directly see the relation between this formu-
lation and some traditional network centrality algorithms.
Eq 2 represents a random walk in a Markov chain. Set-
ting ↵ = 1, the formula in Eq 2 becomes a weighted vari-
ant to eigenvector centrality (Borgatti and Everett 2006),
where a solution can be obtained by the right eigenvector

corresponding to the largest eigenvalue of ffW . The formula-
tion in Eq 2 is also a weighted variant of Hubbell’s central-
ity (Hubbell 1965). Finally the formulation can be seen as an
inverted weighted variant of the Page Rank algorithm (Brin
and Page 1998). Notice that this reduction to traditional net-
work centrality formulations was only possible because of
the way the Creativity Implication Network was constructed.

Originality vs. Influence
The formulation above sums up the two criteria of creativity,
being original and being influential. We can modify the for-
mulation to make it possible to give more emphasis to either
of these two aspects when computing the creativity scores.
For example it might be desirable to emphasize novel works
even though they are not influential, or the other way around.
Recall that the direction of the edges in Creativity Implica-
tion Network are no longer related to the temporal relation
between the nodes. We can label (color) the edges in the
network such that each outgoing edge e(pi, pj) from a given
node pi is either labeled as a subsequent edge or a prior edge
depending on the temporal relation between pi and pj . This
can be achieved by defining two disjoint subsets of the edges
in the networks

Eprior = {e(pi, pj) : t(pj) < t(pi)}

Esubseq = {e(pi, pj) : t(pj) � t(pi)}

This results in two adjacency matrices, denoted by fW p and
fW s such that fW = fW p +fW s, where the superscripts p and
s denote the prior and subsequent edges respectively. Now
Eq 1 can be rewritten as

C(pi) =

(1� ↵)

N
+ (4)

↵[�
X

j

w̃p
ij

C(pj)

Np
(pj)

+ (1� �)
X

j

w̃s
ij

C(pj)

Ns
(pj)

],

where Np(pj) =
P

k w̃
p
kj and Ns(pj) =

P
k w̃

s
kj . The

first summation collects the creativity scores stemming from
prior nodes, i.e., encodes the originality part of the score,
while the second summation collects creativity scores stem-
ming from subsequent nodes, i.e, encodes influence. We in-
troduced a parameter 0  �  1 to control the effect of the
two criteria on the result. The modified formulation above
can be written as

C =
(1� ↵)

N
1+ ↵[�

ggW pC + (1� �)
ggW sC], (5)

where ggW p and ggW s are the column stochastic adjacency ma-
trices resulting from normalizing the columns of fW p and
fW s respectively. It is obvious that the closed-form solution
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in Eq 3 is applicable to this modified formulation where ffW
is defined as ffW = �

ggW p + (1� �)
ggW s.

Creativity Network for Art
In this section we explain how the framework can be realized
for the particular case of visual art.

Visual Likelihood: For each painting we can use computer
vision techniques to obtain different feature representations
for its image, each encoding a specific visual aspect(s) re-
lated to the elements and principles of arts. We denote such
features by fa

i for painting pi, where a denotes the visual
aspect that the feature quantifies. We define the similarity
between painting pi and pj , as the likelihood that painting
pj is coming from a probability model defined by painting
pi. In particular, we assume a Gaussian probability density
model for painting pi, i.e.,

Sa(pj , pi) = Pr(pj |pi, a) = N (·; fa
i ,�

aI).

It is important to limit the connections coming to a given
painting. By construction, any painting will be connected to
all prior paintings in the graph. This makes the graph highly
biased since modern paintings will have extensive incoming
connections and early paintings will have extensive outgoing
connections. Therefore we limit the incoming connections
to any node to at most the top K edges (the K most similar
prior paintings).

Temporal Prior: It might be desirable to add a temporal
prior on the connections. If a painting in the nineteenth cen-
tury resembles a painting from the fourteenth century, we
shouldn’t necessarily penalize that as low creativity. This
is because certain styles are always reinventions of older
styles, for example neoclassicism and renaissance. There-
fore, these similarities between styles across distant time pe-
riods should not be considered as low creativity. Therefore,
we can add a temporal prior to the likelihood as

Sa(pj , pi) = Prv(pj |pi, a) · Prt(pj |pi),

where the second probability is a temporal likelihood (what
is the likelihood that pj is influenced pi given their dates)
and the first is the visual likelihood. There are different ways
to define such a temporal likelihood. The simplest way is
a temporal window function, i.e., Prt(pj |pi) = 1 if pi is
within K temporal neighbors prior to pj and 0 otherwise2.

Balancing Function: There are different choices for the
balancing function B(w), as well as the parameter for that
function. We mainly used a linear function for that pur-
pose. The parameter m can be set globally over the whole
graph, or locally for each time period. A global m can be
set as the p-percentile of the weights of the graph, which
is p-percentile of all the pairwise likelihoods. This di-
rectly means that p% of the edges of the graph will be re-
versed when constructing the Creativity Implication Graph.

2Alternatively, a Gaussian density can be use, Prt(pj |pi) =

exp(�[t(pi)�t(pj)]
2/�2

t ). However, adding such temporal Gaus-
sian would complicate the algorithm since it will not be easy to
estimate a suitable �t, specially the graph can have non-uniform
density over the time line.

One disadvantage of a global balancing function is that dif-
ferent time periods have different distributions of weights.
This suggests using a local-in-time balancing function. To
achieve that we compute mi for each node as p% of the
weight distribution based on its temporal neighborhood.

Experiments and Results
Datasets and Visual Features
Artchive: This dataset was previously used for style clas-
sification and influence discovery (Saleh et al. 2014). It
contains a total of 1710 images of art works (paintings and
sculptures) by 66 artists, from 13 different styles from 1412-
1996, chosen from Mark Harden’s Artchive database of fine-
art (Harden ). The majority of the images are of the full
work, while a few are details of the work.

Wikiart.org: We used the publicly available dataset of
“Wikiart paintings”3; which, to the best of our knowledge,
is the largest online public collection of artworks. This col-
lection has images of 81,449 fine-art paintings and sculp-
tures from 1,119 artist spanning from 1400-2000+. These
paintings are from 27 different styles (Abstract, Byzantine,
Baroque, etc.) and 45 different genres (Interior, Landscape,
Portrait, etc.). We pruned the dataset to 62,254 western
paintings by removing genres and mediums that are not suit-
able for the analysis such as sculpture, graffiti, mosaic, in-
stallation, performance, photos, etc.

For both datasets the time annotation is mainly the year.
Therefore, it is not possible to tell which is prior between
any pair of paintings with the same year of creation. There-
fore no edge is added between their corresponding nodes.

We experimented with different state-of-the-art feature
representations. In particular, the results shown here are us-
ing Classeme features (Torresani, Szummer, and Fitzgibbon
2010). These features were shown to outperform other state-
of-the-art features for the task of style classification (Saleh
et al. 2014). These features (2659 dimensions) provide
semantic-level representation of images, by encoding the
presence of a set of basic-level object categories (e.g. horse,
cross, etc.), which captures the subject matter of the paint-
ing. Some of the low-level features used to learn the
Classeme features also capture the composition of the scene.

Example Results
We show qualitative and quantitative experimental results of
the framework applied to the aforementioned datasets. As
mentioned in the introduction, any result has to be evaluated
given the set of paintings available to the algorithm and the
capabilities of the visual features used. Given that the vi-
sual features used are mainly capturing subject matter and
composition, sensible creativity scores are expected to re-
flect these concept. A low creativity score does not mean
that the work is not creative in general, it just means that the
algorithm does not see it creative with respect to its encoding
of subject matter and composition.

Figures 2-top and 3 show the creativity scores obtained
on the Artchive and Wikiart datasets respectively. Figure 2-
bottom shows a zoom in to the period between 1850-1950 in

3http://www.wikiart.org/

Proceedings of the Sixth International Conference on Computational Creativity June 2015 43



the Artchive dataset, which is very dense in the graph4. In all
figures we plot the scores vs. the year of the painting. The
figures visualize some of the paintings that obtained high
scores, as well as some with low scores (the scores in the
plots are scaled). We randomly sampled points with low
scores for visualization. A close look at the paintings that
scored low (bottom) reveals the presence of typical subject
matter that is common in the dataset, or in some cases the
image presents an unclear view of a sculpture (e.g. Rodin
1889 sculpture in the bottom right). The general trend shows
peaks in creativity around the time of High Renaissance (late
15th , early 16th century) and the late 19th and early 20th
centuries, and a significant increase in the second half of the
20th century.

One of the interesting findings is the algorithm’s ability to
point out wrong annotations in the dataset. For example, one
of the highest scoring paintings around 1910 was a painting
by Piet Mondrain called “ Composition en blanc, rouge et
jaune,” (see Figure 2). By examining this painting, we found
that the correct date for it is around 1936 and it was mistak-
enly annotated in the Artchive dataset as 1910 5. Modrain
did not start to paint in this grid-based (Tableau) style untill
around 1920. So it is no surprise that wrongly dating one
of Mondrain’s tableau paintings to 1910 caused it to obtain
high creativity score, even above the cubism paintings from
that time. On the Wikiart dataset, one of the highest-scored
painting was “tornado” by contemporary artist Joe Goode,
which was found to be mistakenly dated 1911 in Wikiart 6.
A closer look at the artist biography revealed that he was
born in 1937 and this painting was created in 19917. It
is not surprising for a painting that was created in 1991 to
score very high in creativity if it was wrongly dated to 1911.
These two examples, besides indicating that the algorithm
works, show the potential of proposed algorithm in in spot-
ting wrong annotations in large datasets, which otherwise
would require tremendous human effort.

Time Machine Experiment
Given the absence of ground truth for creativity, the afore-
mentioned wrong annotations inspired us with a methodol-
ogy to quantitatively evaluate the framework. We designed
what we call “time machine” experiment, where we change
the date of an artwork to some point in the past or some point
in the future, relative to its correct time of creation. Then we
compute the creativity scores using the wrong date, by run-
ning the algorithm on the whole data. We then compute the
gain (or loss) in the creativity score of that artwork compared
to its score using correct dating. What should we expect

4For Figure 2 a temporal window historical prior is uses.
For Figure 3 no historical prior was used. For both, we set
K=500,↵=0.15

5The wrong annotation is in the Artchive CD obtained in 2010.
The current online version of Artchive has corrected annotation for
this painting

6
http://www.wikiart.org/en/search/tornado/

1#supersized-search-318512 - accessed on Feb 28th,
2015

7
http://www.artnet.com/artists/joe-goode/

tornado-9-2Y7erPME95YlkhFp7DRWlA2

Table 1: Time Machine Experiment
Art movement avg % gain/loss % increase

Moving backward to AD 1600
Neoclassicism 5.78%±1.28 97%±4.8
Romanticism 7.52%± 2.04 98%± 4.2
Impressionism 14.66%± 2.78 99%±3.2
Post-Impressionism 16.82%±2.22 99%±3.1
Symbolism 15.2%±2.94 97%±4.8
Expressionism 16.83%±2.43 98%±4.2
Cubism 13.36%±2.43 89%±9.9
Surrealism 12.66%±1.82 95%±7.1
American Modernism 11.75%±2.99 84%±8.4

Wandering around to AD 1600
Renaissance 0.68 %± 2.05 39%±5.7
Baroque 2.85%± 1.09 71%±19.7

Moving forward to AD 1900
Renaissance -8.13%± 2.02 20%±10.5
Baroque -10.2%±2.03 0%±0

from an algorithm that assigns creativity in a sensible way?
Moving a creative painting back in history would increase
its creativity score, while moving a painting forward would
decrease its creativity. Therefore, we tested three settings:
I) Moving back to AD 1600: For styles that date after 1750,
we set the test paintings back to a random date around 1600
using Normal distribution with mean 1600 and std 50 years,
i.e. N(1600, 502) . II) Moving forward to AD 1900: For the
Renaissance and Baroque styles, we set the test paintings
to random dates around 1900 sampled from N(1900, 502).
III) Wandering about AD 1600 (baseline): In this experi-
ment, for the Renaissance and Baroque styles, we set the
test paintings to random dates around 1600 sampled from
N(1600, 502).

Table 1 shows the results of these experiments. We ran
this experiment on the Artchive dataset with no temporal
prior. In each run we randomly selected 10 test paintings
of a given style and applied the corresponding move. We
used 10 as a small percentage of the data set (less than 1%),
not to disturb the global distribution of creativity. We re-
peated each experiment 10 times and reported the mean and
standard deviations of the runs. For each style we com-
puted the average gain/loss of creativity scores by the time
move. We also computed the percentage of the test paintings
whose scores have increased. From the table we clearly see
that paintings from Impressionist, Post-Impressionist, Ex-
pressionist, and Cubism movements have significant gain in
their creativity scores when moved back to 1600. In contrast,
Neoclassicism paintings have the least gain, which makes
sense, because Neoclassicism can be considered as revival
to Renaissance. Romanticism paintings also have a low gain
when moved back to 1600, which is justified because of the
connection between Romanticism and Gothicism and Me-
dievalism. On the other hand, paintings from Renaissance
and Baroque styles have loss in their scores when moved
forward to 1900, while they did not change much in the
wandering-around-1600 setting.
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Figure 2: Top: Creativity scores for 1710 paintings from Artchive dataset. Bottom: zoom in to the period 1850-1950. Each
point represents a painting. The thumbnails illustrate some of the paintings that scored relatively high or low compared to their
neighbors. Only artist names and dates of the paintings are shown on the graph because of limited space. The red-dotted-framed
painting by Piet Mondrain scored very high because it was wrongly dated to 1910 instead of 1936 in the dataset.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 45



1400 1500 1600 1700 1800 1900 2000 2100
1

2

3

4

5

6

7

8

9

10

Rubens 
1635 

Gozzoli 
1461 

Da Vinci; 1480 

Signorelli 
 1482 

Carracci 
1605 

Dorazio 
 1998 

Calhau 
 1998 

Dorazio; 1990 

Lefranc 
 1929 

Gilliam; 1965 

Mantegna;1502 Veronese;1558 Kittelsen; 1911 Winterhalter; 1860 Fragonard; 1778 Canaletto; 1725 Reni, 1625 

Berkowitz 
 1978 

Landfield 
 1968 

Pissarro; 1897  

Spilliaert 
1908 

Mattis; 1916 

Bruegel 
1568 

Durer 
1497 

Cranach; 1536 

Figure 3: Creativity scores for 62K paintings from the wikiart.org dataset

Conclusion and Discusion
The paper presented a computational framework to assess
creativity among a set of products. We showed that, by con-
structing a creativity implication network, the problem re-
duces to a traditional network centrality problem. We re-
alized the framework for the domain of visual art, where
we used computer vision to quantify similarity between art-
works. We validated the approach qualitatively and quanti-
tively on two large datasets.

In this paper we focused on “creative” as an attribute
of a product, in particular artistic products such as paint-
ing, where creativity of a painting is defined as the level of
its originality and influence. However, the computational
framework can be applied to other forms such as sculpture,
literature, science etc. Quantifying creativity as an attribute
of a product facilitates quantifying the creativity of the per-
son who made that product, as a function over the creator’s
set of products. Hence, our proposed framework also serves
as a way to quantify creativity as an attribute for people.
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Abstract: The paradigm of biologically inspired design views 
nature as a vast library of robust, efficient and multifunctional 
designs, and espouses the use nature as a source of analogues for 
inspiring novel designs in domains of interest such as 
architecture, computing, engineering, etc. Over the last 
generation, biologically inspired design has emerged as a major 
movement in engineering, architectural, and systems design, 
pulled in part by the need for environmentally sustainable design 
and pushed partly by the desire for creativity and innovation in 
design. An important question is whether biologically inspired 
design is fundamentally different from other kinds of analogy-
based creative processes. This question is critical because the 
computational theories, techniques and tools we need to develop 
to support biologically inspired design depend on the nature of 
the task itself. In this paper, we first summarize some of our 
empirical findings about biologically inspired design, then derive 
a task model for it, and finally posit that biologically inspired 
design indeed is a novel methodology for multiple reasons.  
 

Biologically Inspired Design 
The paradigm of biologically inspired design (also known 
as biomimicry, biomimetics and bionics) views nature as a 
vast library of robust, efficient and multifunctional designs, 
and espouses the use of nature as an analogue for designing 
technological systems as well as a standard for evaluating 
technological designs (Benyus 1997; French 1994; Gleich 
et. al. 2010; Turner 2007; Vincent & Mann 2002; Vogel 
2000). This paradigm has inspired many famous designers 
in the history of design including Leonardo da Vinci, and 
in a wide variety of design domains ranging from 
architecture to computing to engineering to systems. 
However, over the last generation the paradigm has 
become a movement in modern design, pulled in part by 
the growing need for environmentally sustainable 
development and pushed partly by the desire for creativity 
and innovation in design. Thus, the study of biologically 
inspired design is attracting a rapidly growing literature, 
including patents (Bonser & Vincent 2007), publications 
(Lepora et al. 2013), and computational tools (Goel, 
McAdams & Stone 2014). 

The Biomimicry Institute (2011) provides numerous 
examples of biologically inspired design. The design of 
windmill turbine blades mimicking the design of tubercles 
on the pectoral flippers of humpback whales is one 
example of biologically inspired design. As Figure 1 
illustrates, tubercles are large bumps on the leading edges 
of humpback whale flippers that create even, fast-moving   

 
channels of water flowing over them.  The whales thus can 
move through the water at sharper angles and turn tighter 
corners than if their flippers were smooth (Fish et al. 
2011).  When applied to wind turbine blades, they improve 
lift and reduce drag, improving the energy efficiency of the 
turbine.  
 

  
 
Figure 1: Design of windmill turbine blades to increase 
efficiency inspired by the tubercles on humpback whale 
flippers. (The Biomimicry Institute 2011) 
 
 From the perspective of computational creativity, two 
characteristics of biologically inspired design are 
especially noteworthy. Firstly, biologically inspired design 
often is creative: its products, such as the windmill turbine 
blades illustrated in Figure 1, are novel, valuable, feasible, 
and non-obvious (even surprising at first). Secondly, the 
conceptual phase of biologically inspired design engages 
analogical transfer of knowledge from biological analogues 
to design problems in the domain of interest.  The latter 
point raises an important question: is biologically inspired 
design fundamentally different from other kinds of 
analogy-based creative processes other than the obvious 
fact the source domain here is biology?  This question is 
important because the computational theories, techniques 
and tools we need to develop to support biologically 
inspired design depend on the nature of the task. For 
example, Nagle (2014) describes an engineering-to-biology 
thesaurus that maps function terms used in engineering into 
equivalent function terms used in biology. The (implicit) 
assumption in the work on the engineering-to-biology 
thesaurus is that biologically inspired design is not very 
different from other analogy-based creative processes (e.g., 
Veale 2003), that if we could only bridge the vocabulary 
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gap between design and biology, we could borrow the rest 
from extant theories of design, analogy and creativity. 
 In this paper, we first summarize some of our empirical 
findings about biologically inspired design and then derive 
a Task Model for it. Finally, we will posit that biologically 
inspired design is a novel methodology for multiple 
reasons, and thus requires the development of new 
computational theories, techniques and tools.  
 

Research Methodology 
Theories of biologically inspired design process can be 
normative and prescriptive or descriptive and explanatory. 
Vincent’s et al.’s (2006) BioTRIZ theory, for example, is a 
normative and prescriptive account of biologically inspired 
design. In contrast, we have developed a descriptive and 
explanatory account. Thus, our research methodology 
consists of three major elements: In situ observations of 
biologically inspired design practices, task analysis of 
biologically inspired design, and comparison with current 
theories of design, analogy and creativity. 
 
Observations of Biologically Inspired Design Practices: 
Given that the professional biologically inspired design 
community at present is nascent, sparse and diffused, we 
studied biologically inspired design practices in the 
Georgia Tech ME/ISyE/MSE/BME/BIOL 4740 course 
from 2006 through 2013 taken by ~350 students. This a 
yearly, interdisciplinary, project-based course on 
biologically inspired design taught jointly by biology and 
engineering faculty. The class is composed of mostly 
senior-level undergraduate students from biology, 
biomedical engineering, industrial design, industrial 
engineering, mechanical engineering, and a variety of other 
disciplines. Although it evolves a little every year, the 
course is consistently structured around lectures, found 
object exercises, journal entries, and one or more design 
projects. Some lectures discuss biological systems; some 
lectures focus on case studies of biologically inspired 
design; and some lectures formulate, analyze and critique 
problems for students to solve in small groups. Yen et al. 
(2011, 2014) provide a detailed account of the teaching and 
learning in the course.  

 
Task Analysis of Biologically Inspired Design: Given 
our observations in the ME/ISyE/MSE/BME/BIOL 4740 
classes from 2006 through 2013, we conducted a task 
analysis of the macrostructure of biologically inspired 
design practices. Crandall, Klein & Hoffman (2006) 
describe the methodology of task analysis in detail.  Task 
analysis helps identify the task decomposition of a 
complex task, the methods used to accomplish the various 
subtasks in the task decomposition, and the contents of 
knowledge used by the different methods.  For example, 
Chandrasekaran (1990) presents a high-level task analysis 
of the general design task while Goel & Chandrasekaran 
(1992) present a task analysis of the specific method of 
case-based design. In general, task analysis may describe 

the behaviors of an individual designer, the interactions 
among a team of designers, or the behaviors of a design 
team viewed as a unit. Although we are interested in all 
three levels of aggregation, in this work we focus on 
interdisciplinary design teams of biologists and engineers 
viewed as the unit of analysis. Our task analysis of 
biologically inspired design by interdisciplinary design 
teams generates a task model of biologically inspired 
design: the task model describes the processes and the 
knowledge used in biologically inspired design.  
 
Comparative Analysis with Theories of Design, 
Analogy and Creativity: Given our task model of 
biologically inspired design, we compared it with theories 
of biologically inspired design such as BioTRIZ (Vincent 
et al. 2006) and Design Spiral (Baumeister et al. 2012). 
However, because of space limitations, here we will 
compare our task model only with BioTRIZ. We also 
compared our task model with established theories of 
analogical reasoning such as Gentner (1983), Hofstadter 
(1996), Holyoak & Thagard (1996), and Kolodner (1993). 
Again because of space limitations, here we will compare 
our task model only with Gentner’s structure-mapping 
theory of analogy. !

Data 
The ME/ISyE/MSE/BME/BIOL 4740 classes from 2006 
through 2013 resulted in 83 extended, open-ended design 
projects. The 83 case studies of the design projects in the 
classes were the focal points of our data collection. The 
projects involved identification of a design problem of 
interest to the team and conceptualization of a biologically 
inspired solution to the identified problem. Each design 
project grouped together an interdisciplinary team of 
typically 4-5 students. Each team had at least one student 
with a biology background and a few from different 
engineering disciplines. Each design team also had at least 
one faculty member. Each team identified a problem that 
could be addressed by a biologically inspired solution, 
explored a number of solution alternatives, and developed 
a final solution design based on one or more biologically 
inspired designs.  Each design team presented its final 
design to an interdisciplinary design jury. Goel et al. 
(2015) describe a digital library, called the Design Study 
Library (DSL), of all 83 case studies. 
 

Empirical Findings 
Cross-Domain Analogies: By definition, biologically 
inspired design engages cross-domain analogies from 
biology to engineering Although we have observed that 
extended episodes of biologically inspired design involve 
both within domain and cross-domain analogies (Vattam, 
Helms & Goel 2010), it is the essentialness of cross-
domain analogies that defines the paradigm of biologically 
inspired design.  
 
Problem-Driven and Solution-Based Analogies: We 
observed the existence of two high-level analogical 
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processes for biologically inspired design based on two 
different starting points – problem-driven analogy and 
solution-based analogy (Helms, Vattam & Goel 2009). In 
the problem-driven analogical process, designers identify a 
problem that forms the starting point for subsequent 
problem solving. They usually formulate their problem in 
functional terms (e.g., stopping a bullet). In order to find 
biological sources for inspiration, designers “biologize” the 
given problem, i.e., they abstract and reframe the function 
in more broadly applicable biological terms (e.g., what 
characteristics do organisms have that enable them to 
prevent, withstand and heal damage due to impact?). 
Designers use a number of strategies for finding biological 
sources relevant to the design problem at hand based on the 
“biologized” question, and then they research the 
biological sources in greater detail. Important principles 
and mechanisms that are applicable to the target problem 
are then extracted to a solution-neutral abstraction and 
applied to arrive at a trial design solution. 
 
On the other hand, in the solution-based analogical 
process, designers begin with a biological source of 
interest. The designers understand (or research) their 
biological source to a sufficient depth to support the 
extraction of deep principles from it. Then they find human 
problems to which the principle can be applied. Finally, 
they apply the principle to develop a design solution to the 
identified problem. 
 
The two analogical processes have different characteristics. 
Compared to problem-driven analogical processes, 
solution-based analogical processes tend to exhibit not 
only design fixation but also a fixation on the structure of 
the biological design (Helms, Vattam & Goel 2009).  
Again compared to problem-driven processes, solution-
based design processes also tend to more often result in the 
generation of multifunctional designs, i.e. where a single 
design principle meets multiple functional goals (Helms, 
Vattam & Goel 2009). In general, a single case study may 
contain both problem-driven and solution-based analogical 
processes. 
 
Problem Decomposition and Level of Abstraction of 
Biological Analogy:!Biologically inspired design engages 
decomposition of the target design problem as well as 
functional decomposition of the biological system that acts 
as a source analogy to the design problem (Vattam, Helms 
& Goel 2007). Problem decomposition and functional 
decomposition of course are familiar ideas in design (e.g., 
Brown & Chandrasekaran 1989; Chandrasekaran 1990; 
Dym & Brown 2012; French 1996; Simon 1996). 
However, these decompositions appear to play a special 
role in biologically inspired design. The decomposition of 
the target design problem and the functional decomposition 
of the source biological system help identify the 
appropriate level for the analogical transfer from the 
biological system to the design problem.  
 

Problem Decomposition and Compound Analogies: 
Problem decomposition appears to play a second special 
role in biologically inspired design. We found that 
biologically inspired design often entails compound 
analogies in which a new design concept is generated by 
composing the results of multiple cross-domain analogies 
(Vattam, Helms & Goel 2008). This process of compound 
analogical design relies on an opportunistic interaction 
between the processes of memory and problem solving.  In 
this interaction, the target design problem is decomposed 
functionally, solutions to different subfunctions in the 
functional decomposition are found through analogies to 
different biological systems retrieved from memory, and 
the overall solution is obtained by composing the solutions 
for achieving the different subfunctions. Thus, the 
subfunctions in the functional decomposition of the design 
problem act as probes into a memory of biological systems.    
 
Interactive Analogical Retrieval: Most designers are 
novices at biology (just as many biologists are naïve about 
design). Thus, designers typically do not have a large 
number of biological analogues stored in their long-term 
memory. Instead, we found that designers searched online 
for biological cases analogous to the target problems. 
Based on our observations, this was one of the 
predominant approaches for finding biological cases that 
typically were in the form of biology articles. Designers 
reported using a range of online information environments 
to seek information resources about biological systems. 
These included: (1) online information environments that 
provided access to scholarly biology articles like Web of 
Science, Google Scholar, ScienceDirect, etc., (2) online 
encyclopedic websites like Wikipedia, (3) popular life 
sciences blog sites like Biology Blog, (4) biomimicry 
portals like AskNature, and (5) general web search engines 
like Google. We call this phenomenon interactive 
analogical retrieval (Vattam & Goel 2013). 
 
Serendipity in Biologically Inspired Design: The 
coupling of design problems and biological analogues 
often is serendipitous. For example, a design team may 
formulate a design problem, then find itself unable to make 
progress on it, and thus suspend additional work on the 
problem. At a later time, while working on a different 
problem, the team may serendipitously come across a 
biological analogue that provides a solution to the earlier 
problem, and therefore switch to the earlier problem. 
 
Abstraction and Transfer of Design Patterns: We found 
biologically inspired design engages abstraction and 
transfer of several kinds of design patterns. Design patterns 
are abstractions of design cases, including generic domain 
principles (Bhatta & Goel 1994) and generic teleological 
mechanisms – causal mechanisms that achieve specific 
types of functions (Bhatta & Goel 1996).  In particular, we 
have so far studied three kinds of design patterns in 
biologically inspired design: domain principles, causal 
mechanisms for accomplishing specific functions types, 
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and arrangements of structural components for 
accomplishing function types. We expect that there are 
many other types of design patterns yet to be discovered in 
biologically inspired design. 
 
Bridging Spatial and Temporal Scales: Note that 
although the example in Figure 1 of this article is about 
product design at a spatial and temporal scale visible to the 
naked human eye, the scope of biologically inspired design 
is much larger. Thus, biologically inspired products may 
cover many spatial scales ranging from nanometers (e.g., 
biomolecules) to hundreds of kilometers (e.g., ecosystems), 
as well as many temporal scales ranging from nanoseconds 
to centuries. Often, a design pattern abstracted from a 
biological analogue may bridge across several spatial and 
temporal scales. For example, Weiler & Goel (2015) 
describe the crinkles on the surface of mitochondria cells 
as a source of analogy for designing human-scale devices 
for harvesting water from fog. 
 
Problem-Solution Co-Evolution:! Conceptual design in 
biologically inspired design entails problem-solution co-

evolution (Helms & Goel 2012). That is, the design 
process iterates between defining and refining the problem 
and the solution, with both the problem and the solution 
influencing each other (Maher & Tang 2003; Dorst & 
Cross 2001). As a solution (S) is developed and evaluated 
for a given problem (P), it reveals additional issues, 
spawning a new conceptualization of the problem (P+1).  
The process continues with the development of a new 
solution (S+1) and will iterate until a final solution is 
decided upon. 
 

Task Model 

Figure 2 illustrates our generic task model of biologically 
inspired design based on the above findings. The overall 
task is design. This is accomplished by using two methods: 
problem-driven analogy and solution-driven analogy. Each 
method sets up subtasks like abstraction, retrieval, and 
mapping and transfer. Each subtask (e.g., retrieval) might, 
in turn, be accomplished by one of several methods (e.g., 
feature-based similarity matching for retrieval). Knowledge 
here refers to the knowledge used by a task or a method, 
for example, knowledge of design patterns. Note that 

Figure 2.  A generic task model of biologically inspired design. 
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knowledge may be multimodal, for example, descriptive 
and depictive. 

The problem-driven analogical process incorporates 
the design subtasks of problem formulation, problem 
reframing, biological solution search, defining biological 
solution, principle extraction and principle application. 
Similarly, the solution-based analogical process 
incorporates the design subtasks of defining biological 
solution, principle extraction, solution reframing, problem 
search, problem definition, and principle application. To 
avoid cluttering, Figure 2 illustrates only some of these 
subtasks of problem-driven and solution-based design. 

Our task model of biologically inspired design also 
accounts for problem decomposition and compound 
analogies. In Figure 2, S1 represents the initial solution 
obtained. We add a new subtask “evaluate” to both 
problem-driven and solution-based methods.  This subtask 
evaluates the initial solution S1 generated by a method. If 
the evaluation of S1 indicates that S1 addresses only a part 
of the design problem, then a new design sub-problem is 
spawned to address the remaining part(s) of the problem. 
Addressing the new sub-problem may lead to another 
partial solution S2. The subtask “compose” composes S1 
and S2 to obtain a more complete solution to the original 
problem. For expediency, it is assumed here that subtask 
execution for compound analogy is sequential, represented 
by one-way arrows between the circles denoting the 
evaluation, designing and composition. The actual process 
may in fact involve much more complex interactions. 
 

Comparative Analysis 
In this section, we compare the task model for biologically 
inspired design with both computational theories of 
analogical reasoning in creativity and creativity in 
biologically inspired design. Due to space limitations, here 
we will compare the task model only with Gentner’s 
structure-mapping theory of analogy and Vincent et al.’s 
BioTRIZ theory of biologically inspired design. 
 
Structure Mapping: Gentner’s structure-mapping theory 
is one of the classical theories of analogy. Falkenhainer, 
Forbus & Gentner (1989) describe the structure-mapping 
engine, a computational implementation of the structure-
mapping theory. Gentner & Markman (1997) discuss 
structure mapping as a more general theory of similarity 
and analogy. The process of analogical reasoning using 
structure mapping process starts with a target problem, and 
the method spawns the subtasks of retrieving a source 
analogue, finding mappings between the target problem 
and the source analogue, transfer of knowledge from the 
source to the target to generate a candidate solution, 
evaluation of the candidate solution, and storage of the new 
case in memory for potential reuse. The mapping task 
aligns the representations of the target problem and the 
source case – structure here refers to the structures of the 
two representations, and the principle of systematicity 
gives preference to higher-order relations.  

A comparison of our task model of biological inspired 
design and the theory of analogical reasoning shows 
several similarities and differences: 
• The structure-mapping theory of analogical reasoning 

is problem-driven. In contrast, biologically inspired 
design engages two distinct processes: problem-driven 
analogy and solution-based analogy. 

• There are broad correspondences between some 
subtasks in the process of analogical reasoning and 
subtasks in the problem-driven analogical processes of 
biologically inspired design. For example, the 
“biological solution search” task in the problem-driven 
analogical process corresponds to the “retrieval” 
subtask in the structure-mapping theory. The 
aggregate of “defining biological solution,” “principle 
extraction” and “principle application” subtasks in the 
problem-driven process corresponds to the “mapping” 
and “transfer” subtasks in the structure-mapping 
theory.  

• On the other hand, there are subtasks in the problem-
driven and solution-based analogical processes of 
biologically inspired design that are not directly 
matched by subtasks in the theory of analogical 
reasoning. In particular, the “problem abstraction” and 
“solution abstraction” subtasks in our task model of 
biologically inspired design that are preparatory to the 
subtasks of retrieval, mapping and transfer that follow. 

• The structure-mapping theory of analogical reasoning 
does not itself address problem decomposition, but it 
can be extended to include problem decomposition, 
and, with it, the use of compound analogies that may 
potentially be at multiple levels of abstraction. 

• While the structure-mapping focuses on the structure 
of the representations of the target problems and the 
solution analogues, our task model of biologically 
inspired design emphasizes the role of contents of 
knowledge, for example, the abstraction, acquisition, 
and use of knowledge of the design patterns. 

• Most designers typically are novices in biology, and 
thus most biologically inspired designers rely on 
interactive analogical retrieval from online 
information sources. This is in contrast to the 
structure-mapping that assumes that the source 
analogues are available in the long-term memory of 
the agent.  

BioTRIZ: Vincent et al.’s (2006) BioTRIZ is an 
information-processing theory of biologically inspired 
design derived from the earlier theory of engineering 
invention called TRIZ (Altshuller 1984). The TRIZ theory 
begins with a repository of design cases with known 
solutions, where each case is indexed by contradictions 
that arose in the original design situation. For example, 
consider a case in the repository that represents the design 
of an airplane wing. In this case the designer faces the 
contradiction of obtaining a material that is both strong and 
light-weight, and solves it using a solution, say S1. This 
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case is then indexed by the contradiction “strong yet light-
weight material.”  Additionally, if the particular solution S1 
belongs to a more general way of resolving contradictions 
of a particular kind, it may be categorized as a generic 
abstraction, such as “use porous materials” (to resolve the 
contradiction of strong yet light-weight material). TRIZ 
posits the existence of 40 generic ways of resolving 
conflicts, called inventive principles. The inventive 
principles were extracted by dropping the specifics of a 
particular case and domain and retaining the essence of 
how a particular class of contradictions is solved, so we 
can imagine each principle pointing to numerous cases 
(potentially belonging to different domains) in which that 
principle was used to resolve a conflict. The contradictions 
and the principles are organized in a contradiction matrix.  

When the designer is presented with a design problem, 
she reformulates the problem to identify certain key 
contradictions in the requirements of the design. For each 
contradiction, she is reminded of a general inventive 
principle that is applicable for resolving that conflict. In 
addition to suggesting the essence of a solution for 
resolving that conflict, the inventive principle also points 
to a number of cases in which that general principle was 
instantiated. These cases can originate from domains 
different from the one in which the designer is currently 
working. TRIZ, however, does not address the issue of 
how transfer occurs.  

Vincent et al. (2006) recently developed a modified 
version of TRIZ, called BioTRIZ, specifically for 
biologically inspired design. The primary difference 
between the two theories is a change in the features that 
compose the contradiction matrix.  Whereas TRIZ defines 
39 features with which to determine contradictions and 
index into inventive principles, the current version of 
BioTRIZ has six “operational fields”: substance, structure, 
space, time, energy, and information.   

A comparison of our task model and BioTRIZ reveals 
the following similarities and differences:  
• Both BioTRIZ and our model address cross-domain 

analogies between biological and technological systems. 
• BioTRIZ is a prescriptive theory of biologically inspired 

design, derived from best practices in mechanical 
engineering design.  In contrast, our task model is a 
descriptive theory based on in situ observations of 
biologically inspired design. 

• The processing in BioTRIZ is problem-driven. The 
processing in BioTRIZ always begins with a 
specification of a design problem. It does not directly 
address solution-based analogical process. Our task 
model accounts for both problem-driven and solution-
based analogies. 

• BioTRIZ does not directly address compound analogy. 
However, since a design problem may contain multiple 
contradictions, and the various contradictions may 
require the invocation of different principles, compound 
analogy appears to be feasible in BioTRIZ. 

 

So Is Biologically Inspired Design Different? 

The above comparative analysis brings us to the question 
often asked by design theorists: is biologically inspired 
design different from other design paradigms? After all, 
analogical reasoning is used extensively in other design 
paradigms, and cross-domain analogies often are the basis 
of creativity in the other design paradigms. So is analogical 
reasoning in biologically inspired design different from 
analogical reasoning in other design paradigms, other than 
the obvious fact the source analogues are from biology? 
Or, put a little differently, what precisely makes 
biologically inspired design a new design paradigm from 
the perspective of analogy and creativity? 

Note that the question here is not whether biological 
and technological systems are different. As Vincent et al. 
(2006) note, “biology and technology solve problems in 
design in rather different ways:” biological systems often 
use information for functions for which technological 
systems tend to use energy. French (1994) and Vogel 
(2000) make detailed analyses of the similarities and 
differences between biological and technological systems: 
biological systems in general tend to be more 
multifunctional than technological systems. Instead, the 
question here is: are the processes of analogical reasoning 
in biologically inspired design fundamentally different 
from that of other design paradigms? 

Our task model offers some insights into what may 
make analogical reasoning in biologically inspired design 
different from analogical reasoning in other domains, 
thereby making biologically inspired design a new design 
paradigm: 
1. Biologically inspired design by definition is based on 

cross-domain analogies. While many design processes 
in and out of biologically inspired design sometimes 
engage cross-domain analogies, and while biologically 
inspired design also frequently engages within domain 
analogies (Vattam, Helms & Goel 2010), insofar as we 
know there are not many other kinds of design that by 
definition are based on cross-domain analogies.  

2. Biologically inspired design often entails compound 
analogies. In particular, the target design problem is 
decomposed functionally, solutions to different 
subfunctions in the functional decomposition are 
found through analogy to different biological systems 
retrieved from a functionally indexed memory, and the 
overall design solution is obtained by composing the 
solutions for achieving the different subfunctions. 
While problem decomposition could be introduced 
into the structure-mapping theory of analogical 
reasoning, compound analogy appears to be a stronger 
characteristic of biologically inspired design.  

3. Biologically inspired design engages two different 
analogical design processes, namely, problem-driven 
analogy and solution-based analogy. We first observed 
these two analogical processes in our in situ studies of 
biologically inspired design in practice. Insofar as we 
know, all information-processing theories of analogy 
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(e.g., Dunbar 2001; Gentner 1983; Gick & Holyoak 
1983; Goel 1997; Hofstadter 1996; Holyoak & 
Indurkhya 1992; Thagard 1996; Keane 1988; 
Kolodner 1993) focus on and emphasize problem-
driven analogy. Further, insofar as we know, 
computational theories of all other kinds of design 
focus on and emphasize problem-driven design (e.g., 
Brown & Chandrasekaran 1989; Chandrasekaran 
1990; Dym & Brown 2012; French 1996; Maher & 
Tang 2003; Simon 1996). Therefore, that biologically 
inspired design entails both problem-driven and 
solution-based analogies appears to be another 
definitional characteristic of biologically inspired 
design.  

4. Most designers typically are novices in biology, and 
thus most designers rely on interactive analogical 
retrieval from online information sources while 
engaging in biologically inspired design. This is in 
contrast to all theories of analogical reasoning that 
assume that source analogues are available in the long-
term memory of the agent.  

5. In biologically inspired design, problems and solutions 
co-evolve. This is similar to creative processes in other 
design domains but in sharp contrast to current 
theories of analogical reasoning. 
From the perspective of creativity in design, we should 

add that the question here is not binary. Most of the 
processes that occur in biologically inspired design also 
occur in other creative design. Instead, the difference lies 
in focus and emphasis. As an example, other types of 
creative design often engage cross-domain analogies 
irrespective of the design domains, but biologically 
inspired design is defined by cross-domain analogies. 

 
Conclusions 

In this paper, we found that biologically inspired design 
indeed is a novel methodology for creative design for at 
least five reasons: (1) Biologically inspired design by 
definition engages cross-domain analogies. (2) Problems 
and solutions in biologically inspired design co-evolve. (3) 
Problem decomposition plays a fundamental role in 
biologically inspired design. (4) Biologically inspired 
design often involves compound analogy, entailing a 
complex interplay between the processes of problem 
decomposition and the processes of analogical retrieval 
from memory. (5) Biologically inspired design entails two 
distinct but related processes: problem-driven analogy and 
solution-based analogy. For this reason, we now prefer the 
term biologically inspired invention, as in the title of this 
paper: while design always starts with a problem, invention 
need not, sometimes starting with a solution and only later 
finding a problem, perhaps by serendipity. 
 These distinctions make for important differences in 
developing computational theories, techniques and tools 
for supporting biologically inspired design. For example, 
as we mentioned in the introduction, Nagle (2014) 
describes an engineering-to-biology thesaurus, with the 

(implicit) assumption that biologically inspired design is 
not very different from other analogy-based creative 
processes, that if we could only bridge the vocabulary gap 
between design and biology, we could borrow the rest from 
extant theories of design, analogy and creativity. However, 
if biologically inspired design is different, then we also 
need a different set of computational tools based on a 
different set of hypotheses. For example, Vattam & Goel 
(2013) describe Biologue, a computational tool for 
interactive analogical retrieval from online information 
sources that is based on the observation that analogical 
retrieval in biologically inspired design is situated online.  
 Further, our work on biologically inspired design 
indicates that research on computational creativity may 
need to develop new theories of analogical reasoning that 
incorporate a more dynamic, a more flexible view of 
cognition, including problem-driven and solution-based 
analogies, problem decomposition and compound 
analogies, interactive analogical retrieval, and problem-
solution coevolution. This makes for an exciting research 
agenda in computational creativity. 
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Abstract

We model the mathematical process whereby new
mathematical theories are invented. Here we explain the
use of conceptual blending for this purpose, and show
examples to illustrate the process in action. Our longer-
term goal is to support machine and human mathemat-
ical creativity.

Introduction
We are concerned with creativity in mathematics: creativity
as evinced by human and artificial mathematicians, individu-
ally and collectively.

Work on conceptual blending has been much influenced
by Fauconnier and Turner (1998, 2002). More recently,
the centrality of conceptual blending to creativity has been
stressed by Turner (2014), where he writes:

. . . the human spark comes from our advanced ability to
blend ideas to make new ideas. Blending is the origin
of ideas. (Turner, 2014, p 2)

The claim is that blending in this sense is a general hu-
man cognitive ability, and as such applies to mathematics,
as much as to art, poetry, music and so on (see for example
Turner (2005)).

The place of mathematics and the sciences among creative
endeavours has been stressed by the literary critic George
Steiner:

It is in mathematics and the sciences that the concepts
of creation and of invention, of intuition and of discov-
ery, exhibit the most immediate, visible force.

Steiner (2001, p 145)

Blending involves recognising features common to mathem-
atical concepts, even when expressed in different termino-
logy. The role of mathematical analogy in creative math-
ematics is well expressed by Weil (1960), and a general plea
for analogical reasoning within science in (Arbib and Hesse,
1986).

We are investigating computational accounts of mathem-
atical creativity, taking conceptual blending as a key ingredi-
ent. The work of Goguen (1999, 2005) has provided a gen-
eral framework for comparison of conceptual spaces, and

computation of blends. This enables the use of richer repres-
entation formalisms, and so is closer to contemporary math-
ematics than previous computational realisations of blend-
ing, such as in Pereira (2007).

This paper deals with the creative process in mathematics,
as modelled along the lines above. We focus on the use of
blending within a single process, searching for blends sat-
isfying some evaluation criteria, from the starting point of
some given conceptual spaces.

While cognitive issues are important to us, this paper
is focused on issues in representation and representation
change; there are however brief comments on cognition in
the conclusions.

We start by providing some background, followed by an
example to illustrate the components involved in our ap-
proach. A historical example based on Georg Cantor’s work
follows. The most extended example was carried out by a
pure mathematician (D. Gómez-Ramírez), working in a do-
main close to his own; in this case, the blend mechanism
threw up some unexpected properties, which provoked new
work by the mathematician.

Subsequently we give some more speculative thoughts on
where this work can go in the future, by considering Galois
theory as a test-bed. Finally, we discuss the evaluation of
work along these lines, and give some conclusions.

Background
Blending in Mathematics
Lakoff and Núñez (2000) are among the first to present a
cognitive account of the origin and development of math-
ematical ideas,1 arguing against the “romance of mathemat-
ics” in which mathematics is presented as an ever-increasing
set of universal, absolute, certain truths which exist inde-
pendently of humans. They present the thesis that human
mathematics is grounded in bodily experience of a physical
world, and mathematical entities inherit properties which
objects in the world have, such as being consistent or stable
over time. Exploring the physical world of object collec-
tion might lead to concepts like the empty collection and
rules like “adding a collection of n objects to an empty

1This is lamented by Lakoff and Núñez, who claim that (prior
to their work), “there was still no discipline of mathematical idea
analysis from a cognitive perspective” (Lakoff and Núñez, 2000).
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collection yields a collection with n objects”. People then
form grounding metaphors between the physical world and
an abstract mathematical world, allowing us to project from
everyday experiences onto abstract concepts, thus leading to
the concept of zero and the axiom that n+0 = n. Lakoff and
Núñez posit that blending different mathematical metaphors
leads to more complex ideas (see also Alexander (2011)).

Alongside this account of mathematical cognition, main-
stream contemporary mathematics has developed its own
methodology and foundations, enjoying an exceptional
place among scientific disciplines. Its methods, objects of
study and sometimes astonishing results have widespread, if
not universal, acceptance.

In conclusion, mathematics is a scientific discipline hav-
ing not only a fundamental cognitive component, neces-
sary in its development, but also possessing a collection of
general principles and structures going beyond a particu-
lar school of thought. Among these general processes we
want to highlight in this paper the importance that concep-
tual blending has in mathematics, incorporating both cog-
nitive and mathematically specific aspects in order to create
new mathematical concepts.

Terminology for conceptual blending
Our notion of conceptual blending is informed by Category
theory, and highly influenced by Goguen’s work on concepts
(Goguen, 2005). In this paper we use the terminology be-
low, and elucidate the terminology by means of a running
example – discovering a version of the integers (in the sense
of providing a partial approach to the genuine integers) us-
ing blending.

Conceptual spaces are partial and temporary represent-
ational structures which are constructed on the fly when
talking about a particular situation, which are informed by
the knowledge structures associated with a domain. These
are influenced by Boden’s idea of a concept space which is
mapped, explored and transformed by transcending mapped
boundaries (Boden, 1977), and form the input spaces to our
blend.

As an example of two conceptual spaces, consider one as
a theory NAT – a theory of the natural numbers, and FUNC
– a theory of a total unary function with an inverse. We will
refer back to these theories in this exposition.

(Many-sorted) First-order Axioms are the criteria which
will be used here to delineate the conceptual spaces. The
axiomatic method has been a fundamental aspect of math-
ematical research since Euclid, and various axiom changes
have led to revolutions in mathematics. For instance, reject-
ing the parallel postulate opened up fascinating new areas of
non-Euclidean geometry.

The precise formulations for NAT and FUNC can be found
in Listings 1 and 2. Notice that these formulations obviously
refer to partial representations of the genuine concepts em-
ployed by mathematicians. In the conceptual space with the-
ory NAT, an example of an axiom is 8x.¬ 0 = s(x) – that is
that zero is not a successor element. The conceptual space
with theory FUNC has an axiom 8x. f(finv(x)) = x.

Signature morphisms between conceptual spaces are
mappings from the symbols of the source conceptual space

into the symbols of the other conceptual space. For example
NAT contains a function �x : Nat. s(x) that maps x to its
successor, and FUNC contains a function defined over a set
X that maps each element to an image �x : X. f(x). A
theory G with a morphism to both NAT and FUNC might
contain a function �x : N. func(x) that takes every number
in some set N to its image under func. When we show a
mapping we write this as

s  �(G,NAT) func !�(G,FUNC) f (1)
Nat  �(G,NAT) N !�(G,FUNC) X (2)

The mapping �(G, NAT) is a signature morphism from G to
NAT. Note that associated types are also mapped.

Input Spaces refer to two or more conceptual spaces of
interest.

Generic spaces are conceptual spaces that possess com-
monality between input spaces.

Colimits are conceptual spaces representing a blend of in-
put spaces with respect to a given generic space and a set of
signature morphisms. These are uniquely computed given a
generic space and a set of morphisms. Here is a diagram-
matic representation of such a computation in our example
using theories NAT and FUNC :

Colimit

NAT FUNC

G

�(B,NAT) �(B,FUNC)

�(G,NAT) �(G,FUNC)

The conceptual space represented by the Colimit is often re-
ferred to as the blend.

Internal Evaluation constitutes a variety of techniques to
determine whether a computed colimit is viable as a concep-
tual space. In our example, since the conceptual spaces are
mathematical theories, we can exploit the notion of consist-
ency. This is a way of evaluating whether a blend is not only
creative, but also valid. In the example of theories NAT and
FUNC, the computed blend is inconsistent due to the emer-
gent axioms in the computed colimit. The only type existing
within the colimit is from now on referred to as Z to distin-
guish it from the natural numbers. Notice that in the colimit
it holds that:

8x : Z.¬ zero = s(x)

8x : Z. s(sinv(x)) = x .
This is an inconsistency, as from the second axiom we see
that there is an element for which 0 is the successor.

Weakening refers to the process of weakening the input
theories by removing symbols or axioms. If we remove the
axiom

8x : Nat.¬ zero = s(x)
then the resulting computed colimit contains a mathematical
theory which is consistent.

Martinez et al. (2014) provides an algorithm to explore
the space of blends resulting from given input spaces and a
given generic space, where weakening is achieved by omit-
ting axioms. The algorithm returns the blends which are
consistent, and maximally so, among those in this space of
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blends. This algorithm assumes that consistency of relevant
theories can be checked, so is not always effective.

Running the blend refers to elaborating or completing a
mathematical theory. Sometimes there are missing defini-
tions which need to be discovered. For example in the new
theory the following axiom appears

8x, y : Z. s(x) + y = s(x+ y) ,

but we also are interested in theorems such as
8x, y : Z. sinv(x) + y = sinv(x+ y) .

Finding suitable theorems is an example of running the
blend, and from which it is possible to discover and prove
theorems such as

8x, y : Z. sinv(x) + s(y) = x+ y .

Technologies
The approach explained above corresponds to Goguen’s
proposal (Goguen, 1999) for implementing blending, but
slightly simplified (as in Kutz, Neuhaus, Mossakowski, and
Codescu (2014)): we use the normal colimit construction,
rather than 3

2 -colimits (both described in Goguen (1999)).
Additionally we assume that the conceptual spaces in-

volved are given using a CASL specification (Astesiano et
al., 2002) and that the morphisms are theorem preserving
(i.e. map theorems to theorems). The reason for these as-
sumptions is that in these cases it is well-known how to
compute colimits: the colimit specification essentially cor-
responds to the disjoint union of the two target conceptual
spaces except for not repeating the symbols given in the
common source conceptual space. Moreover, we will be us-
ing the HETS system (Mossakowski, Maeder, and Lüttich,
2007) to compute such colimits. The code for the implemen-
ted examples in this paper is available on-line.2

The use of CASL specifications means that we deal with
first-order logic; CASL is supported in the HETS system,
and colimits here can be computed in the current imple-
mentation of HETS. Although higher-order logic (with Hen-
kin semantics) is available in HETS (indeed in CASL) and
the colimits are well-known to exist (because higher-order
in this form is reducible to many-sorted first-order logic), it
is worth noticing that the calculus of such colimits is not cur-
rently available in HETS. This restricts the formalisms that
can be used directly for our purposes, where computation of
colimits is central to our approach.

Blending and the infinite
Example Revisited – the Integers
As a first demonstration of the machinery involved in blend-
ing mathematical theories, we consider combining a theory
of natural numbers with the concept of the inverse of a func-
tion to obtain the integers. Let us assume a simple partial ax-
iomatisation of the natural numbers (without order axioms)
as shown in Listing 1, and call this theory NAT. Now let us
also define a simple theory which introduces the concept of
a function with an inverse as shown in Listing 2, and call
this theory FUNC.

2See: https://github.com/ewenmaclean/ICCC2015_hetsfiles

spec NAT =
sort Nat
ops zero : Nat;

s : Nat! Nat;
__+__ : Nat ⇥ Nat! Nat

8 x, y : Nat
• s(x) = s(y)) x = y
• ¬ zero = s(x)
• s(x) + y = s(x + y)
• zero + y = y

end

Listing 1: A theory of the natural numbers without order

spec FUNC =
sort X
op f : X! X
op finv : X! X
8 x : X
• f (finv(x)) = x
• finv(f (x)) = x

end

Listing 2: A theory with a function and its inverse defined

Identifying a Generic Space In order to incorporate the
notion of blending here we want to be able to identify a “gen-
eric” component of each theory and compute the colimit. We
can use the HDTP system (Gust, Kühnberger, and Schmidt,
2006; Schmidt, 2010) to discover a common theory and sig-
nature morphism between symbols in the two theories NAT
and FUNC. The Generic theory GEN contains a sort N and
a function func, and the morphisms from the Generic theory
to NAT and FUNC are:

s  �(G,NAT) func !�(G,FUNC) f (3)
Nat  �(G,NAT) N !�(G,FUNC) X (4)

Here the successor function is identified in the mapping with
the function in the theory FUNC.

Computing the Colimit The HETS system (Mos-
sakowski et al., 2007) can then be exploited to find a new
theory by computing the colimit:

BLEND

NAT FUNC

GEN

This generates the theory shown in Listing 3 (for the sake of
understanding it is used p, for predecessor, instead of sinv).

Removal of Inconsistencies This theory is automatically
determined to be inconsistent due to the axioms

8x : Z.¬ zero = s(x) (5)

8x : Z. s(p(x)) = x (6)
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spec SPEC =
sort N
op __+__ : N ⇥ N ! N
op p : N ! N
op s : N ! N
op zero : N
8 x, y : N • s(x) = s(y) ) x = y
8 x : N • ¬ zero = s(x)
8 x, y : N • s(x) + y = s(x + y)
8 y : N • zero + y = y
8 x : N • s(p(x)) = x
8 x : N • p(s(x)) = x

end

Listing 3: An inconsistent partial approach to the integers
(without order)

Removal of the limiting axiom (5) from Listing 1 results in
generating a blend theory which is very similar to what we
understand to be the integers as shown in Listing 4.

spec SPEC =
sort N
op __+__ : N ⇥ N ! N
op p : N ! N
op s : N ! N
op zero : N
8 x, y : N • s(x) = s(y) ) x = y
8 x, y : N • s(x) + y = s(x + y)
8 y : N • zero + y = y
8 x : N • s(p(x)) = x
8 x : N • p(s(x)) = x

end

Listing 4: A consistent partial approach to the integers
(without order)

Running the Blend Running the blend refers to discover-
ing definitions or adding axioms to flesh out the blend. In
the example of the version in Listing 4, the definition of plus
needs to be extended to understand how to calculate with the
predecessor function:

p(x) + y = p(x+ y)

from which theorems such as
p(x) + s(y) = x+ y

can be proved.

Potential and actual infinity
Some of the ideas of Lakoff and Núñez (2000) have been
reworked by the authors, with increased emphasis on con-
ceptual blending. In particular, the analysis of mathematical
infinity, given in metaphorical form as the “Basic Metaphor
of Infinity” (BMI) in Lakoff and Núñez (2000), is represen-
ted in blend form in Núñez (2005) as the “Basic Mapping of
Infinity” (so, still “BMI”).

We show here how this blend works out in our setting.
The BMI suggests that the notion of completed infinity, in
particular the possibility of transfinite numbers in the sense
of Cantor, comes from a blend of the notion of completed,
finite process with that of a potentially infinite and endless
process.

Thus take two corresponding input spaces, given by
CASL specifications FinEnd and Inf corresponding to the
following diagrams
FinEnd:

EndStart

Inf:
. . .

Start

• FinEnd: Completed Iterative Processes are those that
from some initial state, terminate in a final state after a fi-
nite number of state transitions. One such case is chosen.

• Inf: Infinite Iterative Processes are those that continue
indefinitely to change state.

In both cases, the arrows indicate steps of the processes, and
the process states are in a discrete linear order indicated by
left-to-right order in the diagrams.

The generic space Gen simply identifies the start states,
the notion of process step, and the linear ordering of states.

Now we can compute the blend of these spaces, which
includes new features taken from both of the input spaces.
This blend is inconsistent, for the following two reasons:

1. the number of states is finite (from FinEnd), and infinite
(from Inf);

2. there both is an end state (from FinEnd) and is no end
state (from Inf).

Search through the possibilities of weakening the input
spaces by omitting as few axioms as possible among those
involved in an inconsistency reveals the possibility of a
structure with infinitely many states (from Inf) and an end
state (from FinEnd). Computing the colimit from the
weakened input spaces W-FinEnd, W-Inf gives a theory
corresponding to this diagram:

. . .
Start End

Thus we have a blend as in the earlier examples:

Colimit

W-FINEND W-INF

Gen

Prime Ideals as a blend
Introduction
One of the most fundamental concepts of modern mathemat-
ics, which is the basis of commutative algebra and a seminal
ingredient of the language of schemes in modern algebraic
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geometry, is that of prime ideal (Grothendieck and Dieud-
onné, 1971; Eisenbud, 1995).

The terminology “prime ideal” relates to the older notion
of “prime number”. The initial aim of this work was to look
for a blend between prime numbers (from the integers) and
the ideals of a commutative ring, to see what would emerge.
It turned out that the blend process, along with providing
a definition for prime ideals, also suggested an unexpected
concept in the context of rings, namely what will be called
Containment Division Rings (CDR). In turn, this prompted
questions and proofs about this concept – thus running the
blend (space prevents description of this step in this paper).

We present a first blend involving weakening, followed by
a second blend from fuller input spaces, where the emergent
concept of CDR appears.

The first conceptual space
Let (R,+.⇤, 0, 1) be a commutative ring with unity (see the
formal definition and examples in Eisenbud (1995)). Now,
R can be understood as the sort containing the elements of
the corresponding commutative ring with unity. An ideal I
is a subset of R satisfying the following axiom:

(8i, j 2 I)(8r 2 R)(i+ (�j) 2 I ^ r ⇤ i 2 I).
Let us define a unary relation (predicate) isideal on the set

(sort) of subsets of P (R) corresponding to this definition.
Now, we define

Id(R) = {A 2 P (R) : isideal(A)} .
Ideals are “multiplied” using the following definition:

I ·◆ J =

(
nX

k=1

ik · jk : n 2 N ^ i1, . . . , in 2 I ^ j1, . . . , jn 2 J

)
.

In other words, I ·◆ J is the smallest ideal extending the set
{i · j : i 2 I ^ j 2 J}.

The key property that we want to keep in the blend is the
one saying that this operation ·◆ has a neutral element 1◆,
which can be seen as an additional notation for the ring. On
the other hand, we want to see the containment relation ✓ as
a binary relation over the sort Id(R).

Summarizing, our first conceptual space consists of sorts
R, Id(R) and P (R); operations +, ⇤, 0R, 1R, 1◆ and ·◆; and
the relations ✓ and isideal.

Let us denote this space by I.

The second conceptual space
Let Z be the set of the integer numbers. Here, we choose
any partial axiomatization of them including at least the fact
that (Z, ⇤, 1) is a commutative monoid. We define also an
upside-down divisibility relation b defined as ebg := g|e,
i.e. there exists an integer c such that e = c⇤g. Let us define
a unary relation isprime on Z as follows: for all p 2 Z,
isprime(p) holds if p 6= 1 and:

(8a, b 2 Z)
�
(abbp) ! (abp _ bbp)

�
.

Besides, we define the set (sort) of the prime numbers as
Prime = {p 2 Z : isprime(p)}

In the CASL language, we consider Z as the sort of the in-
teger numbers, ⇤ as a binary operation, prime as a predicate
and b as a binary relation, any of them defined over the sort
Z. We denote this conceptual space by P.

The Generic Space
The generic space G consists of a set (sort) G with a binary
operation ⇤G, a neutral element S and a binary relation G.

The Blending Morphisms
The morphism to I uses:
'(G) = Id(R),'(⇤G) = ⇤◆,'(S) = 1◆ and '(G) =✓;
the morphism to G uses:
�(G) = Z, �(⇤G) = ⇤, �(S) = 1 and �(G) = b.

The Axiomatization of the Blending
A straightforward colimit construction based on the input
and generic spaces above yields a consistent space with
properties inherited both from the prime elements into the
integers and from the ideals of commutative rings; one of
the concepts is a notion of prime ideals, another is that of
CDR.3 Here we describe briefly a weakening of the given
spaces that makes the resultant blend more generally applic-
able.

From the properties defining the integers we transfer into
the blend only the fact that Z is a set with a binary opera-
tion ⇤ having 1 as neutral element and b as a binary relation,
without taking into account its formal definition.

Now after computing the colimit, we obtain that any ele-
ment P 2 G (i.e., an ideal of S) satisfies the predicate
isprime if and only if
P 6= S ^ (8X,Y 2 G = Id(S))(X ·◆ Y ✓ P

! (X ✓ P _ Y ✓ P )).

Thus, the predicate isprime turns out to be the predicate
characterizing the primality of ideals of S and the set (sort)
Prime turns out to be the set of prime ideals of S.

Using the weakened input spaces, the blending space con-
sists of the axioms assuring that S is a commutative ring
with unity, G is the set of ideals of S, isprime is the pre-
dicate specifying primality for ideals of S and Prime is the
collection of all prime ideals of S.

Implementation for prime ideals over CDR-s as a
blend
In this section we construct the concept of prime ideal over
a CDR as a blend of the conceptual space of ideals of a com-
mutative ring with unity and the conceptual space of the
former second conceptual space where the axiom defining
the upside-down divisibility relation is restored.

It is worth mentioning again that the definition of CDR-s
was obtained after doing this implementation and therefore
it could be seen as a form of “creative” result coming from
the blending process.

After computing the corresponding colimit in HETS and
interpreting "RingElt" as the sort containing the elements of
the ring S, the theory defining the blend corresponds to the
axioms defining a CDR (S), the set of all its ideals (Gen-
eric), the set all its prime ideals (SimplePrime) and a prim-
ality predicate (IsPrime). We present in Listing 5 just the

3A ring R is a Containment Division Ring (CDR) if for all
ideals I and J of R, I ✓ J if and only if J divides I (i.e. there
exists an ideal U such that I = U ·◆ J).
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theory corresponding to the colimit (omitting details of ring
axioms and ideal generation).

spec SPEC =
sorts Generic, RingElt, SimplePrime, SubSetOfRing
sorts SimplePrime < Generic,IdGeneric < SubSetOfRing
ops 0, 1, S : RingElt
op __⇤__ : RingElt ⇥ RingElt ! RingElt
op __+__ : RingElt ⇥ RingElt ! RingElt
op __x__ : Generic ⇥ Generic ! Generic
pred IsIdeal : SubSetOfRing
pred IsPrime : Generic
pred __isIn__ : RingElt ⇥ SubSetOfRing
pred gcont : Generic ⇥ Generic
pred __generates__ : RingElt ⇥ Generic
8 I : SubSetOfRing • I 2 Generic , IsIdeal(I)
8 x : Generic • x x S = x
8 x : Generic • S x x = x
8 A, B : Generic
• gcont(A, B) , 8 a : RingElt • a isIn A ) a isIn B
8 x, y : RingElt • x + y = y + x
%% and further ring axioms . . .
8 I : SubSetOfRing
• IsIdeal(I)
, 8 a, b, c : RingElt

• ((a isIn I ) a isIn S) ^ 0 isIn I)
^ (a isIn I ^ c isIn S ) c ⇤ a isIn I)
^ (a isIn I ^ b isIn I ^ c isIn S ^ b + c = 0

) a + c isIn I)
8 a : RingElt; A : Generic
%% and axioms for generates and x . . .
8 x, y : Generic • gcont(x, y) , 9 c : Generic • x = y x c
8 p : Generic • p 2 SimplePrime , IsPrime(p)
8 p : Generic
• IsPrime(p)
, (8 a, b : Generic

• gcont(a x b, p) ) gcont(a, p) _ gcont(b, p))
^ ¬ p = S

end

Listing 5: Colimit for prime ideals over CDR-s

A Challenge Example for Blending
Computational Creativity via Blending
The examples shown thus far in the paper have been ex-
amples of blending in mathematics whose mechanisation
has helped to identify some novel and unexpected results.
The blending itself was a one-stage process where human
input was required to identify the input concepts. A more
ambitious aim of the approach of applying blending to the
problem of computational creativity in mathematics, is to
allow search to be done over multiple blends and for the
process of blending to be controlled mechanically. In this
section we describe very informally a mathematical domain
that seems in some ways a natural candidate for a blending
approach.

Galois Theory
Galois theory develops a relationship between a polynomial
p(x) with coefficients in some field F , the extension of K

of F (written “K/F ”) containing all of the roots of p(x)
in the algebraic closure of F , and the group Gal(K) of
automorphisms of K/F that fix the elements of F . The
fundamental theorem of Galois theory states that there is a
bijection between the subfields of K/F and the subgroups of
Gal(K); namely, subgroups correspond to their fixed fields.
Using this correspondence, properties of polynomials can
be derived, most famously the fact that quintic polynomials
cannot be solved by algebraic operations and the extraction
of roots.

We do not propose to reconstruct much of the theory here,
but note that already in this basic account there are several
steps that seem compellingly “blend-like.”

In the first place, for field extension, E is an extension
of F if F is a subfield of E. We could derive the ex-
tension relationship from the input concepts E and F by
“taking everything additional from E and adding it to F .”
This is made specific in the process of adjoining elements,
which simply means to augment the field with all fractions
of formal finite sums and products of the adjoined elements
with coefficients in the base field.

Second, the notion of the splitting field of a polynomial,
namely the special extension K/F containing all of the roots
of p(x). This could be formed conceptually by combining
the concept “the roots of a polynomial p(x) with coefficients
in a field F ” and the concept “a field extension E/F formed
by adjoining certain elements to F .”

As above, we could then form the concept of Gal(K) by
blending at the conceptual level. This time, there would be
several constituent pieces: “the roots of a polynomial p(x)
with coefficients in a field F ,” “the splitting field of p(x),”
“the group of automorphisms of a field extension E,” “the
automorphisms that fix F .”

Finally, assuming that we have built Gal(K) in this fash-
ion, we would like to know some of its properties. Consider
the claim that elements of Gal(K) permute the roots of f .
This time, instead of being purely conceptual, we want to
work at the process level, and consider before-and-after de-
scriptions of the result of applying ' 2 Gal(K) to some r

with the property p(r) = 0. This is similar in some ways
to the “Riddle of the Buddhist Monk”, popularised by Koes-
tler (1964), which is cited as an example of the power of
blending.4 However, this time the generic space is not a
simple geometric machine, but rather an algebraic machine
with several moving parts.

The proof of the claim is as follows. If p(r) = 0, then
'p(r) = '0. Since ' is an automorphism, '0 = 0; and fur-
thermore ' distributes over the sums and products that make
up the polynomial p(x) and fixes its coefficients, therefore
'p(r) = p('r). Chaining the equalities together, we have
p('r) = 0.

4 “A Buddhist monk begins at dawn one day walking up a
mountain, reaches the top at sunset, meditates at the top for sev-
eral days until one dawn when he begins to walk back to the foot
of the mountain, which he reaches at sunset. Making no assump-
tions about his starting or stopping or about his pace during the
trips, prove that there is a place on the path which he occupies at
the same hour of the day on the two separate journeys.”
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In short, the proof is a fairly direct result of combining
the definitions. Goguen (1992) suggests that “combination
is colimit.” Can we realise the proof through (one or sev-
eral) colimit operations? And is there anything special about
this proof? Apart from these more theoretical questions, the
foregoing discussion raises the following technical issues:
Field Extension When reasoning about polynomials, it is

useful to distinguish the three separate types – those of
E, those of F and those of E/F as a supertype. Us-
ing blending machinery removes the distinction between
these types.

Splitting Field Extension Theorem A challenging but
creative step is to discover the theorem that extending F

only with the roots of f(x) forms a field.
Automorphisms As mentioned in the background section,

currently there is no way of computing colimits if auto-
morphisms are characterised in higher-order logic. An
alternative specification, or an implementation of colimit
computation for higher-order logic is needed.

Evaluation and Outlook
Review of the current offering

(a) We began the paper with the reconstruction of certain
mathematical objects, showing the technical feasibility of
the approach.

(b) The more advanced example at the centre of the paper
illustrates how this sort of reconstruction relates to math-
ematical practice.

(c) A future-oriented example exposes some technical chal-
lenges, while suggesting that blending could offer a novel
approach to computer mathematics.

Broader issues in evaluation
In addition to motivating a further investigation of the role
blending can play in proofs, Galois theory, discussed above,
is paradigmatic for other reasons. This discussion draws
on the early 20th Century writings of Albert Lautman on
the philosophy of mathematics and the subsequent interpret-
ation of this work by Gilles Deleuze. It uses these ideas
to propose an approach to embedding evaluation within the
system itself.

Concerning the common features of Galois theory, class
field theory, and the development of the universal cover-
ing surface in Riemann geometry, (Lautman, 2011, p. 126)
writes:

What is characteristic of the movement of the theories
that will be considered here is the existence of an end
conceived in advance as a term of the ascent.
This is reminiscent of our notion of internal evaluation

that apply to the blend. To illustrate, let us briefly imagine
how we would use blending techniques to move from porcu-
pine+lion to the perfected porculione. Here, instead of field
automorphisms that preserve mathematical structure and fix
certain designated elements, we would look for mappings
that preserve other properties that exist in the underlying do-
main. Porculiones would presumably have four feet, would

be mammals, and would be omnivores; they should also be
viable living creatures.

(Deleuze, 1994, pp. 227–228) follows Lautman in enthu-
siastically endorsing the Galoisian approach to mathematics:

[T]he fact that an equation cannot be solved algebraic-
ally, for example, is no longer discovered as a result of
empirical research or by trial and error, but as a result of
the characteristics of the groups and partial resolvents
which constitute the synthesis of the problem and its
conditions (an equation is solveable only by algebraic
means – in other words, by radicals, when the partial
resolvents are binomial equations and the indices of
the groups are prime numbers). The theory of prob-
lems is completely transformed and at last grounded,
since we are no longer in the classic master-pupil situ-
ation where the pupil understands and follows a prob-
lem only to the extent that the master already knows the
solution and provides the necessary adjunctions. For,
as Georges Verriest remarks, the group of an equation
does not characterise at a given moment what we know
about its roots, but the objectivity of what we do not
know about them. Conversely, this non-knowledge is
no longer a negative or an insufficiency but a rule or
something to be learnt which corresponds to a funda-
mental dimension of the object.
Although there is a commonality between blending and

the Galoisian approach insofar as progressive refinement
carries us toward a “perfected” conclusion, Deleuze’s enthu-
siasm about the pedagogical situation would be significantly
cooled here. It would seem, in many of our examples, that
we only make progress “to the extent that the master already
knows the solution and provides the necessary adjunctions.”

However, this apparent infelicity may be less of a thick
obstacle than it would initially appear. What seems to be
most needed is a notion of a question inside the system. This
would recover Lautman’s basic thrust: “Scientific or not,
every question has built in some assumptions about the form
of the answer” (Larvor, 2011). In short, an experimental
approach in which the system asks and answers questions
would embed key aspects for evaluation in the system itself.

Future work
The idea of using blending to carry out steps in a proof
would provide a useful training ground for further develop-
ment. The primary problem is: If blending is the realisa-
tion of “combinatorial creativity” how will we avoid being
swamped by the combinatorial explosion of possible things
to combine? The first challenge is thus fitting different math-
ematical components together in a sensible manner. A re-
lated challenge would apply when modifying the system to
selectively experiment with the rules it uses. The objective
in this case would be for the system to learn to associate dif-
ferent (useful) techniques with different types of problems.

Conclusions and Remarks
The examples presented in this paper trace the development
of the blending approach. The current paper begins with re-
constructions, but also quickly shows how computed blends
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can suggest new mathematical definitions and concepts of
interest to practising mathematicians. The analysis offered
here shows that this work is a building block that will be
useful for future developments that are able to reason more
flexibly about mathematical problems – and systematically
find and propose new concepts and problems.

In future work, we will look more at the cognitive issues
raised in this work. In particular, the use of image schemas
can give a link between the computational and representa-
tional approach taken here, and the cognitive claims coming
from authors such as Fauconnier and Turner, and Johnson.
Here the work of Mandler and Canovás (2014) and Hed-
blom, Kutz, and Neuhaus (2014) gives an idea of how these
underlying cognitive primitives can be expressed in logical
form, and can thus play an explicit role in our modelling of
creativity in mathematics.
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Abstract 

The challenge of linguistic creativity is to use words in 
a way that is novel and striking and even whimsical, to 
convey meanings that remain stubbornly grounded in 
the very same world of familiar experiences as serves 
to anchor the most literal and unimaginative language. 
The challenge remains unmet by systems that merely 
shuttle or arrange words to achieve novel arrangements 
without concern as to how those arrangements are to 
spur the processes of meaning construction in a reader. 
In this paper we explore a problem of lexical invention 
that cannot be solved without an explicit model of the 
perceptual grounding of language: the invention of apt 
new names for colours. To solve this problem we shall 
call upon the notion of a linguistic readymade, a phrase 
that is wrenched from its original context of use to be 
given new meaning and new resonance in new settings. 
To ensure that our linguistic readymades, which owe a 
great deal to Marcel Duchamp’s notion of found art, 
are anchored in a consensus model of perception, we 
introduce the notion of a lexicalized colour stereotype.  

 Call me but [X], and I'll be new baptized 
What's in a name? that which we call a rose 

By any other name would smell as sweet; 

-- Juliet, in William Shakespeare’s Romeo and Juliet 

Shakespeare wrote that a rose by any other name would 
smell just as sweet. From a chemical perspective he was 
certainly correct: a rose retains all of its olfactory qualities 
no matter what we choose to call it. Yet as a talented poet, 
Shakespeare often exploited the power of words to evoke 
fond memories, to arouse the imaginations and to stir the 
emotions of his audience. It is certainly true that the word 
“rose” obtains its warm associations and poetic resonance 
from its perceptual qualities – its deep red color, silky 
texture and sweet fragrance – but it is surely just as true 
that this flower would not be so beloved of poets if its 
established name were a lexical eyesore like “goreweed”, 
“bloodwort”, “thorngore,” “prickstem” or “turdblossom.” 
 Names are important. We choose them not just to serve 
as unique identifiers, but as evocative signs that are more 
than mere symbols. Steve Jobs chose the name “Apple” 

for his new technology venture to exploit the wholesome 
familiarity of its conventional meaning, a ubiquitous fruit 
that is seen as natural, attractive and unthreatening. Apple 
Corp. continues to make good use of this naming motif in 
its products, ranging from the Apple GS (nicknamed the 
Granny Smith) to the Apple Macintosh (a type of apple) 
to the Apple Newton (referencing both the popular myth 
of Isaac Newton and the falling apple than inspired him, 
and a fruit-filled cookie that is popular with children). The 
technology company Sun Microsystems chose its name to 
be a signifier of light, solidity and power, while Oracle 
chose its name to evoke all that is wise and knowledgable. 
Cisco is evocative of the freedoms one associates with the 
company’s home city, San Francisco, while Google has 
benefited from seeing its name go from being a noun (a 
static thing) to a verb (a dynamic action). A good name 
cannot save a bad product, but it can help to make a good 
product great. Conversely, a poor choice of name can 
only add to the woes of a weak product. Though there are 
surely many reasons for the failure of Microsoft’s “Zune”, 
the fact that so many who care to speak of it can only 
remember the product as Microsoft’s answer to the iPod 
suggests that its name was a big part of the problem. 
 We also use names to divide up the colour spectrum 
into shareable bundles of perceptual experiences. We all 
know what is meant by the words “red” or “green” but we 
also appreciate that such simple names subsume a wealth 
of possible tones and tints. Insofar as each color variant 
has its own uses, it deserves its own name. The Pantone 
company, a provider of colour palettes to industry, uses 
functional alphanumberic names for its many variations. 
Poets are more evocative, and anchor their chosen names 
in our shared experiences of a shared physical world. So 
when, in the Iliad, Homer describes the colour of morning 
light with the epithet rosy-fingered dawn, he succeeds in 
conveying a very specific shade of red by grounding his 
description in the familiar colour stereotype of the rose. A 
lexical stereotype is any lexicalized idea that can evoke a 
range of qualities, perceptual or otherwise. But one must 
be careful when using such dense descriptors. Homer’s 
frequent use of the epithet “wine-dark sea” has led many 
a scholar to the edge of rational explanation, to question 
not just Homer’s visual sense (he is traditionally believed 
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to have been blind, if indeed he was a single individual), 
but also ancient nautical conditions (e.g. to posit red tides, 
dense with rust-hued algae) and even the colour of ancient 
Greek wine (dark blue, perhaps, if heavily diluted with 
alkaline water). Yet the simplest answer is that which 
does not ask us to question our colour stereotypes: Homer 
really did mean to imply that the sea – at dusk, under an 
auspicious red sky – looked as dark and red as red wine. 
 With creativity we aim to be fresh and orginal, yet it is 
familiarity that lies at the heart of creativity. Conversely, 
it is obviousness, not familiarity, that is the antithesis of 
creativity, for to be creative one must knowingly exploit 
familiar ideas in non-obvious ways. Indeed, psychologists 
have long argued that a grounding in familiar stereotypes 
should guide the appreciation of new ideas, leading Giora 
et al. (2004) to advance, and empirically verify, the theory 
of Optimal Innovation. This theory argues that novelty is, 
in itself, neither sufficient for creativity nor a reliable 
benchmark of creativity. For Giora, an optimal innovation 
is any novel turn that contains the recognizable seeds of 
its familiar origins, as when a witty phrase is seen as a 
clever variation on a familiar expression, or a novel name 
can be decomposed into familiar elements. A colour name 
such as Jealous Monster, for a shade of green, would be 
an optimal innovation in this sense if it is appreciated as a 
variation on Shakespeare’s Green ey’d monster, jealousy. 
So too are technology names that knowingly borrow – in 
the fashion of Apple Corp. – from the world of fruit. 
Thus, BlackBerry and the Raspberry Pi each nod to Apple 
Corp. while emphasizing their berry-like petiteness.  
 For a modern connoisseur of colours and colour names, 
a paintshop catalogue proves to be a more diverse source 
of evocative names than a book of verse. After all, paint 
manufacturers have a vested interest in selling more than 
emulsified RGB codes. So like poets, paint makers craft 
names that are dense in emotion and poetic resonance, to 
sell an entire colour “experience” to aspirational buyers. 
Why else name a paint colour Soho Loft or Eton Mist? 
The colour spectrum is free, and available to anyone with 
eyes, while paint makers all have access to much the same 
technologies. But names add value that can make a colour 
desirable, allowing manufacturers to sell feelings in a can. 
Paint catalogues are thus filled with colour names such as 
Mocha Cream, Oyster Shell, Harvest Sun, Toffee Crunch, 
Vintage Plum and Almond Butter, each a name that can 
stir the appetite as much as the imagination. Paint makers  
compete to find the most marketable names for what are 
virtually the same RGB codes, so that one maker’s Pale 
Liqueur is another’s Baked Biscotti or Crème Caramel. 
 Our colour preferences serve as superficial expressions 
of deeper personality traits, or at least we feel this to be so 
when we stake out claims to favorite colours or ask others 
about theirs. On Twitter, an automated bot that generates 
a random RGB code and a corresponding colour swatch 
every hour has attracted almost 30,000 human followers. 
The outputs of this Twitterbot, named @everycolorbot, 
are frequently favorited and re-tweeted, not because users 
are drawn to specific RGB hexcodes, but because of what 

the corresponding colours say about their own aesthetics. 
Similarly, the website colourlovers.com invites its users 
to express their loves for (i.e., to vote for) specific colours 
and RGB codes. Users of the site may also invent their 
own names for specific codes, and cluster these codes into 
recommended palettes. Rather like a vast paint catalogue, 
the site is a trove of insightful data on the creative naming 
strategies we humans use to lexicalize our favorite hues. 
 In this paper we seek to automate the creative task of 
inventing new names for specific colours and RGB codes. 
The task is interesting not just because humans find it so, 
or because name invention is a creative industry in itself;  
rather, the task interests us here primarily because it offers 
us a framework to explore issues of perceptual grounding 
in linguistic creativity. Much like @everycolorbot, our 
solution is implemented as an autonomous bot on Twitter. 
Yet this new Twitterbot is not a mere generator of random 
RGB codes, but an inventor of meaningful, perceptually-
grounded names for its chosen colours. These names are 
grounded via a large inventory of colour stereotypes, and 
this database of stereotypes constitutes a reusable result of 
this research that we make available to others. To ensure 
that all names are semantically and syntactically well-
formed as linguistic constructs, we also exploit the notion 
of a linguistic readymade, a Duchampian idea in art in 
which something – a physical object or even a phrase – is 
taken from its conventional context of use and placed in a 
new context that gives it new meaning and new relevance. 

The memory be green, and that it us befitted 
There is both a science and an art to creative naming (see 
Keller, 2003), for though we want our new names to seem 
effortlessly apt, their creation often requires considerable 
amounts of search, filtering, evaluation and refinement. 
So while inspiration can arise from almost any source, a 
small number of reliable generative strategies dominate. 
Punning, for instance, is popular as a naming strategy for 
non-essential services or products that exude informality. 
Puns thus proliferate in the names of pet shops and pet 
services (e.g., Indiana Bones and the Temple of Groom, 
Hairy Pop-Ins), hair salons (Curl Up & Dye), casual food 
emporia (Thai Me Up, Jurassic Pork, I Feel Like Crêpe, 
Custard’s Last Stand, Tequila Mockingbird) or any small 
business that relies on a memorable hook to direct future 
footfall (Lawn Order, Sew It Seams, Sofa So Good). As 
innovations, punning names are optimal in the sense of 
Giora et al. (2004), insofar as they ground themselves in 
the cozy familiarity of an idiom (“so far, so good”) or a 
popular TV show (“Law and Order”) or a film (“Indiana 
Jones and the Temple of Doom”) and give their audience 
the thrill of recognition when first they encounter them. 
Computational Creativity (CC) has had notable successes 
with punning (Binsted and Ritchie, 1997; Hempelmann, 
2008), leading Özbal and Strapparava (2012) to obtain 
promising results for a pun-based automated naming 
system. With tongue placed firmily in anesthetized cheek, 
these authors suggest that the punning name Fatal 
Extraction might be used to add humour to a dentist’s 
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advertisement, or that a vendor of cruise holidays might 
find use for a slogan like Tomorrow is Another Bay 
(though not Die Another Bay). 
 Newly invented names may often take the form of new 
words, or neologisms. One especially productive strategy 
for neologism creation is the portmanteau word, or formal 
blend, in which a new word is stitched together from the 
lexical clippings of two others. A good Frankenword (the 
word is itself a portmanteau of “Frankenstein” + “word”) 
will contain identifiable components of both ingredients, 
as in “spork” (“spoon”+“fork”), “brunch” (“breakfast” + 
“lunch”) or “digerati” (“digital”+ “literati”). Veale (2006) 
presents an automated approach to harvesting neologistic 
portmanteaux from Wikipedia and for assigning plausible 
interpretations using the site’s link topology. For instance, 
as the Feminazi Wikipedia page links to that of feminist 
and Nazi, and each denotes a kind of person, a “Feminazi” 
is assumed to be a formal blend of a feminist and a Nazi. 
Butnariu and Veale (2006) later describe a system, named 
Gastronaut, that invents and evaluates its own neologistic 
portmanteaux, by combining morphemes of Greek origin 
(e.g. “gastro-”, “-naut”) to which it assigns lexical glosses  
(e.g. “gastro-”→food, “-naut→traveller|explorer). As this 
system can propose a phrasal gloss for each portmanteau 
it invents (e.g. proposing “food traveller” for gastronaut), 
it uses the presence of this phrase on the Web to validate 
the linguistic usefulness of the corresponding neologism. 
  Özbal & Strapparava (2012) use a portmanteau strategy 
to propose salient names for products and their qualities; 
e.g., their system proposes “Televisun" for an extra-bright 
television, as sun is an oft-used stereotype for brightness. 
Smith et al. (2014) present a semi-automatic collaborative 
portmanteau creator, called Nehovah, that uses synonyms 
of the input words in its formal blends, as well as relevant 
phrases gleaned from sites such as www.thetoptens.com. 
This diversity of lexical sources allows Nehovah to invent 
portmanteau words that do not contain clippings from any 
of its inputs, but to clip words that are nonetheless salient. 
Özbal and Strapparava also use word associations in their 
formal blends, to propose names such as Eatalian (“Eat” 
+ “Italian”) and Pastarant (“Pasta” + “Restaurant”) for 
Italian eateries, the first of which names a real restaurant. 
 Creative naming, like modern art, is often a matter of 
wholesale appropriation: we reuse an existing product that 
is not itself original, but use it in a new context that makes 
it fresh again. Consider the name Fifty Shades of Grey for 
a hair salon that aims to imbue dye jobs with sex appeal, 
or the name The Master and Margherita for a pizzeria. 
The movie The Usual Suspects takes its striking title from 
an immensely quotable line from the movie Casablanca, 
the film Pretty Woman takes its title from a song by Roy 
Orbison, while the movie American Pie is named after a 
song by Don McLean. Veale (2012) refers to this kind of 
appropriation as a linguistic readymade, after the found 
art movement launched by Marcel Duchamp in 1917 with 
his Fountain – a signed urinal exhibited as a work of art.  
 Veale (2011,2012) generalizes this approach to creative 
text appropriation into a computational paradigm named 

CIR: Creative Information Retrieval. CIR is based on the 
observation that much of what is deemed creative in 
language is either a wholesale reuse of existing linguistic 
forms – linguistic readymades – or a coherent patchwork 
of modified readymades. CIR provides a non-literal query 
language to permit creative systems to retrieve suitable 
readymades with appropriate meanings from a corpus of 
text fragments such as the Google n-grams (Brants and 
Franz, 2006). For example, the CIR query operator @Adj 
matches any word/idea that is stereotypically associated 
with the property Adj, and so the query “@cold @cold” 
retrieves bigrams whose first and second words denote a 
stereotype of coldness, such as “robot fish” or “January 
snow”. The retrieved phrases may never have been used 
figuratively in their original contexts of use, but they can 
now be re-used to evocatively convey coldness in novel 
witticisms, similes and epithets. Veale (2011) uses CIR as 
a flexible middleware layer in a robust model of affective 
metaphor interpretation and generation that also combines 
metaphors to generate poetry. Veale (2012) uses CIR in a 
generative model of irony, to invent ironic similes such as 
“as threatening as a wet whisper” and “as strong as a 
cardboard tank”). A key advantage of using linguistic 
readymades for automated invention – perhaps the single 
biggest reason to exploit readymades – is that, as phrases, 
their syntactic and semantic well-formedness has already 
been well-attested in the outputs of human authors. 
 We exploit CIR middleware here as a means of finding 
readymade colour names in the Google n-grams. That is, 
we seek out attested phrases that may evocatively suggest 
a colour, regardless of whether these phrases were ever 
used to name a colour in any of their original contexts of 
use (which, of course, an n-gram model cannot tell us). 
We use a large inventory of lexicalized colour stereotypes 
to permit CIR to find these candidate phrases, and employ 
a mapping from stereotypes to RGB hexcodes to derive a 
composite colour from their individual colour ingredients. 
Having established a mapping from colour readymades to 
colour codes, a perceptual Twitterbot can then creatively 
name the colours it wishes to showcase in its tweets. 

If Snow Be White  
CIR offers users a range of non-literal query operators, of 
which @ is perhaps the most useful for metaphor retrieval 
but also the most knowledge-dependent. For @ is only as 
useful as its stock of stereotypical associations – such as 
that fridges, winter, fish and ice are each cold or that suns, 
flames, ovens and deserts are all hot – will allow. Veale 
(2013) outlines a semi-automated approach to acquiring 
these associations from similes found on the Web, such as 
“hot as an oven” and “as cold as winter”. While a number 
of these similes identify popular colour stereotypes, such 
as that lemons are yellow (“as yellow as a lemon”), night 
is black, grass is green and snow is almost always white, 
we require a considerably more substantial inventory of 
colour stereotypes if we are going to extract a diversity of 
readymade colour names from the Google n-grams. 
 Basic colour words like “red” and “blue” are often used 
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as simple, descriptive adjectives, while more subtle hues 
call for longer adjectival forms. For example, hyphenated 
compounds, such as “cherry-red” and “nut-brown”, are 
commonplace in English and easily harvested from Web 
texts or from large databases of Web n-grams. Consider 
the following matches for the CIR query “^noun - red” in 
the Google 3-grams (^noun matches any noun): 

  blood - red  (3-gram frequency: 57,932) 
  ruby  - red  (3-gram frequency: 16,366) 
  cherry - red  (3-gram frequency: 15,667) 
  rose  - red  (3-gram frequency: 14,513) 
  brick - red  (3-gram frequency: 11,676)    
  flame - red  (3-gram frequency: 2,874) 
  coral - red  (3-gram frequency: 2,371) 

Each of the nouns in the modifier-first position above 
denotes a familiar stereotype of redness.  But the 3-grams 
also provide problematic matches, such as the following: 

 tallahassee - red  (3-gram frequency: 172,082) 
  lemon - red  (3-gram frequency: 5,486) 
  mahogany - red  (3-gram frequency: 1,029) 

Tallahassee, a place name, does not denote a stereotype 
of redness in the same way as e.g., the place name Mars. 
Rather, it is a conventionalized name for a specific shade 
of red, while lemons have no association at all with red in 
the popular imagination. Lemon-red most likely denotes a 
blend then, of red and lemon-yellow, rather than the name 
of a stereotypical source of redness. It takes knowledge of 
the world to distinguish such n-grams –  undesirable near 
misses – from the desirable hits of earlier n-gram matches.   
 We broaden our n-gram retrieval net by using the CIR 
query “^noun - ^colour”, where ^noun matches any noun 
and where ^colour matches any member of the set {red, 
blue, green, yellow, orange, brown, purple, black, white, 
grey, pink}. To keep the hits, such as coral-red, and to 
discard the misses, such as lemon-red, we must manually 
filter all retrieved matches. Since our aim is to construct a 
high-quality resource with extensive reuse value, manual 
filtering is a good investment of effort. We think it is 
better to build a near-perfect resource with manual effort 
than to design a one-off learning algorithm that would do 
the job imperfectly yet take longer to implement and test. 
A day of manual effort yields a filtered set of 801 
compound adjectives, ranging from acid-green to zinc-
white with hues such as sulfur-yellow, tandoori-red  and 
whale-blue in between. But a more arduous task awaits. 
 We must now assign a representative RGB code to 
each colour stereotype. For instance, we assign #E53134 
to tandoori-red but #FD5E53 to sunset-red. This mapping 
of colour stereotypes to colour hexcodes provides the 
perceptual grounding for each stereotype and so must be 
performed with great care. The encycolorpedia.com site 
and others are used to explore possible RGB codes for 
each stereotype, and human judgment is used in each case 
in the selection of the most apt colour code. We use RGB 

as a coding system for its popularity and simplicity, as 
RGB codes can later be converted into one’s preferred 
coding scheme, such as LAB (see Hunter, 1948), whose 
dimensions offer a better of model of human perception. 
The result of this manual effort is a map that associates 
each of our 801 colour stereotypes with an apt RGB code. 

And summer's green all girded up in sheaves  
These lexicalized stereotypes are the building blocks with 
which we can build novel colour names. Conversely, they 
are the identifiable signifiers of colour that we can use to 
recognize the potential of arbitrary readymades to suggest 
and name specific colours. As noted earlier, we choose to 
view the invention of colour names as a readymade art 
task, in which coherent, existing phrases are ripped from 
their original contexts of use – where they are unlikely to 
name a colour – and given new life as apt colour names. 
 For CIR purposes, we construct the ad-hoc set ^stereo 
to hold the names of all of our colour stereotypes, from 
acid to zucchini. The simple CIR query “^stereo ^stereo” 
can now retrieve all bigram phrases from the Google n-
grams in which both modifier and head suggest a colour. 
Consider the matching bigram “chocolate espresso” (freq 
=2,548). As the stereotype chocolate-brown maps to the 
RGB code #7B3F00, and the stereotype espresso-black 
maps to #393536, a creative system can infer that the 
colour named by “chocolate espresso” will have an RGB 
code that sits somewhere on the line connecting #7B3F00 
to #393536 in RGB space. Veale (2011) demonstrates 
how phrases like “chocolate espresso” are retrieved from 
the Google n-grams because the stereotypes for chocolate 
and espresso have shared properties, such as smooth and 
dark, allowing a system named the Jigsaw Bard to invent 
the simile “as smooth and dark as a chocolate espresso.” 
In effect, what we aim to achieve here is the generation of 
novel similes that have discernible perceptual groundings. 
 The CIR query “^stereo ^stereo” retrieves 5,841 bigram 
phrases from the Google 2-grams, from “lemon tree” 
(frequency=”3,236”) and “honey mustard” (freq=3,120) 
to “Brick Park” (freq=40) and “Bear Shadow” (freq=40). 
When this query is applied to the Google 1-grams – by 
splitting complex unigrams into their lexical parts – an 
additional 5,666 unigram readymades are found, ranging 
from “honeymoon” (frequency=2,410,981, which may be 
interpreted as a pale blend of honey-yellow and moon-
white) to “firemelon” (freq=200, perhaps naming a blend 
of fire-red and melon-orange). The least frequent names 
also tend to be the most enigmatic. Consider “braincloud” 
(freq=201), which suggests a striking name for a shade of 
gray, or “demonmilk”, “coralstar” and “bananadragon”. 
These seem to have been crafted by another person in 
another context to name some idea or thing; now they can 
be used again, this time to provocatively name a colour.  
 These readymades are not manually filtered for quality, 
and so, as CIR cannot disambiguate word-senses in n-
grams, it may retrieve phrases that use colour stereotypes 
in non-stereotypical senses. For instance, CIR retrieves 
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“Holly Hunter” (an actress, but also a potential blend of 
holly-red and hunter-green) and “Tiger Woods” (a famous 
golfer, but also, potentially, a tawny blend of tiger-orange 
and wood-brown). Recall that the ultimate artistic value 
of a readymade lies in its ability to be re-interpreted with 
a new meaning or a new resonance. An orange-brown 
colour named Tiger Woods would be not just apt then, but 
humorously apt, and we should embace this serendipity. 
 Each readymade can be assigned a potential RGB code 
at its moment of retrieval, by employing a parameterized 
mixture model to the RGB codes of its lexical ingredients. 
For a readymade like “chocolate espresso”, whose words 
denote nearby points in RGB space, we can simply split 
the difference and average the colours, so that chocolate 
espresso is a mix of 50% chocolate-brown (#7B3F00) and 
50% espresso-black (#393536). When these components 
denote more distant colours/codes, it is necessary to bring 
linguistic and perceptual intuition to bear on them. For 
instance, we can expect “chocolate forest” (freq=153) to 
denote a different hue than “forest chocolate” (freq=170). 
The rules of compounding suggest that “forest chocolate” 
denotes a kind of chocolate, and that its colour should be 
perceived as a brown hue. In contrast, as “chocolate” is a 
modifier, not a head, in “chocolate forest”, we expect this 
name to denote some variation of (forest) green. As such, 
forest chocolate should contain as much forest-green as 
one can put into it while keeping it an identifiable brown, 
while chocolate forest should contain as much chocolate-
brown as is possible while achieving a green hue overall. 
 The assignment of colours to readymade phrases is one 
side of the coin, of which the naming task is the flip side. 
Given an RGB color code, a creative naming system must 
assign an apt and original name to this code. This is the 
specific task that we focus on in this paper. 

O, speak again, bright angel! 
Suppose one wanted a creative Twitterbot to respond to 
the postings of another bot, such as @everycolorbot. In 
this case, our responsive bot could await new tweets from 
@everycolorbot, extract the RGB code from each, and 
generate a catchy name for this colour to tweet as an apt 
response. Alternately, our bot could invent its own names 
for much loved colours on colorlovers.com, to compete 
with names already invented by human users of the site. 
 Suppose our CC bot is given the RGB code #FCF9F0, 
a code which corresponds to a very pale yellow hue and 
which, on colorlovers.com has received 69 loves (and the 
name “vanilla ice cream” from one of the site’s users). 
The colours of the RGB space can be arranged on a 
colour wheel (see Jennings, 2003), in which the three 
primaries (Red, Green and Blue) are found at equidistant 
points on the circumference of a circle, with all possible 
secondary and intermediate colours arranged between the 
corresponding points for their color ingredients. Locating 
#FCF9F0 on the colour wheel, we consider this to be the 
dominant colour in a scheme of three colours, comprising 
this and its two near-neighbors, #FCF3F0 and #F9FCF0. 

This arrangement is called an analogous colour scheme 
(Pentak, 2010), as it forms a trio of adjacent colours that 
bear an analogical relationship to the related hues that one 
sees in nature, such as the changing colours of the leaves 
in Autumn. We thus refer to #FCF3F0 and #F9FCF0 as 
analogous colours of our dominant colour, #FCF9F0. A 
colour scheme such as this allows a CC system to find 
adjacent colours that appear to match well because they 
are often found together in the real world. Moreover, we 
can use a pair of analogous colours to find a readymade 
name for the dominant colour they bracket on the colour 
wheel, one that is both perceptually and linguistically apt. 
 For each analogous colour, our system seeks out the 
most appropriate colour stereotype. But first, we convert 
all relevant RGB codes into the equivalent CIE LAB code 
(Sharma 2003:29-32). The CIE LAB space is perceptually 
uniform, so any change δ in a CIELAB code induces a 
uniform change δ’ in the perceptibility of the equivalent 
colour. The Delta E CIE76 distance function can now be 
used to measure the distance between a given colour and 
that associated with any colour stereotype term. Thus, for 
instance, the  Delta E CIE76 distance between #FCF3F0 
and seashell-white (#FFF5EE) is 2.17, while the distance 
between #F9FCF0 and pearl-white (#F7FBEF) is 0.55. As 
it happens, these two stereotypes – seashell-white and 
pearl-white – are the closest available colour stereotypes 
for the analogous colour pair #FCF3F0 and #F9FCF0.  
 Multiple readymades may each combine the words 
“pearl” and “seashell” in various ways. But as neither of 
the unigrams pearlseashell or seashellpearl is attested in 
the Google 1-grams, the system cannot choose a solid 
compound for a name. But the Google 2-grams do attest 
to the bigrams “pearl seashell” (freq=1,383) and “seashell 
pearl” (freq=5,633), and also attest to the plural bigram 
“seashell pearls” (freq=421). To maximize its chances of 
choosing a phrase that is semantically and syntactically 
well-formed, the system most prefers to choose attested 
unigram names, as these are most likely to have been 
coined as names; if it cannot find an attested unigram, it 
prefers a plural bigram, such as “seashell pearls”, as these 
are more likely to have been coined as a modifier:head 
construction; if it cannot find an attested plural bigram, it 
settles for the most frequent bigram (e.g. seashell pearl”). 
In this case, it opts for the plural bigram “seashell pearls” 
and chooses its singular form, “seashell pearl” as a name. 
 A glance through any paint catalogue reveals that the 
most popular paint names are those that appeal to our love 
of nature, to our appetites, or to our aspirations. So paint 
names often use naming elements that denote a natural 
kind (tree, pearl, forest, sea, etc.), a food or drink (toffee, 
butter, almond, espresso, etc.) or a distinctive culture or 
place (China, Persian, etc.). So words such as tandoori 
and kangaroo tick two boxes at once. We may filter our 
readymade names by their adherence to this scheme, and 
choose only those phrases that use a colour stereotype that 
suggests a natural kind, food, drink, culture or place. The 
Thesaurus Rex Web service of Veale and Li (2013) can be 
used to provide fine-grained categorizations of colour 
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stereotypes (such as kangaroo, butter, pearl, etc.) and to 
filter possible readymades by the categories they evoke. 
The filter employed by a naming system determines its 
aesthetic sensibility, and different systems may exhibit 
different aethetic senses. One can imagine a system that 
prefers poetic names, smutty names, provocative names 
(e.g. cocainestar for a whiteish hue) or fantastic names 
(e.g. alienbrain for a gray-green hue). In the following 
experiments, our system employs the paintshop-friendly 
natural-animal-food-drink-culture filter described above. 

Beauty doth varnish age, as if new-born 
To evaluate the quality and aptness of the readymade 
phrases that we repurpose as attractive new colour names, 
we compare these automatic names to those assigned by 
humans on the website ColourLovers.com. We download 
the top 100,000 colour codes from this site, ranked from 
most to least loves; the mean number of loves per colour 
code is 13, while each code has at least one love and just 
one human-assigned name (as the site does not permit 
multiple names for the same RGB code). For each RGB 
code our automated naming system seeks out the most apt 
readymade name it can find. To ensure a good perceptual 
match between each code and its new name, a threshold 
distance of 14 is chosen for use with the Delta E CIE76 
distance function, which measures Euclidean distance in 
the CIELAB space. Thus, the CIELAB code of any colour 
stereotype (such as pearl-white) will only match the 
CIELAB equivalent of an analogous RGB code (such as 
#F7FBEF) if their Euclidean distance in CIELAB space is 
14 or less. We choose a maximum of 14 empirically, so as 
to impose tight control on colour matching while allowing 
every colour code to be assigned at least one readymade. 
 We automatically identify the most apt readymade for 
each of the 100,000 downloaded colour codes, using the 
preferential approach to n-gram selection outlined in the 
previous section. Of the 100,000 assigned names, 2587 
are selected as paintshop-style names using the afore-
mentioned natural-animal-food-drink-culture filter. It is 
this subset of readymade names that we focus on here for 
purposes of empirical evaluation. The mean number of 
loves for each of the named colours on ColourLovers.com 
is 2.188. For each of the 2,587 machine-generated names, 
we determine the name assigned to the corresponding 
RGB colour by users of ColourLovers.com. This allows 
us to construct a set of 2,587 triples, each comprising an 
RGB code, a human-assigned name and a name invented 
(via a repurposed readymade) by a machine. 
 We used these triples to pose comparison questions to 
human judges recruited via the crowd-sourcing platform 
CrowdFlower.com. For each triple, a visual sample of the 
colour and a pair of names, one human-generated and one 
machine-generated, were put before the judges, who were 
asked to take a moment to imagine the colour being used. 
The ordering of both names was randomly selected on a 
case-by-case basis, so that the human-generated name was 
listed first in ~50% of cases, and the machine-generated 
name was listed first in the other ~50% of cases. In all 

cases, judges were not told of the origin of either name. 
Each judge was paid a small sum to answer 4 questions: 

1. Which name is more descriptive of the colour shown? 
2. Which name do you prefer for this colour?  
3. Which name seems the most creative for this colour?  
4. Why did you answer these questions they way you did?  

The fourth question is a source of qualitative responses 
that may, in future work, offer useful insights into the 
factors that shape the appreciation of names. Judges were 
timed on their responses, and those that spent less than 10 
seconds presenting their answers for any colour were 
classified as scammers and discarded. We required that 
each question be answered by 5 non-scamming judges to 
be trusted for evaluation, and thus, we obtained 12,608 
trusted judgments in all that contributed to the evaluation, 
and 5,040 untrusted judgments that were instead ignored.  
 A total of $220 was allocated to the experiment, which 
was terminated after these funds were exhausted and 940 
judges had been paid to contribute to the task. At this 
point, 1578 out of 2587 colours had received five trusted 
judgments for each of their questions, and so it is on the 
collected judgments for these 1578 colours that we base 
our evaluation. Tallying the individual judgments per 
question, we see that 70.4% of individual judgments for 
most descriptive name (Q1) favored the machine; that 
70.2% of individual judgments for most preferred name 
(Q2) favored the machine; and that 69.1% of individual 
judgments for most creative name (Q3) favoured the 
machine. Similarly, when we tally the majority judgment 
for each question under each colour  – the choice picked 
by three or more judges – we see that for just 354 (23%) 
of the 1578 colours, a majority of judges deemed the 
human-assigned name for a given colour to be more 
descriptive than that assigned by the machine. The results 
for the next two questions, Q2: which name do you 
prefer? and Q3:which name is most creative?, are very 
much in line with those of the first question. Only for 355 
colours does a majority of the five human judges for a 
given colour prefer the human-assigned name over that 
assigned by the machine, and only for 357 colours does a 
majority of judges consider the human-assigned name to 
be more creative than the machine-assigned name. This 
consistent breakdown of approx. 3-to-1 in favour of the 
machine suggests that machine-assigned readymade 
names can be more than competitive with human names.  
 However, the surprising consistency of these results 
also suggests that the human judges are really only 
offering one opinion for all three of the binary questions 
that they are asked. It seems that judges, who are asked to 
ponder the possible users of a colour before answering the 
questions that follow, apparently favour a given name for 
a colour and then follow through with much the same 
answer for all three questions. Indeed, when we calculate 
the rate of agreement across all questions, we find that 
judges choose the same name for at least two of the three 
questions in 93% of cases, and choose the same name for 
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all three of the questions (that is, most descriptive, most 
preferred and most creative) in 91% of cases. These 
agreement statistics suggest that most human judges see 
these questions as paraphrases of each other. Though it 
can aid our understanding of the mechanics of linguistic 
creativity to try and tease apart the related notions of 
descriptive adequacy, personal preference and creative 
appreciation, these three notions now appear to be too 
tightly interwound to effectively separate them, at least 
within the same experimental task. 

Let our bloody colours wave! 
A Twitterbot named @HueHueBot has been constructed 
(by the second author) to showcase the perceptually-
anchored creativity of this readymade-based approach to 
colour-name invention. An example tweet of this bot, 
with attached colour sample, is shown in Fig. 1. 

 

 

Figure 1. A tweet with both RGB hexcode and apt name. 

@HueHueBot exploits colour stereotypes and Google n-
grams in the manner described in previous sections. But 
this inventory of colour stereotypes and their RGB codes 
can be reused by other Twitterbots that exhibit their own 
colour aesthetics and linguistic framing preferences. To 
this end, we gave the stereotype lexicon and a large stock 
of relevant n-grams to students as resources to be used for 
a course project on computational linguistic creativity. 
Students were asked to build colour-naming Twitterbots 
which might invent and name their own colours, or name 
the colour codes generated by @everycolorbot. The bots 
that ensued demonstrate a variety of possible approaches 
to naming and to the linguistic framing of those names. 
 @ColorCritics frames its outputs as though it as an art 
critic that specializes in colour, and thus, in addition to 
offering to name colours generated by @everycolorbot, it 
critiques the palette choices of this bot. @ColorCritics 
expresses a preference for unigram names, of which 
examples include TandooriTikka, PukePuke and FireSky. 
@WorldIsColored mimics the bravura personality of Stan 
Lee, a famous creator of comic book superheroes, and 
thus expresses a preference for colour names that use 
alliteration (a much-loved ploy of Lee’s). Its alliterative 

colour names, such as BlueberryBlush, are framed in the 
language of superhero comics, such as in this tweet: “May 
be coloring my costume as BLUEBERRY BLUSH was not 
a very good idea! RT .@everycolorbot: 0xdd4fc3”. 
 @ColorMixALot combines 2-gram phrases to generate 
complex colour names that run to three and four words. 
Example colour names include tree frog bile yellow and  
moonlight coral pink. The Twitterbot @DrunkCircuit 
adopts the persona of a borded worker at an IT company, 
and so its tweets drip with ennui and bitterness. Examples 
include the sarcastic riposte to @everycolorbot in Fig. 2. 
 

 

Figure 2. A sarcastic response to another colour bot: 
“thank you @everycolorbot, now I want Rosé Champagne 
#WineStyles @everycolorbot: 0xf58aa4” 

Like @HueHueBot, @DrunkCircuit locates the category 
into which a new name fits best (using Wikipedia’s 
hierarchy of topic categories), and then tailors its tweets 
to exploit this information. Thus, a name that denotes a 
kind of wine (as in Fig. 2) is affixed with the hashtag 
#WineStyles, while the name Almond Crust is used to 
anchor a tweet that insults the company canteen (“Looks 
just like the Almond Crust in the canteen today. Yuck! RT 
@everycolorbot: 0xd3ba8f ”). 
 @AwesomeColorBot also tailors its tweets to suit the 
category of a name, to produce outputs like that of Fig. 3. 

 
 

 

Figure 3. A tweet with a colour, a name, and an attitude. 
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 @haraweq is a colour-naming hybrid that combines 
elements of two popular Twitterbots, @everycolorbot and 
@metaphorminute. The latter is a bot by Darius Kazemi 
that invents random metaphor-like tweets, such as “an 
evacuation is a mainframe: evergreen yet slicked.” In this 
vein, @haraweq coins colour similes, such as “a location 
like a dusty taxicab RT @everycolorbot: 0xf4ec24.” It 
uses Wikipedia to determine e.g. that a taxicab is a 
location, and uses the Google n-grams to find specific 
combinations such as “dusty taxicab”, which it interprets 
as a blend of taxicab-yellow and dust-brown. 
 So the most interesting colour bots do more than just 
invent new colour names; they find a context to motivate 
a new name, and then frame a tweet as an intelligent – or 
at least a human-like – response to this context. There is a 
lesson here for computational linguistic creativity. A new 
turn of phrase can only be considered creative in a context 
for which it is non-obvious and apt, and to the extent that 
it exercises the imagination of the reader. The imagination 
may take flight on the wings of whimsy, but the most 
compelling flights into the new and the original remain 
stubbornly grounded in the realm of familiar experiences. 
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Abstract

Similes are easily obtained from web-driven and case-
based reasoning approaches. Still, generating thought-
ful figurative descriptions with meaningful relation to
narrative context and author style has not yet been fully
explored. In this paper, the author prepares the founda-
tion for a computational model which can achieve this
level of aesthetic complexity. This paper also introduces
and evaluates a possible architecture for generating and
ranking figurative comparisons on par with humans: the
FIGURE8 system.

Introduction
Figurative language is embedded within and intimately con-
nected to our cultures, behaviors, and models of the world.
In fact, humans use figurative language so often that we sel-
dom realize it (Lakoff and Johnson 1980); still, its utility
for communication is clear. Using metaphors and similes,
one can relate the unfamiliar, or the tenor, in terms of the
familiar, or vehicle (Richards 1980). In Figure 1, for exam-
ple, “moon” is the vehicle for “garden”, the tenor. Attributes
of the moon, such as its brilliance, are used to describe the
beauty of the garden. Prior to the comparison, the garden’s
appearance is unknown (is it beautiful and luminous, or ne-
glected and overgrown?). The simile helps to resolve this
ambiguity and provide the reader with a clearer picture of
the scene.

Comparison gives us the ability to delicately express irony
and sarcasm (“clear as mud”), exaggeration (“that man was
as tall as a giraffe”), and emotion (“my heart was a sink-
ing ship”). With such tools, we can explain how we feel,
what kinds of people we are, and what experiences we have
had. Further, metaphors give color to dry speech and are un-
derstood faster than literal equivalents (Gibbs and Nagaoka
1985); this is likely due to their appeal to common previous
experiences and memories.

For the purpose of this paper, we will consider two styles
of figurative language: conventional (common analogies
used in daily language, such as “I see what you mean”) and
creative (original comparisons that call attention to them-
selves as figures of speech, such as “Fear is a slinking cat I
find / Beneath the lilacs of my mind” (Tunnell 1977)). Each
type can provide value, although previous work on com-
putational generation of figurative language has primarily

focused on understanding and reconstructing conventional
metaphors and similes.

Clichés (e.g., “fast as lightning”) are arguably useful
when fast, informal communication is required between a
computer and a human, and such phrases can be learned via
web query (Veale and Hao 2007a). Generating creative com-
parisons on par with human authors is a much more difficult
challenge. A conventional metaphor is considered “good” if
many others have used it before, but uniqueness and aes-
thetic qualities are critical in generating a strong creative
metaphor. For instance, several aesthetic properties, such as
syllable counts, phonetics, stressed syllable position, rhyme,
and alliteration have been identified as “obvious” criteria for
making creative poetic lines sound good, despite the fact that
these “do not translate well into precise generative rules”
(Gervás, Hervás, and Robinson 2007). While creative gen-
erators for figurative language exist, few address this con-
cept of what makes for a high-quality metaphor or simile. I
will describe a system, FIGURE8, which contains a novel
underlying model for what defines creative and high quality
figurative comparisons, and evaluates its own output based
on these rules.

Related Work
Modern research in creativity has generally defined a cre-
ative system as one that generates novel, context-appropriate
output (Rothenberg and Hausman 1976; Sawyer 2012).
Within the context of creative natural language generation, a
third criterion has been noted: a creative system must gener-
ate context-appropriate knowledge outside of its pre-existing
knowledge base (Pérez y Pérez and Sharples 2004).

Several computational systems exist which attempt to
meet this benchmark. ASPERA, for instance, combines
case-based reasoning with intelligent adaptation of exam-
ples from corpora (Gervás 2000). Psychological theories
have further informed the art of generating figurative lan-
guage, resulting in more advanced and thoughtful systems.
Notably, Brown (Ortony 1993) and Glucksberg (Glucks-
berg 2001) have argued that categorization is inherent to
metaphor. As a consequence, the concept of property-
based concept mapping has inspired metaphor generation
approaches, and has been cited as the best method for pro-
ducing robust, scalable and useful metaphors (Hervás et al.
2007; Veale and Hao 2007a).
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One must also consider how to develop an appropriate
knowledge base without substantial manual authoring. Pre-
vious exemplary work in metaphor generation has empha-
sized the power of using the web to establish example cases
of valid comparisons (Veale and Hao 2007a; 2007b). How-
ever, these systems merely generate large amounts of po-
tentially creative descriptions, and cannot distinguish be-
tween original and poor quality comparisons (Veale and Hao
2007a). Further, they often ignore context, sentence con-
struction, and aesthetics in the generation process, resulting
in less evocative and meaningful language.

FIGURE8 is a system that uses a web-driven approach
to form a preliminary knowledge base of nouns and their
properties. The system is provided with a model of the cur-
rent world and an entity in the world to be described. A
suitable vehicle is selected from the knowledge base, and
the comparison between the two nouns is clarified by ob-
taining an understanding via corpora search of what these
nouns can do and how they can be described. Sentence
completion occurs by intelligent adaptation of a case library
of valid grammar constructions. Finally, the comparison
is ranked by the system based on semantic, prosodic, and
knowledge-based qualities. In this way, FIGURE8 simu-
lates the human-authoring process of revision by generat-
ing many vehicle choices and linguistic variations for a sin-
gle tenor, and choosing the best among them as its favorite.
While FIGURE8 does not claim to have a comprehensive set
of rules - for example, it does not consider phonetics in its
evaluation of description quality - it provides a novel foun-
dation for an intelligent figurative language generation and
assessment system.

Approach
Prior work has established that a strong creative metaphor is
not only comprehensible (Tourangeau 1981), novel (Camac
and Glucksberg 1984), and context-appropriate (Harwood
and Verbrugge 1977; Tversky 1977; Gildea and Glucksberg
1983), but surprising (Tourangeau 1981). The following sec-
tions will illustrate how FIGURE8 considers these proper-
ties when generating metaphors and similes. A block dia-
gram of the generation process is shown in Figure 3.

Clarity
A strong metaphor must have an understandable, accurate
link between tenor and vehicle. A vehicle is thus only
considered acceptable if it has properties in common with
the tenor. Further, associating the tenor with the capacities
and known manifestations of the vehicle should enhance the
clarity of the description. In the FIGURE8 system, these
associations are found by mining existing literary corpora
(Hart 2014) for instances of the vehicle and using NLTK’s
parts-of-speech tagging to identify associations (e.g., refer to
Figure 2). This procedure enables the system to use words
commonly associated with the vehicle to develop a fresh re-
lation to the tenor. For example, if we were to compare a
teacher to a horse, FIGURE8 may now be able to reason that
the teacher would prance or trot into the room. In this way,
a sentence can be generated by only implicitly referring to

the vehicle (“The teacher pranced into the room” vs. “The
teacher was a wild horse, prancing into the room”). Com-
mon verbs, such as forms of “to be”, were culled from the
generated list of association because - as all nouns have the
capability to exist and be - such verbs do not lend clarity to
the comparison.

Granted, the word chosen to relate to the tenor may not
make sense (especially in the case of verbs), destroying the
very clarity it was meant to enhance. FIGURE8 thus per-
forms a web query using Python’s urllib module to ensure
that others have associated the chosen word with the tenor
before. If a previous association has not been made, the
metaphor is ranked lower in terms of estimated clarity. This
evaluation measure ensures that nonsensical descriptions,
such as “The turtle darkened like a blue ocean”, are given
a lower ranking overall.

Novelty
Clichés are frowned upon by expert authors; as Salvador
Dalı́ once said, “The first man to compare the cheeks of
a young woman to a rose was obviously a poet; the first
to repeat it was possibly an idiot” (1968). For computer-
generated text, it is thus reasonable to expect that a qual-
ity metaphor is a fresh comparison. In the FIGURE8 sys-
tem, each metaphor is checked against an existing knowl-
edge base of comparisons (Friedman 1996), and all gener-
ations are ranked based on their similarity to conventional
metaphors in this database.

Aptness
Ideally, a strong metaphor will fit the context within which
it lives. For usage in a narrative context, the FIGURE8 sys-
tem can be passed a model of a simple world of objects and
character models, and incorporate these appropriately into
its eventual output along with a prepositional phrase gen-
eration module. Additionally, one may ask FIGURE8 to
generate ironic comparisons, such as those generated by a
sarcastic character when speaking. Irony is achieved by se-
lecting for properties with the exact opposite meanings, in
accordance with prior work (Veale and Hao 2007b). The
FIGURE8 system also endeavors to match a given context
during sentence completion, which will be described in a
later section.

Unpredictability
Metaphors are perceived as cleverer when the vehicle and
tenor contain similarities, but the respective domains of
these terms are distinct (Tourangeau 1981). A description
is thus ranked as more surprising when the words are not
very conceptually similar and contain fewer properties in
common. With the assumption that they share at least one
property in common, the chosen metaphor components are
ranked by querying the UMBC Semantic Similarity Sys-
tem (Han et al. 2013). The degree to which the vehicle
and tenor share major categories is also considered by us-
ing a function similar to WordNet’s lexname query. This
check is needed because if one or more major categories are
shared, the metaphor is considerably less surprising. For
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Figure 1: Example of a highly ranked output sentence by FIGURE8. Here, the tenor, vehicle, and associated phrases are garden,
moon, lit up, and pale. The nouns garden and moon not only have low semantic similarity, but do not share a major category
together. Likening a garden to a moon is also not a cliché comparison, lending to the description’s potential novelty.

Figure 2: Example of how FIGURE8 discovers and associates a verb with a chosen vehicle, using text from The Count of Monte
Cristo, and a part-of-speech parsing module similar to the Stanford Parser (Socher et al. 2013). Here, the nsubj label refers
to a link between a verb (“deceived”) and a noun phrase (in this case, the vehicle “world”). The remaining labels in the figure
represent the part-of-speech tags.

instance, “the strawberry is a pomegranate” is considered
a poor metaphor because strawberry and pomegranate are
contained within a major category: fruits. Such a description
may be produced by a web-based generator (for instance,
the online MIT-licensed Metaphorgy system (Groff-Palermo
and Lawson 2013) produces “My strawberry is a Phaeacian
cherry”), but will be given a low ranking by FIGURE8.

Prosody
The prosody of a metaphor can be defined as the rhythmic,
tonal, and aesthetic qualities that distinguish one metaphor
from another. Descriptions are ranked highly if their
prosody is of consistent and high quality. For instance, con-
sider the following similes:

(1) The serpent stretched into the horizon, like a de-
serted desert.
(2) The snake extended into the horizon, like an aban-
doned desert.

Although alliteration and assonance can be used beautifully
in figurative language, the high similarity of consecutive
words in (1) may be distracting. Example (2) depicts the
same imagery, but uses words of greater distance in terms of
consecutive string similarity.

At present, FIGURE8 conducts string similarity via
Python’s difflib to evaluate the prosody of its outputs. Us-
ing difflib’s SequenceMatcher, one can determine a value
indicating the degree of similarity between two input strings
in a range from 0 (no similarity) to 1 (identical strings).
FIGURE8 is thus able to quantify the string similarity for
consecutive words, and ranks descriptions lower if there are

many consecutive string similarity values above 0.7, which
was deemed an appropriate threshold by the author. Consec-
utive words are also checked for alliteration and assonance,
which are considered positive qualities by FIGURE8.

Sentence Completion
Automated metaphor identification in text has been thor-
oughly explored (Neuman et al. 2013; Steen et al. 2010)
and, as such, FIGURE8 has been provided with a case li-
brary of appropriate sentence constructions for metaphor
and simile. By following the procedure of imaginative recall
(Turner 1992), FIGURE8 first attempts to fit the provided
context of the situation to an exact, pre-existing solution.
If no solution exists, FIGURE8 searches its memory, solves
the problem for a similar case, and adapts that solution to the
provided context. As an illustration: if FIGURE8 notes that
other authors have used the phrase “to the barn”, it should
recognize the barn as a noun denoting a man-made object
via WordNet. Similarly, a “chair” is a man-made object, and
thus, FIGURE8 may decide to replace “barn” with “chair”
when told that a chair exists in the current narrative context.
This adaptive process enables FIGURE8 to match its con-
structions to any provided context and complete statements
creatively.

Evaluation
Little research, if any, has worked towards developing a
model of what makes a high quality computer-generated
metaphor. Although there is no standard method to evaluate
computationally-generated figurative descriptions, one rea-
sonable way to judge would seem to be agreement with hu-
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Figure 3: Block diagram of the FIGURE8 generation system. If no world model is given, a tenor is selected at random from the
noun-property database. A vehicle is then selected with at least one property in common with the tenor. The Clarity Enhancer
module requests verbs and adjectives associated with the vehicle from mined literary corpora. Finally, the sentence is completed
by performing imaginative recall with known valid sentence constructions for metaphor identified from literary corpora.

Table 1: Comparison 1 of FIGURE8 and human rankings for clarity and overall quality. In this set, FIGURE8 was asked to
generate and rank figurative descriptions given “pearl” as the tenor. Human clarity and likability rankings were found to be
highly correlated (⇢ = 0.684). Spearman analyses also indicated positive correlations between human and FIGURE8 rankings
(clarity: ⇢ = 0.872; quality: ⇢ = 0.821).

man ratings. This can be assessed by requesting humans to
rank descriptions generated by the FIGURE8 algorithm, and
determining if the majority are in agreement with the com-
puter’s (FIGURE8’s) ranking. A pilot study indicated that
providing each description with additional context would
make the ranking process too time-consuming for partici-
pants. Thus, functions to enhance aptness were not included
when generating outputs to be evaluated in the full-scale
study.

Method

One hundred participants (73 female, 27 male) were re-
cruited via Amazon’s Mechanical Turk. Each participant
viewed a series of five sentences at a time, and were asked to
rank the similes by how understandable they were (clarity),
and by how much they, as individuals, enjoyed the compar-
ison (likability). Each set of five sentences contained the
same tenor, and were originally generated and ranked by
FIGURE8. The sets were not hand-selected by the author.
That is, the first eleven sets FIGURE8 generated and ranked
were used in the study.

Results
Human preferences were determined by following the ma-
jority criterion. As seen in Figures 4 and 5, human clarity
ratings were often positively correlated with overall qual-
ity ratings, and this correlation was confirmed with Spear-
man analyses. Overall, FIGURE8’s top result for clarity and
overall quality generally agreed with the human rankings for
each of the eleven sets. FIGURE8 exactly matched the first
ranking 46% of the time for clarity and likability. Further,
it matched either the first or second ranking 82% and 100%
of the time for the clarity and likability categories, respec-
tively. Examples of how FIGURE8 matched human ratings
are shown in Tables 1, 2, and 3.

Discussion and Future Work
In this paper, the author has introduced the FIGURE8 sys-
tem as a novel tool for generating and evaluating creative fig-
urative descriptions. FIGURE8’s assessments are grounded
in psychological models of metaphor comprehension, and
have thus far been found to adequately match human rank-
ings when agreed upon.

Participants in the evaluation portion were not told that
the descriptions were generated by a computer. Only two
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Table 2: Comparison 2 of FIGURE8 and human rankings for sentences of tenor “snow”. Human clarity and likability rankings
were found to be positively correlated (⇢ = 0.763). Spearman correlation analysis suggested that FIGURE8 clarity rankings
were positively associated with human clarity rankings (⇢ = 0.872), but no significant association was found between likability
rankings in this case (⇢ = -0.359).

Table 3: A third comparison of FIGURE8 and human rankings for sentences of tenor “queen”. In addition to showing first
choice rankings, this table displays human rankings when considering first and second choices. That is, “the queen stands like
a strong castle” was ranked as either first or second for the majority of respondents. In both cases, human clarity and likability
rankings were found to be positively correlated (⇢ > 0.9). Spearman analyses also suggested for both cases that FIGURE8 and
human rankings for clarity and likability were positively correlated with high significance (⇢ > 0.7).

Figure 4: First choice rankings for the generated set of sen-
tences using pearl as the tenor. Although some disparities
existed, the majority of respondents generally agreed upon
which sentence was the most understandable.

comments were made about checking sentences for validity
prior to including them in the study, and one regarding how
painful it was to rank “bad poetry”. Most participants, how-
ever, enjoyed the task and provided positive feedback about
their experience (“cool hit”,“super fun”,“I love this”). It is
conceivable that task enjoyment affected user responses, but

controlling for explicit indication of task enjoyment yielded
no significant difference in the results. Controlling for gen-
der also did not reveal significantly different outcomes.

Interestingly, for roughly half (50-60% per set) of the
participants, how much they liked the figurative description
was directly correlated with how well they understood it.
The most highly ranked phrases for clarity were also of-
ten ranked first for likability, and the Spearman coefficient
was used to confirm these positive associations. This was a
surprising finding, because more variation and subjectivity
was expected for these ratings. Discrepancies between hu-
man and FIGURE8 likability rankings, such as in Table 2,
could potentially be explained by a human tendency to pre-
fer metaphors containing words of positive sentiment value.
However, more analysis is required to confirm this idea, and
further study is needed to evaluate how qualities of language
are weighted across general and expert populations. Judging
from participant comments, it is also possible that some peo-
ple may like metaphors primarily based on qualities other
than clarity (such as prosody, sentiment, or whimsy). If
these groups could be automatically identified, perhaps fu-
ture computer-produced descriptions could adapt to generate
more personalized descriptions for the optimum enjoyment
of the reader.

While FIGURE8 is able to rank its figurative descriptions
over various measures of quality, how well its output com-
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Figure 5: Clarity rankings for the generated set of sen-
tences using snow as the tenor. Participants rated what FIG-
URE8 considered the most unsurprising metaphor as the
most clear, but there was no highly significant consensus re-
garding the most likable description.

pares with human-authored descriptions was not assessed.
The fact that most participants in the evaluation did not ques-
tion the source of the texts is a promising sign that the system
presented here generates human-like output. Regardless, its
present constructions can be automatically assigned rank-
ings on par with human evaluations. It is assumed that as the
quality of FIGURE8’s generations increases, it will be able
to extract the best output from the results of its “brainstorm-
ing”. Future research should build upon this foundation and
work towards evaluating computer-generated descriptions in
terms of aptness, prosody, and unpredictability. When ma-
chines are fully able to grasp the subtleties and aesthetics of
figurative language, we as humans will be able to relate to
them as never before.
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Abstract 

Twitter has proven itself a rich and varied source of 
language data for linguistic analysis. For Twitter is 
more than a popular new channel for social interaction 
in language; in many ways it constitutes a whole new 
genre of text, as users adapt to its new limitations (140 
character messages) and to its novel conventions such 
as retweeting and hash-tagging. But Twitter presents an 
opportunity of another kind to computationally-minded 
researchers of language, a generative opportunity to 
study how algorithmic systems might exploit linguistic 
tropes to compose novel, concise and re-tweetable texts 
of their own. This paper evaluates one such system, a 
Twitterbot named @MetaphorMagnet that packages its 
own metaphors and ironic observations as pithy tweets. 
Moreover, we use @MetaphorMagnet, and the idea of 
Twitterbots more generally, to explore the relationship 
of linguistic containers to their contents, to understand 
the extent to which human readers fill these containers 
with their own meanings, to see meaning in the outputs 
of generative systems where none was ever intended. 
We evaluate this placebo effect by asking human raters 
to judge the comprehensibility, novelty and aptness of 
texts tweeted by simple and sophisticated Twitterbots.  

 Tropes: Containers of Meaning 
A mismatch between a container and its contents can 
often tell us much more than the content itself, as when a 
person places the ashes of a deceased relative in a coffee 
can, or sends a brutal death threat in a Hallmark greeting 
card. The communicative effectiveness of mismatched 
containers is just one more reason to be skeptical of the 
Conduit metaphor (Reddy, 1979) – which views linguistic 
constructs as containers of propositional content to be 
faithfully shuttled between speaker and hearer – as a 
realistic model of human communication. Language 
involves more than the faithful transmission of logical 
propositions between information-hungry agents, and 
more effective communication – of attitude, expectation 
and creative intent – can often be achieved by abusing our 
linguistic containers of meaning than by treating them 
with the sincerity that the Conduit metaphor assumes. 
Consider the case of verbal irony, in which a speaker 

deliberately chooses containers that are pragmatically ill-
suited to the conveyance of their contents. For instance, 
the advertising container “If you only see one [X] this 
year, make it this one” assumes that [X] denotes a 
category of event – such as “romantic comedy” or “movie 
about superheroes” – with a surfeit of available members 
for a listener to choose from. When [X] is bound to the 
phrase “comedy about Anne Frank” or “musical about 
Nazis”, the container proves too hollow for its content, 
and the reader is signaled to the presence of playful irony. 
Though such a film may well be one-of-a-kind, the ill-
fitting container suggests there are good reasons for this 
singularity that do not speak to X’s quality as an artistic 
event. Yet if carefully chosen, an apparently inappropriate 
container can communicate a great deal about a speaker’s 
relationship to the content conveyed within, and as much 
again about the speaker’s relationship to their audience. 
 As more practical limitations are placed on the form of 
linguistic containers, the more incentive one has to exploit 
or abuse containers for creative ends. Consider the use of 
Twitter as a communicative medium: writers are limited 
to micro-texts of no more than 140 characters to convey 
both their meaning and their attitude to this meaning. So 
each micro-text, or tweet, becomes more than a container 
of propositional content: each is a brick in a larger edifice 
that comprises the writer’s online personae and textual 
aesthetic. Many Twitter users employ irony and metaphor 
to build this aesthetic and thus build up a loyal audience 
of followers for their world view. Yet Twitter challenges 
many of our assumptions about irony and metaphor. Such 
devices must be carefully modulated if an audience is to 
perceive a speaker’s meaning in the playful (mis)match of 
a linguistic container to its contents. Failure to do so can 
have serious repercussions when one is communicating to 
thousands of followers at once, with tweets that demand 
concision and leave little room for nuance. It is thus not 
unusual for even creative tweets to come packaged with 
an explicit tag such as #irony, #sarcasm or #metaphor.  
 Metaphor and irony are much-analysed phenomena in 
social media, but this paper takes a generative approach, 
to consider the production rather than the analysis of 
creative linguistic phenomena in the context of a fully- 
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autonomous computational agent – a Twitterbot – that 
crafts its own metaphorical and ironical tweets from its 
own knowledge-base of common-sense facts and beliefs. 
How might such a system exhibit a sense of irony that 
human users will find worthy of attention, and how might 
this system craft interesting metaphoric insights from a 
knowledge-base of everyday facts that are as banal as 
they are uncontentious? We shall explore the variety of 
linguistic containers at the disposal of this agent – a real 
computational system named @MetaphorMagnet – to 
better understand how such containers can be playfully 
exploited to convey ironic, witty or thought-provoking 
views on the world. With @MetaphorMagnet we aim to 
show that interesting messages are not crafted from 
interesting contents, or at least not necessarily so. Rather, 
effective tweets emerge from an appropriate if non-
obvious combination of familiar linguistic containers with 
unsurprising factual fillers. In support of this view, we 
shall present an empirical analysis of the assessment of 
@MetaphorMagnet’s uncurated outputs by human judges. 
 Just as one can often guess the contents of a physical 
container by its shape, one can often guess the meaning of 
a linguistic container by its form. We become habituated 
to familiar containers, and just as we might imagine our 
own uses for a physical container, we often pour our own 
meanings into suggestive textual forms. For in language, 
meaning follows form, and readers will generously infer 
the presence of meaning in texts that are well-formed and 
seemingly the product of an intelligent entity, even if this 
entity is not intelligent and any meaning is not intentional. 
Remarkably, Twitter shows that we willingly extend this 
generosity of interpretation to the outputs of bots that we 
know to be unthinking users of wholly aleatoric methods. 
Twitterbots exploit this placebo effect – wherein a well-
formed linguistic container is presumed to convey a well-
founded semantic content – by serving up linguistic forms 
that readers tacitly fill with their own meanings. We aim 
to empirically demonstrate here that readers do more than 
willingly suspend their disbelief, and that a well-packaged 
linguistic form can seduce readers into seeing what is not 
there: a comprehensible meaning, or at least an intent to 
be meaningful. We do this by evaluating two metaphor-
generating bots side-by-side: a rational, knowledge-based 
Twitterbot named @MetaphorMagnet vs. an aleatoric and 
largely knowledge-free bot named @MetaphorMinute. 

Digital Surrealists:  La Règle Du Jeu 
Most Twitterbots are simple, rule-based systems that use 
stochastic methods to explore a loosely-defined space of 
texual forms. Such bots are high-concept, low-complexity 
text-production mechanisms that transplant the aleatoric 
techniques of surrealist writers – from André Breton to 
William Burroughs and Brion Gysin – into the realms of 
digital content, social networking and online publishing. 
Each embodies a language game with its own generative 
rules, or what Breton called “la règle du jeu.” Yet Breton, 
Burroughs and Gysin viewed the use of aleatorical rules 
as merely the first stage of a two-stage creation process: at 

this first stage, random recombinant methods are used to 
confect candidate texts in ways that, though unguided by 
meaning, are also free of the baleful influence of cliché; at 
the second stage, these candidates are carefully filtered by 
a human, to select those that are novel and interesting. 
Most bots implement the first stage and ignore the second, 
pushing the task of critiquing and filtering candidate texts 
onto the humans who read and selectively re-tweet them.  
 Nonetheless, some bots achieve surprising effects with 
the simplest language tools. Consider @Pentametron, a 
bot that generates accidental poetry by re-tweeting pairs 
of random tweets of ten syllables apiece (for an iambic 
pentameter reading) if each ends on a rhyming syllable. 
When the meaning of each tweet in a couplet coheres with 
the other, as in “Pathetic people are everywhere” |“Your 
web-site sucks, @RyanAir”, the sum of tweets produces 
an emergent meaning that is richer and more resonant 
than that of either tweet alone. Trending social events 
such as the Oscars or the Super Bowl are especially 
conducive to just this kind of synchronicity, as in this 
fortuitous pairing: “So far the @SuperBowl commercials 
blow.” | “Not even gonna watch the halftime show.”  
 In contrast, a bot named @MetaphorMinute wears its 
aleatoric methods on its sleeve, for its tweets – such as “a 
haiku is a tonsil: peachblow yet snail-paced” – are not so 
much random metaphors as random metaphor-shaped 
texts. Using a strategy that stresses quantity over quality, 
this bot instantiates that standard linguistic container for 
metaphors – the copula frame “X is a Y” – with mostly 
random word choices every two minutes. Interestingly, its 
tweets are as likely to provoke a sense of mystification 
and ersatz profundity as they are total incomprehension. 
Yet bots such as @Pentametron and @MetaphorMinute 
do not generate their texts from the semantic-level up; 
rather, they manipulate texts at the word-level, and thus 
lack any sense of the meaning of a tweet, or any rationale 
for why one tweet might be better – which is to say, more 
interesting, more apt or more re-tweetable – than others.  
 The Full-FACE poetry generator of Colton et al. (2012) 
also uses a template-guided version of the cut-up method 
to mash together semantically-coherent text fragments in 
a way that – much like @Pentametron – obeys certain 
over-arching constraints on metre and rhyme. These text 
fragments come from a variety of online sources, ranging 
from short tweets to long news articles. News stories are a 
rich source of readymade phrases that convey resonant 
images, and these can be clipped from a news text using 
standard NLP techniques, while tweets that use affect-rich 
language can also be extracted automatically via standard 
sentiment analysis lexica and tools. Thus, a large stock of 
resonant similes, such as “blue as a blueberry” or “hot as 
a sauna” can be extracted from the Web using a search 
engine (Veale, 2014), since the simile frame “as X as Y” 
is specific enough to query for, and promiscuous enough 
to match, a rich diversity of typical X:Y associations. 
These associations can then be recast in a variety of poetic 
forms to make their clichéd offerings seem fresh again, as 
in “Blueberry-blue overalls” or “sauna-hot jungle.” 
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 Indeed, the very act of juxtaposing clichés can itself be 
a creative act, as evidenced both by the success of the cut-
up method in general and that of specific cut-ups in 
particular. Consider William Empson’s withering analysis 
of the persnickety, cliché-hating George Orwell, whom 
Empson called “the eagle eye with the flat feet” (quoted in 
Ricks [1995:356], who admires Empson’s “audacious 
compacting of clichés”). The Full-FACE system is just 
one of many CC systems that use an autonomous variant 
of Burroughs and Gysin’s cut-up method to integrate tight 
constraints on form with loose constraints on meaning. 
 Breton famously stated that “Je ne veux pas changer la 
règle du jeu, je veux changer de jeu.” Twitterbots do not 
change or transcend their own rules, but different bots do 
represent different language games with their own rules. 
So to change the game, a CC developer can simply build a 
new bot, to exploit a different set of tropes and linguistic 
containers. It is rare for any one Twitterbot to incorporate 
a diverse set of tropes and production mechanisms; each 
typically follows Breton’s experimentalist approach to art 
in its random sampling of a specific space of possibilities. 
Each bot thus forms its own art installation, to showcase a 
single generative idea. @MetaphorMagnet, the bot at the 
heart of this paper, represents a departure from this norm, 
insofar as it exploits a wide range of tropes and rendering 
strategies, it employs diverse sources of knowledge, and it 
applies a variety of reasoning styles to generate surprising 
conclusions from what is otherwise a stock of banal facts. 
But does this added sophistication – bought at the cost of 
increased system complexity and knowledge-engineering 
effort – result in tweets that are seen as more meaningful, 
novel, apt or retweetable by human users? It is this point 
that exercises us most in the coming sections. 

The Placebo Effect : Trope-A-Dope 
We humans obtain more mileage than we care to admit 
from templates, tropes and other “bot” tricks for linguistic 
creativity. Consider what Matthew McGlone and Jessica 
Tofighbakhsh (1999) call the Keats heuristic, an insight 
into creative language use that owes as much to Nietzsche 
(“we sometimes consider an idea truer simply because it 
has a metrical form and presents itself with a divine skip 
and jump”) as to the poet John Keats (“Beauty is truth, 
truth beauty”). McGlone and Tofighbakhsh (2000) show 
that when presented with uncommon maxims or proverbs 
with internal rhyme (e.g. “woes unite foes”), subjects tend 
to view these as more insightful about the world than the 
equivalent paraphrases with no internal rhyme at all (e.g. 
“troubles unite enemies”). While the Keats heuristic is not 
exactly a license to pun, it is an incentive to rhyme, and to 
give as much weight (or more still) to superficial aspects 
of poetry generation as to deep semantics and pragmatics. 
Indeed, the heuristic is tacitly central to the operation of 
virtually every computational creativity (CC) approach to 
poetry generation (e.g. Milic, 1970; Chamberlain & Etter, 
1983; Gervás, 2000; Manurung et al. 2012; Veale, 2013). 
If human poets ask questions first and rhyme later, CC 
systems typically rhyme first and ask questions later, if at 

all. For if the human jury in the O.J. Simpson trial could 
be turned against bald facts with the Keatsian “If the glove 
don’t fit you must acquit”, readers of computer-generated 
poetry can be persuaded to see deliberate meaning and 
resonance in any output that has a “divine skip and jump.”  
 There is something undeniably special about poetry, 
whether it is the gentle poetry of William Shakespeare’s 
“Shall I compare thee to a summer’s day” or the rough 
poetry of Johnnie Cochrane’s “If the glove don’t fit you 
must acquit”. Milic (1970), an early CC pioneer, argues 
that while poetry “is more difficult to write than prose” it 
offers other freedoms to writers due to the willingness of 
readers to “interpret a poem, no matter how obscure, until 
he has achieved a satisfactory understanding.” What then 
of the enigmatic tweets of bots like @MetaphorMinute, 
whose obscurity is a function of random word choice and 
whose surface forms are not designed to make any sense 
at all? Milic argues that computer poetry serves a useful 
role other than its obviously generative one, by alerting us 
to “the curious behavior of familiar words in unfamiliar 
combinations.” Behaviour that makes perfect sense when 
dealing with the writings of a gifted human poet, such as 
our tendency to “interpret an utterance by making what 
concessions are necessary on the assumption that a writer 
has something in mind of which the utterance is the sign”, 
is, argues Milic, “inappropriate when the speaker is a 
computer.” Yet Twitterbots benefit from such concessions 
and assumptions whether or not followers know them to 
be bots. This placebo effect is especially pronounced in 
the coining of would-be metaphors, leading Milic to note 
“how readily we accept metaphor as an alternative to 
calling a sentence nonsensical.” @MetaphorMinute and 
other aleatoric bots wring maximal value from this insight 
by devising texts that they themselves cannot distinguish 
from nonsense. So this begs an important question: are the 
meanings imposed on a random text by a creative human 
of comparable value to those conveyed by a bot with its 
own model of the world and its own insights to tweet?   

Building Metaphors : Theory and Practice 
What might it mean for a bot to have “something in mind 
of which [its] utterance is the sign”? When it comes to 
metaphor generation, we might expect that our bot would 
generate its figurative tweets from a conceptual model of 
the world as it sees it, in a way that accords with a sound 
theory of how and why humans actually use metaphor. For 
the latter, AI offers us a range of models to choose from.  
 Computational approaches to metaphor divide into four 
broad classes: the categorial, the corrective. the analogical 
and the schematic. Categorial approaches view metaphor 
as a means to reconceptualize one idea by placing it into a 
taxonomic category strongly associated with another (see  
Hutton, 1982; Way, 1991; Glucksberg, 1998). Corrective 
approaches view metaphor as an inherently anomalous 
deviation from literal language, and strive to recover the 
corresponding literal meaning of any figurative statement 
that violates its lexico-semantic norms (see Wilks, 1978; 
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Fass, 1991). The analogical approaches aim to capture the 
relational parallels that allow our representation of an idea 
in one domain, the source, to be systematically projected 
onto our mental representation of an idea in another, the 
target (see Gentner et al., 1989; Veale and Keane, 1997). 
Finally, schematic approaches aim to explain how related 
linguistic metaphors arise as surface manifestions of deep 
seated cognitive structures called Conceptual Metaphors 
(Lakoff & Johnson, 1980; Carbonell, 1981; Martin, 1990; 
Veale & Keane, 1992). Each approach has its own merits, 
but none offers a complete computational solution. Bots 
that aim for a general competence in metaphor must thus 
implement a selective hybrid of multiple approaches. Yet 
each approach also requires its own source of knowledge. 
Categorial approaches require a comprehensive taxonomy 
of flexible categories that can embrace atypical members 
on demand. Corrective approaches are built on a substrate 
of literal case-frames onto which deviant usages can be 
correctively projected. Analogical approaches assume an 
inventory of graph-theoretic representations of concepts, 
from which a structure-mapping engine can eke out its 
sub-graph isomorphisms. Schematic approaches rely on a 
stock of Conceptual Metaphors (CMs) – such as Life is a 
Journey or Theories are Buildings – to unearth the deep 
structures beneath the surface of diverse linguistic forms.  
 Though hybrid approaches demand multiple sources of 
knowledge, there exist public Web services that integrate 
this knowledge with the appropriate means of using it for 
metaphor. The Thesaurus Rex Web service of Veale & Li 
(2013) provides a highly divergent system of fine-grained 
categorizations that allows a 3rd-party client system to e.g. 
determine that War and Divorce have each been viewed 
as kinds of destructive thing, traumatic event and severe 
conflict in the texts of the Web. The Metaphor Eyes Web 
service of Veale & Li (2011) is a rich source of relational 
norms – also harvested at scale from Web texts – such as 
that businesses earn profits and pay taxes, or that religions 
ban alcohol and believe in reincarnation. The Metaphor 
Magnet service of Veale (2014) offers a rich source of the 
stereotypical properties and behaviors of familiar ideas, 
and provides the means to retrieve salient CMs from the 
Google n-grams (Brants & Franz, 2006) which can then 
be further elaborated to create novel linguistic metaphors. 
 @MetaphorMagnet relies on each of these public Web 
services to generate the conceptual conceits that underpin 
its figurative tweets. For instance, it uses Thesaurus Rex 
to provide the categorization insights that it then packages 
as odd-one-out lists or as faux-dictionary definitions. It 
uses the Metaphor Eyes service to provide the relational 
structures it needs to perform structure mapping and thus 
concoct original analogies and dis-analogies. And it uses 
the Metaphor Magnet service to access the stereotypical 
properties and behaviors of ideas, and to juxtapose these 
properties via resonant contrasts and norm contraventions. 
Once the conceptual chassis of a metaphor is constructed 
in this way, it is then packaged in an apt linguistic form.  

Building Strings:  Trope-On-A-Rope 
CMs such as Life Is A Journey and Politics Is A Game are 
more than productive deep-structures for the generation of 
whole families of linguistic metaphors; they also provide 
the conceptual mappings that shape our habitual thinking 
about such familiar ideas as Life, Love, Politics and War. 
Politicians and philosophers exploit conceptual metaphors 
to frame an issue and shape our expectations; when a CM 
fails to match our own experience, we reject it and switch 
to a more apt metaphor. So a metaphor-generating bot can 
thus create a thought-provoking opposition by pitting one 
CM against another that advocates a conflicting view of 
the world. The following tweet from @MetaphorMagnet 
uses this approach to contrast two views on #Democracy: 

To some voters, democracy is an important cornerstone. 
To others, it is a worthless failure. 

 #Democracy= #Cornerstone  #Democracy= #Failure 

The CM Democracy Is A Cornerstone (of society) is often 
used to frame political discussions, and can be seen as an 
specialization of the CM Society Is A Building, itself an 
elaboration of the CM Organization Is Physical Structure 
(see Grady, 1997). Yet the importance of cornerstones to 
the buildings they anchor finds a sharp contrast in the 
assertion that Democracy Is A Failure. Each of these 
affective claims is so commonly asserted that they can be 
found in the Google n-grams, a large database of short 
fragments of frequent Web texts. The 4-gram “democracy 
is a cornerstone” has a frequency of 91 in the Google n-
grams, while the 4-gram “democracy is a failure” has a 
frequency of 165. These n-grams, which suggest potential 
CMs for @MetaphorMagnet, are elaborated with added 
detail via the Metaphor Magnet Web service, which tells 
the bot that the stereotypical cornerstone is important and 
the stereotypical failure is worthless. The following tweet 
makes similar use of CMs found in the Google n-grams, 
but renders the conflict in a different linguistic container: 

Remember when tolerance was promoted by crusading 
liberals? Now, tolerance is violence that only fearful 

appeasers can avoid. 

The bot is guided here by the suggestive Google 3-gram 
“Tolerance for Violence” (frequency=1353), but it does 
not directly contrast the ideas  #Tolerance and #Violence. 
Instead, it finds a potential analogy in this juxtaposition, 
between the promoters of #Tolerance (which it renders as 
crusading liberals) and the opponents of #Violence 
(which it renders as fearful appeasers). The choice of 
stereotypical properties (crusading and fearful) is driven 
by the bot’s need to create a resonant semantic opposition. 
The bot omits the hashtags #Tolerance=#Violence from 
this tweet due to the confines of Twitter’s 140-character 
limit. But it can also choose to render a complex conceit 
across two successive tweets, as in the following pair:  
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Remember when research was conducted by prestigious 
philosophers?  #Research= #Fruit  #Philosopher= #Insect 

Now, research is a fruit eaten only by lowly insects. 
 #Research= #Fruit  #Philosopher= #Insect 

@MetaphorMagnet uses a number of packaging strategies 
to turn a figurative comparison into an ironic observation, 
ranging from the use of an explicit #irony hashtag (which 
is commonplace on Twitter) to the use of “scare” quotes 
to focus on the part of a tweet most deserving of disbelief. 
The following tweet showcases both of these strategies: 

 #Irony: When some chefs prepare "fresh" salads the way 
apothecaries prepare noxious poisons. 
 #Chef= #Apothecary  #Salad= #Poison 

Irony offers a concise means of contrasting two points of 
view: that which is expected and the disappointing reality. 
By comparing the preparation of salads – the “healthy” 
option on most menus – to the preparion of poisons, this 
analogy undermines the expectation of healthfulness and 
suggests that some salads are noxious and chemical-filled. 
The real world is filled with situations in which naturally 
antagonistic properties are found in surprising proximity. 
These situations, if expressed in the right linguistic form, 
can be elevated to the level of situational irony. Consider, 
for instance, the following @MetaphorMagnet tweet:   

 #Irony: When the timers that are found in enjoyable 
games activate gruesome bombs.  #Enjoyable= #Gruesome 

It is important to stress that @MetaphorMagnet does not 
simply fill linguistic templates with related words. Rather, 
the above tweet is constructed at the knowledge-level, by 
a bot that intentionally seeks out stereotypical norms that 
are related (e.g. by a pivotal idea timer) yet which can be 
placed into antagonistic juxtapositions around this pivot. 
In effect, the goal of the linguistic rendering is to package 
a knowledge-level conceit – typically a conflict of ideas 
and properties – in a tweet-sized narrative. For example, 
the following tweet is rendered as a narrative of change: 

To join and travel in a pack: This can turn pretty girls 
into ugly coyotes.  #Girl= #Coyote 

 Twitter offers unique social affordances that allow a 
bot to elevate almost any contrast of ideas into a dramatic 
narrative. Rather than talk of generic liberals or appeasers, 
a bot can give these straw men real names, or at least 
invent fake names that look like the real thing and which, 
as Twitter handles, seem wittily apropos to the views that 
are espoused. In this way, by imagining its central conceit 
as a topic of a vigorous debate by real people, a bot can 
turn an abstract metaphor into a concrete situation with its 
own colorful participants. Consider the social debate that 
is made personal in this tweet from @MetaphorMagnet: 

. @war_poet says history is a straight line 
.@war_prisoner says it is a coiled chain 

 #History= #Line  #History= #Chain 

The handles @war_poet and @war_prisoner are invented 

by @MetaphorMagnet to suit, and amplify, the figurative 
views that they are advanced in the tweet, by using a mix 
of relational knowledge (from the Metaphor Eyes service) 
and language data (via the Google n-grams). Since poets 
write poems about the wars that punctuate history, and 
poems contain lines, the 2-gram “war poet” is recognized 
as an apt handle for an imaginary Twitter user who might 
advance a view of history as a line. In this case the handle 
@war_poet really does name a real Twitter user, but this 
only adds to the sense that Twitterbot confections are a 
new kind of interactive theatre and performance art (see 
Dewey, 2014). Note that the more profound aspects of 
this contrast are not appreciated by @MetaphorMagnet 
itself, or at least not yet. For example, the bot does not yet 
appreciate what it means for history to be a straight line, 
and while it knows enough to invent the intriguing handle 
@war_prisoner, neither does it appreciate what it might 
mean to be a prisoner of history, enslaved in a repeating 
cycle of war. The placebo effect is not a binary effect: it 
benefits by degrees, and can benefit knowledge-rich bots 
just as much as knowledge-free bots. Our bots will always 
evoke in we humans more than they themselves can ever 
appreciate, yet this may itself be a key part of CC’s allure.  

Bot Vs. Bot : The Metaphor Challenge 
@MetaphorMagnet differs from @MetaphorMinute in a 
number of key ways. For one, its mechanics are informed 
by Lakoff and Johnson’s Conceptual Metaphor Theory 
and a range of computational approaches. For another, it 
draws on considerable semantic and linguistic resources, 
from a large knowledge-base of conceptual relations and 
stereotypical beliefs to the linguistic diversity of the 
Google n-grams. All of @MetaphorMagnet’s tweets – all 
its hits and all its misses – are open to public scrutiny on 
Twitter. But to empirically evaluate the success of the bot 
as a knowledge-based, theory-driven producer of novel, 
meaningful and retweet-worthy metaphors, we turn to the 
crowdsourcing platform CrowdFlower, where we conduct 
a comparative evaluation of @MetaphorMagnet and its 
closest knowledge-free counterpart, @MetaphorMinute. 
The latter, designed by noted bot-maker Darius Kazemi, 
uses a wholly aleatoric approach to metaphor generation 
yet has over 500 followers on Twitter that do not mind its 
one-every-two-minutes scattergun approach to generation. 
@MetaphorMinute crafts metaphors by filling a template 
with nouns and adjectives that are chosen more-or-less at 
random, to produce inscrutable tweets such as “a cubit is 
a headboard: stational yet tongue-obsessed.”  
 We chose 60 tweets at random from the past outputs of 
each Twitterbot. CrowdFlower annotators, who were each 
paid a small sum per judgment, were not informed of the 
origin of any tweet, but simply told that each was selected 
from Twitter because of its metaphorical content. We did 
not want annotators to actively suspend their disbelief by 
knowingly dealing with bot outputs. Annotators were paid 
to rate the content of each tweet along three dimensions, 
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Comprehensibility, Novelty and likely Retweetability, and 
to rate all three dimensions on the same scale: Very Low 
to Medium Low to Medium High to Very High. Ten 
annotations were solicited for each dimension of each 
tweet, though the responses of likely scammers (non-
engaged annotators) were later removed from the dataset. 
Tables 1 through 3 present the distributions of mean 
ratings per tweet, for each dimension and each Twitterbot. 

Table 1. Relative Comprehensibility of each bot 

 So more than half of @MetaphorMagnet’s tweets were 
ranked as having very high comprehensibility, while less 
than one third of @MetaphorMinute’s tweets are so 
ranked. More surprising, perhaps. is the result that 
annotators found more than half of @MetaphorMinute’s 
wholly random metaphors to have medium-high to very-
high comprehensibility. This Twitterbot’s use of abstruse 
terminology, such as stational and peachblow, may be a 
factor here, as might the bot’s use of the familiar copula 
container X is Y for its metaphors, which may well seduce 
annotators into believing that an apparent metaphor really 
does have a comprehensible meaning, if only one were to 
expend enough mental energy to actually discern it. 

Table 2. Comparative Novelty of each bot’s tweets 

 The dimension Novelty yields results that are equally 
surprising. While half of @MetaphorMagnet’s metaphors 
are rated as having very-high novelty in Table 2, almost 
two-thirds of @MetaphorMinute’s tweets are just as 
highly rated. However, we should not be overly surprised 
that @MetaphorMinute’s bizarre juxtapositions of rare or 
unusual words, as yielded by its unconstrained use of 
aleatoric techniques, are seen as more unusual than those 
word juxtapositions arising from @MetaphorMagnet’s 
controlled use of attested Web n-grams and stereotypical 

knowledge. As shown by Giora et al. (2004), novelty is 
neither a source of pleasure in itself nor is it a reliable 
benchmark of creativity. Rather, pleasurability derives 
from the recognition of useful novelty, that is, novelty that 
can be understood and appreciated relative to the familiar.  

Table 3.  Relative Retweetability of each bot’s tweets 

On Twitter, useful exploitation is frequently a matter of 
social reach. A tweet is novel and useful to the extent that 
it attracts the attention of Twitter users and is deemed 
worthy of re-tweeting to others in one’s social circle. Our 
third dimension, Re-Tweetability, reflects the likelihood 
that an annotator would ever consider re-tweeting a given 
metaphorical tweet to others. Though we ask annotators 
to speculate here – neither bot has enough followers to 
perform a robust statistical analysis of actual retweet rates 
– the results largely conform to our expectations. The 
results of Table 3 show retweetability to be a matter of 
novelty and comprehensibility, and not just novelty alone. 
Though annotators are not generous with their Very-High 
ratings for either bot, @MetaphorMagnet’s tweets are 
judged to be considerably more re-tweetable than the 
largely random offerings of @MetaphorMinute. 
   Comprehensibility and comprehension are two different 
things: while a Computational Creativity (CC) version of 
the placebo effect may well foster a belief that a given 
tweet has a coherent meaning, it cannot actually provide 
this meaning. Meaning is the product of interpretation, 
and interpretation is often hard. Milic (1970) notes that in 
a context that licences a poetic interpretation, such as one 
in which a reader is told that a particular text is a 
metaphor, readers are more likely to accept that the text – 
as inscrutable as it may be – has a metaphorical meaning 
rather than dismiss it as nonsense. Recall that over 75% of 
@MetaphorMagnet’s tweets and over 50% of 
@MetaphorMinute’s tweets are judged as having 
medium-high to very-high comprehensibility. We thus 
need to look deeper, to determine whether raters can 
actually back up these judgments with actual meanings. 
 In a second CrowdFlower experiment, we make raters 
work harder, to reconstruct a partial tweet by adding the 
missing information that will make it whole and apt again. 
That is, we employ a cloze test format for this experiment, 
by removing from each tweet the pair of key qualities that 
anchor the tweet and make its comparison of ideas seem 
meaningful and apt. For @MetaphorMagnet, for example, 
we remove the properties detailed and vague in this tweet: 

Comprehensibility @Metaphor @Metaphor 
 Magnet Minute 

       Very Low 11.6% 23.9% 
       Med. Low 13.2% 22.2% 

       Med High 23.7% 22.4% 

       Very High 51.5% 31.6% 

Tweet Novelty @Metaphor @Metaphor 
 Magnet Minute 

       Very Low 11.9% 9.5% 

       Med. Low 17.3% 12.4% 
       Med High 21% 14.9% 

       Very High 49.8% 63.2% 

Re-Tweetability @Metaphor @Metaphor 
 Magnet Minute 

       Very Low 15.5% 41% 
       Med. Low 41.9% 34.1% 

       Med High 27.4% 15% 

       Very High 15.3% 9.9% 
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To some freedom fighters, freedom is a detailed recipe. To 
others, it is a vague dream. #Freedom=#Recipe 

#Freedom=#Dream 

For @MetaphorMinute, we excise the pair of qualities 
hippy and revisional from the following tweet: 

a flatfoot is a houseboat: hippy and revisional 

For each tweet from each bot, we blank out a pair of 
original qualities as above; this pairing is the answer that 
is sought from human judges. We also choose 4 distractor 
pairs for each original pair, by selecting pairs from other 
tweets from the same bot. As in our first experiment, we 
chose 60 tweets at random from the past outputs of each 
bot, and 10 ratings were solicited for each. Annotators 
were presented with a tweet in which the key properties 
were blanked out (as above), and given five randomly 
ordered pairs of possible fillers to choose from. To make 
the results of the experiment comparable to those of the 
1st experiment (Tables 1,2,3), we obtain the mean aptness 
of each tweet, so that e.g. if 7 out of 10 raters correctly 
choose the original pairing, then that tweet is deemed to 
have an aptness of 0.7. We then place these aptness scores 
into bands, where the Very Low band = 0 to 0.25, Medium 
Low = 0.26 to 0.5, Medium High = 0.51 to 0.75, and Very 
High = 0.76 to 1. By calculating the distribution of tweets 
to each band, we can determine e.g. the percentage of 
tweets from each bot that are put into the Very High band. 
 Our hypothesis is rather straightforward: if tweets are 
linguistic containers that are carefully crafted to convey a 
particular meaning, then it should be easier to select the 
missing pair of qualities that make this meaning whole; if, 
on the other hand, the tweet is all there is, and its content 
is chosen mostly at random, then raters will choose the 
right pairing with no more success than random selection. 
 The results reported in Table 4 bear out our hypothesis.  

Table 4.  Relative Aptness of each bot’s metaphors 

The placebo effect in CC can lead us to appreciate a bot’s 
tweets as meaningful but cannot tell us what this meaning 
should be. Though the results above may seem a foregone 
conclusion, as @MetaphorMagnet’s tweets are designed 
to communicate a fully recoverable meaning while those 
of @MetaphorMinute are not, this is surely what it means 
to engage in real communication: to design an utterance 
so that an intended meaning is re-created, in whole or in 
part, in the mind of an intelligent, receptive audience.  

Fake It ‘Til You Make It 
The Placebo Effect benefits all Computational Creativity 
systems, from superficial users of surealistic techniques to 
sophisticated knowledge-based AI systems. That this is so 
should come as no surprise, for we humans also benefit 
from the effects of an active and receptive mind when 
dealing with other people. Just as a prior belief in the 
efficacy of a medical intervention can lead us to perceive 
(and experience) a post-hoc benefit from an otherwise 
empty treatment, a prior belief in the meaningfulness of a 
verbal intervention can lead us to perceive (and enjoy) a 
creative meaning where none was ever intended. When a 
CC system uses superficial techniques to convey a sense 
of understanding and profundity with otherwise shallow 
linguistic forms, as in Weizenbaum’s (1965) infamous 
ELIZA system, the label “ELIZA Effect” proves to be an 
apt one (Hofstadter, 1995). However, we humans are also 
subject to an ELIZA effect of our own, insofar as we often 
do others the courtesy of assuming their utterances to be 
freighted with real meaning and creative intent, and will 
often work hard to uncover that meaning for them. 
 At one time or another, we have all relied on catch-
phrases, clichés, slogans, idioms, canned jokes and other 
half-empty linguistic containers to suggest to others that 
we have deeper meanings in mind, or have something 
more profound to offer, than we actually do.  In a famous 
polemical essay from 1946, George Orwell excoriates 
speakers of English for their reliance on jargon, foreign 
words and empty phraseology as a substitute for thoughts 
of real substance, while Geoff Pullum (2003) upbraids 
modern speakers for a grating over-reliance on “multi-use, 
customizable, instantly recognizable, time-worn, quoted 
or misquoted phrases or sentences that can be used in an 
entirely open array of different jokey variants by lazy 
journalists and writers.” These “phrases for lazy writers 
in kit form” are not that different from the template-based 
language games played by superficial Twitterbots, and 
though we humans fill our templates – such as “X is the 
new black”, “In X no one can hear you scream” or “if the 
Eskimos have N words for snow then Xs surely have as 
many for Y” – with lexical fillers that are contextually apt, 
we employ our templates to be just as provocative, and to 
imply or to suggest more than we actually mean.   
 To see machines work with humans in the construction 
of real figurative meanings, readers are directed to a 
variant of @MetaphorMagnet – a related bot named 
@MetaphorMirror – that tweets its own novel metaphors 
in response to breaking news events. This bot’s metaphors 
are not offered as informative summaries of the news, but 
as figurative lenses through which followers can view the 
news and adopt a novel perspective on human affairs. 
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Abstract 

In this paper we explore Computer-Aided Humor 
(CAH), where a computer and a human collaborate to be 
humorous. CAH systems support people’s natural desire 
to be funny by helping them express their own 
idiosyncratic sense of humor. Artificial intelligence 
research has tried for years to create systems that are 
funny, but found the problem to be extremely hard. We 
show that by combining the strengths of a computer and 
a human, CAH can foster humor better than either alone. 
We present CAHOOTS, an online chat system that 
suggests humorous images to its users to include in the 
conversation. We compare CAHOOTS to a regular chat 
system, and to a system that automatically inserts funny 
images using an artificial humor-bot. Users report that 
CAHOOTS made their conversations more enjoyable 
and funny, and helped them to express their personal 
senses of humor. Computer-Aided Humor offers an 
example of how systems can algorithmically augment 
human intelligence to create rich, creative experiences. 

Introduction 
Can a computer be funny? This question has intrigued the 
pioneers of computer science, including Turing (1950) and 
Minsky (1984). Thus far the answer seems to be, “No.”  
While some computer errors are notoriously funny, the 
problem of creating Computer-Generated Humor (CGH) 
systems that intentionally make people laugh continues to 
challenge the limits of artificial intelligence. 

State-of-the-art CGH systems are generally textual. CHG 
systems have tried to do everything from generating word-
play puns (Valitutti 2009) (e.g., “What do you get when 
you  cross  a  fragrance  with  an  actor?  A  smell  Gibson”) and 
identifying contexts in which it would be funny to say, 
“That’s   what   she   said,”   (Kiddon and Yuriy 2011) to 
generating I-like-my-this-like-my-that jokes (Petrovic and 
David 2013) (e.g.,   “I like my coffee like I like my war, 
cold”) and combining pairs of headlines into tweets such as, 
“NFL:   Green   Bay   Packers   vs. Bitcoin – live!”1 However, 
none of these systems has demonstrated significant success. 

Despite the challenge that computers face to automatically 
generate humor, humor is pervasive when people use 
computers. People use computers to share jokes, create 
funny videos, and generate amusing memes.  Humor and 
                                                           
1 http://www.twitter.com/TwoHeadlines  

laughter have many benefits. Online, it fosters interpersonal 
rapport and attraction (Morkes et al. 1999), and supports 
solidarity, individualization and popularity (Baym 1995). 
Spontaneous humor production is strongly related to 
creativity, as both involve making non-obvious connections 
between seemingly unrelated things (Kudrowitz 2010). 

Computers and humans have different strengths, and 
therefore their opportunity to contribute to humor differs. 
Computers, for example, are good at searching large data 
sets for potentially relevant items, making statistical 
associations, and combining and modifying text and 
images. Humans, on the other hand, excel at the complex 
social and linguistic (or visual) processing on which humor 
relies. Rather than pursuing humor solely through a CGH 
strategy, we propose providing computational support for 
humorous interactions between people using what we call 
Computer-Aided Humor (CAH). We show that by allowing 
the computer and human to work together, CAH systems 
can help people be funny and express their own sense of 
humor. 

We explore the properties of this form of interaction and 
prove its feasibility and value through CAHOOTS 
(Computer-Aided Hoots), an online chat system that helps 
people be funny (Figure 1). CAHOOTS supports ordinary 
text chat, but also offers users suggestions of possibly funny 

 
Figure 1. Images suggested by CAHOOTS in response to chat 
line,  “why  u  late?”  (a),  (b),  and  (e)  are  from  image  search  query  
“funny  late”,  (f)  is  from  query  “funny  why”,  (c)  is  a  canned  

reaction to questions, and (d) is a meme generated on-the-fly.  
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images to include based on the previous text and images in 
the conversation. Users can select choices they find on-
topic or humorous and can add funny comments about their 
choices, or choose not to include any of the suggestions. 
The system was designed iteratively using paid crowd 
workers from Amazon Mechanical Turk and interviews 
with people who regularly use images in messaging.  

We compare CAHOOTS to CGH using a chat-bot that 
automatically inserts funny images, and to ordinary chat 
with no computer humor. The bot uses the same images that 
CAHOOTS would have offered as suggestions, but forcibly 
inserts suggestions into the conversation. Compared to 
these baselines, CAHOOTS chats were rated more fun, and 
participants felt more involved, closer to one another, and 
better able to express their sense of humor. CAHOOTS 
chats were also rated as more fun than ordinary chat. Our 
findings provide insights into how computers can facilitate 
humor.  

Related Work 
In human-human interaction, humor serves several social 
functions. It helps in regulating conversations, building 
trust between partners and facilitating self-disclosure 
(Wanzer et al. 1996). Non-offensive humor fosters rapport 
and attraction between people in computer-mediated 
communication (Morkes et al. 1999). It has been found that 
five percent of chats during work are intended to be 
primarily humorous (Handel and James 2002), and wall 
posts in Facebook are often used for sharing humorous 
content (Schwanda et al. 2012). Despite the popularity and 
benefits of humorous interaction, there is little research on 
how to support humor during computer-mediated 
communication. Instead, most related work focuses on 
computationally generating humor. 
Computational Humor 
Computational humor deals with automatic generation and 
recognition of humor. Prior work has mostly focused on 
recognizing or generating one specific kind of humor, e.g. 
one-liners (Strapparava et al. 2011). While humorous 
images are among the most prominent types of Internet-
based humor (Shifman 2007), little work addresses 
computational visual humor. 

Prior work on CGH systems focus on amusing individuals 
(Dybala 2008; Valitutti et al. 2009). They find humor can 
make user interfaces friendlier (Binsted 1995; Nijholt et al. 
2003). Morkes et al. (1998) study how humor enhances 
task-oriented dialogues in computer-mediated 
communication. HumoristBot (Augello et al. 2008) can 
both generate humorous sentences and recognize humoristic 
expressions. Sjobergh and Araki (2009) designed a 
humorous Japanese chat-bot. However, to the best of our 
knowledge, no prior research has studied collaboratively 
being funny using humans and computers. 

Creativity Support Tools 
CAH is a type of creativity support tool aimed specifically 
at humor generation within online interaction. Shneiderman 
(2007) distinguishes creativity support tools from 
productivity support tools through three criteria: clarity of 
task domain and requirements, clarity of success measures, 
and nature of the user base.  

Creativity support tools take many forms. Nakakoji (2006) 
organizes the range of creativity support tools with three 
metaphors: running shoes, dumbbells, and skis. Running 
shoes improve the abilities of users to execute a creative 
task they are already capable of. Dumbbells support users 
learning about a domain to become capable without the tool 
itself. Skis provide users with new experiences of creative 
tasks that were previously impossible. For users who 
already utilize image-based humor in their chats, 
CAHOOTS functions as running shoes. For the remaining 
users, CAHOOTS serves as skis.  

System Design 
Our system, CAHOOTS, was developed over the course of 
many iterations. At the core of the system lie a number of 
different algorithmic strategies for suggesting images. 
Some of these are based on previous work, some are the 
product of ideas brainstormed in discussions with 
comedians and students who utilize images in messaging, 
and others emerged from observations of actual system use. 
Our system combines these suggestions using a simple 
reinforcement learning algorithm for ranking, based on R-
Max (Brafman and Tennenholtz 2003), that learns weights 
on strategies and individual images from the images chosen 
in earlier conversations. This enabled us to combine a 
number of strategies. 

User Interface 
CAHOOTS is embedded in a web-based chat platform 
where two users can log in and chat with each other. Users 
can type a message as they would in a traditional online 
chat application, or choose one of our suggested humorous 
images. Suggested images are displayed below the text 
input box, and clicking on a suggestion inserts it into the 
conversation. Both text and chosen images are displayed in 
chat bubbles. See Figure 2 for an example. After one user 
types text or selects an image, the other user is provided 
with suggested image responses. 

The Iterative Design Process 
We initially focused on text-based humor suggestions based 
on canned jokes and prior work (Valitutti et al. 2009). 
These suffered from lack of context, as most human jokes 
are produced within humorous frames and rarely 
communicate meanings outside it (Dynel 2009). User 
feedback  was  negative,  e.g.,  “The  Mokes  might  be  funny  for 
a three year old”  and  “The suggestions are very silly.”   
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Based on the success of adding a meme image into 
suggestions, we shifted our focus to suggesting funny 
images. In hindsight, image suggestions offer advantages 
over text suggestions in CAHOOTS for multiple reasons: 
images are often more open to interpretation than text; 
images are slower for users to provide on their own than 
entering text by keyboard; and images provide much more 
context on their own, i.e., an image can encapsulate an 
entire joke in a small space. 

Image Suggestion Strategies 
In this section, we describe our most successful strategies 
for generating funny image suggestions based on context.  

Emotional Reaction Images and gifs 
Many chat clients provide emoticon libraries. Several 
theories of computer-mediated communication suggest that 
emoticons have capabilities in supporting nonverbal 
communications (Walther and Kyle 2001). Emoticons are 
often used to display or support humor (Tossell et al 2012). 
In popular image sharing sites such as Tumblr 2 , users 
respond   to   other   people’s   posts with emotional reaction 
images or gifs. In CAHOOTS, we suggest reaction 
images/gifs based on the emotion extracted from the last 
sentence.  

Previous work on sentiment analysis estimates the emotion 
of an addresser from her/his utterance (Forbes-Riley and 
Litman 2004). Recent work tries to predict the emotion of 
the addressee (Hasegawa et al. 2013). Following this work, 
we first use a lexicon-based sentiment analysis to predict 
the emotion of the addresser. We adopt the widely used 
NRC Emotion Lexicon3. We collect reaction images and 
                                                           
2 http://www.tumblr.com  
3 http://saifmohammad.com/WebPages/lexicons.html 

their corresponding emotion categories from reacticons.com. 
We collect reaction gifs and their corresponding emotion 
categories from reactinggifs.com. Then we suggest reaction 
images and gifs based on one of five detected sentiments: 
anger, disgust, joy, sadness, or surprise. An example of an 
emotional reaction is shown in Figure 3. 

Image Retrieval 
We utilize image retrieval from Bing image4 search (Bing 
image) and I Can Has Cheezburger5 (Cheezburger) to find 
funny images on topic. Since Bing search provides a 
keyword-based search API, we performed searches of the 
form   “funny   keyword(s),”   where   we   chose   keyword(s) 
based on the last three utterances as we found many of the 
most relevant keywords were not present in the last 
utterance alone. We considered both individual keywords 
and combinations of words. For individual words, we used 
the term frequency-inverse document frequency (tf-idf) 
weighting, a numerical statistic reflecting how important a 
word is to a document in a corpus, to select which 
keywords to use in the query. To define tf-idf, let 𝑓(𝑡, 𝑠ି) 
be 1 if term 𝑡 occurred in the 𝑖th  previous utterance. Let 𝑈 
be the set of all prior utterances and write 𝑡 ∈ 𝑢 if term 𝑡 
was used in utterance 𝑢 ∈ 𝑈. Then weighted tf and tf-idf are 
defined as follows: 

wtf = .7𝑓(𝑡, 𝑠ିଵ) + .2𝑓(𝑡, 𝑠ିଶ) + .1𝑓(𝑡, 𝑠ିଷ) 

                                                           
4 http://www.bing.com/images 
5 http://icanhas.cheezburger.com 

 
Figure 4. In response to the utterance, the user chooses a 

suggestion generated by Bing image search with the query 
"funny desert". 

 

 

 
)igure  ��  7he  &$+2276  user  interface  in  a  chat,  with  user¶s  
messages (right in white) and partner's (left in blue). All text is 
user-entered while images are suggested by the computer. The 

system usually offers six suggestions. 

 

 
Figure 3. In response to text with positive sentiment, we 

suggest a positive emotional reaction image. 
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��f = ���
ܰ

ȁ𝑢 ∈ 𝑈ǣ 𝑡 ∈ 𝑢ȁ
 

            tf-��f = wtf כ ��f. 

Here ܰ = Ͷ͵,͵7Ͳ  is the total number of utterances 
collected during prototyping. The weights are designed to 
prioritize words in more recent utterances. An example of a 
single keyword for Bing is shown in Figure 4. 

Combinations of keywords were also valuable. Humor 
theorists argue humor is fundamentally based on 
unexpected juxtaposition. The images retrieved with a 
keyword combination may be funnier or more related to the 
current conversation than images retrieved with a single 
keyword. However, many word pairs were found to 
produce poor image retrieval results. Consequently, we 
compiled a list of common keywords, such as cat and dog, 
which had sufficient online humorous content that they 
often produced funny results in combination with other 
words. If a user mentioned a common funny keyword, we 
randomly pick an adjective or a noun to form a keyword 
combination from the last three utterances. An example of a 
query for a combination of keywords is shown in Figure 5. 

Memes  
Meme images are popular forms of Internet humor. 
Coleman (2012) defines   online   memes   as,   “viral   images,  
videos, and catchphrases under constant modification by 
users”. A   “successful”   meme   is   generally   perceived   as  
humorous or entertaining to audiences.  

Inspired by internet users who generate their own memes 
pictures through meme generation website and then use 
them in conversations in social media sites like Reddit or 
Imgur, our meme generation strategy writes the last 
utterance on the top and bottom of a popular meme 
template. A meme template is an image of a meme 
character without the captions. The template is chosen 
using a machine-learning trained classifier to pick the most 
suitable meme template image based on the last utterance, 
as in Figure 1(d), with half of the text on the top and half on 
the bottom. To train our classifier to that match text 
messages to meme template, we collected training instances 

from the Meme Generator website 6 . This website has 
tremendous numbers of user-generated memes consisting of 
text on templates. In order to construct a dataset for training 
machine learning models, we collected the most popular 
one hundred meme templates and user generated meme 
instances from that site. To filter out the memes that the 
users find personally humorous, we only keep those memes 
with fifty or more “upvotes” (N = 7,419). We use LibLinear 
(Fan et al. 2008), a machine learning toolkit, to build a one-
vs-the-rest SVM multi-class classifier (Keerthi et al. 2008) 
based upon Bag-of-words features. Even though this is 
multi-class classification with one hundred classes, the 
classifier trained in this simple way achieved 53% accuracy 
(compared with a majority-class baseline of 9%).  
 

The fact that the meme's text often matched exactly what 
the user had just typed often surprised a user and led them 
to ask, “are   you   a   bot?” Also note that we have other 
strategies for generating different types of image memes, 
which modify the text, such as the Doge meme illustrated in 
Figure 6. 

Canned Responses 
For certain common situations, we offer pre-selected types 
of funny images. For example, many users are suspicious 
that they are actually matched with a computer instead of a 
real person (which is partly accurate). As mentioned, we 
see users asking their partner if he/she is a bot. As a canned 
response, we suggest the results of keyword-search for 
“funny  dog  computer,” “funny  animal computer,”  or  “funny  
CAPTCHA”. 

Responding to Images with Images 
We observed users often responding to images with similar 
images. For example, a picture of a dog would more likely 
be chosen as a response to a picture of a dog. Hence, the 
respond-in-kind strategy responds to an image chosen from 
a  search  for  “funny keyword”  with  a  second  image  from  the  
same search, for any keyword.  

Another strategy, called the rule-of-three, will be triggered 
after a user selects a respond-in-kind. The rule-of-three will 
perform   an   image   search   for   “many   keyword”   or   “not  
                                                           
6 http://memegenerator.net 

 
)igure  ��    $  “'oge”  meme  e[amSle� 

 

 
Figure 5. An example of an utterance that generated a 
keyword combination cat gerbil, and a resulting image 

retrieved for the search funny cat gerbil. 
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keyword”. An example is shown in Figure 7. The rule-of-
three is motivated by the classic comic triple, a common 
joke structure in humor (Quijano 2012). Comedians use the 
first two points to establish a pattern, and exploit the way 
people's minds perceive expected patterns to throw the 
audience off track (and make them laugh) with the third 
element. In our system, when the last two images are both 
Bing image retrieved with the same keyword, e.g. funny 
dog images, we will suggest a Bing funny image with 
“many”�   keyword   �e.g.   “many   dog”�   or   “no”   �   keyword  
�e.g.  “no  dog”�  image  as  the  third  element. 

In response to images, “LOL”, “amused” or “not-amused” 
reaction images and gifs were suggested to help users 
express their appreciation of humor.  

Ranking Suggestions using Reinforcement Learning 
The problem of choosing images to select fits neatly into 
the paradigm of Reinforcement Learning (RL). Our RL 
algorithm, inspired by R-Max (Brafman and Tennenholtz 
2003), maintains counts at three levels of specificity, for 
number of times a suggestion was offered and number of 
times it was accepted. The most general level of counts is 
for each of our overall strategies. Second, for specific 
keywords,   such   as   “dog,”   we   count how many times, in 
general, users are offered and choose an image for a query 
such  as  “funny  dog.”  Finally, for some strategies, we have a 
third level of specific counts, such as a pair for each of the 
fifty   images   we   receive   from   Bing’s   AP,.   We use the 
“optimistic”  5-Max approach of initializing count pairs as 
if each had been suggested and chosen five out of five 
times. The score of a suggestion is made based on a back-
off model, e.g., for a Bing query  “funny desert”:  if  we  have  
already suggested a particular image multiple times, we will 
use the count data for that particular image, otherwise if we 
have sufficient data for that particular word we will use the 

count data for that word, and otherwise we will appeal to 
the count data we have for the general Bing query strategy. 

Experiments 
To test the feasibility of CAH we performed a controlled 
study. Before the experiment began, we froze the 
parameters in the system and stopped reinforcement 
learning and adaptation. 

Methodology 
Participants were paid Mechanical Turk workers in the 
United States. Each pair of Turkers chatted for 10 minutes 
using: 1) CAHOOTS, our CGH system, 2) plain chat (no 
image suggestions), or 3) a CGH system with computer-
generated images, all using the same interface In the CGH 
system, whenever one user sends out a message, our system 
automatically inserted the single top-ranking funny image 
suggestion into the chat, with   “computer:”   inserted   above  
the message, as is common in systems such as WhatsApp. 
Assignment to system was based on random assignment. 

We also varied the number of suggestions in CAHOOTS. 
We write CAHn to denote CAHOOTS with n suggestions. 
We use CAHOOTS and CAH6 interchangeably (6 was the 
default number determined in pilot studies). The systems 
experimented with were CGH, plain chat, CAH1, CAH2, 
CAH3, CAH6, CAH10.  

A total of 738 participants (408 male) used one of systems, 
with at least 100 participants using each variant. Pairs of 
participants were instructed how to use the system and 
asked to converse for at least 10 minutes. After the chat, 
participants were asked to fill out a survey to evaluate the 
conversation and the system. We asked participants to what 
extent they agree with four statements (based on Jiang et al. 
2011), on a 7 point Likert scale. The four statements were: 

x The conversation was fun. 
x I was able to express my sense of humor in this 

conversation. 
x I felt pretty close to my partner during the 

conversation. 
x I was involved in the conversation. 

Experiments 
Averaged over the chats where our system made 
suggestions (CAH1,2,3,6,10) participants selected an image in 
31% of the turns. In contrast, a field study found emoticons 
to be used in 4% of text messages (Tossell et al. 2012).  

System Variant 
Figure   �   summari]es   participants’   responses   for   the   four  
Likert questions. Results are shown for chat, CGH, and two 
variants of CAHOOTS. P-values were computed using a 
one-sided Mann-Whitney U test. 

 
)igure  ��  7he  “rule  of  three”  strategy  suggests  Sutting  an  

image of many dogs after two dog images. 
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CAHOOTS vs. CGH 

Participants rated CAHOOTS conversations better on 
average than CGH with p-values less than 0.05 for all four 
questions -- more fun, able to express sense of humor, 
closer to partner, and more involved in conversation 

It is also interesting to compare CAH1 to CGH as this 
reflects the difference between one image automatically 
into the conversation and one image offered as a 
suggestion. Here CAH1 got higher response for fun, 
involvement, and closeness than CGH again with p < .05. 
Curiously, participants using CAH1 felt somewhat less able 
to express their senses of humor. 
CAHOOTS vs. plain chat 
CAHOOTS was also rated more fun than plain chat (p < 
.05), and CAHOOTS participants also reported being able 
to express their own sense of humor better than plain chat 
participants (p < .05). For the other two questions 
CAHOOTS was not statistically significantly better than 
plain chat. 

Note that while it may seem trivial to improve on plain chat 
by merely offering suggestions, our earlier prototypes 
(especially with text but even some with image suggestions) 
were not better than plain chat. 

Number of Suggestions 
Figure 9 shows responses to the fun question for different 
numbers of suggestions in CAHOOTS. In general, more 
suggestions makes the conversation more fun, though ten 
suggestions seemed to be too many. This may be because of 
the cognitive load required to examine ten suggestions or 
simply that with many suggestions scrolling is more likely 
to be required to see all image suggestions. 

Effective Image Generation Strategies  
As described earlier we used several different strategies for 
generating images.  Table 1 shows how often each type was 
shown and how often it was selected. The rule-of-three 

(inspired by our meetings with comedians) was suggested 
less often than some other techniques, but the rate at which 
it was selected was higher. Reaction images/gifs were the 
next most frequently selected image strategy. 
 

 # suggestions % chosen 
Bing Images 44,710 10% 
Reaction Images and gifs 4,375 19% 
Meme 709 13% 
Rule-of-three 698 24% 
Cheezburger 537 7% 

Table 1 Selection rate of the top five strategies. 

Limitations 
Since we evaluate our system with paid workers, we have 
only tested the system between anonymous strangers whose 
only commonality is that they are US-based Mechanical 
Turk workers. We also asked workers to indicate with 
whom they would most like to use CAHOOTS: a family 
member, a close friend, an acquaintance, a colleague, or a 
stranger. Workers consistently answer that CAHOOTS 
would be best when chatting with a close   friend  who  “can  
understand their humor.” 

Also, we cannot compare CAHOOTS to every kind of 
CGH. For example, it is possible that users would prefer a 
CGH system that interjects images only once in a few turns 
or only when it is sufficiently confident.  

Qualitative Insights  
We analyzed the content of the text and image messages as 
well as worker feedback from both prototyping and 
experimentation phases. Note participants often remarked 
to one another, quite candidly, about what they liked or 
problems with our system, which helped us improve.  

Anecdotally, feedback was quite positive, e.g., “,t  should  be  
used  for  online  speed  dating!” and “:hen  will   this  app  be  
available for phones  and  whatnot?   ,  want   to  use   it!” Also, 
note that when we offered a small number of suggestions, 
feedback called for more suggestions. In contrast, feedback 
for CGH was quite negative, such as “The  pictures  got  kind  

 
Figure 8. Mean Likert ratings with Standard Error. 7 is 
strongly agree, 1 is strongly disagree, and the statements 
were 1. The conversation was fun. 2. I was able to express 
my sense of humor in this conversation. 3. I felt pretty close 
to my partner during the conversation. 4. I was involved in 
the conversation. 
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Figure 9. Mean and SE for "the conversation was fun" as we 
vary the number of suggestions, with 0 being plain chat. 
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of distracting while I was trying to talk to him/her.” We 
now qualitatively summarize the interactions and feedback. 

Humorous Images Bring New Topics to the Conversation 
Without CAHOOTS image suggestions, most of the chats 
focused on working in Mechanical Turk, which they 
seemed to find interesting to talk about. With suggestions, 
however, workers chose an image that suited their interests 
and naturally started a conversation around that image.  
Common topics included their own pets after seeing funny 
animal images, and their own children and family, after 
seeing funny baby images. As one worker commented: 
“great for chatting with a stranger, starts the conversation.”  
An example is shown in Figure 10, where two workers start 
to talk about Bill Murray after using a reaction gif featuring 
Bill Murray. 

Image Humor is Robust 
We found CAHOOTS robust in multiple ways. First, 
participants had different backgrounds which made them 
understand images differently. For example, one participant 
might complain that our memes were outdated, while the 
other  participant’s  feedback  would  indicate  that  they  didn’t  
even recognize that the images were memes in the first 
place. Nonetheless, the latter could still find the images 
amusing  even  if  they  didn’t  share  the  same  background. 

Second, we found CAHOOTS robust to problems that 
normal search engines face. For example, a normal search 
engine might suffer from ambiguity and therefore perform 
word-sense disambiguation, whereas humor is often 
heightened by ambiguity and double-entendres. While we 
didn’t  e[plicitly  program  in  word-sense ambiguity, it often 
occurs naturally.  

Yes,  and… 
A common rule in improvisational comedy, called the yes 
and rule, is that shows tend to be funnier when actors 
accept  one  another’s  suggestions  and  try  to  build  them  into 
something even funnier, rather than changing the direction 
even if they think they have a better idea (Moshavi 2001). 

Many &A+22T6’s   strategies   lead   to   yes-and behaviors. 
An example is shown in Figure 11. On the top, the 
computer suggestions directly   addresses   the   human’s  
remark to makes the conversation funnier. 

Users Tend to Respond with Similar Images 
Humor support, or the reaction to humor, is an important 
aspect of interpersonal interaction (Hay 2001). With 
CAHOOTS, we find that users tended to respond to a funny 
image with a similar image to contribute more humor, show 
their understanding and appreciation of humor. When one 
user replied to her partner’s  image  message  with  an  image, 
35% of the time the other user chose an image generated by 
the same strategy. Compared with two random images in a 
conversation, the chance that they are generated by the 
same strategy is 22%. 

Conclusion 
In this paper we introduce the concept of Computer-Aided 
Humor, and describe CAHOOTS²a chat system that 
builds on the relative strengths of people and computers to 
generate humor by suggesting images. Compared to plain 
chat and a fully-automated CGH system, people using 
found it more fun, enabled them to express their sense of 
humor and more involvement.  

The interaction between human and computer and their 
ability to riff off one another creates interesting synergies 
and fun conversations. What CAHOOTS demonstrates is 
that the current artificial intelligence limitations associated 
with computational humor may be sidestepped by an 
interface that naturally involves humans. A possible 
application of CAH would be an add-on to existing chat 
clients or Facebook/Twitter comment box that helps 
individuals incorporate funny images in computer-mediated 
communication. 
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Abstract 

We present a semantic map of words related with crea-
tivity. The aim is to empirically derive terms which can 
be used to rate processes or products of computational 
creativity. The words in the map are based on associa-
tion studies performed by human subjects and aug-
mented with words derived from the literature (based 
on human raters). The words are used in a card sorting 
study to investigate the way they are categorized by 
human subjects. The results are arranged in a heat map 
of word relations based on a hierarchical cluster analy-
sis. The cluster analysis and a principal component 
analysis provide a set of five to six clusters of items re-
lated to each other, and as clusters related to creativity. 
These clusters could form a basis for scales used to rate 
aspects of computational creativity.  

 Introduction 
In his Principles of Psychology, published in 1890, Wil-
liam   James   introduced  his   definition  of   ‘attention’   as   fol-
lows:  “Everyone  knows  what  attention  is”.  Yet, debates on 
the distinctive features of attention continue up to the pre-
sent day.  
 Perhaps a similar situation could be found with the no-
tion   of   ‘creativity’.   In   some   way,   ‘everyone knows what 
creativity  is’. But it is non-trivial to find methods by which 
creativity can be evaluated. Yet, when we investigate crea-
tivity, either in humans or as achievements of computa-
tional systems, we need some way to evaluate creativity. 
For example, we need a measure of creativity to distin-
guish between brain states in the neuroscientific investiga-
tion of creativity (Fink and Benedek, 2014). We also need 
it to assess the products of computational systems as crea-
tive or not. Indeed, the question of how computational cre-
ativity can be evaluated has been described as one of the 
‘Grand   Challenges’   of   computational creativity research 
(Cardoso, Veale and Wiggins, 2009). 
 Definitions of creativity have been presented in the liter-
ature.  For  example,  “creativity is commonly defined as the 
ability to produce work that is both novel (original, unique) 
and useful” (Fink and Benedek, 2014, p. 111). Similar 

characteristics are novelty and useful or value (Amabile, 
1996; Hennessey and Amabile, 2010), typicality, novelty 
and quality (Ritchie, 2007), novelty, value, and unexpect-
edness or surprise (Grace and Maher, 2014), and skill, im-
agination and appreciation (Colton, 2008). 
 Each of these qualifications may capture aspects of crea-
tivity. But when they are used as criteria for the evaluation 
of creativity by human raters, as in the evaluations of pro-
cesses or products of computational creativity, we need to 
validate their relation with the notion of creativity. In this 
context it is important to realize that an assessment (rating) 
performed by humans is an empirical investigation (behav-
ioral experiment), whether or not the raters are experts or 
arbitrary people, and the rating scales used are instruments 
of measurement, which need to be validated. For this, it is 
not sufficient to argue that the rating scales are based on 
some kind of definition (no matter how sound the defini-
tion may appear to be).  
 Recently, Jordanous (2012a, 2012b, 2014) investigated 
the question of how creativity of computational creativity 
systems is and should be evaluated. Based on an analysis 
of the evaluation of creativity in the scientific literature 
related to computational creativity, she found that evalua-
tion ratings (if performed at all) were based on criteria set 
up by the researchers themselves (or by other researchers 
in the literature).  
 To achieve a more empirical basis for rating computa-
tional creativity (i.e., not just derived from the subjective 
acceptance by researchers), Jordanous (2012a,b) used a 
statistical analysis by comparing word frequencies in sci-
entific articles related to the study of computational crea-
tivity with word frequencies in scientific articles related to 
other topics. An analysis of this kind is based on the as-
sumption that the meaning of words is related to the con-
text in which the words are used. In particular, the meaning 
of a word (or aspects of it) can be determined by finding 
other words that co-occur with it statistically more often 
than can be expected on the basis on chance (Landauer and 
Dumais, 1997). 
 Based on her analysis, Jordanous (2012a,b) derived a set 
of 694 terms that occurred more frequently in the scientific 
literature related to computational creativity comparted to 
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other, non-related, scientific articles. On the basis of these 
words, she derived 14 dimensions on which creativity 
could be evaluated.  
 Here, we investigate the empirical basis for rating (com-
putational) creativity based on empirical (behavioural) 
studies with human subjects. After all, ratings of creativity 
are conducted by human subjects, so we could also probe 
human subjects for the basis of these rating scales. Our aim 
is to arrive at a ‘semantic  map’  of  terms related to the no-
tion creativity, which can be used to derive and compare 
rating scales for creativity. 
 To arrive at this semantic map, we conducted a study in 
which human subjects were asked to provide terms associ-
ated with creativity. Next, the terms associated with crea-
tivity   were   used   in   a   ‘reverse’   association   study, to see 
whether   terms   like   ‘creativity’ are in turn associated with 
these terms. Then, a selected set of words based on both 
association studies was used in a card sorting study with 
human subjects. The words used in our card sorting study 
were augmented with a selected subset of the 694 words 
related to creativity based on the analysis of Jordanous 
(2012a,b). A card sorting study provides information about 
how a set of words are categorized by human subjects. 
Using the words based on our association studies, this in 
turn provides a prototype for a semantic map related to 
creativity.  
 The remainder of this article is structured as follows. 
First, we outline how a set of words was derived as the 
basis for the semantic map. Then, we present and discuss 
the card sort study used to derive the semantic map. Next, 
the prototype of the semantic map based on the card sort-
ing study is presented and discussed. Finally, we present 
the conclusions and briefly discuss future work. 

Word associations with creativity 
As introduced above, we conducted two word association 
studies. Word associations are used as a technique in ex-
perimental psychology, for example to obtain controlled 
stimulus material (Nelson, McEvoy & Schreiber, 2004).  
 In an association study, a target word is given and sub-
jects are asked to produce words associated with the target. 
In a free association study a subject can give an unlimited 
number of associated words. In a restricted or discrete as-
sociation study, the number of association words is re-
stricted beforehand (in case of a discrete study, only one 
associated word can be given). A problem with a free asso-
ciation study is the occurrence of a chain of associations, in 
which (new) associated words are given not because they 
are associated with the target word but instead are associ-
ated with a previously given associated word. We therefore 
used a restricted and a discrete association study.   
 The aim of our first association study was to derive a set 
of terms associated  with  the  word  ‘creativity’. For this, we 
conducted a restricted association study. In this study, 36 
subjects between the age of 18 and 52 (29 Dutch and 7 
German) were asked to give at most three terms associated 
with   the   word   ‘creativity’ (either in Dutch or German). 
From this list three human raters selected a list of words on 

which they all agreed as words associated with creativity. 
This resulted in a set of 58 words. 
 We augmented this list by a selection of words based on 
the set of words derived by Jordanous (2012a,b). She ana-
lyzed two corpora of texts: one consisting of scientific arti-
cles related to the study of creativity and one consisting of 
scientific articles not related to the study of creativity. A 
statistical analysis revealed a set of 694 terms that occurred 
statistically more frequently in the scientific articles related 
to the study of creativity. In our study, this set was re-
viewed by three human raters. They each selected words 
from this set that in their view were associated with crea-
tivity. The words on which all three raters agreed were 
included in the set of words associated with creativity. This 
procedure resulted in an initial list of 32 words based on 
the list provided by Jordanous (2012a,b).  
 The list of 58 words obtained in our first association 
study included 10 words from the list of Jordanous 
(2012a,b) selected by the three human raters (see above). 
The list of 58 words included another eight words from the 
list of Jordanous (2012a,b) which were not selected by the 
three human raters.  
 In this way, we obtained a list of 80 words to be used in 
our second association study. In this list of 80 words, 22 
words derived exclusively from the list of Jordanous 
(2012a,b), in the manner outlined above; 40 words were 
derived exclusively from the list provided by human sub-
jects in our first association study; 18 words co-occurred in 
the list of Jordanous and in the human subject list obtained 
in our first association study.   
 In our second association study we used the list of 80 
words obtained in our first association study, augmented 
with the words selected from Jordanous (2012a,b), to con-
duct   a   ‘Eackward’   �or   reverse�   discrete association study. 
That is, for each of these 80 words human subjects were 
asked to provide one term associated with that word. The 
list of words was presented in a randomized order to pre-
vent priming effects. A subject sat in front of a screen and 
a keyboard in an isolated cubicle. One word at a time ap-
peared on the screen. The subject then used a keyboard to 
type the answer. After that, a new word appeared. The sub-
jects consisted of 50 students between age 19 and 27. None 
of them participated in the first part of the study. There 
were 29 Dutch and 21 German participants from whom 24 
were men and 26 women. There were 25 technical stu-
dents, 22 social studies students and 3 art students.  
 The first aim of our second association study was to 
obtain ‘reversed’ associations to the words associated with 
creativity (the list of 80 words outlined above). In particu-
lar, to see  whether  words  like  ‘to  create’,  ‘creative’  or  ‘cre-
ativity’ are in turn associated with the words associated 
with  the  word  ‘creativity’. A second aim of this study was 
to see whether words in the list of 80 words are associated 
with each other.   
 A subset of the list of 80 words gave  a  ‘creativity’  word 
�“creativity”,   “creative”  or  “to  create”�  as  a   �reversed) as-
sociation in our second association study. In this subset, 
55% of the words came from the human list derived in our 
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first association study, 28% from the list provided by Jor-
danous (2012a,b) and 17% from both lists. However, the 
whole   list   of   ‘reversed’   associated  words   oEtained   in   our 
second association study was used as one of the lists on 
which the words for the card sorting study were based, in 
the manner outlined below. 

Card sorting study  
The list of words obtained in our first association study 
(augmented with words from the list of Jordanous) and the 
list of words obtained in our second association study were 
used to select the words for the card sorting study.  

Figure 1. List of words used in the card sorting study 
 
 The selection was based on three conditions: 
 Firstly, a word had to appear in both lists of words. 
Thus, a word is considered to be strongly associated with 
creativity if that word is both directly and indirectly (re-
versely) associated with creativity. Direct association en-
tails that the word is associated with creativity (more spe-

cifically, the word belongs to the word list of our first as-
sociation study, augmented with words from Jordanous, 
2012a,b). Indirect association entails that the word is asso-
ciated with a word that is in turn associated with creativity 
(more specifically, the word belongs to the list of words 
obtained in our second association study).   
 Secondly, a word had to appear more than once as an 
answer in our second association study (to avoid the use of 
idiosyncratic words in the card sorting study).   
 Thirdly, the word   could   not   Ee   the   word   “creative”   or  
any derivative of that base word, because the aim of this 
card sorting study was to investigate the internal semantic 
structure of the words strongly associated with creativity 
without interference from the base word “creativity” itself.    
 In all, 42 words were selected for the card sorting study. 
In the study 40 Dutch participants took part. They did not 
participate in any of the previous studies. Figure 1 presents 
the words used in the card sorting study and the source 
(lists) on which they are based. That is, the source consists 
of the list derived from our association studies (H, 19 
words); the list of Jordanous (2012a,b) (J, 8 words); or 
both lists (B, 15 words).  
 Card sorting can be used to evaluate how people organ-
ize a set of items (Harloff and Coxon, 2006). Figure 2 il-
lustrates a card sorting study with the following set of 
words: keyboard, printer, mouse, cat, dog.  

Figure 2: Example of a card sorting study  
 
 In a card sorting study, these words are printed on cards 
and subjects are asked to group these cards into catego-
ries1. If, in their view, a word cannot be placed in a catego-
ry, it forms a category on its own. All words have to be 
selected in this way. The set of words in figure 2 could, for 
example, be grouped as {keyboard, printer, mouse} and 
{cat, dog} (selection 1) or as {keyboard, printer} and 
{mouse, cat, dog} (selection 2). The number of times (per-
centage) a particular categorization is chosen determines 
the (relative) strength of that categorization.  

                                                 
1 One can also use an online version of a card sorting 
study. For an example, see https://conceptcodify.com/ 
studies/jfvi9n5751vue9bn/via/demo_use_only_not_ 
recording/ 
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 The results of the card sorting study with our set of 42 
word associated with creativity were analyzed with a Hier-
archical Cluster Analysis (HCA), using the statistical pro-
gramming environment R (Salmoni, 2012). The HCA 
technique (Coxon, 1999) selects the two highest associated 
words (i.e., that most often occur together in a card sorted 
group) and replaces them with a single item. The associa-
tions of this item with the other words are the average of 
those of the two words forming the item. Continuing in this 
way, a hierarchical cluster can be obtained of the results of 
the card sorting study.  

Figure 3: Hierarchical clustering of the 42 words used in 
the card sorting study of terms associated with creativity  
  
The results of the HCA on the card sorting data are pre-
sented in Figure 3. The hierarchical cluster structure pro-
vided by the HCA starts with clusters of one or two words 
at the left and ends with two overall clusters at the right. 
The horizontal distances in figure 3 provide a measure of 
(relative) distance between clusters and subclusters. Short 
distances between subclusters (as between the first layer of 
clusters at the left of the hierarchy) suggest that they essen-
tially form a larger subcluster. Visual inspection of the 
HCA suggests that a set of subclusters to the left of the red 
line might provide information about a meaningful classi-

fication of the words related to creativity, because the dis-
tances within these subclusters are relatively short com-
pared to the distances between the subclusters.   

Figure 4 presents a set of basic clusters of terms associ-
ated with creativity, based on the HCA presented in figure 
3. They are selected (as indicated by the red line), by using 
the same distance from the basis as a selection measure. A 
basis for the selection is the observation that item-distances 
between clusters are substantially larger than item-
distances within clusters. 

Figure 4: Tentative clusters related to creativity 
 
 Figure 4 presents six clusters and tentative cluster 
names. Perhaps the last two clusters could be combined 
into one, given that the item-distances between these clus-
ters and the other clusters are the largest distances of the 
hierarchy in figure 3. This would provide the following 
five main clusters of items associated with the concept 
creativity:  

x Original (originality) 
x Emotion (emotional value) 
x Novelty / innovation (innovative) 
x Intelligence 
x Skill (ability) 

Before discussing these clusters we present and discuss a 
further  analysis  of  the  data  Eased  on  the  ‘heat  map’  presen-
tation of the results from the card sorting study. 
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Heat map of card sorting results  
The results of the card sorting study can also be represent-
ed in a heat map, in which the color indicates the strength 
of the association between two terms.  

Figure 5: Heat map presentation of the card sorting results 
 
 Figure 5 presents the heat map based on the results of 
the card sorting study. The rows and columns in the heat 
map represent the words used in the card sorting study 
(figure 1). The words in the heat map are arranged in the 
order of the HCA analysis presented in figure 3. In this 
way, the heat map forms a matrix. The color in each matrix 
cell represents the number of times the row and column 
word corresponding to the cell belonged to the same group 
in the card sorting study. Given that 40 subjects participat-
ed in the study, this number can vary between 0 and 40. 
The heat map presents this number in terms of a color, var-
ying from light yellow (0) to deep red (40). In the data, the 
lowest number was 0 and the highest number was 34. The 
heat map is symmetric because the words used in the card 
sorting study are represented as rows and as columns. For 
this reason, the diagonal in the heat map does not represent 
data from the card sorting study.  
 It is clear that the squares that form groups of words are 
related to the clusters in figure 3 (which results from the 
fact that the words in the heat map are arranged in the or-
der of the HCA analysis presented in figure 3). For exam-
ple, in the top left corner there is a 5x5 square that is much 
more red (darker) than the yellow around it. This 5x5 
square belongs to a group of five words: unconventional, 
different, extraordinary, original and unique. If we wanted 
to  laEel  this  group  with  one  name,  it  could  Ee  ‘original’,  as  
indicated by the cluster name in figure 4. Original is often 
referred to in the literature as a characteristic of creativity 
(e.g., Hennessey and Amabile, 2010). Also, in the right 
corner at the bottom we see a large group that is relatively 

distinct from the rest. This is the group that we labeled as 
‘skill’   in   figure   4.   7his   group   comprises   a   smaller   ‘skill’  
group  and  a  ‘craftsmanship’  group  in  figure  � (the ‘crafts-
manship’  group stands  out  within  the  larger  ‘skill’  group  in  
the heat map). ‘6kill’  has  also  Eeen  related  to  creativity  in  
the literature (e.g., Colton, 2008). 
 Yet, although the HCA structure in figure 3 and the heat 
map in figure 5 are based on the same data, they reveal 
different aspects of the semantic map based on the card 
sorting study of terms associated with creativity.  
 The HCA structure shows a metric within and between 
the clusters of terms related to creativity. The metric is 
given by the (vertical) distance that needs to be travelled in 
going from one word to another.  So, for example, the 
distance between unconventional and innovation is shorter 
than that between unconventional and skill. This metric is 
not directly revealed in the heat map.  
 But the heat map shows that a word that belongs to a 
group can also be associated to words outside that group. 
For example, unconventional belongs to the 5 by 5 group 
referred to above, but it also has some association strength 
with renewing. These outside associations are not directly 
revealed by the HCA structure, due to the forced choice 
procedure on which the structure is based. In this way, the 
HCA analysis seems to miss the more global structure that 
is present in the results (and thus in the heat map). To ana-
lyze this more global structure, we analyzed the data in the 
heat map using a Principal Component Analysis (PCA).  

PCA analysis of the card sorting results 
A Principal Component Analysis (PCA) of a set of data 
reveals the orientations (axes) along which most of the 
variance in the data is found (Jolliffe, 1986; Jackson, 
1991). These are referred to as the Principal Components 
(PCs). Starting with a covariance or correlation matrix of 
the data, a PCA analyses the matrix in terms of its eigen-
values and eigenvectors. The highest eigenvalue corre-
sponds to the PC along which most of the variance in the 
data is found. The second eigenvalue then reveals the PC 
along which most of the remaining variance is found. This 
process continues until all of the variance in the data is 
accounted for. Because the eigenvectors are orthogonal, a 
PCA shows independent sources of variance in the data.  
 A PCA starts with a covariance or correlation matrix of 
the data. For this we used the data underlying the heat map 
expressed in decimal fractions (based on the maximum 
possible score of 40). For the diagonal values we used the 
score 1.0 based on the assumption that a word is maximal-
ly related to itself.  
 One of the advantages of a PCA is that it allows a reduc-
tion of the dimensions underlying the data, by taking into 
account only the PCs with the highest eigenvalues.  
 Figure 6 presents a graph of the eigenvalues of the heat 
map data in descending order. This is also known as a 
scree graph or scree plot (Jolliffe, 1986).  A rule is to use 
only the eigenvalues presented by the scree plot in the sec-
tion before the plot levels off. In this case that would result 
in representing the data based on PCs corresponding to the 
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five highest eigenvalues (all > 2).  

Figure 6: Scree plot of the eigenvalues in the PCA analysis 
of the heat map 
 
 A PCA gives the PCs of the highest variance in the data, 
but it does not provide an interpretation of a PC (Jackson, 
1991). Looking at the heat map, however, it is clear that a 
substantial variance in the data results from the difference 
between high (red) and low (yellow) values. For a word, 
this difference corresponds to belonging to a subcluster 
(such as represented in figure 4) or not. It would seem that 
the first eigenvalue captures this source of variance. How-
ever, every word has both high and low values in the heat 
map, so this source of variance does not reveal much about 
the ways words belong to difference groups. Furthermore, 
when the values in the analyzed matrix are all positive, the 
coefficients of the first PC (eigenvector) are all of the same 
sign (Jackson, 1991).  
 Therefore, in figure 7 we present the words in the heat 
map in terms of the PCs given by the eigenvalues of the 
PCA of the heat map, starting with the second highest ei-
genvalue. The PCs are all uncorrelated, but the coefficients 
of a PC (eigenvector) can be correlated. These correlations 
are in particular affected by the signs of the coefficients 
(Jackson, 1991). Therefore, we group words by the signs of 
their coefficients for a PC. The groupings are presented in 
figure 7, in terms of the second to the fifth PC with the 
highest eigenvalues, in descending order. In figure 7, the 
signs of the coefficients of PC 3 to 5 are represented by the 
letters P and N, to indicate that different groups could have 
the same sign on that PC.   
 Figure 7 shows that the second PC (eigenvalue) sepa-
rates the words in the heat map into two groups. We ar-
ranged the words in figure 7 in the manner as they appear 
based on 5 eigenvalues. This results in a word order (part-
ly) different from the one found in figures 3, 4 and 5. 
However, it is clear that the two groups selected by the 
second eigenvalue in figure 7 correspond to the two largest 
clusters in figure 3. Thus, the first separation in the heat 
map (capturing most of the variance after the first eigen-
value) is between the large   ‘skill’   cluster   in   figure   � and 
the other words (also illustrated with the difference be-
tween the large red-like square in the bottom right corner 
of the heat map and the other words).  
 In figure 4 we selected five groups of words based on 
the   +C$,   with   the   ‘craftsmanship’   and   ‘skill’   groups   as  

one. In figure 7, the first four PCs also give five groups if 
we take the ‘craftsmanship’   and   ‘skill’   groups   as   one. A 
comparison between both groupings reveals that they are 
quite compatible, although a few noticeable differences 
appear. 7he   ‘original’   group   in   figure   � is maintained in 
figure 7, with the addition of the word renewing, which at 
face value seems to be related with these words. 7he  ‘emo-
tion’  group  in  figure  � is maintained as well, with the addi-
tion of imagination and inspiration (which split off with 5 
PCs). 6o,   ‘emotion’  may   not   Ee   the   correct   laEel   for   this  
group. 

Figure 7: Word clusters based on the first 5 eigenvalues in 
the PCA of the heat map 
 
 7he  more  suEstantial  changes  are  with  the  ‘novelty’  and  
‘intelligence’  groups  in  figure  �. Five words from the ‘in-
telligence’  group in figure 4 are maintained in figure 7 to-
gether with hunch and resourceful from the   ‘novelty’  
group in figure 7.  Five  words  from  the  ‘novelty’  group  in  
figure 4 are maintained in figure 7 together with planning, 
process, and difficult from   the   ‘intelligence’   group   in   fig-
ure 7.  
 However, despite these changes there seems to be a sub-
stantial overlap in the cluster structure obtained with HCA 
and PCA. The difference results from the fact that the PCA 
takes the overall structure of the heat map into account. 
The clusters as presented in figure 4 and figure 7 could be 
seen as a semantic map of words related to each other and, 
as clusters, related to creativity. This map could be used as 
a basis for the evaluation of creativity.  
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Semantic map as a basis for evaluation   
The literature provides several characteristic of creativity 
that could be used to evaluate processes or products of 
computational creativity. As outlined in the introduction 
these include terms like novel (novelty), original, unique, 
useful, value, typicality, quality, unexpectedness, surprise, 
skill, imagination or appreciation.  
 Many of these are found in the semantic map (figure 4, 
7) as well. These include novel (novelty), original, unique, 
skill, and imagination. Other words are related to words in 
the semantic map. For example, unexpectedness or surprise 
are related to unconventional and extraordinary. The fact 
that words used in the literature are also found in the se-
mantic map based on empirical investigations underscores 
their relation with creativity and justifies their use in as-
sessing creativity.  
 However, some words reported in the literature are no-
tably absent in the semantic map. One of those is the word 
‘useful’.   $lthough   often   referred   to   as   a   characteristic   of  
creativity (Amabile, 1996; Hennessey and Amabile, 2010; 
Fink and Benedek, 2014), it is not found in the semantic 
map. This raises the question of whether humans would 
qualify useful as related to creativity, and thus as a dimen-
sion on which creativity could or should be evaluated.  
 %ecause  ‘useful’  did  not  emerge  in  our  word  association  
studies, we could not investigate its relation with the other 
terms in the card sorting study. But in a follow up study we 
will include ‘useful’  as an item to study its relation to other 
words related to creativity and to ‘creativity’ itself in a card 
sorting study. The outcome will enhance our insight in the 
way useful and creativity are related as seen by human 
subjects (instead of by assumption or definition).  
 One reason of why useful was not included may have 
resulted from the fact that we asked for terms associated 
with creativity without any further instruction or direction. 
It might be that when more specific instructions are given, 
for example to relate terms to creativity in a particular task 
or domain, terms like useful might appear. 
 Hence, another venue of research is to investigate se-
mantic maps related to creativity within specific domains 
(e.g., music, poetry, architecture), to see if differences be-
tween these maps are found. If so, that would argue for 
more specific forms of evaluation to be used for these do-
mains.  
 Yet another venue of research is to investigate whether 
semantic maps (whether or not related to specific domains) 
also differ between languages. In our association studies 
(but not the card sorting task itself) we used both Dutch 
and German native speakers. We could not find significant 
differences between the two. But this could be related to 
the similarity between both languages.    
 The main clusters as presented in figures 4 and 7 could 
be used to develop rating scales for evaluating the creativi-
ty of artificial systems and humans. All of the terms in a 
cluster could be used as dimensions on which creativity is 
rated, each one as an example of the main cluster to which 
it belongs. An analysis of the ratings in terms of the cluster 
structure could then be related to the clusters found in the 

semantic map. That is, if the clusters in the semantic map 
reflect the notions that humans have about creativity, they 
would also determine the way they evaluate creativity. In 
that case, evaluations using terms within a cluster would be 
related to each other and between cluster evaluations 
would reflect the between cluster structure in the map.  
 This procedure could also be used for the more domain 
specific semantic maps, if they are found. In that case, 
these maps could be used for the evaluation of domain spe-
cific forms of creativity and the results of the evaluation 
could be compared with the structure of the maps. 
 When more semantic maps are investigated a more 
complete structure of the semantic relations with creativity 
will emerge. By comparing this with evaluations of crea-
tive processes and products (both computational and hu-
man) we will develop a more complete picture of how se-
mantic relations with creativity influence the evaluation of 
creativity.  
 The empirically derived semantic maps related to crea-
tivity could also be used to develop and evaluate experi-
mental paradigms for investigating the neural basis of crea-
tivity. This might begin to unravel the diverse and some-
times apparently conflicting results obtained in the neuro-
scientific research of creativity (Arden et al., 2010; Die-
trich and Kanso, 2010; Sawyer, 2011; Fink and Benedek, 
2014).  

Effective use of semantic map in evaluation 
To use the concepts in the semantic map as tools for evalu-
ation we need to develop and test rating scales based on 
these concepts. Here, a number of considerations play a 
role and should be addressed.  
 The first one is the number of rating scales that can be 
used effectively. Using all concepts in the map would re-
sult in a large set of scales that could be ineffective. We 
can study this by using the rating scales based on these 
concepts in pilot evaluations and compare the scales using 
factor analysis. In this way we can investigate again 
whether concepts from the same cluster are used in the 
same way in an evaluation. If so, these rating scales could 
then be used as alternatives between evaluations. Or they 
could be used as alternatives within an evaluation (between 
or within subjects).  
 The second one concerns the subjects that would per-
form an evaluation. One option is to use experts in a given 
domain. Another option is to use the users of a domain in 
an evaluation. Here, given that the subjects in our studies 
were students, one can think of creative domains like visu-
al art in gaming (and movies), dance music (and other 
forms   of   ‘pop’   music�   and   the   use   of   new   media   like  
YouTube. Students certainly are involved here as users, 
and users to a large extent determine success in these do-
mains and thus the way in which these domains develop. It 
is too simple to argue that only experts determine how 
forms of creativity develop. Users play a substantial role in 
that too (as they have also done in the past).  
 Given a set of rating scales, we can also compare eval-
uations by experts with that of users. An interesting topic 
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of research here is whether experts in a domain would have 
a different conceptual structure related to creativity com-
pared to users or whether they would have a similar con-
ceptual structure (as in the semantic map) but would use it 
differently in an evaluation. This could consist of a differ-
ent factorization of the rating scales with evaluations per-
formed by experts compared to users.   

Conclusions 
An empirical basis for the evaluation of creativity is need-
ed because evaluations, as conducted by human raters, are 
empirical investigations. Hence, the assumptions underly-
ing these investigations, such as the rating scales used, 
need to be validated. We presented a semantic map of 
terms related to creativity based on human association and 
card sorting studies. The semantic map as presented here 
can be further developed by investigating domain specific 
aspects of terms related to creativity and the use of other 
terms often reported as related to creativity in the literature.  
 To derive the semantic map in the card sorting study, we 
augmented the words based on our human association stud-
ies with words reported in the literature that were based on 
a statistical analysis. Interestingly, there is an overlap in 
the set of words formed by the two methods, but there are 
also some differences. Further investigations could reveal 
how these methods are related and if they are both needed 
(as complements) to arrive at more objective procedures 
for the evaluation of computational (and human) creativity.  
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Abstract

We investigate the performance of non-expert judges in
using leading computational poetry evaluation metrics
to evaluate poetry written by humans. We find that re-
gardless of the model used, non-expert judges are very
poor at using metrics to evaluate creativity, even dis-
playing the reverse of the desired rating pattern, prefer-
ring novice poetry to professional poetry. We discuss
likely reasons for this finding and the implications for
the evaluation of computational creativity. Researchers
using human judges should be aware that using a met-
ric or structured evaluation does not negate the need for
judge expertise.

Introduction
An increasingly important debate in Computational Creativ-
ity is the development of standardised evaluation methods.
There are many reasons why it is desirable for computers to
recognize and evaluate creativity, including the assistance of
humans in creative acts, understanding of the creative human
mind, and the AI application of teaching computers to be-
have creatively themselves. However, it is not clear how ex-
actly one would go about distinguishing more creative from
less creative output. Two important camps in this debate are
those who use a metric with specific criteria (e.g. (Pease,
Winterstein, and Colton 2001; Ritchie 2007; Colton 2008a;
Colton, Pease, and Charnley 2011) and those who prefer
a consensual assessment based on the agreement of expert
judges, without specific criteria (Amabile 1983).

While the Consensual Assessment Technique has been
rigorously tested (see e.g. (Kaufman, Baer, and Cole 2009)),
specific metrics used in the field of Computational Creativ-
ity have not. We therefore undertook an empirical test of
four such metrics from the existing literature. These met-
rics evaluate a product’s creativity based on (for example)
its novelty, value, skill and other qualities, or on some cal-
culation involving these qualities.

We collected poems generated by humans at various lev-
els of skill. We then recruited a large number of humans
to evaluate the poems on the criteria used in our selected
metrics. Our results were very counter-intuitive. On nearly
every criterion, our judges significantly preferred amateur,
unskilled poems to the work of professional poets—the re-
verse of what one would expect.

Poetry is a rarefied field, and we suspected that the re-
versed results were caused by untrained raters having dif-
ficulty understanding the professional poems. Such poetry
might not be accessible to an untrained reader. We ran the
experiment again with poems written for children. This sec-
ond experiment did not produce reversed results, but any
power of the criteria to differentiate between good and bad
poetry was reduced to noise.

Our experiments show that non-expert judges do not ap-
ply creativity metrics appropriately to poetry. Of course, the
Consensual Assessment Technique already mandates the use
of expert judges for this reason. Non-experts in a consensual
assessment have poor inter-rater reliability and poor agree-
ment with the judgments of experts (Kaufman, Baer, and
Cole 2009). However, our research shows that this problem
also applies to judgments made with specific criteria. Using
such criteria is not an escape from the issue of judge selec-
tion. Moreover, beyond simply losing reliability, the use of
non-expert judges can produce the exact opposite of the in-
tended result.

Many evaluations in computational creativity today are
still done by the researchers themselves (Colton, Good-
win, and Veale 2012; Norton, Heath, and Ventura 2010;
Riedl and Young 2006; Smith, Hintze, and Ventura 2014) or
by a group of human volunteers whose expertise in creativity
is not discussed (Burns 2015; Gervás 2002; Karampiperis,
Koukourikos, and Koliopoulou 2014; Llano et al. 2014;
Monteith, Martinez, and Ventura 2010; Norton, Heath, and
Ventura 2013; Román and y Pérez 2014). For robust eval-
uation, it may turn out that neither of these approaches is
sufficient.

Background and Related Work
The past 25 years of computational creativity research owe
much to Boden’s (Boden 1990) work on the meaning of cre-
ativity. Boden focuses on creativity as the exploration and
transformation of conceptual space. While Boden’s book
does not give a definition which can be broken down into
formulaic parts, she does repeatedly mention the need for
creative systems to produce works which are both novel and
valuable. Subsequent researchers have built on her work to
propose numerical metrics.

Ritchie, the first such researcher, proposes that human
creativity is evaluated according to the criteria of Novelty
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(“To what extent is the produced item dissimilar to existing
examples of that genre?”) and Quality (“To what extent is
the produced item a high-quality example of that genre?”)
(Ritchie 2001). For computational creativity, he proposes
replacing Novelty with Typicality—as a computer program
must first be able to generate plausible examples of a type
of creative product before attempting to make ones dissimi-
lar from what has gone before. Ritchie then suggests various
tentative criteria, such as “high quality items should make up
a significant proportion of the results”, for evaluating a sys-
tem based on its Typicality and Quality over several runs.
The presence of these composite criteria implies that using
Typicality and Quality measurements directly for creativity
evaluation, without further analysis, may be overly simplis-
tic. Nevertheless, one can easily imagine common-sense
constraints on the base measurements. For example, while
the Quality measurement could be used in various ways, one
would certainly not expect creative poems to have a lower
average Quality than uncreative ones.

Ritchie’s model has been used to evaluate creative sys-
tems in practice (e.g. (Gervás 2002; Tearse, Mawhorter, and
Wardrip-Fruin 2011)). Other researchers performing simi-
lar work focus on Novelty rather than Typicality, a choice
more in line with Boden’s work. For example, Pease et al.

(Pease, Winterstein, and Colton 2001) suggest a variety of
ways to formally measure both Novelty and Value (a syn-
onym of Quality).

Some difficulties in the Boden-based models, particu-
larly Ritchie’s, have been illuminated through experience.
Many of Ritchie’s composite criteria are based on compar-
isons with an inspiring set of existing work. In the ab-
sence of a quantitative measure for similarity between cre-
ative products, such criteria are difficult to evaluate (Gervás
2002). Ventura’s RASTER thought experiment (Ventura
2008) also claims to illustrate flaws in Ritchie’s model: a
highly uncreative system, generating works completely at
random, can technically be said to meet the criteria. How-
ever, the RASTER thought experiment uses images from a
Web search to guide output, without considering those im-
ages an inspiring set. It also fails to consider typicality and
quality independently, which renders many criteria inappli-
cable. Ventura suggests that the inapplicability of these cri-
teria, in and of itself, is a reason to treat a system with sus-
picion.

Another metric, Colton’s Creative Tripod (Colton 2008a),
judges creative work by whether it appears to be skillful, ap-
preciative, and imaginative. Colton’s tripod has frequently
been used to evaluate creative systems (Smith, Hintze, and
Ventura 2014; Chan and Ventura 2008; Monteith, Martinez,
and Ventura 2010; Young, Bown, and others 2010) or to
guide their development (Norton, Heath, and Ventura 2010;
Colton 2008b). A weakness of the tripod is that specific def-
initions for the three criteria are not provided. It has been
pointed out (Bown 2014) that this provides too much oppor-
tunity for authors to make impressionistic statements about
why their system meets the criteria, without rigorous, falsi-
fiable inquiry into whether its performance in these areas is
sufficient. Even the intentionally uncreative RASTER (Ven-
tura 2008) is argued to meet Colton’s criteria in this manner.

Colton et al. have added many words to the tripod since its
construction, including Learning, Intentionality, Account-
ability, Innovation, Subjectivity, and Reflection (Colton et
al. 2014). However, since the majority of recent work im-
plementing the tripod uses only the original three words, we
focus our research on these original three.

Another proposal by Colton et al. is the IDEA model
(Colton, Pease, and Charnley 2011), in which an ideal au-
dience rates a creative product according to Wellbeing (how
much they likes the product) and Cognitive Effort (how pre-
pared they are to spend effort thinking about and interpret-
ing it). Like the criteria of Ritchie’s model, Wellbeing and
Cognitive Effort can be combined to measure different as-
pects of a product’s reception. For example, if the variance
in Wellbeing is high, a product would get a high score on
“Divisiveness”.

Many other standardized metrics for evaluating a creative
system have been proposed. Jordanous’s SPECS model (Jor-
danous 2012) incorporates many criteria based on cultural
beliefs about the meaning of creativity, including criteria
similar to Novelty and Value. Burns’s EVE’ model defines
creativity as a combination of Surprise and Meaning, and
has been applied to humorous poetic advertisements (Burns
2015), humorous haiku (Burns 2012) and, in thought exper-
iment form, to line drawings (Burns 2006). Other new met-
rics either proposed or used ad hoc in the past ten years come
from varied sources including Piaget’s theories of cogni-
tive development (Aguilar and Pérez y Pérez 2014), theories
about quality in a specific art form (Das and Gambäck 2014;
Rashel and Manurung 2014; Pearce and Wiggins 2007),
interestingness (Román and y Pérez 2014; Gervás 2007),
and many others (Brown 2009; Lehman and Stanley 2012;
Llano et al. 2014; Monteith et al. 2013; Norton, Heath, and
Ventura 2013).

Very rarely have any such metrics been validated through
direct use on human-generated products. A few researchers
have used the metrics to compare computational products to
human-generated products. Monteith et al. compare human-
composed to computer-composed music using an opera-
tionalization of Colton’s tripod (Monteith, Martinez, and
Ventura 2010). The computer music did better at expressing
specific emotions (Skill) but the human music sounded more
like “real music” (Appreciation). Burns tested his EVE’
model on human products (Burns 2015) and found good cor-
respondence between his model and human ratings; Surprise
multiplied with Meaning accounted for 70% of the variabil-
ity in ratings of Creativity.

Binsted et al. built a system, JAPE, to generate riddles
(Binsted, Pain, and Ritchie 1997), and evaluated it using
children’s responses to criteria similar to those which would
later form Ritchie’s model: “Was that a joke?” (Typical-
ity) and “How funny was it?” (Quality). JAPE’s jokes were
compared to human jokes and to two categories of human-
generated non-jokes. Binsted et al. found that children rate
human-generated jokes as more typical and of higher quality
than non-jokes. JAPE’s jokes were somewhere in between.
Ritchie et al. performed further tests on this data and re-
peated the study with college students (Ritchie et al. 2008).
Thir results were broadly the same, but there was low inter-
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rater reliability, especially on Quality.
While we focus on four specific metrics in our work, we

do not mean to imply that these metrics represent four com-
pletely separate schools of thought. Instead, all four are in-
fluenced by each other and by prior work such as Boden’s.
What they all have in common is the idea of decomposing
creativity into sub-concepts, then measuring creativity by
somehow measuring and combining other criteria. For ex-
ample, under Ritchie’s model, if one can calculate the Typi-
cality and Quality of a creative work, one can then (by some
means, perhaps a complex one) calculate the work’s level
of creativity. This contrasts to the Consensual Assessment
Technique, in which judges rate creativity however they see
fit. The advantage of a metrical perspective is that it invites
standardized quantitative calculation and avoids circularity.
We use four metrics from the literature to represent a range
of influential perspectives within the paradigm of metrical
assessment. Our aim is to add to our understanding of met-
rical assessment of creativity as a whole.

Experiment I
Method
We tested 4 common metrics for creativity evaluation:
Ritchie’s model, Pease et al.’s novelty and value criteria,
Colton’s creative tripod, and the IDEA model. These met-
rics are easy to test on human poetry since they focus on
the creative product and not on the process. Since none of
these metrics have been put into a standardized question-
naire form, we constructed our own five-point Likert scale-
based rating system for each. Each participant was only
shown the questions for one of the four metrics, not all four.
The questions we used are as follows:

Ritchie’s model
• This resembles other poems I have read. (Typicality)

• This is a high quality poem. (Quality)

• I don’t think this is a very good poem. (Quality, reverse

coded)

• This is not a poem. (Typicality, reverse coded)

Pease’s criteria
• This is a high quality poem. (Value)

• This poem is not like other poems I have seen before.
(Novelty)

• I don’t think this is a very good poem. (Value, reverse

coded)

• This poem is clichéd. (Novelty, reverse coded)

Colton’s Creative Tripod
• The author of this poem seems to have no trouble writing

poetry. (Skill)

• The author of this poem is imaginative. (Imagination)

• The author of this poem understands how poetry works.
(Appreciation)

• The author of this poem isn’t very good at writing poetry.
(Skill, reverse coded)

• The author of this poem isn’t bringing anything new or
different into the poem. (Imagination, reverse coded)

• The author of this poem doesn’t really know anything
about poetry. (Appreciation, reverse coded)

IDEA model
• I like this poem. (Wellbeing)

• I am willing to spend time trying to understand this poem.
(Cognitive Effort)

• This poem makes me unhappy. (Wellbeing, reverse

coded)

• This poem is not worth bothering with. (Cognitive Effort,

reverse coded)

It should be noted that the construction of questions to
represent abstract concepts from existing models is a poten-
tial source of error. For example, the IDEA model’s Wellbe-
ing criterion is based on like or dislike of a poem; it is not
clear how an ideal reader would respond if they appreciated
a poem but found it very sad. Appreciation in Colton’s tri-
pod, despite the lack of strict definitions of Colton’s terms,
also arguably refers to a creator’s ability to evaluate its own
work, rther than its ability to understand its field in general.
However, researchers such as Norton et al (Norton, Heath,
and Ventura 2010) refer to the Appreciation part of the tri-
pod when training computers to apply labels to pre-existing
images, implicitly lending support for the latter interpreta-
tion. After all, to evaluate one’s own art one needs to be able
to understand and evaluate art in general. A fully robust set
of questions for a standardized questionnaire would require
repeated testing and refinement in a variety of contexts; we
have not yet reached the point of performing such tests.

Data
For this experiment we used three hand-collected data sets
of contemporary poetry written by humans. Each set con-
tained 30 short poems in English of between 5 and 20 lines;
we stuck to contemporary poetry so as to avoid different eras
of poetry becoming a confounding factor, and so as to min-
imize the probability that a study participant had read the
poems before. In no case did more than one poem by a sin-
gle author appear across data sets.

For our purposes, we assumed that poems published in
professional venues are more creative than poems written
by novices. That is, we assumed that the editors of poetry
magazines are experts and that their opinion strongly corre-
lates with the actual creativity of the poetry published. This
is, of course, debatable. Editors are sure to have specific
cultural tastes and biases, but since all human judgments of
creativity are culturally situated we find it an acceptable sim-
plifying assumption.

The Good data set was composed of poems from Poetry
Magazine between November 2013 and April 2014. Po-
etry Magazine is a very long-established, professional mag-
azine which can reasonably be considered to contain the
work of the most critically acclaimed mainstream literary
poets working today. All poems meeting the length and non-
duplication requirements and appearing in the magazine dur-
ing this time window were selected, with the exception of a
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Metric Criterion Good Medium Bad F

Ritchie Typicality 0.20 0.41 1.23 10.6**
Quality 0.23 0.67 1.40 10.2**

IDEA Wellbeing 0.78 1.14 1.54 13.9**
Cognitive Effort 0.60 0.94 1.46 14.9**

Colton
Imagination 0.75 1.16 1.07 2.3
Appreciation 0.67 1.11 1.68 8.3**
Skill 0.44 0.84 1.40 7.4*

Pease Novelty 0.96 0.80 0.49 9.8**
Value 0.17 0.44 0.72 3.6

Table 1: Average ratings and F scores for poem categories according to each metric. Each component is scored between -4 and
+4. Significant results (p < 0.05) following Bonferroni correction are marked with a *, or ** if highly significant (p < 0.01).

few which were discarded due to complex visual formatting
and two which were discarded due to experimenter discom-
fort. The remaining 30 poems comprised the Good data set.

The Medium data set was composed of 2 poems each
from 15 lesser-known online magazines. Some of these were
magazines devoted exclusively to poetry while others were a
combination of poetry and prose. Each magazine pays a to-
ken amount (between US $5 and $10) per a poem. For each
magazine, the most recent 2 poems meeting length and non-
duplication requirements were chosen for the data set, with
a single exception in which one poem was discarded and
the third-most-recent poem chosen as a replacement. This
added up to a Medium data set of 30 poems.

The Bad data set was composed of poems by unskilled
amateur poets. We chose these poems by going to the New-
bie Stretching Room at the Poetry Free-For-All, an online
poetry critique forum. This section is for newcomers who
have not posted poetry on the forum before; both experi-
enced moderators and other newcomers can comment on
the poems. We chose poems meeting the length and non-
duplication requirements from this section, and discarded
any which had received positive feedback from a moderator.
Most of the chosen poems received comments from mod-
erators instructing the author to read introductory articles on
how to improve; a few had more specific, pointed comments.
(Example: “This is dreadfully bad beginner’s doggerel that
fails for many, many, many reasons.”) Selecting the most
recently posted poems which fit these requirements resulted
in a Bad data set of 30 poems.

Finally, we collected a Test data set containing 6 texts
which were the same length as the chosen poems, but were
obviously not poems. 3 of these were snippets from business
news, and 3 from sports news.

These data sets are all available upon request.

Collection
We recruited study participants on Crowdflower, a crowd-
sourced microtasking website. In order to minimize cultural
and linguistic difference as a confounding factor, partici-
pants were limited to those living in the United States.

Each participant was given six poems at a time, selected
from any or all of the data sets, and shown the questions
for only one of the four metrics. The participant was then
asked to rate each poem based on that metric. Participants

could rate poems repeatedly up to a maximum of 36 poems
per participant per metric. We collected enough responses
to amass 20 responses on each metric for each poem.

Participants were not shown the headings or names for
the metric they were given, nor the names of the criteria
on which the questionnaire items were based. Our justifi-
cation for separating the metrics in this manner, and for cod-
ing Quality and Value separately even though the questions
are identical, is that we were interested in taking each met-
rical approach as a whole, rather than mixing and matching
criteria from all the metrics.

For each criterion, we ran a single-factor ANOVA com-
paring the Good, Medium, and Bad poems’ scores on that
criterion. Since there were three two-criterion metrics and
one three-criterion metric, we ran nine ANOVAs and then
applied a Bonferroni correction for nine hypotheses. The
null hypothesis was that, for all metrics, participants’ re-
sponses to Good, Bad, and Medium poems would be drawn
from an identical distribution. The alternative hypothesis
was that the distributions would not be identical: that is, that
on some criteria, poems from one or more categories would
be rated differently than others.

Results
Results were the opposite of what we expected. For most cri-
teria, participants rated Bad poems significantly (at p = 0.05
or better, following Bonferroni correction) more highly than
Good ones. The exception was Novelty, in which Good po-
ems were rated more highly than Bad. For Imagination and
Value, the differences between categories were not signif-
icant. Exact F and p-values for each of these criteria are
shown in Table 1.

This was a highly surprising result since it is not at-
tributable to rater incompetence or failure to pay atten-
tion. Incompetent crowd workers who failed to pay atten-
tion might give the same score to all poems, or give ran-
dom scores. Our raters, however, had significantly differ-
ent reactions to the different groups. Adding test questions
and bonuses to incite workers to pay more attention did
not change the overall response pattern. This indicates that
crowd workers can differentiate between these groups—but
their preferences are different from what we had imagined.

The results for Medium poems were more ambiguous. We
ran a Fisher’s Least-Significant Difference Test to under-
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Metric Criterion C-Bad C-Good t

Ritchie Typicality 1.25 1.46 0.48
Quality 0.08 0.77 0.13

IDEA Wellbeing 1.30 1.61 0.35
Cognitive Effort 0.11 0.63 0.23

Colton
Imagination 0.65 0.80 0.74
Appreciation 1.12 1.50 0.42
Skill 0.84 1.20 0.40

Pease Novelty 0.32 0.24 0.74
Value 0.11 0.34 0.62

Table 2: Average ratings and t scores for children’s poem categories according to each metric. At p < 0.05, there were no
significant differences found after Bonferroni correction

Figure 1: Sample scatterplots showing relationships between Novelty, Typicality, and Quality for poems in all of the data sets
from both experiments.

stand the pairwise relationships between the three groups,
again applying Bonferroni correction. Although Medium
poems generally rated more highly than Good poems, in
no case was this statistically significant. The difference be-
tween Medium and Bad poems, meanwhile, depends on the
criterion. For Typicality, Novelty, and Effort, Medium po-
ems were significantly different from Bad ones. For the
other criteria, there was no significant difference between
Medium poems and either other group.

Experiment II
One potential explanation for why participants preferred
Bad poems is that the Bad poems were more accessible. Po-
ems from a prestigious literary journal may be difficult to
understand due to heavy allusiveness and other poetic con-
ventions. To test the inaccessibility hypothesis, we ran a
second experiment focusing on poems written with children
as the indended audience.

The C-Good data set was composed of children’s poems
found in the Children’s Poetry section of the Poetry Foun-
dation website in November 2014. The same selection con-
straints were used as with the first data set: poems were be-
tween 5 and 20 lines in length and no poet’s work was used
more than once. We also excluded poems by poets born prior
to the 20th century. We collected a total of 10 C-Good po-
ems, by authors such as Kenn Nesbitt and Shel Silverstein.

The C-Bad data set was composed of poems posted on
the Family Friend Poems forum by amateur poets between
September and November 2014, meeting the length and au-
thor uniqueness criteria. 10 such poems were selected. As
there is no expectation of detailed critique at Family Friend
Poems, we did not filter poems by critiques given as we did
with the Bad adult poems. In fact, most responses to these
poems were brief and complimentary (e.g. “Brilliant. Loved
it 10”), even when the poems made large mistakes with me-
ter and rhyme.

These poems were randomized and evaluated in the same
way as the poems from Experiment I, on the criteria from
the same four metrics. Since there are only two data sets in
Experiment II, a t-test was performed on every criterion to
detect differences in how the children’s poems were rated.

Results
The children’s poem results lacked the effect seen in the
adult poems. Participants rated C-Good poems more highly
than C-Bad poems on most criteria, but these results were
not statistically significant. A power analysis determined
that this was not solely a result of the smaller size of the sec-
ond study; hundreds of poems would have been needed for
significance. Using children’s poems removed raters’ pref-
erence for bad poems, but did not introduce a preference for
good poems above the level of noise.
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Correlations within and between metrics
It is not empirically clear if the different criteria from the
different metrics actually elucidate different components of
creativity. We investigated this by combining the data from
Experiments 1 and 2, then generating scatterplots and cor-
relation coefficients to examine the relationships between
different criteria. With the exception of Novelty, all cri-
teria were fairly well-correlated with each other (0.65 <
r < 0.99), and scatterplots showed approximately linear re-
lationships. Novelty had no significant positive, negative,
or non-linear relationship with any other criterion. Example
scatterplots are given in Figure 1

The high correlations between different criteria may in-
dicate that these criteria—especially those with extremely
high correlations, such as Skill and Appreciation at r =
0.99—are not actually separate concepts, or at least, are not
adequately separated in the minds of raters when phrased as
our questionnaire phrases them. An alternative interpreta-
tion, suggested by a reviewer to this paper, is that the high
correlation is a good thing: if all criteria measure some as-
pect of creativity, then one would expect them all to change
in similar ways along with an underlying change in creativ-
ity.

Discussion
Our goal was to illustrate differences in effectiveness be-
tween different metrics, but we ended up finding something
different. When using metrics, rather than simply asking
judges how creative something is, the purpose is to be more
objective and ensure that the appropriate factors are consid-
ered. However, the criteria we tested were not objective
enough to produce trustworthy judgments from non-expert
raters. Regardless of the criteria, non-expert raters showed
a strong bias against Good poems due to these poems’ in-
accessibility. Even when more accessible poems were used,
non-expert raters were unable to clearly distinguish between
skillful and unskillful human poems.

On Novelty, Typicality, Quality and Value
A major difference between Ritchie’s (Ritchie 2001) and
Pease et al.’s (Pease, Winterstein, and Colton 2001) work
is the concept of Novelty. While Pease et al. define Nov-
elty as a necessary component of creativity, Ritchie prefers
to measure its opposite, Typicality. The claim is that, first, a
creative computational system must learn to produce accept-
able examples of the target output class. For example, a po-
etry program should not simply produce random words, but
should produce something recognizeable as a poem. Only
when this hurdle has been crossed can we begin to work to-
wards novel forms of poem.

It is commonly claimed that the novelty and quality of
creative works should form a Wundt curve. A completely
non-novel work is not interesting. As works begin to di-
verge meaningfully from other works in their target class,
they become more interesting. However, works which are
too novel can be off-putting or difficult to accept. At the
extreme, a completely novel and chaotic work is indistin-
guishable from meaningless noise, and is uninteresting for

that reason. Therefore, an optimal creative work should in-
volve a moderate amount of novelty. The empirical evidence
for such a Wundt curve is not strong (see (Galanter 2012))
but when Ritchie and others treat typicality as a prerequisite
to novelty, they implicitly argue for such a curve.

Our research fails to show a Wundt curve or similar re-
lationship between novelty, typicality, and value. Indeed,
our research suggests that typicality and novelty are not op-
posites: the correlation between them is nearly zero (R =
�0.05). Poems with high Typicality may have high or low
Novelty, and vice versa. Typicality is strongly correlated
with most of the other criteria tested, with our non-expert
raters seeing poems as more valuable, skillful, etc the more
typical they are. Even though our data set included very
atypical works (non-poems), there did not appear to be a
threshold at which poems became “typical enough” for nov-
elty to become relevant.

Meanwhile, Good poems are rated as more novel than
Bad. Taken at face value, this would suggest that Novelty
might be a better metric than others for measuring creativ-
ity. However, the effect for novelty disappears when applied
to children’s poems. Rather than measuring the creativity of
a poem, it is more likely that Novelty for non-expert raters
measures inaccessibility: Good poems are rated as more
novel than others because they are more difficult to under-
stand. This implies that a participant’s rating of a poem as
novel may signify discomfort. Without enough domain ex-
pertise to see the meaning underlying novelty, non-expert
judges prefer poems without it.

On accessibility and the target audience
If non-expert judges prefer a minimum of novelty, one
would expect to see a very different pattern of response from
experts. If a poem can be too novel, then this raises the ques-
tion: too novel to whom? Clearly, to the editors of Poetry
Magazine, each poem in their magazine made sense and was
of high quality. Yet Crowdflower users—presumably ordi-
nary people with little formal education in poetry—saw less
quality and sense in these poems than in the work of novice
poets.

The poems in Poetry Magazine are so complex that the
magazine comes with an explanatory Discussion Guide. Po-
ems allude heavily to other works and imply or illustrate
things instead of stating them outright; some raise difficult
questions such as “who is creating what, as well as who is in-
side the work and who is outside” (Poetry Foundation 2014).
Without education in poetry, it is no wonder that an ordinary
person finds such complexity offputting. Our results suggest
that this offputting effect may be so strong that it drowns out
any other differences between skilled and unskilled human
poetry. To non-expert judges, the confusing complexity of
professional poems is worse than any of the clumsiness of
an amateur. Yet to an expert in poetry, it would be absurd to
say that the amateur poems are therefore of higher quality.

The strength of the effect here—not just negating but re-
versing expected trends—is surprising. It suggests that there
is a great danger in ignoring the question of rater expertise.
The use of specific criteria such as Novelty, Value, Skill, Ap-
preciation, or Imagination does not remove the need for this
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question. When poems are judged for their quality, who per-
forms that judgment? The researcher? An ordinary reader?
An expert? If so, what kind of expert? Future computational
creativity studies need to make their answers to these ques-
tions explicit, even if they are not already using techniques
which demand the use of experts.

In the meantime, without an identifiable target audience, it
may be very dangerous to talk about quality, value, or skill in
computational creativity as though it is only one thing. The
quality of popular appeal and the quality of appeal to ex-
perts may be diametrically opposed, and there may be other
audiences with still other views of quality. Until such an
audience is chosen and the choice justified, the notion of
creativity, without the notion of creativity to whom, is oper-
ationally meaningless.

Conclusions
Using the conceptual criteria from four popular computa-
tional creativity evaluation metrics, we have shown that non-
expert humans using these metrics can produce the oppo-
site result from what is intended. Non-expert humans pre-
fer more accessible poetry, even if that poetry is much less
skilled according to experts. These results strongly suggest
that even when structured metrics are being used, non-expert
judges cannot approprately evaluate the creativity of a hu-
man or computer system. Regardless of the metric used,
care must be taken in selecting and assessing an appropriate
group of judges.
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Román, I. G., and y Pérez, R. P. 2014. Social Mexica: A
computer model for social norms in narratives. In Proceed-

ings of the Fifth International Conference on Computational

Creativity, 192–200.
Smith, M. R.; Hintze, R. S.; and Ventura, D. 2014. Nehovah:
A neologism creator nomen ipsum. In Proceedings of the

Fifth International Conference on Computational Creativity,
193–181.
Tearse, B.; Mawhorter, M. M. P.; and Wardrip-Fruin, N.
2011. Experimental results from a rational reconstruction
of MINSTREL. In Proceedings of the Second International

Conference on Computational Creativity.
Ventura, D. 2008. A reductio ad absurdum experiment in
sufficiency for evaluating (computational) creative systems.

In Proceedings of the 5th International Joint Workshop on

Computational Creativity, 11–19.
Young, M. W.; Bown, O.; et al. 2010. Clap-along: A nego-
tiation strategy for creative musical interaction with compu-
tational systems. In Proceedings of the International Con-

ference on Computational Creativity 2010, 215–222.

Poetry Sources
Bell, J., and Ius, D. Vine Leaves Literary Journal. http:
//www.vineleavesliteraryjournal.com/. [ac-
cessed April 2014].
Bobet, L. Ideomancer. http://www.ideomancer.

com/. [accessed April 2014].
Card, O. S. Strong Verse. http://www.

strongverse.org/. [accessed April 2014].
Delmater, W. S. Abyss & Apex. http://www.

abyssapexzine.com/. [accessed April 2014].
el Mohtar, A., and Paxson, C. Goblin Fruit. http://www.
goblinfruit.net. [accessed April 2014].
ELJ Publications. Amethyst Arsenic. http://www.

amethystarsenic.com/. [accessed April 2014].
Gage, K., and Filek, M. K. Writing Tomorrow. http:

//writingtomorrow.com/. [accessed April 2014].
Gaskin, E. Astropoetica. http://www.

astropoetica.com/. [accessed April 2014].
Greene, R. Raleigh Review. http://www.

raleighreview.org/. [accessed April 2014].
Hart, M. Through the Gate. http://

throughthegate.net/. [accessed April 2014].
Peg Leg Publishing. GlassFire Magazine. http://www.
peglegpublishing.com/glassfire.htm. [ac-
cessed April 2014].
Poetry Foundation. Poetry Magazine. http://www.

poetryfoundation.org/poetrymagazine/. [ac-
cessed April 2014].
Poetry Free-For-All, T. Newbie Stretching Room. http:
//www.everypoet.org/pffa/forumdisplay.

php?26-Newbie-Stretching-Room. [accessed
April 2014].
Rademacher, K. Silver Blade. http://silverblade.
silverpen.org/. [accessed April 2014].
Unknown publisher. Neon - A Literary Magazine. http:
//neonmagazine.co.uk/?p=5103. [accessed April
2014].
Well Done Marketing, Inc. Punchnel’s. http://www.

punchnels.com/. [accessed April 2014].

Proceedings of the Sixth International Conference on Computational Creativity June 2015 109



Measuring cultural value using social network analysis: a case study on valuing
electronic musicians

Anna Jordanous
School of Computing

University of Kent, UK
a.k.jordanous@kent.ac.uk

Daniel Allington
Department of Arts & Cultural Industries,

University of the West of England, UK
Daniel.Allington@uwe.ac.uk

Byron Dueck
Department of Music
Open University, UK

byron.dueck@open.ac.uk

Abstract

In evaluating how creative a program or an artefact
is, a key factor to consider is the value inherent in
that program or artefact. We investigate how to mea-
sure subjective, cultural value: value which has been
expressed by members of a community towards other
members. Specifically we focus on a case study ask-
ing: to what extent can we use social network activity
to examine the value that electronic musicians place in
each other’s work? Focusing on activity by electronic
musicians on the music social network SoundCloud, we
combined qualitative and quantitative research to under-
stand and trace significant ‘valuing activities’ in Sound-
Cloud data. Exploring interaction on the site in this
guided way has enabled us to compare, contrast and as-
sess what value is attributed to different members of the
electronic music community on SoundCloud. In this
paper we report our results and consider how this work
offers a methodology for computational analysis of cul-
tural value. We hypothesise that this methodology is ex-
tensible to other creative domains; potentially this could
lead to a tool for automated cultural value judgement
methods on large social network datasets. Hence we
move towards computationally generated evaluations of
value, a fundamental part of creativity.

Keywords: Social network analysis, value metric, evaluation

Introduction
How can we measure the value of creative entities to a com-
munity? (especially unquantified value, expressed through
esteem rather than money?) And how could such value
judgements be automated across large amounts of data and
implemented within computational systems?

Value judgements are a vital part of creativity; the useful-
ness or value inherent in a creative system and what it does
is intricately connected to how creative it is (Ritchie 2007;
Jordanous 2012a). In computational research on creativity,
we would like our systems to be able to perform evaluation
of their own processes. Autonomous judgements of value,
integrated within a computational system, are desirable but
only occasionally realised in computational creativity.

Value itself can be difficult to identify and measure. In
particular, a distinction exists between the more easily iden-
tifiable economic value of creative works and their produc-
ers, compared to their inherent and intangible cultural value.

Cultural value is attributed through peer interaction and un-
derground expressions of esteem rather than measures such
as sales of artefacts or ticket sales. There is a ‘relative inde-
pendence of a status order built from peer esteem from one
built purely upon popularity or sales’ (Lena and Pachucki
2013, 239). For example, electronic music is a creative do-
main consisting of many underground subcultures, where
economic or popular recognition is often not achieved and
quite often not even pursued to any great degree. Value at-
tributions become difficult to recognise due to lack of official
recognition or monetary reward for electronic musicians.

So how do you measure or evaluate cultural value? Here
we address this question through a case study on electronic
musicians. In the Valuing Electronic Music (VEM) project1
we investigated how electronic musicians show their appre-
ciation and value for other musicians, via qualitative inter-
views and quantitative research around SoundCloud,2 a so-
cial network for musicians (particularly for electronic musi-
cians). Our aim was to gauge how value is attributed and
recognised through interactions between electronic musi-
cians. In particular, we wanted to identify features of inter-
artist networking and peer evaluation contributing to value
production that are detectable in quantitative analysis of dig-
ital interactions. The main aim relevant to computational
creativity is to determine what computational analysis could
be performed as a proxy for cultural value.

We argue that the approach developed in the VEM project
is adaptable to assessment of value in a range of cultural con-
texts. We offer a method for empirical evaluation of cultural
value through analysis of social interactions.

Value evaluation in computational creativity
Where evaluation of computational creativity systems in-
cludes some value judgements, objective metrics have to be
carefully selected to ensure value is evaluated in an appro-
priate and representative manner. In computational work,
though, objective metrics have key advantages over subjec-
tive data collection, which can be time consuming (espe-
cially if collating user feedback) and problematic in terms of
identifying representative samples of users. Also, it is dif-
ficult to integrate such testing within a computational sys-

1See http://valuingelectronicmusic.org
2http://www.soundcloud.com
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tem’s processes and respond to the feedback, particularly
if system testing is carried out towards the end of research
projects. But there is a need for autonomous value judge-
ments that could be integrated within computational creativ-
ity systems; creativity is not just about new work but also the
development and refinement of this work (Boden 2004).3

The term value encompasses many different aspects such
as appropriateness, relevance, usefulness, correctness, wor-
thiness and/or quality. A minimum (probably insufficient)
definition of creativity could be novelty+value (Jordanous
2012b). Jordanous (2012a) defines value as:

• ‘Making a useful contribution that is valued by oth-
ers and recognised as an influential achievement;
perceived as special; “not just something anybody
would have done”.

• End product is relevant and appropriate to the do-
main being worked in.’ (Jordanous 2012a, 258)

In his discussion of value, Ritchie (2007) makes extensive
use of value ratings but leaves open what type of method
should be used to generate these ratings. Domain-general
heuristics for value judgements are difficult if not impossible
to identify; value is relative to the domain and is embodied
in different ways. For example, accuracy is vital for mathe-
matical proof generation systems, (Colton 2008) but not for
creative musical improvisation (Jordanous and Keller 2012).

One of this paper’s authors recently reviewed evaluation
of computational creativity systems (Jordanous 2011). She
found that 43% of papers containing some content on sys-
tem evaluation aimed to evaluate the value, quality or appro-
priateness of the system or system’s output. Many types of
empirical value measurements were found, as well as value
measurements based on user feedback. The value of a cre-
ative system entails more than the value of its products; but
this perspective was not evident in Jordanous’s review. Typ-
ically, systems were evaluated based on the value or validity
of the artefacts they produce, e.g. statistical tests for va-
lidity, calculations of how fit-for-purpose material produced
during runtime was, how interesting their products were, or
other domain-specific indicators of validity or value.

Social and cultural value, particularly in music Black-
ing noted that the existence of musical geniuses such as
Bach and Beethoven is reliant on the presence of a dis-
criminating audience (Blacking 1973). We push this view-
point further: the relationship between audience and mu-
sical performer is both vital for appreciating musical value
and the division between audience and musical performer
can be blurred. Turino (2008) contrasts ‘presentational’ mu-
sics, based around the quality of works and performances,
with ‘participatory’ musics, where value is within the qual-
ity and intensity of social interaction. Turino reminds those
in a Western Classical musical mindset of a vital aspect of
music: the collective, participatory social aspect of musical

3Some computational creativity researchers use evaluation in
the processes of creative systems (Pérez y Pérez, Aguilar, and Ne-
grete 2010, engagement-reflection), (McCormack 2007, evolution-
ary computing), (Pease, Guhe, and Smaill 2010, generate-and-test).

experiences, especially when incorporating collective listen-
ing, composition, performance and dancing. For example,
social interaction and communication are key for creativity
in musical improvisation (Jordanous and Keller 2012).

Csikszentmihalyi (1988) proposes a systems model of
creativity as a dynamic process of interaction between Do-
main, Field and Individual/Person:

‘[creative] is the product of ... a set of social institu-
tions, or field, that selects from the variations produced
by individuals those that are worth preserving; a sta-
ble cultural domain that will preserve and transmit the
selected new ideas or forms to the following genera-
tions; and finally the individual, who brings about some
change in the domain, a change that the field will con-
sider to be creative.’ (Csikszentmihalyi 1988, 325).
Csikszentmihalyi’s emphasis on interactions between do-

main, individual and field (Csikszentmihalyi 1988), can be
situated within the broader area of field theory (Bourdieu
1993) where producers compete for recognition rather than
financial gain. Bourdieu posits that all agents involved in
music-making form part of the musical communities that at-
tribute value to music-making activities, regardless of level
of ability or profile. So ‘hidden musicians’ (Finnegan 2007)
(everyday music-makers who are key to the musical life of
communities but understudied by scholars and publics) play
a significant part in determining who and what is valuable
within musical practices (Dueck 2013). Exploring how hid-
den and star musicians link together in networks of evalua-
tion and commentary lets us see how all depend upon one
another, jointly producing the cultural context in which their
music can have value. Although Bourdieu focused on what
he termed ‘legitimate’ culture (i.e. serious literature, art mu-
sic, etc), his ideas have since been adapted to other cultural
forms e.g. Lopes 2000 (jazz), Elafros 2013 (hip-hop).

Social networking and new media websites have provided
music makers with new spaces in which to negotiate and
produce cultural value for their work, taking on tasks that
would once have been the sphere of specialists in market-
ing, publicity and criticism. These phenomena appear to
have had a particular impact on electronic music, which is
typically made by lone, but highly networked, individuals
and is often circulated non-commercially online. A recent
report across UK-based professional musicians found that
64% ‘us[e] web-based technologies to produce, promote,
and distribute their music’ (DHA Communications 2012).4

De Nooy argues that social network analysis can legiti-
mately ‘be used to gauge the amount of... symbolic capi-
tal’ (De Nooy 2003, 325). De Nooy’s proposed approach
to the study of symbolic capital had been successfully im-
plemented as a methodology for studying the production of
cultural value by one author of this paper (Allington, under
review). Allington used data harvested from online sources
to study the production of value within Interactive Fiction
(stories that develop in plot through user interaction). Cen-
trality measures were used to assess the level of value asso-
ciated with specific creators working within that community

4This figure may be higher for electronic music, which typically
attracts music makers highly familiar with digital technology.
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(Allington, under review). Allington’s methodology formed
the starting point of the present project (complemented with
ethnographic research). We scale up from de Nooy’s work
with tens of producers and Allington’s with thousands, to
hundreds of thousands of users in the current work.

Identifying cultural value in electronic music
Looking specifically at electronic music, the Valuing Elec-
tronic Music project investigates how we can gauge what
cultural value electronic musicians hold. With the above dis-
cussions guiding our work, we looked at how peer groups of
electronic musicians showed appreciation of each other. Our
quantitative work focused on tracing activities for ascribing
value to users, through network analysis on large collec-
tions of data. This paper reports the project’s findings, from
the perspective of developing a methodology for empirically
identifying and evaluating cultural value (that could in future
be incorporated autonomously in a creative system).

Partly inspired by successes using social network analy-
sis to make proxy judgements about value within a network
of Interactive Fiction writers (Allington, under review), the
research focuses on interactions between creative producers
on the music social network SoundCloud, aggregating peer
evaluations and tracing the production of value.

Our approach to cultural value judgements Our quanti-
tative research centred around collecting and analysing data
from SoundCloud’s API, about how users interacted with
each other on SoundCloud. SoundCloud provides a good
data source for technical reasons (a well-developed API pro-
vides access to all public data), for social reasons (it is
widely used by amateur, semi-professional, and professional
electronic musicians for networking and publishing music),
and for ethical reasons (the data is clearly marked to site
users as public). This sits in contrast to sites such MySpace,
which has declined in popularity.

We initially collected data on all demographic informa-
tion and activities that SoundCloud made public, with the
intention of using our qualitative data to understand the rel-
ative importance of each activity. Demographic data that
users had made publicly available include their location,
URLs and avatars relating to their online profile, number
of followers, details of record labels they were attached to,
etc.5The activities that we collected user data for were the
publishing of tracks, following and being followed by other
users, liking a track, commenting on a track, creating per-
sonal playlists of tracks and creating or joining a group.

While the project was primarily a study of online data,
this study was contextualised and enriched through study
of SoundCloud users in the offline environments in which
they primarily perform. In particular, our initial research on
SoundCloud suggested there existed more-or-less closely-
knit communities of co-located producers of electronic mu-
sic. This implies that, even in the apparently transnational
world of electronic music and online distribution, the social

5More details at the SoundCloud API documentation at
http://developers.soundcloud.com/docs/api/guide and our github:
http://www.github.com/ValuingElectronicMusic/network-analysis.

production of value may still be influenced by localised real-
time face-to-face interactions. Hence ‘offline’ qualitative
work was conducted alongside our quantitative work, with
each mode of research guiding and influencing the other.

We interviewed eight electronic musicians, representing
various different types of musicians in different genres from
grime to techno. We also attended three electronic mu-
sic performances and made observations, and interviewed
a panel of three musicians at a public event we organised
in London in June 2014. Informing our qualitative research,
we also actively engaged in the SoundCloud community e.g.
‘liking’ tracks we enjoyed and following musicians. The in-
terviews helped us to explore the performers’ perceptions of
value. Using semi-structured interviews allowed us to cover
areas of interest such as how the interviewees valued other
people’s music, while allowing the interviewee to guide the
conversation towards areas they felt important. Observation
data from gigs (e.g. order of appearance of various per-
formers, prominence of performers’ names on promotional
materials, audience behaviour, etc) informed the interviews
themselves as well as providing much-needed context for
our relatively abstract online data.

A common theme emerging from our qualitative research
was that rather than searching for value (as an entity to mea-
sure), we should be focusing on valuing activities. Actions
by and interactions between musicians were reported by in-
terviewees as a vital way in which they perceived that people
appreciated them and their work. Similarly in observations
during gigs and in specific questions to live performers, we
often noted the importance attached to people’s body lan-
guage and responses to music. In these electronic music
communities, the status attached to people also affected to
what degree any valuing activities were. In particular, our
interviewees typically gave higher credence to interactions
with other musicians, compared to those with non-musicians
(or those perceived as a non-musician, for example if their
reputation as a musician was not known by the interviewee,
if they had not mentioned their own musical activities dur-
ing the interactions or if they had not included pointers to
their own work in their SoundCloud profile or other online
profiles). This is similar to Bourdieu’s emphasis on cultural
producers’ esteem for one another’s work (Bourdieu 1993).

Data Collection We wrote code in Python to collect pub-
lic data automatically from SoundCloud, using the Sound-
Cloud API and Python SDK.6 It was impractical to study the
entire network of users, which comprises tens of millions
of accounts, many of them inactive or controlled by bots,
and huge amounts of data to collect. We initially adopted a
snowball sampling method: starting with a seed individual,
collecting data for the seed and the individuals they are con-
nected to, then collecting data for the individuals connected
to our seed’s connections, and so on). However, we encoun-
tered problems with this approach due to SoundCloud net-
work structure and sheer density of data. Many millions of

6This code is open-source and available at
http://www.github.com/ValuingElectronicMusic/network-analysis
- it is built from existing code by Allington for social network
analysis, also available from the ValuingElectronicMusic github.
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users would frequently be found within just two degrees of
separation of a single individual. Undeclared restrictions
placed by the SoundCloud API on downloads of informa-
tion meant that we were prevented from collecting full data
on all of those people, with an upper limit of 8199 in place.
For example, if a given user had over 100000 followers, one
would be unable to discover the identity of more than 8199
of them.

Following discussion with experts at a workshop organ-
ised as part of the project, we decided to adopt a different ap-
proach. We switched to a two-fold data collection approach
of (i) a sample of 150000 randomly selected SoundCloud
users and (ii) ego-networks consisting of the networks of
users around our interviewees and their followers/followees.
In each case, we collected all publicly available data about
each user, along with data on all tracks uploaded by these
users and those who followed them. Due to the download
restrictions of the SoundCloud API we could only down-
load up to 8199 items of data per information request, but
in practice this only affected data collection for a very small
number of highly popular SoundCloud users. Some minimal
data cleaning was needed, mainly for reconciling locations
of users where different people used different variations of a
location name (e.g. Cairo and Al Qahirah, or NYC and New
York), or neighbourhoods within cities rather than cities.

Genres of electronic music are varied and broad, includ-
ing: house, trance, techno, trap, EDM, ambient, grime, etc.
Initial research showed that while the predominant types
of music on SoundCloud are in electronic music genres,
SoundCloud tracks are often tagged as belonging to a sub-
genre of electronic music, rather than as ‘electronic’. To
locate data corresponding to electronic musicians, we could
not merely search for those who published music tagged as
‘electronic’, nor would it be appropriate to treat all elec-
tronic music genres as belonging to one community (as con-
firmed by our interviewees). Instead we made use of the fact
that most musicians actively participating on SoundCloud
(uploading music, interacting with other users) were elec-
tronic musicians. In our data collection, then, we collected
data on randomly chosen musicians such that we could later
filter the data by genres or other pertinent factors (to be in-
formed by our qualitative research).

Working out what data to look for In interviews, we
asked if there were valuing activities the participants would
highlight as important on SoundCloud, and if so, which
ones. In general, even minimal acts of valuing such as play-
ing someone’s track were considered to have some value.
Participants highlighted indication of a longer term public
support base via number of followers, and the use of the
commenting facility for people to leave messages on in-
dividual uploaded tracks. Further, participants valued ac-
tivities which arose from or led to offline connections and
collaborations, although this type of activity is difficult to
track quantitatively.7 Activities such as playing or ’liking’

7Collaborations between two SoundCloud musicians are tricky
to detect in SoundCloud data, as tracks on SoundCloud can only be
attributed to a single creator. Tracks with two or more associated
creators tend to either be uploaded by one of the collaborators with

someone’s track or including a track in a personal playlist
or group were not highlighted, possibly because it is less
easy to trace the provenance of this kind of valuing activ-
ity to individual musicians and hence less easy to judge the
credibility of the person being interacted with.

The facility to follow and be followed by other Sound-
Cloud users was widely used by users, and afforded analysis
or user interaction on a wider scale than at the level of in-
dividual comments, allowing us to detect general trends in
much larger samples of data. While the follow activity does
not require much engagement compared to making a com-
ment on someone’s track, nevertheless this activity identifies
a SoundCloud user as showing their valuing of another user,
in a publicly accessible manner. Qualitatively, we found
that there was value attached to having large numbers of
followers, though the participants disagreed as to how im-
portant this was to them personally. Quantitative analysis
revealed, however, that SoundCloud is not a media which
compares to YouTube or Twitter in terms of magnitude of
followers. In our 150000 user sample, only three accounts
had over 100000 followers and all of these accounts rep-
resented agents involved in music that had enjoyed signifi-
cant commercial/popular recognition, above the subcultural
recognition that is more common in electronic music scenes.

Interim results and redirections in our quantitative re-
search Following Allington (under review), initial quanti-
tative research (Jordanous, Allington, and Dueck 2014) saw
us seek the top-ranked users according to centrality mea-
sures. (Centrality measures highlight the most influential
nodes in a network.) We also attempted to visualise the net-
works but found that graphs for samples greater than 500
users would be unreadable. We measured recommendation
and influence through indegree rankings (a measure based
around how many users follow another user). In an initial
test sample of 1500 users, we identified key users. This rank-
ing did find some key players in electronic music whose data
had been captured in our sample, such as Tiésto. Our results,
however, did not help us understand the network at a deeper
level, particularly regarding our search for cultural value
through peer esteem. While indegree is more sophisticated
than merely measuring the number of followers per account,
there was some similarity between these two rankings. A
‘Justin Timberlake’ account, for example, comes in at po-
sition 20, despite having no interactive activity on Sound-
Cloud and therefore no identifiable contribution to cultural
value through SoundCloud interactions.

We started to explore more sophisticated methods such
as PageRank and eigenvector rankings to help identify key
players in SoundCloud’s networks. However we started
to notice a mismatch between qualitative findings and the
shape of our quantitative data, stemming from earlier ob-
servations about the nature of sub communities within elec-
tronic music. In interviews, when we asked questions about
valuing and appreciation, participants often replied in terms

text pointing to the other collaborator(s), or via the creation of a
new SoundCloud account representing all the collaborators, which
is distinct from the collaborators’ personal accounts.
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of relationships and interaction. When we probed further,
the participants tended to answer in terms of the genre(s)
they produced music in, reframing the question to focus on
that sub-community they were part of.

Understanding that we should look for subnetworks and
cliques within our data, we investigated on what grounds we
should cluster our data, through interviews and through in-
spection of our data for commonly occurring links. Genre
was one important clustering factor suggested in the inter-
views. Somewhat surprisingly for an online network, ge-
ographical location was another factor we were guided to
investigate. Participants reported how offline interactions at
particular places fed back into the social network interac-
tions. The importance of offline contacts could not be ig-
nored, especially given the social network ‘fatigue’ reported
by some participants in building their profiles. In terms
of location having an influence on a musician’s perceived
value, our interviewees talked about the importance of their
location for raising their profile and credibility. Though
some had experience of being based elsewhere, many of our
interviewees were based in London, which - as we find be-
low - is an important centre for electronic music. One par-
ticipant in particular reported a conscious decision to base
themselves in London for profile-raising reasons.

Analysis of clusters of users and sub-networks Learning
from experience, our quantitative research focused on what
sub-communities and clusters existed in our data. We took
two directions: 1. constructing and studying multiple net-
works of electronic music producers and their connections,
and 2. using the comments-based data to identify the lan-
guage used between peers to express value.

We built networks of accounts and tracks, based on ‘fol-
low’ relationships, which we could re-apply centrality mea-
sures to. Clusters and cliques in these networks were also
identified where possible, based on available metadata about
users and tracks such as genre. We should note here that
many users do not provide location information, particularly
if not active users (though we focus on those users who ac-
tively engage with other users on SoundCloud).

Inspecting the data on comments about tracks, we noted
that the overwhelming majority of comments tended to be
positive, unlike commenting activity typically observed on
sites such as YouTube (Pihlaja 2012). In our analysis of the
comments data (filtered from spam where possible) we used
the Open Office dictionaries for English, French, Spanish
and Italian to identify and extract English language com-
ments to reasonable accuracy.8 We treated the English-
language comments on tracks as corpora based on track gen-
res. Corpus analysis allowed us to identify evaluative vocab-
ularies associated with particular genres, groups, and loca-
tions, by comparing these subcorpora on the lexical level.
Given that SoundCloud comments were typically positive
(or spam), we posit these vocabularies as genre-specific in-
dicators of value as expressed in that genre.

8Our approach did not pick up comments such as ‘wooooot!!!’
or ‘loveeeeeeeeee’, the type of which occur frequently in our data.

Table 1: Follow relationships by frequency of locations

Location of followed Location of follower n
1 London London 3799
2 Melbourne Melbourne 2274
3 Berlin Berlin 1375
4 Paris Paris 1253
5 New York New York 1190

Computational analysis: Results and discussion9

Geography Analysis of locations in our random sample
revealed London as the most common city location for mu-
sic makers (users who had uploaded tracks to SoundCloud);
200 accounts out of the 17357 eligible accounts were at-
tached to users based in London. London music-makers
had the highest mean number of followers, though a dis-
proportionately high standard deviation reveals results were
skewed by a small number of very highly followed accounts.

On analysing individual ego-networks of our participants,
we could identify clear clusters within the ego-network
based on location of the users, indicating a preference for
users to follow other users in the same geographical area
as them. This hypothesis was supported by evidence in the
larger random sample (see Table 1).

Other key cities identified through our random sample be-
hind London were New York (171 accounts belonging to
music-makers), Los Angeles (93), Chicago and Paris (both
81). In terms of followers, strong bidirectional links were
identified between London, New York and Los Angeles
(UK/US), and then between London, Berlin and Paris (ma-
jor European capitals). Given that this part of our analy-
sis was genre-agnostic, it was surprising to see cities such
as Nashville and Mumbai, with strong musical connections
to country music and Bollywood music respectively, fea-
turing little in the interconnected data. Perhaps this is be-
cause these types of music do not enjoy the same associa-
tions with online/digital technologies and, more specifically,
with SoundCloud (emphasising the need to ensure that the
social interactions you are analysing are relevant to the cre-
ative communities you study).

Using eigenvector centrality based on a graph connected
by follow relationships, we identified similar rankings; the
central node in this graph was London (0.90093 centrality),
followed by New York (0.24838), Berlin (0.20645), Los An-
geles (0.20121) and Paris (0.10437). By country, the United
States was top by some degree (0.96823 centrality, with the
second highest centrality at 0.21216 for the UK). Germany,
Canada and France were next in influence, with centrality of
0.07380, 0.05749 and 0.05193 respectively.

Genre In raw frequencies, hiphop producers were most
prevalent in our sample, with 155 users uploading tracks

9The following is a synopsis of findings that are relevant to de-
veloping computational analysis of cultural value. Fuller reports
of our findings are described in (Allington, Dueck, and Jordanous,
submitted) and (Allington, Jordanous, and Dueck 2014).
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Table 2: Follow relationships by genre

Follower Following n
1 hiphop hiphop 2443
2 house house 2276
3 techno techno 1415
4 progressive house house 800
5 dubstep dubstep 679

tagged as ‘hiphop’. House music was second (90 users),
followed by rock (61), rap (59) and pop (49). However once
we start to study the inherent cultural value through interac-
tions between producers, we see different results as to the
influence of different genres. We used eigenvector centrality
based on follow relationships to study how producers of mu-
sic within one genre interacted with music-makers in other
genres. In our sample, house music producers were most in-
fluential, followed by hiphop, techno, and deephouse. Music
tagged as ‘electronic’ is still prevalent, though its subcate-
gories are widely used as tags instead. These fuller results
(Allington, Jordanous, and Dueck 2014, Table 27) also evi-
denced the influence of electronic musicians (as opposed to
musicians of other genres) on SoundCloud.

Many tracks were tagged with more than one genre term,
and Figure 1 reveals patterns within genre tagging that em-
pirically support existing genre classifications. Clustering
together tags that frequently occurred together on tracks,
we identified three macro-genres that could be categorised
as ‘EDM’ (Electronic Dance Music), ‘urban’, and a mis-
cellaneous ‘other’ category. The two named macro-genres
‘EDM’ and ‘urban’ align with an analysis of data from 2007
on all musical genres on MySpace by Lee & Silver (2014),
identifiably corresponding to two clusters that they tagged
as ‘Electro/Dance’ and ‘Black & Brown’ respectively.

Focusing on activity in the EDM and urban clusters (as the
‘Other’ cluster contains negligible activity) typically EDM
producers follow other EDM producers, and similarly Ur-
ban producers follow other Urban producers. Looking at the
genre level, a similar pattern of following producers within
the same genre is noted (see Table 2).

Follower activity A common-sense hypothesis was sup-
ported by results: users who uploaded tracks to SoundCloud
typically had more followers than those who did not (a mean
of 127 followers per account for those who uploaded public
tracks, compared to a mean of 19 per all types of users in our
150000-users sample). If we take our qualitative findings
that number of followers is generally positively associated
with value recognition, then we can underline that music-
makers are valued in the SoundCloud community.

Commenting activity Taking the three macro-genres we
identified, EDM producers were the most prolific com-
menters with 11711 comments, compared to 3673 com-
ments by urban producers, and 2982 comments by producers
of the ‘other’ genres. By genre, dubstep producers engaged
in commenting behaviour the most (2569 comments), then
techno (2254), hiphop (2081) and house (1725).

Figure 1: Co-occurrence of genres in track tags

From the comments we have (as described above) identi-
fied genre-specific English-language vocabularies indicating
value expressions. Keywords are presented for the top gen-
res in Table 3, in order of ‘keyless’ (decreasing proportional
frequency). This table shows the different types of vocabu-
lary prevalent per genre, for example keywords in comments
on techno tracks appear more polite than on hiphop tracks.

Evaluation of our approach
When is social network analysis appropriate as a proxy
for measuring cultural value? As shown by the lack of
useful results of SoundCloud users in cities like Nashville
and Mumbai, one needs to ensure they are analysing ap-
propriate social networks for their specific creative domain.
There may not be a relevant social network directly for these
acoustic-music-based communities, but general social net-
works such as Twitter may prove useful.

How could the VEM findings be useful to computational
creativity researchers? Cynically, perhaps, we could set
up a London-based SoundCloud account for a hypothetical
electronic music computational creativity system we want to
promote the work of, ensuring we (or the system) upload(s)
tracks produced by our system. We could concentrate ef-
forts on developing our hypothetical system’s ability to in-
teract with other music-makers’ tracks who work in similar
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Table 3: Genre-specific keywords for expressing value

Dubstep Techno Hiphop House
1 sick set dope nice
2 tune great shit house
3 nice tracks beat super
4 big loved leave production
5 mix fantastic song support

genres, commenting on such tracks and responding to com-
ments on its own tracks using keywords which have been
identified as commonly used in the genre we are working in.
We could develop our system to follow other music-makers
based in strategically important cities such as London, New
York, Los Angeles, Paris or Berlin, or who upload music
of similar genres. While this would not necessarily develop
the musicality of our hypothetical artificial electronic mu-
sician, we argue such moves (if executed plausibly) would
help increase the cultural value attributed to our musician
(notwithstanding the debate about the effects of identifying
the account - or not - as that of an artificial musician (Moffat
and Kelly 2006; Cook and Colton 2014)).

How could social network analysis be used more broadly
within computational creativity? For this work to be
most useful to computational creativity researchers, it could
a. show how cultural value can be identified and gauged
through research and/or b. offer a way of autonomously
making value judgements about computational creativity
systems. We believe that our work above demonstrates point
a., how to tangibly identify markers that indicate cultural
value. Allington (under review) has previously used similar
network analysis to study Interactive Fiction.

What we pursue now is the afore-mentioned point b., a
methodology for using computational network analysis to
gauge the cultural value associated with a creative entity
such as a computational creativity system. For such an ap-
proach to work, we need the system to be capable of interact-
ing with relevant online communities in a plausible manner,
as suggested above for our hypothetical electronic computer
musician. We also need there to exist an appropriate social
network for such interactions to take place in, or as a fas-
cinating alternative, a multi-agent system or similar digital
environment containing several interacting agents. For the
actual analysis, we advocate using a combination of initial
quantitative data analysis and qualitative research to identify
key indicators of cultural value that can be traced in the so-
cial network interactions. With these conditions in place, we
can analyse interactions in the network and compare our cre-
ative system or agent to others within the network to gauge
the value inherent in its interactive social behaviour.

Future work Our results show that electronic music sub-
cultures are geographically influenced and, within the UK,
heavily London-centric. Our quantitative methodology
could reveal important scenes associated with other cities,
and whether we could identify musicians that are consid-
ered heavily influential and ‘valuable’ to the local scene(s).

Somewhat inspired by the 2014 Scotland independence ref-
erendum, we plan to examine electronic music scenes within
Scotland to test our methodology. Our next step will be to
apply the same approach to other creative domains to see
if social network analysis can be applied more broadly for
computationally analysing cultural value. We would wel-
come collaborations.

Further useful information may be gained from quanti-
tative analysis of comments made by users on each other’s
tracks, though this was not so straightforward to analyse dur-
ing the project’s funded time. In this work we would have
liked to explore and build networks of users based around
‘comment’ relationships between users. Such work will re-
quire considerably more intricate and varied analysis to fil-
ter links based around genuine comments. Ongoing work is
currently examining the links between users based on com-
menting behaviours. We would also like to examine conver-
sations; repeated comments or comments on multiple tracks
from a user should indicate greater peer engagement. Con-
versations proved rather difficult to detect quantitatively due
to the lack of a standard way to indicate who your comments
are directed towards, but their analysis would be useful.

Conclusions
Value is recognised as a key aspect of creativity. In eval-
uating computational creativity, one large problem we face
is in gauging the value of the work generated by our sys-
tems. Such evaluation is particularly problematic when we
consider that value is often a cultural and intangible resource
apportioned subjectively through the actions of peers.

To what extent can we use social network activity to iden-
tify the cultural value of creative entities? Here we ad-
dressed this question through a case study investigating how
electronic musicians place value in each other’s work. The
Valuing Electronic Music (VEM) project combined ethno-
graphic observation/interviewing with automated collection
of quantitative data from the SoundCloud music networking
site. Our approach has implications for how we could mea-
sure cultural value in other domains, as well as contributing
to our understanding of cultural value in electronic music.

Challenges and rewards alike come from combining situ-
ated qualitative research with quantitative analysis of large
datasets gathered online. Learning from (and feeding back
into) the findings from interviews with electronic musicians,
we used computational analysis to study interactions in so-
cial networks.10 Through such analysis we extrapolated in-
formation about how musicians interact with each other on
SoundCloud, and how they express appreciation of each
other’s work. Typically, it was more productive to study
clusters of strongly connected cliques within the Sound-
Cloud network, rather than a sample of the entire network.
The SoundCloud user community tends to cluster according
to several factors. We found empirical evidence of clusters
forming around common musical genres, and also of clus-
ters around certain privileged geographical locations such

10Our approach echoes (Jordanous 2012b): to better represent
creative activities using quantitative models, we need good under-
standing of the creative domain as well as the models themselves.
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as London. One key ‘take-home’ finding from this work is
that one can study cultural value computationally by study-
ing social activity, but often it is most useful to study in-
teraction between smaller sub-groups of a network, rather
than taking an overall view of the entire network as a whole.
In other words, to understand how people express value for
each other’s work, we should look for social interactions and
the building of relationships within a community.

We found that while certain kinds of activity on Sound-
Cloud have little apparent economic value (e.g. commenting
on each others’ tracks, publishing free downloads) these ac-
tivities seem to generate cultural value that facilitates more
economically valuable work. For the most part, music-
makers assert their concern for all listeners, but close atten-
tion to their activity (and how they describe it) suggests that
interactions with peers (i.e. fellow music makers, preferably
within similar genres, areas or with other links) are espe-
cially important for the production of value for their work.

Our computational analysis of SoundCloud data allowed
us to approximate the value placed in electronic musicians’
work, showing that we can use social network analysis as
a proxy for measuring certain types of musical and cultural
value in a creative domain. We hypothesise that our method-
ology can be extended to analyse quantitatively the value
inherent in other social networks centred around creative ac-
tivity. We believe that this work contributes towards a sig-
nificant type of tool in our ‘computational creativity toolkit’:
an automatable method for evaluating social/cultural value.
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Abstract

This paper puts forth a method for discovering
computationally-derived conceptual spaces that reflect
human conceptualization of musical and poetic creativ-
ity. We describe a lexical space that is defined through
co-occurrence statistics, and compare the dimensions of
this space with human responses on a word association
task. Participants’ responses serve as external valida-
tion of our computational findings, and frequent terms
are also used as input dimensions for creating mappings
from the linguistic to the conceptual domain. This novel
method finds low-dimensional subspaces that repre-
sent particular conceptual regions within a vector space
model of distributional semantics. Word-vectors from
these discovered conceptual spaces are considered, and
argued to be useful for the evaluation of creativity and
creative artifacts within computational creativity.

Introduction

This paper presents a computational-linguistic model for
mapping lexical spaces populated by statistical representa-
tions of words to conceptual spaces defined in terms of fea-
ture dimensions of conceptual representations. This research
has three main goals. The first is to compare the features of
a distributional semantic vector space with the results of an
empirical word-association task completed by human sub-
jects. This empirical corroboration serves to demonstrate
that the model can capture meaningful aspects of human
conceptualizations of queried topics, which are “musical
creativity” and “poetic creativity” in the present study. The
second goal is to use novel methods inspired by computa-
tional linguistics to map terms from the linguistic domain
to representations in the conceptual domain. To this end,
the terms generated by participants are used as input param-
eters for our computational model that uses co-occurrence
statistics and linear algebraic metrics to quantify conceptual
proximity. The third motivation of this work concerns the
evaluation of creativity. In the field of computational cre-
ativity (CC), the evaluation of creative output is often either
subjective on the part of the developer/researcher or unsys-
tematic. We offer our own fundamentally computational ap-
proach as a means of identifying facets of the investigated
concept or domain. Put another way, our model can generate
terms within a conceptual space that may be used to query
different aspects of creative output or creative behavior.

Vector space models of distributional semantics are cur-
rently a popular approach for quantifying linguistic similar-
ity, but many contemporary studies need grounding and ex-
ternal validation. Much of the work in this area compares
model performance to semantic databases, but does not di-
rectly relate results to the cognitive performance of humans,
or uses very restricted tasks, such as similarity judgments,
rather than imploring subjects to elaborate on concepts. Be-
cause our aim is to elucidate how humans conceptualize
creativity, sampling from people’s own formulation of con-
ceptual spaces is essential. Therefore, in the present work,
our ground truth is derived from human responses stemming
from direct queries about creative concepts. Because human
response data is a limited and expensive resource, we hope
that our comparison to human data will inform how con-
ceptual spaces may be discovered as autonomously as pos-
sible in the future (that is, without the requirement of sub-
jective user-input or parameter-tweaking). We also believe
that this multidisciplinary and externally validated approach
produces a more robust system.

In order to pinpoint the relationship between the output
of our computational model and the results of our empiri-
cal study, we take the human-generated terms and investi-
gate their situation within the multidimensional space of our
distributional semantics model. We then determine the char-
acteristic co-occurrence dimensions of sets of words asso-
ciated with concepts, and apply appropriate methods to re-
duce the dimensionality of the space in order to map broader
clusters of linguistic terms to conceptual regions. We argue
that the online generation of a reduced lexical space corre-
sponds to the contextualization inherent in the momentary
way in which concepts are necessarily formed in response
to situations in a cognitive environment. We expect that this
methodology will be a useful applied approach to formaliz-
ing the geometrical representation of conceptual spaces.

Our research explores two related concepts: musical cre-
ativity and poetic creativity. There are several reasons for
this choice. First, we are interested in computational cre-
ativity, and in particular in the evaluation of creative systems
and their output. In order to evaluate creativity, it is neces-
sary to characterize features of this concept using the expres-
sive affordances of language. Our computational methods
seek to capture these features of the conceptual space. Our
model may also be used to discover conceptually-related
terms that a human might not necessarily immediately con-
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sider. We hope this approach may be used to elaborate ab-
stract concepts by elucidating an extensive set of terms that
correspond to the queried conceptual spaces. We therefore
offer this methodology as a novel approach for exploring
and elaborating concepts, both for the evaluation of creative
systems and for potentially contributing to creative pursuits
themselves (such as poetry generation). Furthermore, we
apply our method to a more concrete domain, extending a
small subset of terms relating to the concept WILD ANIMALS
in order to indicate the anticipated generality of our model.

The organization of the paper is as follows: first we offer
a summary of computational approaches to conceptual cre-
ativity, situating our research within the field. This overview
leads into a discussion of computational approaches to the
topics of conceptual spaces and geometric representations
of concepts. An explanation of our computational model
is then provided, including a description of how we have
modeled a lexical space populated by word-vectors. This
is followed by a description of our empirical study with hu-
man participants, and findings from this questionnaire-based
study are reported. Given this context, we then discuss
two ways in which the participants’ responses contribute
to our computational approach. The first is a compari-
son of computationally-derived terms with human-generated
terms. The second contribution will be to treat the salient
features of the word-vectors corresponding to the most fre-
quently reported human terms as an indication of the dimen-
sions of a vastly reduced subspace of our distributional se-
mantic model. We then discuss how terms that fall near the
centroid of the positively valued surface of the discovered
lexical spaces may be used for the evaluation of creativity.

CC and Concept Discovery

Computational approaches to creative conceptualization
have provided a target that is both elusive and essential to
the identity of a field that incorporates a particularly di-
verse range of topics. Creativity itself has been interpreted
by Koestler (1964) as a kind of meshing of disparate con-
ceptual schemes, by which expectations are violated in fa-
vor of interesting new combinations of frames of reference.
Presciently, Koestler has couched his model of creativity in
terms of vector spaces and transformations, an idea which is
broadly shared by the model presented in the present paper.
In the same spirit of conceptual exploration, Hesse (1963)
argued that the formation of creative analogies is the essence
of scientific discovery, an idea demonstrated by the primacy
of analogical modeling in fields such as physics, where there
is no realistic way to literally conceive of phenomena that
occur on obscurely minuscule or vast scales.

In the specifically computational domain, Veale (2006)
has proposed a system for the dynamic generation of new,
non-literal conceptual categories based on a computational
analysis of a taxonomical database such as WordNet. Like-
wise, other researchers are developing formal models of
conceptual blending (Fauconnier and Turner, 2008) that
seek to discover novel combinations of familiar ideas, tar-
geting domains such as mathematical reasoning and story
generation (Ontanón, Zhu, and Plaza, 2012). These ap-
proaches make clever and effective use of heuristics to pick
out interesting new conceptual representations based on pre-

conceived patterns identified by programmers. As such, the
output of these methods is compelling and valid, but the con-
ceptualization itself is arguably handed to the system in the
prepackaged form of externally grounded symbols.

Elsewhere, Heath et al. (2013) have taken a more connec-
tionist approach to conceptual creativity, combining human
based word associations with statistical models of distribu-
tional semantics to design a system that infers conceptual
categories from lists of terms, and likewise generates lists of
terms from linguistic input that is interpreted conceptually.
In a similar vein, Jäger (2009) has performed a statistical
analysis on a set of human reported color terms and used
this analysis to generate a geometric representation of cer-
tain consistencies in the ways that color is conceptualized
across cultural linguistic boundaries. In their commitment
to building models based on low level, non-symbolic ob-
servations about the world, these statistical approaches to
creative conceptualization are in the same spirit as the work
presented in the present paper.

The model described here has been designed to engage
with the field of computational creativity on two different
planes. Principally, our method seeks to implement a low
level approach to the delineation of conceptual regions based
on the geometry of a distributed semantic space. By viewing
concepts as momentary and pragmatic phenomena, we are
able to use ad hoc reductions of a high dimensional lexical
space to map concepts creatively based on situational con-
texts which do not have to be preformulated in the design of
the model. Furthermore, our target domains of musical and
poetic creativity play nicely into a salient issue in the field
of computational creativity: the analysis of creativity itself,
a difficult procedure that necessarily involves some degree
of conceptualization about creativity. This secondary aspect
of the work, the potential for meta-analysis inherent in the
question of whether our model’s output will be useful for
guiding an evaluative discussion of creative work elsewhere,
is intended to give the work its own pragmatic grounding, in
that this suggests a practical application for the creative out-
put described in the following pages.

Spaces of Meanings

This project uses computational methods as a platform for
exploring the relationships between words and concepts
within the context of a cognitive system. In the pragmatic
spirit of Wittgenstein (1953) and Grice (1969), language is
presented as a system defined by its own functionality, with
meaning emerging from the use of words in the course of
accomplishing communicative goals. To the extent that lan-
guage is used to communicate ideas, statements are formed
contextually, with reference to expectations about how re-
lationships between words will suggest hierarchies of cate-
gorization relative to a particular situation. Barsalou (1993)
characterizes the relationship between words and concepts
in terms of the linguistic vagary inherent in the application
of names to ideas: words represent concepts in a way that
is fleeting and mutable. Fundamentally, words stand as in-
dices to concepts, and the relationship between language and
ideas is best understood as a mapping between two separate
domains. The project presented in this paper is therefore
motivated by a desire to model the relationship between two
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different spaces, one of words and one of concepts, and to
explore the ways in which these spaces might be aligned in
terms of the computationally tractable elements of their ge-
ometries.

Gärdenfors (2000) has presented a spatial theory of con-
cepts, by which the dimensions that determine the geometric
situation of a conceptual region within a space of concepts
correspond to the attributes which characterize that partic-
ular region. So, for instance, the concept RIPE BANANAS
would occupy a region towards the higher end of the dimen-
sions of curviness, yellowness, and sweetness within a con-
ceptual space. This literal and factual quality of dimensions
grounds conceptual spaces in low level observations about
the world, giving regions within the space a geometric dy-
namism that lends itself to doing higher level work with the
entities that emerge from the space as symbolic represen-
tations. In particular, well defined conceptual regions are
characterized by convexity, a property that ensures that any
intermediate point between two outlying extensions of a re-
gion will likewise belong to that domain.

Vector space models of distributional semantics, on the
other hand, offer an approach to language modeling involv-
ing a distinctly unstructured computational analysis of lin-
guistic data. In the tradition of Harris (1957), the distribu-
tional hypothesis holds that there is semantic information
inherent in the statistical comportment of language: linguis-
tic meaning can be found in the quantifiable contextual re-
lationships between words. This insight has motivated a
productive field of research, with computational analyses of
large scale corpora yielding distributional semantic models
in which the meanings of words, sentences, and documents
are rendered in terms of mathematically tractable representa-
tions (Schütze, 1992; Landauer et al., 1997). Distributional
semantic models treat words as vectors, with the dimensions
of these vectors representing, either directly or abstractly,
the likelihood of a word occurring in a given context. The
closeness of vectors in a lexical space, which reflects the ten-
dency of the proximal vectors to occur in similar contexts,
has been shown as an indication of lexical similarity be-
tween the words tied to the vectors. In their most straightfor-
ward implementation, distributed semantic spaces are con-
structed by counting the frequency with which each word in
the model co-occurs with all other terms in a base corpus
(see Turney and Patel, 2010; Clark, 2015, for an overview).

There is an important difference between lexical spaces
and conceptual spaces: the dimensionally regimented qual-
ity of coherent domains within a conceptual space is not
reflected in the distribution of vectors in a lexical space,
where the dimensions of word-vectors correspond simply to
the context in which those words are likely to occur, and
therefore capture all the flexibility and uncertainty of lan-
guage in use—the linguistic vagary of Barsalou’s system
of conceptual symbols. So, for instance, the other vectors
in the proximity of the word-vector �!pet in a distributed se-
mantic model cannot be expected to contain only terms cor-
responding to domesticated animals, not least because the
word “pet” itself has other uses. In this sense, where con-
ceptual spaces are marked by a tidy taxonomy facilitated by
the clarity of a region’s dimensional substrate, distributed se-
mantic spaces embody the pragmatic messiness of language

as it is encountered in its natural, operational environment.
Therefore, while lexical spaces and conceptual spaces both
utilize geometry as a vehicle for semantics, the arrangement
of a lexical space is in an essential way less ordered.

An example of the difficulty of delineating conceptual re-
gions within a lexical space is illustrated in Figure 1a. In
the rudimentary distribution of words presented here, con-
cepts are required to stretch and overlap in order to main-
tain their lexical constituencies. This simplified depiction of
the potential uncertainty of conceptual membership doesn’t
demonstrate the even more fundamental problem of pick-
ing out salient words in regions that are littered with noise:
in practice, in the densely and unevenly populated territory
mapped out by a vector space model, many unwanted terms
will be discovered in the region generally between two other
terms. For instance, in the unrefined version of our model,
there are 14 terms essentially between the word-vectors �!cat
and �!

dog, including such unlikely candidates as “during”,
“eventually”, and “featuring”. There is thus an inherent
patchiness to the mapping of concepts that might be read in
an unrefined vector space model of distributional semantics.

Here we propose a system for mapping lexical spaces
to conceptual spaces by considering a conceptualization as
a particular and temporary perspective on a space of dis-
tributed semantics. The idea behind this system is that, for
any desired clustering of words corresponding to a particu-
lar conceptualization, there is some subset of a distributional
space’s dimensions that will render a subspace in which that
clustering is realized. This intuition is illustrated in Fig-
ure 1b, where the conceptually entangled space of Figure 1a
collapses into a particular conceptual regime depending on
the axis along which the space is projected, which is to say,
the perspective from which the space is considered. The task
of our system is therefore to determine the dimensions which
should be picked out of a higher order vector space model
in order to realize a grouping of terms that is conceptually
homogeneous by virtue of the contextualization imposed by
a particular perspective on the space.

It is precisely the massive dimensionality of the space
which facilitates the method’s ability to pick out various suc-
cessful conceptual perspectives on the space in a momentary
and continuous way. With each additional contextual dimen-
sion introduced to a vector space, there is an exponential in-
crease in the lower-dimensional combinations available to
map corresponding spatial relationships of words to con-
ceptual subspaces. Moving from the linguistic realm native
to vector spaces back to the cognitive domain targeted by
Gärdenfors, these dimensional perspectives might be con-
strued as corresponding to a contextualized perception of a
situation. In this respect, our system models the haphazard
quality of conceptualization described by Barsalou, as well
the ad hoc nature of concept formation discussed more re-
cently by Allott and Textor (2012), who suggest that mean-
ing is appropriated in situ to endow statements with contex-
tually relevant implicature. This phenomenon of conceptu-
alization arising from pragmatic communicative affordances
is what our method seeks to computationally model.
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Figure 1: Conceptual Perspectives of Vector Spaces
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(a) In this simplified and unrefined distributional semantic space,
the conceptual regions suggested by the spatial arrangement of
terms are indeterminate. Each word is roughly equidistant from
two other terms, either of which could be linked in a distinct lin-
guistic depiction of a concept. The conceptual domains which are
delineated by this arrangement of words are awkwardly elongated.
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(b) If the same space illustrated above is considered from two dif-
ferent perspectives, the indeterminate arrangements of words col-
lapse into lower dimensional spaces (one dimensional, in this sim-
ple example) in which the clustering of terms suggests straightfor-
ward conceptual domains. These perspectives effectively contextu-
alize the meanings inherent in the distributional characteristics of
the language model, and this context facilitates the mapping of the
linguistic space to sets of conceptual regions.

A Literal Lexical Space

Our lexical model has been constructed based on the distri-
bution of words found in the textual component of articles on
the English language Wikipedia website.1 The xml code of
the site was downloaded and then parsed into a text-only for-

1The December 8, 2014 dump, downloaded from
http://meta.wikimedia.org/wiki/Data dump torrents on Jan-
uary 23, 2015, parsed into plain text using the “Wikipedia

mat, eliminating images, tables, lists, captions, and section
titles, leaving only the well formed sentences composing
the content of the site’s articles. Sentences were separated
by identifying terminal punctuation followed by whitespace,
then punctuation was removed and all characters were con-
verted to lower case. Articles (“a”, “an”, and “the”) were
stripped from the text. Sentences containing less than five
words were discarded. The resulting corpus consists of al-
most 60 million sentences, containing about 1.1 billion word
tokens (individual words) corresponding to about 7.4 million
word types (classes of words).

From this base corpus, we took the 200,000 most frequent
word types to form our system’s vocabulary. Our full lexi-
cal space is represented as a matrix Mw,c, where rows cor-
respond to vectors representing words, and columns corre-
spond to co-occurrence terms. The cell for word w and co-
occurrence term c contains the mutual information MIw,c
as described in Equation 1. Here nw,c is the frequency with
which a term c is observed to co-occur within a context win-
dow of two words on either side of a vocabulary word w; nw
represents the total count of w in the corpus; nc is the total
count of c; and a is a smoothing constant.

MIw,c = log2

✓

nw,c ⇥N

nw ⇥ (nc + a)

+ 1

◆

(1)

The constant a reduces the undesirable effect of contex-
tual words that occur very rarely throughout the corpus,
but with a high frequency in the context of certain target
words—we found 10,000 to be a good value for a based
on trial and error. The value 1 is added to the probabilistic
ratio in order to render all dimensions within the space pos-
itive: this means that the logged MI value of target words
and context words that never occur together will be 0, and
the value for terms that co-occur less frequently than would
be expected in a random distribution will be between 0 and
1. Each word vector consists of a set of dimensions derived
through this calculation, and each of these vectors is nor-
malised to the scale of a unit vector. The result of this pro-
cess is a distributional semantic space in which each of the
200,000 vocabulary terms sits in the positive region of the
high-dimensional surface of a hypersphere.

One notable feature of our vector space is the literal cor-
respondence of its dimensions to co-occurrence terms. In
general, state-of-the-art systems apply some form of dimen-
sional reduction to the overall space, either using linear al-
gebraic transformations to perform a principal component
analysis (Pennington, Socher, and Manning, 2014), or by
weighted networks to train abstract lower-dimensional word
representations that predict the context in which that word is
encountered in the course of training (Mikolov et al., 2013).
While these techniques certainly make the space less ex-
pensive to compute, and arguably improve results for a va-
riety of semantic tasks, our system is specifically geared
towards the identification of salient, literal co-occurrence
dimensions, and as such the space is, for the purposes of
our initial analysis, maintained in its raw high-dimensional
form. The dimensionality of our space is therefore on the

Extractor” software, downloaded on February 13, 2015 from
http://medialab.di.unipi.it/wiki/Wikipedia Extractor.
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order of 7.4 million, as every word token in the corpus is a
potential context for the 200,000 words in our vocabulary.

Empirical Validation

In order to provide grounding and validation for our compu-
tational model, human participants were asked to generate
terms during a word association task, and to reflect upon
how they would evaluate creativity in the musical and po-
etic domains. Provided terms were analyzed for comparison
with the vector space model.

Method

Participants Twenty participants (avg age = 30 yrs, stdev
= 5.2 yrs) volunteered to take part in the study, of which 11
were female. Sixteen individuals indicated that their career
is either inherently creative or that they apply creativity to
improve their job performance, and all but two of the par-
ticipants engage in creative pursuits outside of work. Seven
currently practice or perform music, and five individuals cur-
rently engage in creative writing.

Procedure After reading an information form and provid-
ing informed consent, participants were given a brief ques-
tionnaire to complete. Two of the questions consisted of
a word association task in which participants were asked
to list three terms they associate with “musical creativity”
or “poetic creativity”. The order in which musical or po-
etic terms were prompted was counterbalanced across sub-
jects. The other two questions requested participants to write
one sentence describing how they would evaluate whether a
new piece of music or poetry sounds creative (the order of
these questions were similarly counterbalanced across sub-
jects). These results will only briefly be touched upon in the
current paper; although certainly of interest, due to space
constraints, an in-depth analysis of the evaluation sentences
must be saved for an expanded version of this work.

After providing their responses, participants were given
questionnaires requesting general demographic information
(age, ethnicity, etc), and information about their past and
current involvement in creative pursuits, e.g., “Do you cur-
rently play music or engage in creative writing?” Upon com-
pleting these, participants were debriefed as to the goals of
the experiment and paid £2 each for their participation.

Results

For both musical and poetic creativity, participants’ terms
were placed into two lists: An exhaustive list of all terms
provided for the concept, and a short list for terms cited by
more than two participants (per concept). In the case of mu-
sical creativity, this yielded an exhaustive list of 52 distinct
terms, and for poetic creativity, a set of 42 terms. The short
list of musical terms included the following six terms: in-
novation, sound, instruments, novelty, emotion, and expres-
sion. The short list of poetic terms included these six terms:
emotion, rhythm, expression, structure, flow, and words. We
interpreted these concise lists of most frequent words to re-
flect dimensions of the concept that are more central to the
conceptual space they populate. This resulted in discarding

more peripheral terms such as ”sensitive” that are undoubt-
edly related to creativity, but not cited frequently as an asso-
ciated concept. Plurals and conjugations were considered to
be the same category of term, e.g., ”emotions”, ”emotional”,
and ”emotion” were tallied together as ”emotion”. We con-
tinue the discussion of empirical findings in the next section,
as we compare the model’s performance with human results.

Mapping Words to Concepts

We began the exploration of mappings from our space of
distributed semantics to a conceptual space with a top down
approach, investigating the way our system reacted to the
same kind of input that we presented to our human sub-
jects. Along these lines, we examined the vectors for the
word pairing “musical” and “creativity”, and likewise for
the pairing “poetical” and “creativity”. In each instance, we
calculated the mean value for each dimension that had a non-
zero value for both words – that is, for each dimension cor-
responding to a term that co-occurred with both words at
least once in the corpus – and returned a ranked list of aver-
age scores, running from high to low. Out of the 7.5 million
co-occurrence features across the entire model, 4,772 were
non-zero for both “musical” and “creativity”, and 2,673 for
both “poetic” and “creativity”, statistics which highlight the
sparsity of the base space. Our objective was to examine the
nature of the terms that tended to come up in the context of
our query as phrased for our human subjects. Results are
listed in Table 1.

The first thing to note about these results is that they are,
in a qualitative sense, coherent descriptions of properties
typically associated with the two concepts being explored.
To frame this more empirically, these results can be extended
in order to discover how far down the list of top mean dimen-
sions the terms reported by humans lie. Of the exhaustive list
of terms reported by human subjects in response to the “mu-
sical creativity” query, 4 fall within the top 15 results gener-
ated by our model; likewise, 4 human responses fall within
the top 15 mean dimensions for “poetic creativity” (these
terms are italicised in Table 1). Considering that 200,000
words were used as the vocabulary of the model, yielding
4 of the top 15 dimensions in common with humans’ re-
sponses for both concepts is quite compelling. This outcome
may be interpreted as indicating that there is a high degree of
mutual information between the query words and terms that
humans would consider as conceptually descriptive of those
queries. In other words, there is a high likelihood of con-
ceptually relevant co-occurrence within the context of terms
that summarize these creative conceptual domains.

These positive results do not hold up, however, for more
concrete queries. For instance, when the mean dimen-
sions for the query pair “wild” and “animal” are explored,
top ranking results include some conceptually appropriate
terms such as “boars”, “deer”, and “feral”, but less di-
rectly relevant words like “skins” and “vegetable”, and even
antonymic terms like “domesticated” are also returned. It
would seem that, in the case of words indexing more con-
crete concepts, the likelihood of co-occurrence in the con-
ceptual context moves away from terms that generically de-
scribe components of the concept in question. This distinc-
tion is corroborated by Hill, Korhonen, and Bentz (2014),
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“musical” & “creativity” “poetic” & “creativity”
innovation genius
imagination imaginative
inventiveness metaphors
improvisation originality
talent prose
talents creativity
experimentation artistry
versatility craftsmanship
artistic intuition
creativity imagery
ingenuity inspiration
aesthetics talents
spontaneity lyrical
individuality talent
artistry self-expression

Table 1: The top 15 dimensions with the highest mean scores
between the word-vectors for each of our queries as given
to human subjects. Terms in italics denote dimensions that
were also cited by humans.

who have used computational analyses of both corpora and
semantic graphs to illustrate a distinction between the way
that abstract and concrete concepts are arranged in a cog-
nitive linguistic system. It is hardly surprising, given the
inherent ambiguity of language use – replete, as it is, with
metaphor and implication – that simple co-occurrence prob-
ability statistics do not generally map neatly on to well de-
fined conceptual spaces.

Projecting Words to Conceptual Subspaces

Motivated by this predictable shortcoming of a simple di-
mensional analysis, we developed a more sophisticated ap-
proach for delineating conceptual regions within dimension-
ally reduced subspaces of our language model. Our tech-
nique involves first hand-picking a small set of terms that
might be considered as paradigmatic descriptions of com-
ponents of a conceptual domain (in the present example,
WILD ANIMALS). We perform an analysis similar to the
one described above on these conceptual component terms,
selecting the word-vector for each term and then extracting
those features with non-zero values for all input terms. Once
again, we compute a ranked list of these mean feature val-
ues and choose the co-occurrence dimensions which scored
highest on average. These salient dimensions for the small
set of words analyzed are again somewhat scattered: some
of the highest mean dimensions correspond to relevant ani-
mal names, but the results also stray into the more conceptu-
ally ambiguous territory signified by words like “sightings”,
“chases”, and “fat”. There are 827 universally non-zero di-
mensions found between the word-vectors of the six input
terms describing exemplars of WILD ANIMALS listed in the
first column of Table 2.

We use these salient dimensions to define a drastically
simplified subspace of our lexical model. Specifically, we
reduce the model to the top 30 dimensions associated with
the set of sample words (we arrived at the number 30 through
trial and error; lower values tended to invite some unusual

vectors into the crucial region of the subspace). After nor-
malizing the new subspace, we then identify the central
point on the surface of the positively valued quadrant of the
reduced hypersphere—effectively the vector defined by 30
dimensions each with the the value 1/

p
30. This positive

centroid is then taken as the epicenter of a linguistic map-
ping of a new conceptual region, and we expand the region
outward concentrically from this point, returning an ordered
list of the points closest to the center of the positive surface
of our space’s low dimensional projection. Euclidean prox-
imity is calculated by computing the square root of the sum
of the squared feature-wise differences between the unit cen-
troid and each of the 200,000 vocabulary words projected
into the subspace. The top fifteen terms encountered using
this method are reported in Table 2. Please note that the in-
put terms for WILD ANIMALS are used as a preliminary test
of the model’s performance for concrete concepts; the input
was hand-selected by the investigators, while the collection
of terms relating to concrete concepts is the subject of ongo-
ing emprical study.

This same technique for expanding conceptual regions
through a dimensional reduction of a distributional language
model is applied to our target domains of musical and poetic
creativity, again with compelling outcomes. In this case we
were able to make use of our results from our survey: for
each of our two target domains, we choose all the terms that
were reported by three or more human subjects and analyze
these for their most salient dimensions of co-occurrence.
Again, the system’s output for these terms is not entirely
unexpected, but also not conceptually completely cohesive.
In the case of the highest mean dimensions for the human re-
ported constituents of MUSICAL CREATIVITY, a number of
predictable terms are returned, but somewhat less obvious
dimensions such as “lab”, “mere”, and “shapes” also rank
towards the top of the list.

Despite the conceptual uncertainty in the dimensional
analysis, when a new subspace is constructed based on these
dimensions, the central region of this space is replete with
terminology appropriate to the example words at the base of
the process. Interestingly, the original input words are only
partially rediscovered in this new space, at least within the
set of vectors most central to the positive surface of the new
subspace. This indicates that some of the input word-vectors
(used to select dimensions for creating the new subspace)
are, in terms of the probability of regular co-occurrence with
all the dimensions that underwrite the subspace, relative out-
liers which nonetheless make an essential contribution to the
delineation of this linguistic representation of a conceptual
region. It is also notable, and perhaps even remarkable, that
in the case of the mapping of the conceptual region of po-
etic creativity, quintessential new terms such as ”phrasing”
and ”inflection”, arguably more intricately associated with
the prosodic nature of the target domain than the original
human generated terms, arise independently.

When examining how well the model captures relevant
terms to a conceptual query, it is informative to cluster hu-
man responses into semantic categories (such as emotion
and structural elements), and compare these results to ap-
parent categories of output vectors. For example, consider-
ing the sentences that the 20 participants wrote about how
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WILD ANIMALS MUSICAL CREATIVITY POETIC CREATIVITY
human input model output human input model output human input model output
lion bobcat innovation novelty emotion phrasing
wolf alligator sound liveliness rhythm intonation
coyote raccoon instruments spontaneity expression musicality
alligator opossum novelty innovation structure nuances
bear armadillo emotion expressiveness flow timbre
snake white-tailed expression refinement words sprightly

anteater nuance rhythmical
ocelot ingenuity nuance
peccary believability expressiveness
pronghorn newness rubato
cougar sophistication instinctive
cottontail dynamism bluesy
rattlesnake subtlety directness
skunk vibrancy modal
boar elusiveness inflections

Table 2: The output vectors most central to the positive regions of the subspaces reduced in terms of the salient dimensions of
a small set of conceptually exemplary input terms.

they would evaluate the creativity of a new song, many indi-
viduals referred to the notion of novelty in musical creativ-
ity, but used various terms to do so. In addition to explic-
itly using the term “novelty”, participants made reference to
“unexpected”, “new”, and “surprising elements” that were
“like nothing else I’d heard before”, as well as “melodic
originality” and cases in which “known musical concepts or
styles [are] combined in a novel/innovative way.” Similarly,
when considering the model’s conceptual space of musical
creativity, the words “novelty”, “innovation”, “ingenuity”,
“newness”, “inventiveness”, “distinctiveness”, and “unique-
ness” are found within the top 30 model output vectors. Al-
though this is a qualitative assessment of the results, it does
seem clear that the precise terms from humans and the model
might not be exactly the same, but there is significant cate-
gorical or conceptual overlap between the two.

One may also note that the output vectors for poetic cre-
ativity appear to be rather “musical”. This may reflect the
fact that the input dimensions were provided by people who,
overall, have significant musical experience - all but three
of the participants have had musical training or have played
music informally, whereas only four of the participants have
experience with creative writing. People’s experience with
music might frame the way they think about other creative
domains, or at the very least influencing the terms used to
describe poetic creativity; consequently, this has led to a
subspace that highlights the musical nature of this sample.

In light of our model’s ability to find conceptually prox-
imal terms, we propose that this method has the potential
to be practically applied to the discovery of unexpected and
valuable terms for the evaluation of creative output. Impor-
tantly, this approach may be applied to different corpora;
for example, Wikipedia pages in different languages may
be explored to address the difficult issue of identifying con-
ceptually similar spaces across languages. The model’s con-
ceptual spaces concretely delineate evaluative terms that one
person alone may not consider. For example, the terms “dis-
tinctiveness”, “finesse”, “artistry”, and “stylization” were

not cited by humans, but were within the top 30 output vec-
tors discovered by the model. Future work may build on
these findings, by using the model’s discovered terms as cri-
teria for subjective evaluation of creative output. In addition,
discovering the geometry, flexibility, and contextual speci-
ficity of conceptual spaces may be very useful for assessing
products or systems based on specific underlying concepts
(or developed to address particular conceptual issues).

More generally, our method is presented as an implemen-
tation of the mapping of words to concepts: this approach
charts a passage from a statistically tractable lexical space
to the abstract but natively cognitive domain of ideas. The
temporary and contextual aspect of this mapping is essen-
tial to its success: it is the flexibility of the model that al-
lows for the bespoke generation of subspaces, just as it is the
pragmatic frangibility of language that permits the ready-to-
hand adaptation of meaning for unfolding expressive pur-
poses. As can be seen in our results, the same terms arise in
different constellations of meaning depending on the contex-
tual perspective taken on the space. It is the strength of our
language model that it can be adapted in this way, with the
high dimensional arrangement of words allowing for their
projection as multitudinous conceptual representations.

Conclusion

We investigated the terms and concepts that individuals most
strongly associate with creativity in the musical and po-
etic domains, and described a computational methodology
for modeling these conceptual relationships. Our multidis-
ciplinary approach employs methods inspired by computa-
tional linguistics, as well as methods from empirical psy-
chology. There were several outcomes of this work: the
output from our distributional semantics vector space model
was compared with human responses on a word association
task. Human-generated terms were found within the top 15
dimensions of our model’s lexical space, despite the model’s
very large vocabulary. This served as validation that the
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model discovers a lexical space that encapsulates the kind
of terms humans use to describe these concepts.

Subsequently, the most frequently reported human terms
were used as model input parameters for discovering con-
ceptual spaces of lower dimensionality. Our model was able
to find vastly reduced subspaces corresponding to MUSICAL
CREATIVITY and POETIC CREATIVITY, which again cap-
tured semantically relevant terms, many corresponding di-
rectly to participants’ terms, and others extending the list of
terms to insightful new dimensions. In addition, by sam-
pling word-vectors that fall near the centroid of the discov-
ered conceptual mappings, we aimed to find potentially use-
ful terms for the evaluation of creativity. Although com-
putational and AI methods have generated many systems
which aim to display creative behavior or produce creative
artefacts, the evaluation of computational creativity remains
distinctly problematic. Therefore, we offer our method and
results as a formal approach to delineating conceptually-
relevant criteria on which to base the evaluation of creativity
and creative artefacts in future studies.

We saw, in terms of the most common dimensions in lex-
ical space and the highest-mean word vectors in conceptual
space, that the model is able to discover semantic categories
and indices of concepts that are alligned to human concep-
tualizations. This said, the model did not capture all of the
semantic categories cited by humans. The most noteworthy
omission is in regards to emotion, as terms relating to af-
fect and evoked emotional response were some of the most
frequently cited terms for both musical and poetic creativ-
ity. Accordingly, future work will investigate why the model
does not capture this cluster of emotion-related terms.

Further directions for the future include the application of
this computational approach to other domains, such as “culi-
nary creativity”, both for the ontologically useful task of
elaborating concepts themselves, and to create well-tailored
terminology for the assessment of creative output from the
corresponding domains. This methodology may also be
used to approach the task of conceptual blending: rather than
specifying input vectors that belong to only one concept, one
may supply input dimensions from several. This could result
in output terms discovered at the intersection of the lexical
regions specified by the vectors’ different input dimensions.
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Abstract

Live algorithms are computational systems made to per-
form in an improvised manner with human improvis-
ing musicians, typically using only live audio or MIDI
streams as the medium of interaction. They are de-
signed to establish meaningful musical interaction with
their musical partners, without necessarily being con-
ceived of as “virtual musicians”. This paper investi-
gates, with respect to a specific live algorithm designed
by the author, how improvising musicians approach and
discuss performing with that system.
The study supports a working assumption that such sys-
tems constitute a distinct type of object from the tra-
ditional categories of instrument, composition and per-
former, which are capable of satisfying some of the ex-
pectations of an engaging improvisatory performance
experience, despite being unambiguously distinct from
a human musician. I investigate how the study partici-
pants’ comments and actions support this view. Specif-
ically: 1) participants interacting with the system had
a stronger sense of the nature of the interaction than
when they were passively observing the interaction; 2)
participants couldn’t tell what the “rules” of the inter-
active behaviour were, and didn’t feel they could pre-
dict the behaviour, but reported this as being a positive,
engaging aspect of the experience. Their actions im-
plied that the improvisation had purpose and invited en-
gagement; 3) participants strictly avoided discussing the
system in terms of virtual musicianship, or of creating
original output, and preferred to categorise the system
as an instrument or a composition, despite describing
the interaction of the system as musically engaging; 4)
participants felt the long-term structure was lacking.
Such results, it is argued, lend weight to the idea that
as CC applications in real creation scenarios grow, the
creative contribution of computer systems becomes less
grounded in comparison with human standards.

Introduction
Live algorithms (Blackwell, Bown, and Young, 2012) are
software systems designed to autonomously perform music
with live musicians, typically in an improvised music for-
mat. There has been a great deal of activity in this area re-
cently, owing to the increasing ease with which artist pro-
grammers can put together powerful realtime systems incor-
porating machine listening, realtime synthesis and pattern-

ing, and forms of adaptive behaviour. Recent concerts, at-
tached to electronic arts and music conferences such as the
International Symposium on Electronic Arts (ISEA) 2013,
and New Interfaces for Musical Expression (NIME) 2014,
have demonstrated the diversity of approaches to live algo-
rithms (see Bown et al. (2013) for a discussion of these con-
certs).

As in all aspects of computational creativity, the question
of evaluation in live algorithms requires detailed considera-
tion, as there are no simple, objective measurables that in-
dicate when computer generation of output has been cre-
atively successful. Two issues are important: how system
output is evaluated by humans, and the extent to which we
can attribute the creative component of the output to the sys-
tem, rather than to its maker or to the ‘inspiring set’ (Ritchie,
2007): the set of all examples given to the system.

In live algorithms, the creative process is somewhat dif-
ferent from many instances of automated creative genera-
tion, since the output is always the result of the interaction
between a human and a computer system. It is an interactive
creative scenario. This muddies the issue of the attribution
of the creativity further, but at the same time presents alter-
native, more tractable questions regarding the success of the
system in its collaborative, improvisatory role.

Whilst it should be borne in mind that such questions
regarding the interactive experience of live algorithms are
separate from the core questions of computational creativ-
ity evaluation, there is still much to be learnt from such an
analysis. In Bown (2014), I argue that a human-focused,
qualitative, and strongly context-aware approach to studying
computational creativity systems is important to advancing
evaluation. In the case of an artistic robot, for example, one
should begin by examining the full set of interactions be-
tween the system, its maker, its operator, its audience and
so on, before deciding how one should frame questions of
creative ability. This is to avoid the danger of inappropri-
ately framing the activity and the agency of participants in
that activity. How is the creative attribution divided between
these actors? How do people perceive the system, not only
in terms of good or bad output, but in terms of the way in
which the system’s activity is presented in a social context?
Others, particularly Colton (e.g., (Colton et al., 2014)) have
emphasised the management of the social interactive context
in computational creativity, presented as a means to enhance
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the perception of creativity, rather than as a means to bet-
ter understand interaction with creative systems to improve
their design and efficacy in areas of application.

Such developments point to the possibility that any pro-
posed measure of the creativity of a system is significantly
less fruitful than a rich description of the system as an agent
with creative affordances described by its networks of in-
teraction. This neutralises the crisis of working out how
to score creativity, and provides simple practical analysis
which can support real applications in the way that human
computer interaction (HCI) and interaction design does to
great success. Thus a qualitative descriptive approach is pur-
sued in the present research, in order to build a rich descrip-
tive understanding of human-machine creative interactions
in practice in the context of live algorithms.

A central motivation for conducting the following study is
to conduct computational creativity research that is more fo-
cused on the details of a participant’s interaction with a cre-
ative system, involving a number of dimensions of experi-
ence that are relevant to creativity, and in doing so contribute
to an understanding of how such systems work in practice in
real creative contexts.

In this paper I study the responses of improvising musi-
cians to Zamyatin, a live algorithm system that I have de-
veloped and worked with artistically since 2010. Zamyatin
has performed with a wide variety of musicians. It is con-
ceptually speaking a very simple system as far as creative
systems go, in terms of the generation of original content on
its own. Specifically it is less driven by the use of musical
intelligence than by an interest in low-level gestural inter-
action. But in light of the value of diverse approaches to
computational creativity, I view the system as a useful ex-
periment in computational creativity in that it is successful
in establishing an autonomy of behaviour, both conceptually
and as perceived.

The questions the study looks at are focused on the ways
in which participants experience and benefit from the cre-
ativity of a system: (1) how effective the system is at con-
tributing to an effective performance; (2) the extent to which
the participant experiences the system as autonomous, and
also human-like, and how this influences other aspects of
the perception of the system, and; (3) whether the partici-
pant experiences the system as originating novel output, and
how this influences (and is possibly influenced by) the gen-
eral perception of the system.

These are issues that we must clearly gain an understand-
ing of as part of a body of knowledge in applied compu-
tational creativity. The computational creativity literature
remains lacking in work that formally studies these basic
forms of interaction and experience using qualitative meth-
ods.

The first question has self-evident value, and in one form
or another is naturally asked in the course of creating any
musical system. A challenge for a more experience- and
interaction-focused computational creativity research pro-
gram is to balance this goal with that of advanced compu-
tational generative sophistication. The perception of auton-
omy addressed in the second question is an important topic
for the study of computational creativity. Autonomy is a

critical component in the making of creativity: a system can
only be called creative insofar as it possesses some degree of
autonomy in the output it creates. Perceived autonomy may
not be actual autonomy and vice versa, and actual autonomy
anyway lacks a robust applicable definition. The distinction
between software autonomy in general and human-like au-
tonomy is one that will need to be unpacked further as we
witness computationally creative systems at play in real in-
teractive scenarios, and it is important to understand how
individuals experience that autonomy and how that influ-
ences their behaviour towards the system and their own ac-
tivities. Finally, in the context of interactive music creation
we are interested in how the system can drive surprise and
intrigue in the co-performer, and under what circumstances
the performer acknowledges something as either creative, or
in terms that connote creativity. Here it is particularly inter-
esting to look at the language used, as this is an area where
the anthropomorphism of cognition comes up easily.

I begin by describing the motivations behind the design
of Zamyatin in the following section, before moving onto
describing the study and results.

Zamyatin
Zamyatin is a software system in ongoing development since
2010 (Bown, 2011). Before describing the design of Zamy-
atin, it is necessary to explain some of the design considera-
tions, including a number of aesthetic decisions. An earlier
description of Zamyatin’s design is given in Bown (2011).

One of Zamyatin’s main goals was to emphasise the expe-
rience of interacting with something that ‘felt’ autonomous
and engaged in interaction, even if, it does not make sophis-
ticated use of musical knowledge. For this, the free impro-
vised mode provides a context that allows one to explore be-
haviour in a more abstract way than is afforded by many mu-
sical genres. Improvising software agents are a longstand-
ing area of activity. George Lewis’ Voyager system(Lewis,
2000) is a widely known example, and uses a hand-coded
complex of interacting generative elements to create rich,
diverse and musically responsive behaviour. Musicians per-
forming with Lewis’ system can be seen deeply engaged in
the musical interaction as if performing with another human
improviser. The use of a Disklavier (an acoustic piano that
can be controlled by MIDI via mechanical actuators) lim-
its the sense of a computer being involved. Artists such as
Lewis have reported the responses of musicians performing
with their systems, but such reports increasingly show that
it is hard to pin down exactly how musicians think about,
understand and evaluate such systems, suggesting the need
for studies that get into more detail about the conceptual
language and approaches used. Banerji (2012), for exam-
ple, takes an anthropological approach, with a strong focus
on working in real contexts, and looking as much at how
the system influences the performer’s behaviour as at how
the performer judges the system. Other projects such as the
work of Plans Casal and Morelli (2007), focus strongly on
using low-level realtime audio analysis and resynthesis to
give the performer a strong sense that the software acts as
a responsive agent, through interactive immersion. Pachet’s
(2004) approach to establishing engagement is to mimic the
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style of the improviser in a call and response fashion. Simi-
larly with Blackwell and Young (2004) and Brown, Gifford,
and Voltz (2013), who draw on a style analysis and resynthe-
sis of the performer’s input to establish a strong sense of en-
gagement. Although these projects report on user-responses,
further research is needed to determine whether these are
indeed effective strategies for creating desirable interactive
musical experiences.

A common challenge for the makers of generative sys-
tems is how to endow the system with autonomous be-
haviour that transcends the rules put into it by the program-
mer. That is, if your system is a collection of procedural
instructions defined by the programmer, then even if the spe-
cific behaviour of the system is original, being some possi-
bly unexpected product of the interacting rules, the general
nature of the system’s behaviour remains down to the pro-
grammer, since no new knowledge has been gained by the
system.

There are three commonly cited ways around this prob-
lem (Todd and Werner, 1999). The first is already implied
above: if the set of rules I provide are complicated enough,
then from the interaction of these elements there will emerge
new, higher-level behaviours that were not anticipated. The
classic example is flocking behaviour, where the program-
mer defines the behaviour of individual ’boids’ (Reynolds,
1987), but nowhere dictates that the system should start
forming oscillating blobs on a macroscopic scale. Classical
work from the generative art canon also highlight the value
of this approach. Both Harold Cohen’s celebrated AARON
system (McCorduck, 1990) and George Lewis’ Voyager sys-
tem (Lewis, 2000) consist of complex rule sets that result in
outcomes even their makers find surprising. In this case, it is
perhaps wrong to describe what emerges from these systems
as new knowledge.

The second approach is that the system learns. This is eas-
ily understood by analogy with how humans acquire knowl-
edge that they are not born with. A large number of systems
use learning to build musical knowledge, and famous exam-
ples include David Cope’s EMI (Cope, 1996) and François
Pachet’s Continuator (Pachet, 2004). In these cases, the in-
put knowledge now comes from a body of input musical
data as well as the programmer. One problem then is how to
avoid the system becoming just a copycat. The system needs
not only to learn the style but to learn how to produce new
material in that style. Current systems have yet to show how
the learning itself can perform this extrapolation.

A third approach uses targeted evolution or another form
of optimisation, dictated either by a measurable target be-
haviour, or user-feedback applied to a population of evolving
behaviours. The rationale goes that a target behaviour itself
does not contain the knowledge about how to achieve that
behaviour, but running an evolutionary system to achieve
that target can discover novel solutions which themselves
constitute knowledge. Experiments in artificial evolution
have shown the discovery of such solutions. For exam-
ple, the coevolution of predator and prey systems reveal the
emergence of specific hunting or hiding techniques (Cliff
and Miller, 1995). Here the knowledge is produced through
interaction, or learning-by-doing. Thus by specifying a tar-

get behaviour in the form of an evolutionary goal, one can
drive a system to discover component behaviours that are
not specified in that goal.

Unlike the majority of live algorithm approaches to deriv-
ing behaviour, Zamyatin is not a corpus or machine-learning
based system, and employs this third approach to achieving
autonomy. I draw on Blackwell and Young’s PfQ frame-
work to describe the system (Blackwell, Bown, and Young,
2012). Passing from the input (P) layer to the inner ‘pat-
terning’ (f) layer are low-level feature values derived from
the input musical data of the system. Passing from the inner
layer to the ‘instrument’ or ‘sounding’ layer (Q) are con-
trol signals. These can be thought of as the equivalent to
the human physical control ‘signals’ applied to a musical in-
strument, i.e., the movement of the hands, feet, breath, etc.,
although the object being controlled might involve its own
generative elements. In Zamyatin, the inner patterning sys-
tem is a type of decision tree, coupled with a internal array
of states, that together feedback on themselves. This inner
patterning system is connected to the outside world though
the input layer and output layer. Somewhat like a traditional
feedforward multilayer neural network, the connections be-
tween these layers flow in the forward direction only.

A decision tree is a binary tree that propagates a decision
making iteration from the root of the tree to one of the leaves
(leaves represent decisions), at each junction choosing to go
one way or the other based on whether a single numerical
value is above or below a single threshold. Decision trees
are used commonly as efficient classifiers. The internal state
array is simply an array of floating point values in the range
[0,1]. In addition to the internal state, the system is con-
stantly being fed an input state derived from low-level fea-
tures of the incoming audio. Decisions at each node in the
decision tree are made based on either the current state of
the low-level audio features being passed into the system, or
the internal state array. A leaf in the decision tree contains a
list of actions which include passing on control commands
to the musical system (Q) and also updating the state array.
In this way, the decision tree and state array form a feedback
system that can exhibit complex dynamics in the absence of
any input, and can also be driven by changes to the input.
Previous work (Bown and Lexer, 2006) has looked at the
musical use of neural networks with similar properties.

An evolutionary approach is applied to the design of the
decision tree, including the architecture of the tree (which
can grow or shrink over time), the parameters of each deci-
sion node (which value to query and what threshold to ap-
ply) and the (variable length) list of actions to perform at
each leaf. Actions control how the internal state array is up-
dated, applying simple arithmetical operations to the state
values.

The inner layer updates at a ‘control rate’ of around 20hz.
It outputs two forms of control data at each update: a single
integer, representing its current decision state, and an array
of floating point values in the range [0-1], representing its
internal state. Both are actually used to control the musical
output. In evolving the system behaviour, a fitness function
is hand-coded, that takes into account the pattern complex-
ity, and other patterning properties such as degree of vari-
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ability and repetition, of the system’s output under various
input conditions. Different variant fitness functions are used
to create large populations of decision tree candidates, which
are then creatively explored during the preparation of musi-
cal work.

Like procedural systems, Zamyatin does not draw on a
corpus of musical knowledge, but instead attempts to es-
tablish novel behaviour through the interplay between the
programmer specifying a behavioural target and the system
evolving novel behaviours that achieve that target. The tar-
get behaviour does not describe the final musical output,
but the output of the nested control system (f) that oper-
ates a number of virtual musical instruments. This target
behaviour is defined by the programmer and the selection
or definition of different target behaviours to suit the per-
forming musician becomes part of the creative process of
preparing Zamyatin for each new performance.

Musical Study
Three improvising musicians (P1, P2, P3) were invited to at-
tend a focus group to investigate musician responses to Za-
myatin. The goal was not to set up a musical Turing test:
there was no attempt to conceal the computational status of
the system. Instead, the study looked at questions of engage-
ment, experience and perception in improvised interaction.

The study was set up as a focus group in order to stimulate
interaction between the participants, to look at the way they
discussed musical interaction, and to get them to observe
each other playing.

Participants were first shown a video recording of the sys-
tem performing with a musician and asked questions about
how they perceived the interaction with the musician. They
were then played an audio recording of an earlier manifes-
tation of the system performing with another musician and
asked similar questions. They were then asked to perform
with the system and develop their responses to it.

The author initially did not explain the design of the sys-
tem, but later answered questions and provided more con-
text as the study progressed, in response to the participants’
questions.

Several other interviews with performers conducted prior
to the focus group have influenced the expectations of the
author in approaching the focus group. These will be re-
ported in full in a forthcoming journal paper.

Results
Three main results are considered here:

1. Participants interacting with the system had a
stronger sense of the nature of the interaction than
when they were passively observing the interaction.
During the initial observation of the pre-recorded concert,
all three participants said that they did not see any clear
clues as to how the system was responding, what infor-
mation it had access to from the musician, and what the
interaction paradigm was. This was manifest largely in
the sense of uncertainty surrounding the interaction. The
musicians had no way of identifying clear paths of causal-
ity from the musician to the system.

Of the system in general, P2 says the following:
The system of interaction is not obvious to me. . . . I
can’t tell. At times [the musician] is loud and I don’t
think the software’s responding, or vice versa, and
then sometimes the two things are loud or the two
things are soft. The obvious parameters you can
sample and listen to are like dynamics and pitch, tim-
bral stuff . . . There doesn’t seem to be any clear one-
to-one relationships with what the software does, or
it changes over time? Sometimes it reacts in a par-
ticular way and sometimes it doesn’t.

In performing with the system the musicians’ responses
shifted from this ambiguity to a greater sense of aware-
ness that the system was responding to their playing. A
good deal of uncertainty remained about precisely how
the system behaviour was influenced by the musician, and
as discussed below this is a theme in itself.
After watching P1 performing, P2 says:

It was way more dynamic than it comes across in the
flat stereo recordings, it was actually really good. It
surprised me a few times how loud it was prepared
to go and transgressive of the duo in a way . . . mainly
with dynamics but sometimes placement too . . . it
did some bizarre things and you go “oh that’s cool”.
. . . but when it’s compressed . . . you don’t understand
the dynamics that much. . . .
(Participant was asked to explain ‘transgressive’) It
did naughty things, to do with timbres and place-
ment. If it was someone playing that material you’d
go, they’re being a bit upfront, kicking the thing
along a bit, putting provocations in. I like that.

P3 adds:
That’s the weird thing about it; you can really sense
that something’s happening but I can’t tell what it is.

Interestingly, also, the critical analysis of the system nat-
urally extended to the performing musician as well. The
evaluation of the improvisation by the participants nat-
urally applied as much to the performers as to the sys-
tems. This may be more their habit, but of some rele-
vance, Banerji (2012) has proposed looking at the impact
on musicians’ playing as a form of ethnographic approach
to studying the qualities of live algorithms.

P3: One thing I found that the second musician
wasn’t interacting with the software at all. I felt
like maybe they were just playing. I didn’t hear too
much active listening, they were obviously playing
with it, but didn’t really feel like they were kind of
. . . that level of interactivity wasn’t really there from
their performance. . . . It was a real contrast of style
I thought. I thought the first guy was really overtly
interacting with it to quite a large extent, and the sec-
ond I thought wasn’t. But it’s hard to say what the
agenda is. . . . It’s not that I enjoyed the first one bet-
ter. It’s more that if someone told me if the second
player was in another room not being able to hear the
performance I could believe you.
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2. Participants couldn’t tell what the “rules” of the in-
teractive behaviour were, and didn’t feel they could
predict the behaviour, but reported that they did ex-
perience the behaviour as interactive, and presented
this uncertainty as being a positive, engaging aspect of
the experience. Their actions implied that the impro-
visation had purpose and invited engagement.
In discussing what if any cues revealed the nature of inter-
action between system and human performer during the
video playback section of the study, participants noted
that any candidate explanations they developed for the
behaviour of the system were frustrated by its seemingly
changing interactive behaviour. For example, one partici-
pant began thinking that the system was matching the in-
tensity of the performer’s behaviour, but then found that
the oppose suddenly occurred.
During interaction with the system, performers remained
unsure about exactly what the responsive behaviour con-
sisted of, but reported that they did feel that there was
some sort of complex interaction taking place, and find-
ing this particularly engaging, owing to the uncertainty of
the system’s behaviour.

P2 (describing performance with P1): That started
off with a noisy atmospheric tone. P1 came in and
it maintained its thing, it kept its thing for a while.
which kinda surprise me. I thought the introduction
of a strong tone would shift it, but it didn’t shift it
and I thought “that’s cool”. . . . the fact that it doesn’t
jump the whole time makes it worth listening to. If it
was jumping the whole time with your stimuli, with
the distinction from the live instrument to a clear dis-
tinction from that it would drive you crazy.

This uncertainty was also described as potential source
of frustration. Equally, the stability of the system over the
long-term was described as a potential source of boredom.
But on the whole participants agreed that the balance be-
tween uncertainty and predictability was well measured to
create an effective sense of engagement for the musician.

P1: To begin with, and that’s the same with the other
ones I saw, it takes the musician to initiate the inter-
action. . . . it was playing a long granulated tone, I
came on top of that with a between note, probably to
create some symbiosis with what it was doing. Then
I found as I went into it that I wanted to find out that
it reacted to what I was doing, and this was less clear.
Sometimes it did and sometimes it didn’t.
P3: There was a really loud section with no stimu-
lus behind it, and its like, where did that come from,
but I’m getting closer to seeing [the relationship]
. . . actually I’d find it quite stressful to perform with.

3. Participants strictly avoided discussing the system in
terms of virtual musicianship, or of creating original
output, and preferred to categorise the system as an
instrument or a composition, despite describing the in-
teraction of the system as musically engaging.
The participants were clear explicitly – in response to di-
rect questions about it – and implicitly – in the way they

described the interaction with the system – that they felt
no compulsion to see the system as a ‘performer’, prefer-
ring instead to view it as a form of complex instrument,
or interactive score. However, the participants equally
acknowledged that the behaviour of the system made it
stand out from other types of digital interactive systems
or instruments, particularly in terms of the autonomy of
behaviour. To some extent this afforded the use of terms
such as a perceived volition, that are arguably not nor-
mally associated with machine behaviour.
As an example of a clear shortcoming, P2 states:

It seemed a bit confused with the very high frequen-
cies . . . I felt that it kind of suddenly went “I can’t
actually see you” . . . It was quite interesting. If it
was another player you’d go, ok, that’s working.

They elaborate on their perception of the system in terms
of humanness:

I’ve steered clear from [referring to] anything to do
with a performer because it doesn’t feel like a human
being at all, but it feels interesting, you’ve set up a
compositional tool that’s not momentary predictable
but in the long term its predictable.

The participant describes this engagement further as fol-
lows:

It was good, it was something I wanted to do listen-
ing to the other things: give it its own space, do its
thing. It’s an intriguing notion that you didn’t play
for a while and then it comes up with something else.
It kinda lets the audience know. It’s not some sort of
stupid device, something of its own volition.

When asked how it compared to ‘mere tape’, P2 elabo-
rates:

I think audiences are pretty smart, they understand
what tape is, what predetermination is and what live-
ness is, and if the audience were sitting there know-
ing that it’s a live system and it seems to have some
initiative without the player, I think that’s an inter-
esting moment. . . . But I’d say the choosing the sam-
ples becomes this overridingly important composi-
tional decision. . . . I feel that with this, whatever
samples you put into the composition . . . the machine
has some sort of ability to stop and start things.

4. Participants felt the long-term structure was lacking.
It was widely agreed that the system did not convincingly
deal with long term structural management of the perfor-
mance.

P2: Listening to both of those things a lot of the ac-
tivity is very much less than 3 seconds, so there’s a
lot of active many-events-per-minute sort of feel to
it, and because it goes on for some time in that way
it then has a sort of strange flatness as a result, and
after a while you settle into the fact that there aren’t
going to be any super-long events, and so in a sense
it kind of flattens the whole thing down and makes it
kind of amorphous.
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The participant frames this in the context of contemporary
improvised music:

It’s a subject right at the heart of what’s going on
in improvised music. Probably always has been, but
seems really central to it these days. It feels to be
generational as well. The older generation may feel
that they’re not interacting and reacting (themselves)
but they tend to more than younger generations. . . . I
feel like there’s players around now who work in
much longer structures and they don’t want to have a
dialogue which is over some 10 second framework.

Discussion
The results of this study go some way to confirming existing
assumptions and findings about evaluation of musical sys-
tems.

The first result affirms a general principle that certain
knowledge is better acquired through active participation.
Interacting with a system tells you more about its interac-
tive capacity than watching an interaction with a third party.
This may not be manifest in the form of a expressible un-
derstanding of what the system is doing, as was the case in
the present study, but nevertheless the participant in the in-
teraction gains a direct sense of the interactive nature of the
system, that may be obscure from outside.

This has implications for the audience experience of the
work. They may not be fully aware of the experience of the
musician during the performance. On the other hand, the
expression and observed response of the musician can be
important to an observer understanding the interaction, and
may indirectly reveal the experience. Pachet has shown how
the video footage of participants, or simply composers en-
gaged with the treatment of their own work, can do a fantas-
tic job of revealing basic facets of user-experience (Addessi
and Pachet, 2006; Pachet, 2014).

Related to this, a common theme in the evaluation of au-
tonomous music and art system is the question of making
use of a Turing-style test (e.g., (Ariza, 2009; Bishop and Bo-
den, 2010; Pease and Colton, 2011)). Results such as those
of Moffat and Kelly (2006) show that positive results can
be easily achieved in situations where people try to guess
whether artefacts were computer or human generated, i.e.,
the system generated output can pass as human. However,
without involving any form of probing or interaction with
the system, the test in this form doesn’t really tell us any-
thing about the system, its intelligence or creative capacity
(Pease and Colton, 2011). Despite what is said about the
great communicative power of art and music, these artefacts
form a poor window onto their creators.

Nevertheless, it is still reasonable to expect that in gen-
eral there are cues in creative outputs which reveal aspects
of the nature of the system producing them, and which may
be identified in interactive scenarios, but also possibly with-
out the need for interaction. These cues may not be reli-
able identifiers of whether or not the system is computer or
human, and should be better understood as contributing to
a qualitative evaluation of creative or interactive behaviour.
More generally, we may talk of the character of the system

and how it contributes to or stimulates a productive musical
process.

The musicians participating in the study did develop a
sense of the cues that indicated Zamyatin’s responsive be-
haviour in certain ways, sometimes, but without certainty.
This led them to feel that the system was nontrivial and in-
vited an engagement with the behaviour of the system.

Related to this are the other two results. The character of
the system is one in which an actively obscure relationship
between performer action and system result is sought. To
this end the evolutionary strategy has proven to be a conve-
nient approach to relieving the system designer from the task
of dictating the system’s response directly, working around
the “Lovelace objection” that a computational system might
only do what it has been programmed to do.

Finally we come to the issue of whether the system was at
all perceived as bearing the qualities of a human performer.
The response was resoundingly negative in answer to this
question. Whilst, as stated in the introduction, the aim of the
system design was never to simulate or mimic human be-
haviour, a stated goal has been to explore the middle ground
between inanimate objects that do not exhibit adaptive or
proactive behaviours, and sentient humans, or other crea-
tures. The participants unambiguously placed the system
in the category of objects, as opposed to any sort of ‘per-
former’, equating it either to an instrument or composition.
It does not follow that they perceived this object as dumb or
lacking lifelike properties.

Scoring Zamyatin
From these results we can consider the questions posed at
the beginning of the paper:

1. (Q1) How successful is it as at creating effective perfor-
mances with improvising musicians? The participants’ re-
sponses give enough support to a positive answer to this
question, specifically in terms of the interesting dynamics
produced by the system’s interactive behaviour.

2. (Q2) To what extent do performers conceptualise of and
perceive Zamyatin as autonomous, as well as human-like,
and how does this influence other aspects of the percep-
tion of the system? The responses are more ambiguous
with respect to this issue, not least because the definition
of autonomy is itself hard to pin down in application. Be-
cause of this, participants were not asked to discuss au-
tonomy directly, but we may make inferences based on
their responses. Significantly, they perceived the system
as being both (i) not passive in the form of its responses
to input, and (ii) able to drive the performance through
spontaneous action that appeared to come from nowhere.
These support a technical definition of autonomy as be-
haviour that is not entirely determined from outside of the
system, and the varying nature of the system’s predictabil-
ity supports an information theoretic form of this. How-
ever, there are other senses of perceived autonomy that
could be achieved. Future studies could work towards un-
derstanding in greater detail the space of possible types of
autonomy (for example as discussed in Eigenfeldt et al.
(2013)) that might be perceived in a system.
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3. (Q3) Does Zamyatin actually originate novel responses
as far as the performers are concerned? The predominant
response to this from participants was ‘no’. They quickly
perceived that the system worked within strict limits, with
the musical style and much of the content (e.g., choice of
sounds, pitch sets, etc.) dictated by the system designer.
But equally the participants responses indicated that they
did attribute actions to the idiosyncratic nature of the
system, which was described to them as having resulted
from an evolutionary search that went beyond the input
of the designer. For example, on numerous occasions
the behaviour of the system was described by participants
as surprising, and not like anything a human would do,
coupled with value judgements ranging from this being
highly engaging, to it being frustrating. We could claim
that a surprising and valued response is technically speak-
ing creative, according to the most commonly agreed def-
inition of the term. This would be a generous interpre-
tation, since many ‘dumb’ processes might achieve some
such level of surprise in interaction. If instead we were to
apply Colton’s ‘creativity tripod’ of imagination, skill and
appreciation (Colton, 2008), we would have to accept that
at best only skill could be claimed (I would claim that the
system can appear skilful in the complex manipulation of
electronic sound). An open question is what kinds of sys-
tems stimulate ‘perceived imagination’ and ‘perceived ap-
preciation’, and whether these are in fact always relevant
in contexts such as this: is it important to the perception
of musical creativity that such elements are perceived?

Conclusion
The evaluation of systems from computational creativity, us-
ing qualitative analysis grounded in specific contexts of cre-
ative interaction, is an important part of the emerging suite
of research methods we use to discover and understand how
systems can act successfully to support creativity or act as
creative agents. This paper has attempted to dig deeper into
how improvising musicians, presented with a live algorithm
system, approach, interpret and engage with that system in
an applied context.

The results suggest ways in which the system, Zamy-
atin, could be improved to create more compelling impro-
vised musical experiences. Good long-term structure is a
challenging area that this system could improve upon. The
results appear to affirm the value of exploring forms of
software-based musical agency that does not conform to hu-
man modes of behaviour but that still produce engagement.
This could be developed further by categorising these kinds
of behaviour.

The relationship between the behaviour of the system and
the engagement of the performers could be developed by
improving the user-interface to the underlying evolution-
ary techniques, possibly using interactive evolutionary tech-
niques, so that there is a real capacity for a musician to feed-
back on and modify the behaviour of the agents. It was also
apparent from the study that certain traits of the system, such
as the degree of uncertainty of its behaviour, could be explic-
itly recognised as adding to the musicality of the system,

and could be codified into future fitness functions. An im-
mediate goal for Zamyatin is to create a modular system that
can be easily incorporated into live performance sets by non-
programmer musicians, and these ideas can be incorporated
into that design.

In addition, the view held by this author is that questions
of computational creativity are now shifting towards more
applied areas where the comparison with human creative ac-
tivity is less of a concern than a more open-ended under-
standing of how machines may act creatively. This is weakly
supported by the research in this paper, in which a failure to
stand up to any sort of Turing-style test does not diminish
the discussion of the creative potential of the system. This
is a perspective that warrants further study across a range of
systems.
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Abstract 

In this paper, we describe the musebot and the musebot en-
semble, and our creation of the first implementations of the-
se novel creative forms. We discuss the need of new oppor-
tunities for practitioners in the field of musical metacreation 
to explore collaborative methodologies in order to make 
meaningful creative and technical contributions in the field. 
With the release of the musebot specification, such opportu-
nities are possible through an open-source, community-
based approach in which individual software agents are 
combined to create ensembles that produce a collective 
composition. We describe the creation of the first ensemble 
of autonomous musical agents created by the authors, and 
the questions and issues raised in its implementation. 

Introduction  
Musical metacreation (MuMe) is an emerging term de-
scribing the body of research concerned with the automa-
tion of any or all aspects of musical creativity. It looks to 
bring together and build upon existing academic fields 
such as algorithmic composition (Nierhaus 2009), genera-
tive music (Dahlstedt and McBurney 2006), machine mu-
sicianship (Rowe 2004) and live algorithms (Blackwell and 
Young 2005). Metacreation (Whitelaw 2004) involves us-
ing tools and techniques from artificial intelligence, artifi-
cial life, and machine learning, themselves often inspired 
by cognitive and life sciences. MuMe suggests exciting 
new opportunities for creative music making: discovery 
and exploration of novel musical styles and content, col-
laboration between human performers and creative soft-
ware partners, and design of systems in gaming, entertain-
ment and other experiences that dynamically generate or 
modify music. 
 A recent trend in computational creativity, echoing other 
fields, has been to develop software infrastructures that 
enable researchers and practitioners to work more closely 
together, taking a modular approach that allows the rapid 
exchange of submodule elements in the top-down design of 
algorithms, facilitating serendipitous discovery and rapid 
prototyping of designs. It is widely recognised that such 
infrastructure-building can accelerate developments in the 
field for a number of reasons: getting large numbers of 
researchers to work together on larger-scale projects, forc-
ing researchers to develop their software in a sharable for-
mat, enabling the like-for-like comparison of different sys-
tem designs, education, and directly providing a large 

framework for further software development. Charnley et 
al. (2014), for example, has proposed a cloud-based col-
laborative creativity tool, supported by a web interface, 
that allows the rapid creation of text-based, domain specif-
ic, creative agents such as Twitter bots.  
 Our research in MuMe, which risks being too localised 
and insular, will benefit from a similar direction, and for 
this reason we have proposed the “musebot ensemble”, a 
creative context designed to bring researchers together and 
get their realtime generative software systems playing to-
gether. We present a recent effort to design and build the 
infrastructure necessary to bring together community-
created software agents in multi-agent performances, an 
elaboration on the motivation for doing so and the oppor-
tunities it offers, and some of the challenges this project 
brings. So far, we have set up a specification for musebot 
interaction, involving a community engagement process 
for getting a diversity of thoughts on the design of this 
specification, and we have built a number of tools that im-
plement that specification, including musebots and a 
musebot conductor. 
 Following the outline of the system, we describe the 
creation of our first exploratory attempts to create and run 
a MuMe ensemble. We describe our initial experiences 
working creatively with networks of musebots. We con-
clude the paper with several open questions that were 
raised in the implementation of this collaborative composi-
tional experience. 

Towards a Collaborative Composition by 
Creative Systems 

The established practice of creating autonomous software 
agents for free improvised musical performance (Lewis 
1999) – the most common domain of activity in MuMe 
research – often involves idiosyncratic, non-idiomatic sys-
tems, created by artist-programmers (Rowe 1992, Yee-
King 2007). A recent paper by the authors (Bown et al. 
2013) discussed how evaluating the degree of autonomy in 
such systems is non-trivial and involves detailed discussion 
and analysis, including subjective factors. The paper iden-
tified the gradual emergence of MuMe specific genres — 
i.e., sets of aesthetic and social conventions — within 
which meaningful questions of relevance to MuMe re-
search could be further explored. We posited that through 
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the exploration of experimental MuMe genres we could 
create novel but clear creative and technical challenges 
against which MuMe practitioners could measure progress. 
 One potential MuMe genre that we considered involves 
spontaneous performance by autonomous musical agents 
interacting with one-another in a software-only ensemble, 
created collaboratively by multiple practitioners. While 
there have been isolated instances of MuMe software 
agents being set up to play with other MuMe software 
agents, this has never been seriously developed as a col-
laborative project. The ongoing growth of a community of 
practice around generative music systems leads us to be-
lieve that enabling multi-agent performances will support 
new forms of innovation in MuMe research and open up 
exciting new interactive and creative possibilities. 

The Musebot Ensemble  
A musebot is defined as a “piece of software that autono-
mously creates music collaboratively with other muse-
bots”. Our project is concerned with putting together 
musebot ensembles, consisting of community-created 
musebots, and setting them up as ongoing autonomous 
musical installations. The relationship of musebots to relat-
ed forms of music-making such as laptop performance is 
discussed in detail in our manifesto (Bown et al. 2015).  
 The creation of intelligent music performance software 
has been predominantly associated with simulating human 
behaviour (e.g., Assayag et al.). However, a parallel strand 
of research has shed the human reference point to look 
more constructively at how software agents can be used to 
autonomously perform or create music. Regardless of 
whether they actually simulate human approaches to per-
forming music (Eldridge 2007), such approaches look in-
stead at more general issues of software performativity and 
agency in creative contexts (Bown et al. 2014). The con-
cept of a “musebot ensemble” is couched in this view. i.e., 
it should be understood as a new musical form which does 
not necessarily take its precedent from a human band.  
 Our initial steps in this process included specifying how 
musebots should be made and controlled so that combining 
them in musebot ensembles would be feasible, and have 
predictable results for musebot makers and musebot en-
semble organisers. Musebots needn’t necessarily exhibit 
high levels of creative autonomy, although this is one of 
the things we hope and expect they will do. Instead, the 
current focus is on enabling agents to work together, com-
plement each other, and contribute to collective creative 
outcomes: that is, good music. 
 This defines a technological challenge which, although 
intuitive and easy to state, hasn’t been successfully set out 
before in a way that can be worked on collaboratively. For 
example, Blackwell and Young (2004) called on practi-
tioners to work collaboratively on modular tools to create 
live algorithms (Blackwell and Young 2005), but little 
community consensus was established for what interfaces 
should exist between modules, and there was no suitably 
compelling common framework under which practitioners 

could agree to work. In our case, the modules correspond 
clearly to the instrumentation in a piece of music, and the 
context is more amenable to individuals working in their 
preferred development environment. 
 In order for musebots to make music together, some 
basic conditions needed to be established: most obviously 
the agents must be able to listen to each other and respond 
accordingly. However, since we do not limit musebot in-
teraction to human modes of interaction, we do not require 
that they communicate only via human senses; machine-
readable symbolic communication (i.e., network messag-
ing) has the potential to provide much more useful infor-
mation about what musebots are doing, how they are inter-
nally representing musical information, or what they are 
planning to do. Following the open community-driven ap-
proach, we remain open to the myriad ways in which par-
ties might choose to structure musebot communication, 
imposing only a minimal set of strict requirements, and 
offering a number of optional, largely utilitarian concepts 
for structuring interaction. 

Motivation and Inspiration 
One initial practical motivation for establishing a musebot 
ensemble was as a way of expanding the range of genres 
presented at MuMe musical events. To date, these events 
have focused heavily on free improvised duets between 
human instrumental musicians and software agents. This 
format has been widely explored by a large number of 
practitioners; however, it runs the risk of stylistically pi-
geonholing MuMe activity. 
 For the present project, the genre we chose to target was 
electronic dance music (EDM), which, because it is fully 
or predominantly electronic in its production, offers great 
opportunities for MuMe practice; furthermore, metacrea-
tive research into this genre has already been undertaken 
(Diakopoulos et al. 2009; Eigenfeldt and Pasquier 2013). 
The 2013 MuMe Algorave (Sydney, 2013) showcased al-
gorithmically composed electronic dance music, an activity 
originally associated with live coding (Collins and McLean 
2014). However, rather than presenting individual systems 
with singular solutions to generating such styles, it was 
agreed that performances should be collaborative, with 
various agents contributing different elements of a piece of 
music. This context therefore embodies the common crea-
tive musical challenge of getting elements to work togeth-
er, reconceived as a collective metacreative task. Although 
the metaphor of a jam comes to mind in describing this 
interactive scenario, we prefer to imagine our agents acting 
more like the separate tracks in a carefully crafted musical 
composition. 
 We acknowledge the relationship of musebot ensembles 
to multi-agent systems (MAS); however, rather than con-
centrate upon the depth of research within this field, we 
have designed the specification in such a way so as to 
combine generality and extensibility with domain specific 
functionality. As will be described, at heart the musebot 
project is simply a set of message specifications that are 
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domain specific to the idea of multiple musical agents. We 
feel that there is no need to draw on more specific MAS 
tools and specifications, as there is nothing that is not 
simply handled by the definition of a few messages. Tak-
ing this general approach has the advantage that if people 
want to incorporate the musebot specification into their 
MAS frameworks, they can. It is intentionally barebones so 
that it is simple for people to adapt their existing agents to 
be musebots. At the same time, we also acknowledge that 
MAS have been incorporated into MuMe in typically idio-
syncratic ways, replicating the interaction between human 
musicians (Eigenfeldt 2007) while also exploring non-
human modes (Gimenes et al. 2005); our intention is for 
musebots to explore both approaches. 
 We summarise the other opportunities we see in pursu-
ing this project as follows, beginning with items of more 
theoretical interest, followed by those of more applied in-
terest: 
• Currently, collaborative music performance using agents 

is limited to human-computer scenarios. These present a 
certain subset of challenges, whereas computer-
computer collaborative scenarios would avoid some of 
these whilst presenting others. Such challenges stimulate 
us to think about the design of metacreative systems in 
new and potentially innovative ways; 

• It provides a platform for peer-review of systems and 
community evaluation of the resulting musical outputs, 
as well as stimulating sharing of code; 

• It provides an easy way into MuMe methods and technol-
ogies, as musebots can take the form of the simplest 
generative units, whereas at present the creation of a 
MuMe agent is an unwieldy and poorly bounded task; 

• It outlines a new creative domain, which explores new 
music and music technology possibilities; 

• It encourages and supports the creation of work in a pub-
licly distributed form that may be of immediate use as 
software tools for other artists; 

• It allows us to build an infrastructure which can be useful 
for commercial MuMe applications. Specifically, it pro-
vides a modular solution for the metacreative work-
stations of the future; 

• It defines a clear unit for software development. Muse-
bots may be used as modular components in other con-
texts besides musebot ensembles. 

The Musebot Agent Specification 
An official musebot agent specification is maintained as a 
collaborative document, which can be commented on by 
anyone and edited by the musebot team1. An accompany-
ing BitBucket software repository maintains source sam-

                                                
1 tinyurl.com/ph3p6ax 

ples and examples for different common languages and 
platforms2. 
 A musebot ensemble consists of one musebot conductor 
(MC) and any number of musebots, running on the same 
machine or multiple machines over a local area network 
(LAN). The MC is notified of each musebot’s location and 
paths to its directories, allowing it to build an inventory of 
the available musebots in the ensemble. Thus, for the user, 
adding a musebot to the ensemble simply means down-
loading it to a known musebot folder. Musebots contain 
config files that are controlled by the MC, and hu-
man/machine readable info files that give information 
about the musebots.  
 The MC is responsible for high level control of connect-
ed musebot agents in the network, setting the overall clock 
tempo of the ensemble performance and managing the 
temporal arrangement of agent performances (see Tables 1 
and 2). The MC also assists communication between con-
nected agents by continuously broadcasting a list of all 
connected agents to the network, and relaying those mes-
sages that musebots choose to broadcast. The MC is not 
necessarily “in charge”. Currently, it is just a simple GUI 
program that allows users to control musebots remotely. 
Ultimately we will automate ensemble parameters such as 
tempo and key either by making specific variants of the 
MC, or by writing dedicated planning agents that issue 
instructions to the MC, or by allowing a distributed self-
organising approach in which different agents can influ-
ence these parameters. These are all valid designs for a 
musebot ensemble. 
 
/mc/time <double: tempo in BPM> <int: ticks> 
This is the clock source and timing information. A beat/tick count, 
starting at zero and incrementing indefinitely, is sent at a rate of 
16 ticks per beat at the specified tempo, to be used for synchro-
nising your client bot. The downbeat is on (tick % 16 == 0). 
/mc/agentList <string: musebot ID>  
[<string: musebot ID> … ]  
List of connected musebots in your network. Use this list to reveal 
messages sent from specific musebots, 
/mc/statechange <string: {first,next,previous,any}> 
This parameter is designed to facilitate high level state changes, 
which could be anything, depending on the program; however 
some examples might be overall density of events, range/register, 
key changes, change in timbre etc. 

Table 1. Example messages broadcast by the MC  
to all musebot agents. 

/agent/kill (no args) 
Exit gracefully upon receiving this message from the MC.  
/agent/gain <double: gain> [<double: duration ms>] 
Scale your output amplitude, used to apply a linear multiplication 
of your output audio signal. 

Table 2. Example messages sent between the MC  
and specific musebot agents. 

                                                
2 bitbucket.org/obown/musebot-developer-kit 
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 Musebots may broadcast any messages they want to the 
network, providing they maintain their unique name space 
allocated for inter-musebot communication (see Table 3). 
Our musebot specification states that a musebot should 
also “respond in some way to its environment”, which may 
include any OSC messages (Wright 1997) as well as the 
audio stream that is provided: a cumulative stereo mix of 
all musebot agents actively performing. It should also not 
require any human intervention in its operation. Beyond 
these strict conformity requirements, the qualities that 
make a good musebot will emerge as the project continues. 
 
/broadcast/statechange <string: musebot ID>  
<string: {first,next,previous,any}> 
Locally controllable high level state change. Use this parameter 
if you want to prompt other clients to make changes to their high 
level state. Equally, respond to this message if you want other 
musebots to prompt high-level changes. 
/broadcast/notepool <string: musebot ID>  
<int_array: pitch class MIDI values> 
A list of MIDI note values, pitch classes only, no octave info, to 
be shared with the network - e.g. chord or scale you are currently 
playing. 
/broadcast/datapool <string: musebot ID>  
<double_array: datapoints> 
Array of floating-point values. 
Table 3. Example messages broadcast by musebot agents. These 

messages are speculative, and open for discussion. 

The First Musebot Ensemble 
At the time of writing, a draft musebot conductor is im-
plemented and published and a call has gone out for partic-
ipation in the first public musebot ensemble. Our first ex-
periments with making musebot ensembles followed the 
obvious path of taking the systems we have already created 
and adapting them to fit the specification. This step consti-
tuted provisional user testing of the specification and sup-
port tools and also gave us a sense of what sort of creative 
and collaborative process was involved in working with 
musebots.  
 We present two studies here. In the first case, the first 
author built a musebot ensemble entirely alone. The first 
author works regularly with multi-agent systems within his 
MuMe practice, so this was a natural adaptation of his ex-
isting approach. In the second study, each of the authors 
contributed a system that they had developed previously, 
and we looked at the ways that these systems could use the 
musebot specification to interact musically. 

First Author Working Alone  
In the first study, several musebots were designed in isola-
tion by the first author. While lacking the musebot goal of 
cooperative development, the situation did allow for the 
design of ensembles with a singular musical goal, includ-
ing specific roles for each musebot. For example, a Pro-
ducerBot was created that functions to control various oth-

er instrumental bots  – a DrumBot, a PercussionBot, a 
BassBot, a KeyboardBot, etc. – in a hierarchical fashion. 
The organisation of such an ensemble reflects 
one conception in achieving a generative EDM work, in 
which each run produces a new composition whose musi-
cal structure is generated by the ProducerBot, and the mu-
sical surface is produced and continuously varied by the 
individual instrumental musebots. Such a design has been 
previously implemented by the first author (Eigenfeldt 
2014) to produce successful musical results. This top-
down, track-by-track breakdown of relations between mu-
sical parts is of course completely familiar to users of 
DAWs, with the difference that each track is a generative 
process that receives high-level musical instructions from 
the ProducerBot. In this case, the ProducerBot sends out 
information at initialisation, including a suggested phrase 
length (i.e. 8 measures), and subpattern, which represents 
how the phrase repetition scheme can be represented (i.e. 
aabaaabc). It individually turns instrumental musebots on 
and off during performance, including syncronising them 
at startup. Furthermore, it sends a relative density request – 
a subjective number of possible events to perform within a 
measure – every 250 milliseconds, as well as progress 
through the current phrase. Lastly, at the end of a phrase, it 
may send out a section message (i.e. A B C D E). When an 
instrumental musebot receives this section descriptor, it 
looks to see if it has data stored for that section: if not, it 
stores its current contents (patterns), and generates new 
patterns for the next section; if it does have data for that 
section, it recalls that data, thereby allowing for large-scale 
repetition to occur within the ensemble. 
 As with a DAW, via the musebot specification, we in-
herently allow for community contributions that accept 
specific instructions from the ProducerBot: swapping a 
different BassBot, for example, in the ensemble would 
result in a different musical realisation, as it is left to the 
musebots to interpret the performance messages. 

Multiple Authors Working Together 
In the second study, the three authors brought together ex-
isting systems into the first collaboratively made musebot 
ensemble. No assumptions were made in advance about 
how the systems would be made to interact, except that the 
second and third authors drew their contributions from 
existing work with live algorithms in an improvisation 
context (Blackwell and Young 2005), where the audio 
stream is typically the only channel of interaction. 
 A BeatBot was created by the first author, which com-
bines the rhythmic aspects of both the former drum and 
percussion musebots, together with the structure-
generating aspects of the ProducerBot, resulting in a com-
plex and autonomous beat generating musebot. With each 
run, a different combination of audio samples is selected 
for the drums and four percussion players, along with con-
strained limitations to the amount of signal processing ap-
plied. A musical form is generated as a finite number of 
phrases, themselves probabilistically generated from 
weightings of 2, 4, 8, 16, and 32 measures. Each phrase has 
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a continuously varying density, to which each internal in-
strument responds differently by masking elements of its 
generated pattern. The metre is generated through additive 
processes, combining groups of 2 and 3, and resulting in 
metres of between 12 and 24 sixteenths. Finally, the 
amount of active layers for each phrase is generated. All of 
the generated material – metre, phrase length, rhythmic 
grouping, density, and active layers – is broadcast to the 
ensemble as messages. 
 The second author’s DeciderBOT was adapted from his 
live algorithm system Zamyatin, an improvising agent that 
is based upon evolved complex dynamical systems behav-
iours derived from behavioural robotics (Bown et al. 
2014). The internal system controls a series of voices that 
are hand-coded generative behaviours. Zamyatin is most 
easily described as a reactive system that comes to rest 
when presented with no input, and is jolted to live when 
stimulated by some input. The stimulation can send it into 
complex or cyclic behavior. 
 The final contribution to the first musebot ensemble was 
_derivationsBOT, designed by the third author. An adapted 
version of the author's _derivations interactive perfor-
mance system (Carey 2012), _derivationsBOT was de-
signed to provide a contextually-aware textural layer in the 
musebot ensemble, responding to a steady stream of audio 
analysis from the other bots connected to the network. Dur-
ing performance, _derivationsBOT analyses the overall 
mix of the musebot ensemble by segmenting statistics on 
MFCC vectors analysed from the live audio. The musebot 
compares these statistics with a corpus of segmented audio 
recordings, retrieving pre-analysed audio events to process, 
that compliment the current sonic environment. Synchro-
nised to the overall clock pulse received from the MC, a 
generative timing mechanism conducts six internal players 
that process and re-synthesise these audio events via vari-
ous signal processing. Importantly, the choice of audio 
events made available for processing is based upon com-
parisons both between statistics analysed from the live 
audio stream, as well as statistics passed between the inter-
nal players themselves. Thus, without audio input for anal-
ysis _derivationsBOT self-references, imbuing it with a 
sense of generative autonomy in addition to its sensitivity 
to its current sonic environment. To facilitate this, 
_derivationsBOT is randomly provided an internal state 
upon launch, enabling the musebot to begin audio genera-
tion with or without receiving a stream of live audio to 
analyse. 
 With the three musebots launched, a quirky, timbrally 
varied, somewhat aggressive, EDM results. Like much 
experimental electronic music, the listening pleasure is 
partly due to the strangeness and suspense associated with 
the curious interactions between sounds. The BeatBot was 
not designed to respond to any input and so drove the in-
teraction, with the other two systems reacting. Thus, alt-
hough very simple and asymmetrical as an ensemble, the 
musical output was nevertheless coupled.  Since the Beat-
Bot is not limited to regular 4/4 metre, it creates dubious 
non-corporeal beats to which both DeciderBot and 

_derivationsBot respond in esoteric fashions. In addition, 
BeatBot kills itself once its structure is complete, and the 
other two audio-responsive musebots, lacking a consistent 
audio stream to which to react, tend to slowly expire, 
bringing an end to each ensemble composition. 
 

 
Figure 1. Audio and message routing in the second described 

musebot ensemble. 
 
 Example interactions between musebots, including this 
second example, are available online3.  

Issues and Questions 
These studies give insights into how a musebot approach 
can serve innovation in musical metacreation. Two areas of 
interest are: (1) what can we learn by dividing up musically 
metacreative systems into agents and thinking about how 
the communication between these serves musical goals? 
(2) related to this, how do we work with others and negoti-
ate the system design challenges? 
1. Increasingly, musicians are incorporating generative 

music processes into their work. Thus, the situation de-
scribed above — managing several generative interact-
ing processes — is not uncommon. The creative process 
is different to traditional electronic music composition 
because rather than making a specific change and listen-
ing to a specific effect that results from that change, one 
is in a state of continuous listening, as the result of a 
change might have multiple effects or take time to play 
out. It is common for electronic music composers to 
work with complex systems of feedback, and this pro-
cess is similar, if more algorithmic. One effect of this is 
that it can dull decision making, as one gives over to the 
nature of the systems, or is unclear on what modifica-
tions will influence them effectively. Placing these 
musebots together in an ensemble positions us as both 
curator and designer: in the former case, one is forced to 
decide whether the musebots are interacting in a fashion 
that is considered interesting, and whether fewer, or 
more, musebots would solve any musical issues. We 
foresee such decisions to be more common as we accu-

                                                
3 http://metacreation.net/musebot-video/  
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mulate more musebots, particularly those with clear sty-
listic bents.  In the latter case, as designers we are placed 
into a more traditional role, in which continual iteration 
between coding, listening, critiquing, re-designing, and 
coding again guides both technical and aesthetic deci-
sions. While we have no control over the other muse-
bots, we can individually control how our own musebot 
reacts to other musebot actions, even if those actions are 
seemingly unpredictable.  

2. Working together in this way offers a new approach to 
musical metacreation, along with a new set of challeng-
es. In building systems, we are typically free to pursue 
our own aesthetic directions, and make individual deci-
sions, both technical and aesthetic, as to how these sys-
tems should act and react. In the case of BeatBot, such a 
“closed system” is maintained, albeit with the addition 
of transmitting messages regarding its current state. In 
the case of DeciderBot and _derivationsBot, these exist-
ing systems had previously interacted with human musi-
cians, and could rely upon the performer’s intuitive mu-
sical responses to enhance those decisions made compu-
tationally. Within the musebot ensemble, both systems 
are now reacting to other machines: one that is essential-
ly indifferent, and another whose reactions had previous-
ly been keyed to human actions. 

 
As is often the case in experimental music production, hav-
ing set up the interaction between agents and listening to 
how this interaction unfolds, we found clearly musically 
interesting content in this first attempt at a musebot en-
semble. We anticipate many more musebots being de-
signed and contributed, and imagine that through the unex-
pected combinations of such autonomous music-generating 
systems new thinking about automating musical creativity, 
and making it available to a wide community of users, 
might arise. 
 The current work is a small affirmation of the potential 
of a musebot approach, and several questions have arisen 
regarding the next stage of development. Our next step is 
to curate a number of musebots to be presented in an on-
going installation of interchangeable ensembles across dif-
ferent genres. In order to reach such a stage of develop-
ment, the following questions need to be addressed: 

What kinds of interaction are useful – both computa-
tionally and musically? At the moment, the three muse-
bots are not sharing any information in the form of network 
messages. Firstly, the BeatBot is generating beats, entirely 
unaware of any reactions to its audio, and while the two 
responsive audio musebots generate emergent musical ma-
terial driven by audio analysis, they are oblivious to any 
structural decisions being made by the rest of the ensemble 
due to their lack of messaging. While such independence is 
one aesthetic solution, a more responsive and self-aware 
environment will need to be explored, if for no other rea-
son than structural variety. In the present ensemble, one 
approach could be to augment the capabilities of Decider-
BOT and _derivationsBOT to allow network messages 
from BeatBOT to have an affect on their internal genera-

tive capabilities, such as levels of density and musical tim-
ing. Alternatively, an augmentation of BeatBOT’s capabili-
ties as a producer could enable it to direct high-level 
changes in state in each of the connected bots, a possibility 
anticipated in the musebot specification by the availability 
of the statechange message. 

What is the minimum amount of information necessary 
to be shared between Bots to have a musical interac-
tion? A next step is determining the kind of information 
that should be shared between musebots. The MC is gener-
ating a constant click, which affords an acceptance over a 
common pulse: how that pulse is organised in time (i.e. the 
metre) is a basic parameter of which each musebot should 
be aware. However, where should this be determined? 
Sharing of pitch information is also natural, but should an 
underlying method of pitch organisation also be shared (i.e. 
a harmonic pattern)? What happens when conflicting in-
formation is generated? Lastly, how should form be deter-
mined? An accepted paradigm of improvised music is the 
evolutionary form produced by self-organisation resulting 
from autonomous agents (human or computer); however, 
EDM tends to display a more rigorous structure. How 
should this be determined?  

What relationship to human composition and perfor-
mance should be incorporated? Within the MuMe com-
munity, research has been undertaken to model human 
interaction within an improvisational ensemble of human 
performers (Blackwell et al. 2012). We suggest that muse-
bots are not merely a “robot jam”. To quote from the Call 
for Participation, “‘human musicians having a jam’ can 
make for a useful metaphor, but computers can do things 
differently, so we prefer not to fixate on that metaphor. 
Either way, getting software agents to work together re-
quires thinking about how music is constructed, and work-
ing out shared paradigms for its automation.” 

What aspects of the interaction can go beyond human 
performance modeling? A great deal of what humans do 
in performance has been extremely difficult, if not impos-
sible, to model. For example, simply tracking a beat is 
something we assume any musician can do with 100% 
accuracy, while computers are seldom better than 90% at 
this task. However, there are limits to human interaction, 
which computers can potentially overcome. For example, 
computers can share and negotiate plans, and thus exhibit a 
collective telepathic series of intentions. Young and Bown 
(2010) have offered some interesting possibilities for inter-
action between agents that could certainly be explored be-
tween musebots. 

What role should stylistic and aesthetic concerns play 
in formulating ensembles? We imagine that in the future, 
musebots can query one another as to their stylistic pro-
clivity, and generate interesting and unforeseen ensembles 
on their own. At the moment, the notion of human curation 
is still necessary. With only three musebots, the variety of 
musical output is obviously limited, but we imagine muse-
bots being designed to produce specific stylistic traits. A 
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related question is how the musebots can, or should, deal 
with expectation: certain styles of EDM exhibit certain 
expectations in the listeners; while we acknowledge that 
we are not constrained to existing stylistic limitations, we 
are expecting humans to listen to, and hopefully appreciate, 
the generated music. Ignoring musical expectation outright 
is perhaps not the best strategy when offering a new para-
digm in music-making. 

What steps would we need to take to make this a more 
intelligent system of interaction and/or coordination? 
Many existing MuMe systems have already demonstrated 
musical intelligence in their abilities to self-organise, exe-
cute plans, and react appropriately to novel situations. 
However, the designers often rely upon ad hoc methodolo-
gies to produce idiosyncratic, non-idiomatic systems. How 
can such systems communicate their internal states effi-
ciently, or is this even necessary? 

What are the emerging decisions that we would make 
about messaging? How could we categorise these and 
generalise them? While audio analysis is one possible 
method for musebots to determine their environment, rely-
ing upon such analyses alone would take up huge amounts 
of processing cycles, without any guarantee as to an accu-
rate cognitive conception of what is actually going on mu-
sically. Furthermore, given that each musebot would re-
quire its own complex audio processing module, the hard-
ware demands would be inordinate. For this reason, having 
musebots simply tell other musebots what they are doing 
through messages seems much more efficient. However, 
how much information does a musebot need to broadcast 
about its current, or possibly future, state, in order for other 
musebots to interact with it musically?  

What is the furthest we could get with just “in the mo-
ment?” From the above discussion, it is clear that an im-
portant concern for musebot ensembles is addressing the 
tensions that exist between self-organised generativity and 
coordinated, hierarchical musical structures. Clearly, ‘in 
the moment’ generation of musical materials is a trivial 
task for complex musical automata like the musebots de-
scribed in this paper. A balance between autonomy on the 
one hand, and controlled, structural decisions will need to 
be carefully considered in the design of both musebots 
themselves, and their curation into musical ensembles. 
Ultimately, curatorial decisions surrounding style and mu-
sical aesthetic also go hand in hand with concerns regard-
ing determinacy/indeterminacy in musical composition and 
performance, and we are excited to see how this ongoing 
tension will influence musebot designers and curators into 
the future. 

Conclusion 
A primary goal in developing the musebot and musebot 
ensemble is to facilitate the exchange of ideas regarding 
how developers of musical metacreative systems can begin 
to collaborate, rather than continue to build individual idio-

syncratic, non-idiomatic systems that rely upon ad hoc 
decisions. As we are targeting existing developers of 
MuMe and interactive systems, we recognize the variety 
of languages, tools, and approaches that are currently being 
used, and the reticence at adopting new frameworks that 
might inhibit established working methods. As such, our 
goal is to make the specification as easy as possible to 
wrap around new and existing systems and/or agents. 
 The specification uses a standard messaging system that 
can be incorporated within almost any language; however, 
we purposefully have not specified the messages them-
selves. Our intention is for these messages to evolve natu-
rally, in response to the musical needs of developers. For 
example, through the use of machine- and human-readable 
info files, musebots and musebot developers can determine 
the messages a specific musebot receives and sends, while 
the open source specification allows for developers to pro-
pose new messages. Once these agents are performing to-
gether at a basic level, we feel that a community discussion 
will begin on the type of information that could, and 
should, be shared. 
 We have presented a description of our successful, albeit 
limited, first implementation of what we feel is an extreme-
ly exciting new paradigm for musical metacreation. Com-
plex, autonomous musical producing systems are being 
presented successfully in concert, and the musebot plat-
form is a viable method for these practitioners to collabo-
rate creatively.  
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An Unnatural Selection is a generative musical compo-
sition for conductor, eight live musicians, robotic per-
cussion, and Disklavier. It was commissioned by Van-
couver’s Turning Point Ensemble, and premiered in 
May 2014. Music for its three movements is generated 
live: the melodic, harmonic, and rhythmic material is 
based upon analysis of supplied corpora. The tradition-
ally notated music is displayed as a score for the con-
ductor, and individual parts are sent to eight iPads for 
the musicians to sight-read. The entire system is auton-
omous (although it does reference a pre-made score), 
using evolutionary algorithms to develop musical mate-
rial. Video of the performance is available online.1 This 
paper describes the system used to create the work, and 
the heuristic decisions made in both the system design 
and the composition itself. 

Introduction 
An Unnatural Selection can be classified as art as research: 
the author is a composer who has spent the previous thirty 
years coding software systems that are used as composi-
tional assistants and/or partners. In the last ten years, these 
systems have explored greater autonomy, arguably creating 
computationally creative musical production systems that 
produce music that would be considered creative if the 
author had produced them independently. 
 Music has a long history of computational systems cre-
ated by artist-programmers, in which many aspects of the 
musical creative process are automated (Chadabe 1980; 
Lewis 2000; Rowe 2004). Most of these systems have been 
idiosyncratic, non-idiomatic production systems specific to 
the artist’s musical intention; however, some attempts have 
been made at evaluation (Eigenfeldt et al. 2012).  
 The author’s own investigation into creative software 
have included multi-agent systems that emulate human 
improvisational practices (Eigenfeldt 2006), constrained 
Markov selection (Eigenfeldt and Pasquier 2010), and cor-
pus-based recombination (Eigenfeldt 2012). All of these 
systems operate in real-time, in that they generate their 
output in performance using commercially available syn-
thesizers, which, unfortunately, offer limited representa-

                                                
1 https://aeigenfeldt.wordpress.com/works/music-for-robots-and-
humans/  

tions of their highly complex acoustic models (Risset and 
Matthews 1969, Grey and Moorer 1977) 
 In order to bypass these audio limitations, the author’s 
more recent research investigates the potential for generat-
ing music directly for live performers (Eigenfeldt and Pas-
quier 2012b). Complex issues arise when generating music 
for humans, both in terms of software engineering – e.g. 
producing complex musical notation for individual per-
formers – and human computer interaction: asking musi-
cians to read music for the first time during the perfor-
mance, without rehearsal, and without recourse to improvi-
sation. See Eigenfeldt (2014) for a detailed discussion of 
these matters. 

Previous Work 
An Unnatural Selection builds upon the work of others in 
several areas, including genetic algorithms, real-time nota-
tion, and generative music. 

Evolutionary Algorithms 
Evolutionary computation has been used within music for 
over two decades in various ways. Todd and Werner 
(1999) provide a good overview of the earlier musical ex-
plorations using such approaches, while Miranda and Biles 
(2007) provide a more recent survey. Very few of these 
approaches have been compositional in nature; instead, 
their foci have tended to be studies, rather than the genera-
tion of complete musical compositions. 
 Several real-time applications of GAs have been used, 
including Weinberg et al. (2008), which selected individu-
als from an Interactive Genetic Algorithm (IGA) suitable 
for the immediate situation within a real-time improvisa-
tion. Another approach (Beyls 2009) used a fitness func-
tion that sought either similar or contrasting individuals to 
an immediate situation within an improvisation. 
 Waschka (2007) used a GA to generate contemporary art 
music. His explanation of the relationship of time within 
music is fundamental to understanding the potential for 
evolutionary algorithms within art-music: “unlike material 
objects, including some works of art, music is time-based. 
The changes heard in a piece over its duration and how 
those changes are handled can be the most important as-
pect of a work.” Waschka’s GenDash has several im-
portant attributes, a number of which are unusual: an indi-
vidual is a measure of music; all individuals in all genera-
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tions are performed; the fitness function is random, leading 
to random selection; the composer chooses the initial popu-
lation. Of note is the second stated attribute, the result of 
which is that “the evolutionary process itself, not the result 
of a particular number of iterations, constituted the music”. 
Waschka provides some justifications for his heuristic 
choices, suggesting that while they may not be observed in 
real-world compositional process, they do provide musical-
ly useful results. 
 EAs have been used successfully in experimental music 
and improvisation for several years. In most cases, artists 
have been able to overcome the main difficulty in applying 
such techniques to music – namely the difficulty of formu-
lating an effective aesthetic fitness function – through a 
variety of heuristic methods. One particularly attractive 
feature of EAs to composers relates to the notion of musi-
cal development – the evolution of musical ideas over time 
– and its relationship to biological evolution. As music is a 
time-based art, the presentation of successive generations – 
rather than only the final generation – allows for the aural 
exposition of evolving musical ideas. 

Real-time Notation 
The prospect of generating real-time notation is an estab-
lished area of musical research, and has been approached 
from a variety of viewpoints: see Hajdu and Didkovsky 
(2009) for a general overview. Freeman (2010) has ap-
proached it as an opportunity for new collaborative para-
digms of musical creativity, while Gutknecht et al. (2005) 
explored its potential for controlled improvisation. Kim-
Boyle (2006) investigated open-form scores, and McClel-
land and Acorn (2008) studied composer-performer inter-
actions. However, the complexity of musical notation 
(Stone 1980), limited these efforts to graphic representa-
tions, rather than traditional western music notation that 
affords more precise and detailed directions to performers.  
 Hajdu’s Quintet.net (2005) was an initial implementa-
tion of MaxScore (Didkovsky and Hajdu 2009), a publical-
ly available software package for the generation of stand-
ard western musical notation, one that allows for complexi-
ties of notation on the level of offline notation programs. 
An Unnatural Selection uses MaxScore for the generation 
of the conductor’s score, which is then parsed to individual 
iPads and custom coded software. 

Production Systems versus Compositions 
The creation of a production system for An Unnatural Se-
lection was concurrent with the conceptualization of the 
composition itself, which is often the case in the author’s 
practice. The desired musical results are imagined through 
audiation, and the software is coded with these results in 
mind. The attraction of generativity rests in the ability for a 
musical work to be actuated in varying forms while still 
retaining some form of overall artistic control.  
 The author has chosen to create composition-specific, 
rather than general purpose, systems for two reasons: pre-
vious experience has shown that general systems tend to 
become so complex with added features as to obfuscate 

any purposeful artistic use, and secondly, specifically de-
signed systems allow for a design with a singular artistic 
output in mind.  
 As a result, some modules within the system used in An 
Unnatural Selection are specific to that work; however, it 
also builds upon earlier work (Eigenfeldt and Pasquier 
2010) as well as contributing to successive works. Specifi-
cally, the analysis engine and generation engine can be 
considered a free- standing system, which I refer to as PAT 
(Probabilities and Tendencies); the evolutionary aspects 
are specific to An Unnatural Selection. 

The GA and its role as “Development tool” 
As already mentioned, the use of genetic algorithms – 
modified or otherwise – are attractive to composers inter-
ested in musical development. While this method of com-
position has its roots in the Germanic tradition of the 18th 
and 19th centuries, it remains cognitively useful, since it 
provides listeners with a method of understanding the un-
folding of music over time (Deliege 1996; Deliege et al. 
1996). A description of the work from the program notes – 
“musical ideas are born, are passed on to new generations 
and evolved, and eventually die out, replaced by new ide-
as” – may suggest principles of artificial life, or music 
based upon Brahms, Mahler, or Schoenberg. 
 A general conception of the first movement was a pro-
gression from chaos to order;  
• an initial population of eight musical phrases are pre-

sented concurrently by the eight instrumentalists; 
• the phrases are repeated, and each repetition develops 

the phrases independently; 
•  segments from the individual phrases infiltrate one an-

other; 
•  the individual phrases separate in time, thus allowing 

their clearer perception by the listener. 
 While these concepts began with a musical aesthetic in 
mind, they were clearly influenced by their potential inclu-
sion of genetic algorithms.  

The Score as template 
An Unnatural Selection is the most developed system in 
my pursuit of real-time composition (Eigenfeldt 2011): the 
possibility to control multiple complex gestures during 
performance. As will be described, An Unnatural Selection 
involves a number of high-level parameter variables that 
determines how the system generates and evolves individ-
uals; dynamically controlling these in performance effec-
tively shapes the music. As the performance approached, I 
doubted my performative abilities, and instantiated a score-
based system that allowed for the pre-determined setting of 
the control parameters for each successive generation: 
while the details of work would still be left to the system, 
the overall shape would be preset. The use of such tem-
plates is not uncommon in other computationally creative 
media: Colton et al. (2012) used similar design constraints 
in generating poetry in order to maintain formal patterns. 
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Probabilities and Tendencies (PAT) 
The heart of PAT rests in its ability to derive generative 
rules through the analysis of supplied corpora. Cope (1987) 
was the first composer to investigate the potential for style 
modeling within music; his Experiments in Musical Intel-
ligence generated many compositions in the style of Bach, 
Mozart, Gershwin, and Cope. Dubnov et al. (2003) suggest 
that statistical approaches to style modeling “capture some 
of the statistical redundancies without explicitly modeling 
the higher-level abstractions”, which allow for the possibil-
ity of generating “new instances of musical sequences that 
reflect an explicit musical style”. However, their goals 
were more general in that composition was only one of 
many possible suggested outcomes from their initial work. 
Dubnov’s later work has focused upon machine improvisa-
tion (Assayag et al. 2010). 
 The concept of style extraction for reasons other than 
artistic creation has been researched more recently by Col-
lins (2011), who tentatively suggested that, given the state 
of current research, it may be possible to successfully gen-
erate compositions within a style, given an existing data-
base. 
 For An Unnatural Selection, corpora included composi-
tions by the following composers: 
• Movement I: 19 compositions by Pat Metheny 
• Movement II: 2 compositions by Pat Metheny and 2 by 
Arvo Pärt 
•  Movement III: 1 composition by Terry Riley and 2 by 
Pat Metheny 
 These specific selections were arrived at through trial 
and error, as well as aesthetic consideration. The contem-
porary jazz material of Metheny provided harmonic rich-
ness without the functional tonality of the 19th century. 
Combining this corpus with Pärt’s simpler harmonies and 
melodies gave them an interesting new dimension, while 
the repetitive melodic material of Riley’s In C, when com-
bined with Metheny’s harmonies created a new interpreta-
tion of minimalist melodic and rhythmic repetition with 
more complex harmonic underpinnings. 

Analysis of corpora 
PAT requires specially prepared MIDI files that consist of 
a quantized monophonic melody in one channel, and quan-
tized harmonic data in another: essentially, a lead-sheet 
representation of the music. Prior to the creation of melod-
ic, harmonic, and rhythmic n-gram dictionaries (Pearce and 
Wiggins 2004), harmonic data is parsed into pitch-class 
sets (Forte 1973). Melodic data is stored in reference to the 
harmonic set within which it was found, both as an actual 
MIDI note number and pitch-class as relative to the set.  

Representation 
Music representation, and its problematic nature, has been 
thoroughly researched: Dannenburg (1993) gives an excel-
lent overview of the issues involved. Event-lists are the 
standard method of symbolic representation currently used, 
as they supply the minimally required information for rep-

resenting music within a note-based paradigm. However, 
since event-lists do not capture relationships between 
events, they have proven problematic for generative pur-
poses (Maxwell 2014). For this reason, PAT includes non-
events that are displayed in music notation. 

Figure 1. A notated melodic phrase, with beats 1 through 4  
indicated, and non-events marked below. 

 
 Figure 1 presents a simple melodic phrase, and its event-
based representation is shown in Table 1. While the onset 
times and durations are captured, their interrelationships, 
clearly shown in Figure 1, are difficult to determine. The 
initial event’s prolongation into the second beat, as shown 
through the tie (marked with an x), is missing. Similarly, 
the rest on the third beat (also marked with an x) segments 
the second and third beats, also not obvious in Table 1. 
 

Event # Beat Pitch Duration 
1 1.0 60 1.5 
2 2.5 62 0.5 
3 3.5 64 0.5 
4 4.0 65 1.0 
Table 1. The music of Fig. 1, represented as events.  

 
 The solution in PAT is to include all non-events: rests 
are represented as pitch 0 with appropriate durations, and 
ties are represented as incoming pitches with negative du-
rations: see Table 2. 
 

Event Beat Pitch Duration 
1 1.0 60 1.5 
2 2.0 60 -0.5 
3 2.5 62 0.5 
4 3.0 0 0.5 
5 3.5 64 0.5 
6 4. 65 1.0 

Table 2. The music of Fig. 1, showing the “non-events” 2 and 4. 
 

 Associations between events are retained within PAT 
through encoding by beat. As the generative engine uses 
Markov chains, the important relationships within and be-
tween beats are preserved through separate pitch and 
rhythm/duration n-gram dictionaries. 

Rhythm Events are stored as onset/duration duples, 
grouped into beats, with onset times indicating offset into 
the beat. Thus, Figure 1, segmented into individual beats, 
is initially represented as: 
  

(0.0 1.5) 
(0.0 -0.5) (0.5 0.5) 
(0.0 0.5) (0.5 0.5) 
(0.0 1.0) 
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 Each beat, as a duple or combination of duples, serves as 
an index into the rhythm n-gram dictionary, which stores 
all continuations and the number of times a continuation 
has been found. Thus, after encoding only Figure 1, the 
rhythm dictionary would consist of the following: 
 

(0.0 1.5) 
  (0.0 -0.5) (0.5 0.5) 1  
 (0.0 -0.5)(0.5 0.5) 
  (0.0 0.5)(0.5 0.5)  1 
 (0.0 0.5)(0.5 0.5) 
  (0.0 1.0)     1 

Pitch Melodic events are stored in relation to the harmon-
ic set within which they occurred. The total number of oc-
currences of each pitch-class (PC), relative to the set, are 
stored, as well as PCs that are determined to begin phrases 
(initial PCs) and end phrases (terminal PCs). Lastly, an n-
gram for the continuation of each PC (n>) is stored, along 
with an n-gram of its originating PC (>n). 

Figure 2. A melodic phrase with accompanying harmony;  
pitch-classes are indicated. 

 Thus, given the melodic and harmonic material of Fig-
ure 2, the melodic dictionary shown in Table 3 is con-
structed. Note that separate contour arrays are kept so as to 
retain actual melodic shapes. 
 
Set:  0 4 7          
Pitch Class 0 1 2 3 4 5 6 7 8 9 10 11 
Total PCs:  1 0 0  0 1 1 0 2 0 1 0 1 

Initial: 1 0 0 0 0 0 0 0 0 0 0 0 
Terminal: 0 0 0 0 1 0 0 0 0 0 0 0 

0> 0  0 0 0 0 0 0 0 0 0 0 1 
5> 0 0 0 0 1 0 0 0 0 0 0 0 
7> 0 0 0 0 0 1 0 0 0 1 0 0 
9> 0 0 0 0 0 0 0 1 0 0 0 0 

11> 0 0 0 0 0 0 0 1 0 0 0 0 
>4 0 0 0 0 0 1 0 0 0 0 0 0 
>5 0 0 0 0 0 0 0 1 0 0 0 0 
>7 0 0 0 0 0 0 0 0 0 1 0 1 
>9 0 0 0 0 0 0 0 1 0 0 0 0 

>11 1  0 0 0 0 0 0 0 0 0 0 0 
Table 3. The music of Fig. 2, storing individual PC’s movement 
to (n>) and from (>n), as well as a count of overall PCs for the 

set, and which PCs initiated and terminated phrases. 
 

 A similar system is used for harmony, with the n-gram 
storing the relative root movement of each set. Lastly, as 
well as melodic contours, an array of root movements (bass 
lines) is also kept. In both cases, these contours are normal-

ized and their length’s scaled. New contours are compared 
to those existing using a Euclidean distance function, and 
those below a user-set minimum similarity level are culled, 
in order to avoid excessive similarity. 

Generation 
The generative and evolutionary algorithms within An Un-
natural Selection utilize user-set parameters that define 
how the algorithms function; it is the dynamic control of 
these parameters over time that shapes the music. As has 
been mentioned, An Unnatural Selection employs a param-
eter score to control these values.  

Evolutionary Methods in An Unnatural Selection 
An Unnatural Selection uses the architecture of PAT within 
a modified evolutionary system. Within this system, musi-
cal phrases operate as individuals, or phenotypes, and indi-
vidual beats – a combination of rhythmic and melodic ma-
terial – operate as chromosomes. Phrases are developed in 
such ways that they represent successive generations. Since 
all individuals pass to the next generation, there is no se-
lection, and thus no fitness function; however, each indi-
vidual experiences significant crossover and mutation. 
Several independent populations exist simultaneously. 
 The use of evolutionary methods are extremely heuris-
tic; earlier uses of such techniques by the author are docu-
mented elsewhere (Eigenfeldt 2012; Eigenfeldt and Pas-
quier 2012a). 

Figure 3. A root progression request (red), and the generated 
progression based upon possible continuations (grey). 

Generating Harmonic Progressions 
A harmonic progression is the first generated element. A 
root progression is selected from the database as a target, 
and scaled by the requested number of chords in the pro-
gression. An initial chord is then selected from those sets 
that initiated phrases, and its continuations are compared to 
the next interval in the target. A Gaussian selection is then 
made from the highest probabilities. This process continues 
until a phrase progression is generated (see Figure 3). At 
this point, the progression has not been assigned individual 
durations. 

Generating Phrases/Individuals 
A number of required parameter values are calculated 
through a combination of corpus data and user-set ranges. 
For example, in order to select a phrase length for an indi-
vidual, the actual phrase lengths from the corpus are or-
dered, and a value is sampled from this list from within a 
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user-set range (in this case phraseLengthRange). Thus, if 
this range is fixed between 0.9 and 1.0, a random selection 
will be made from 10% of the corpus’ longest phrase 
lengths. 
 Individual phrases are assigned to specific instruments; 
since An Unnatural Selection was composed for eight in-
strument, Disklavier, and robotic percussion, the popula-
tion consisted of a maximum of 12 individuals (the piano 
and percussion used two independent phrases). An im-
portant user parameter is whether the instrument (and thus 
the phrase) is considered foreground or background: in the 
case of the former, rhythmic data is selected from the cor-
pus based upon density, while in the latter, data is selected 
based upon complexity (syncopation). Foreground individ-
uals are deemed to be more active and have more variation; 
background individuals are either more repetitive or of 
longer duration, as set by a user parameter.  

Foreground The number of onsets per beat is determined 
by a user parameter, phraseDensityRange. At initialization, 
the corpus’ average beat density is scaled between 0.0 (the 
least dense) to 1.0 (the most dense), and a selection is 
made within the user range. 

Background At initialization, the corpus’ onsets are also 
rated for complexity: the relative amount of syncopation 
within each beat. Background phrases are comprised of 
either rhythmic material or held notes; in the case of the 
former, an exponential selection is made from the top 1/3 
of the corpora (the most syncopated), while a similar selec-
tion is made from the bottom 1/3 for held individuals. 
Background phrases are immediately repeated if they are 
less than one measure in total duration. 

Figure 4. The continuations for a specific PC (7), left; a 
weighting that favors more distant PCs, center;  

the final probability for PC selection, right. 

 Once an initial selection is made for foreground or 
background individuals, the continuations from that beat 
are constrained by the same user parameters. 

Melodic material Similar to harmonic and rhythmic gen-
eration, melodic generation selects an initial PC from those 
PCs in the corpus that began melodic phrases; continua-
tions of that PC are then weighted to derive the probabili-
ties for the next PC. In the case of foreground individuals, 
a fuzzy weighting is applied so as to avoid direct repetition 
and small intervals. (see Figure 4); for background phrases, 

the opposite weighting is applied to avoid large melodic 
leaps. 

Individual locations within overall phrase Once all 
phrases have been generated, the maximum length is de-
termined, in beats; this value is rounded up to the next 
measure, and becomes the overall phrase length to which 
the harmonic progression is overlaid.  
 Individuals are placed within the overall phrase, either 
attempting to converge upon other individual’s locations, 
or diverge from them, depending upon a user-set parameter 
phraseVersusPhrase. Each phrase’s current onset locations 
are summed, which will determine the probability for the 
placement of individuals in the next overall phrase while 
the inverse will provide probabilities for divergence (see 
Figure 5). Rests are added to the beginning and/or end of 
the individual in order to place them in the overall phrase: 
these rests are not considered part of the individual. 

Figure 5. The number of total onsets per beat, left; the inverse as 
avoidance probability, center; the final probability for phrase 

starts, right. Because of the individual’s length, its placement is 
limited to the first six locations of the overall phrase. 

Melodic Quantization  
 With the harmony now in place, PCs are quantized to 
sets within which they are located. A PC is compared to 
the total n-gram for its current harmonic set, which acts as 
an overall probability function, scaled by intervallic close-
ness to the PC (see Figure 6). In this way, PCs are not 
forced to a pre-defined “chord-scale” for the set, but ad-
justed to fit the n-gram for the set within the corpus. 
 Pitch ranges are then adjusted for each individual, and 
dynamics, articulations, slurs, and special text (i.e. arco vs. 
pizzicato) are applied: space does not allow for a discus-
sion of how these parameters are determined. 

Figure 6. The n-gram for the set (0 3 7 10), left; a weighting for a 
raw PC (1) that favors intervallic closeness; the final probability 

for PC quantization, right. 
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Figure 7. The first two generations of a population of four individuals, demonstrating crossover by segment. 

Evolving Populations 
As mentioned previously, all individuals progress to the 
next generation, unless they are turned off in the user 
score. Evolution of individuals includes crossover (within 
set populations) and mutation. 

Crossover The individual’s chromosomes are its beats; as 
rests are considered events within PAT, every beat, includ-
ing rests, constitutes a separate chromosome. Crossover 
does not involve the usual splicing of two individuals, but 
instead the insertion or deletion of musical segments be-
tween individuals. Segmentation is done using standard 
perceptual cues, including pitch leaps, rests, and held notes 
(Cambouropoulos 2001), resulting in segments of one to 
several beats (see Figure 7). 

Figure 8. Two generations of three individuals (red, blue, green), 
showing expansion through crossover of segments. Segments a, f, 

and g are copied to the segment pool, potentially mutated, then 
inserted into other individuals 

 Individuals will either expand or contract during crosso-
ver, depending upon a user-set parameter. Contracting an 
individual involves deleting a segment, and splicing to-
gether the remaining parts in a musically intelligent way. 
Expansion involves copying segments from different indi-
viduals into a separate pool that contains a maximum of 16 
segments, differentiated by individual type: foreground 
versus background (see Figure 8). Segments are potentially 
mutated (see next section), then inserted into individuals. 
 
Mutation Mutation can occur on segments within the 
segment pool prior to insertion, or on the entire individual, 

depending upon the user-set parameter multiBeatProbabil-
ity. Mutations are musically useful variations, including: 
• scramble – randomly scramble the pitch-classes; 
• transpose – transpose a segment up or down by a fixed 
amount, from 2 pitch-classes to 12; 
• sort+ - sort the pitch-classes from lowest to highest;  
• sort– - sort the pitch-classes from highest to lowest; 
• rest for notes – substitute rests for pitch-classes, to a max-
imum of 50% of the onsets in the segment. 
 The type of mutation is selected using a roulette-wheel 
selection method from user-set probability weightings for 
each type. 

Logistics 
An Unnatural Selection is coded in MaxMSP2, using 
MaxScore for notational display. Custom software was 
written to display individual parts on iPads, which received 
JMSL (Didkovsky and Burke 2001) data wirelessly over a 
TCP network. The generative software composes several 
phrases in advance, and sends the MIDI data to Ableton 
Live3 for performance (specifically the Disklavier and ro-
botic percussion); Ableton Live provides a click track for 
the conductor, and sends messages back to the generative 
system requesting new material. 

Discussion 
An Unnatural Selection is, first and foremost, an artistic 
system designed to create multiple versions of a specific 
composition – the author’s interpretation of “generative 
music”. Many aspects of the system’s development – for 
example, the multiple populations – were arrived at 
through artistic reasons, rather than scientific. Algorithms 
were adjusted and parameters “tweaked” through many 
hours of listening to the system’s output; as a result, heu-
ristics form an important aspect of the final software. 
 Whether the system is computationally creative is a 
more difficult matter to determine. While I echo Cope’s 
desire that “what matters most is the music” (Cope 2005), I 
am fully aware of Wiggins reservations that “with hand-
coded rules of whatever kind, we can never get away from 
                                                
2 www.cycling74.com/  
3 www.ableton.com/  
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the claim that the creativity is coming from the program-
mer and not the program” (Wiggins 2008).  
 The overriding design aspect entailed musical produc-
tion rules derived through analysis of a corpus; however, as 
I discuss elsewhere (Eigenfeldt 2013), how this data is 
interpreted is itself a heuristic decision, especially when 
being used to create an artwork of any value. 

Evaluation 
While the intention of An Unnatural Selection was primari-
ly artistic, the notion of evaluation was not entirely ig-
nored, an issue the author has attempted to broach previ-
ously (Eigenfeldt et al. 2012). The work was clearly exper-
imental: it would have been much easier to generate the 
music offline, and select the best examples of the system, 
allowing the musicians to rehearse and perform these in 
ways in which they are accustomed. However, the fact that 
the music was generated live was an integral element to the 
performance: in fact, interactive lighting was used in which 
the musician’s chairs were lit only while they played, an 
effort to underline the real-time aspect.  
 While no formal evaluation studies were done, the musi-
cians were asked to critically comment upon their experi-
ences. Their comments are summarized here.  

Limited Complexity in Structure Some musicians com-
mented on the relatively unsophisticated nature of the 
overall form of the generated music: 

 “I didn't sense a strong structural aspect to the pieces. I 
thought the program generated some interesting ideas 
but I would like to see more juxtaposition, contrast of el-
ements, in order to create more variety and interest.” 
 “I would venture to say… that the music… certainly 
wasn't as developed or thoughtful as something that a 
seasoned, professional composer would create.” 
 “…any of the versions would likely have struck me as 
somewhat interesting but fairly basic.” 

Generating convincing structure is an open problem in mu-
sical metacreation, which is not surprising, as it is one of 
the most difficult elements to teach young composers. 

More Overall Complexity When asked for specific sug-
gestions, several musicians provided very musical sugges-
tions, including a greater variety of time signatures, more 
subtle instrumentation and playing techniques, different 
groupings of musicians, accelerando and rubato. Many of 
these aspects can, and will be incorporated into future ver-
sions of the system. 

Positive comments Keeping in mind that these are profes-
sional musicians specializing in contemporary music per-
formance, I was happy to receive positive comments:  

 “I assume the software is going to continue to grow 
and become more accomplished through further expo-
sure to, and analysis of, sophisticated compositional 
ideas.” 
 “I thought some of music was beautiful, especially in 
the second movement.” 

 “It seems to me that what you are doing is ground-
breaking and interesting, even if still at a relatively 
primitive stage.” 

Conclusion 
 An Unnatural Selection was the culmination of my re-
search into generating music in real-time for live musi-
cians. Upon reflection after the fact, my goal was to pre-
sent musical notation to the performers that was as close as 
possible to what they were used to, since no improvisation 
would be expected. Naturally, this would necessitate hav-
ing the musicians perform the music without any rehearsal 
– and extremely demanding request. While the extended 
rehearsals did allow the musicians to gain some expecta-
tions of what to expect from the software, it failed to pro-
vide them with what rehearsals usually provide: a time to 
discover the required interactions inherent within the mu-
sic. One musician suggested that these indications, normal-
ly learned during rehearsal periods, could somehow appear 
in the notation:  

 “Maybe the screen could indicate to the players when 
they have an important theme to bring out, and also in-
dicate which instrument they are in a dialogue with or 
have the same rhythmic figure as?” 

  Future versions of the system will explore this new par-
adigm, which also suggests the potential to involve the 
performers within the generative composition in ways that 
would not be possible without intelligent technology. 
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Abstract

Concept blending, a cognitive process which allows for
the combination of certain elements (and their relations)
from originally distinct conceptual spaces into a new
unified space combining these previously separate ele-
ments and allowing the performance of reasoning and
inference over the combination, is taken as a key ele-
ment of creative thought and combinatorial creativity.
In this paper, we provide an intermediate report on work
towards the development of a computational-level and
algorithmic-level account of concept blending, present-
ing the theoretical background together with the main
model characteristics, as well as two case studies.

Creativity and Concept Blending
The term “combinatorial creativity” (Boden 2003) refers to
creativity which arises from a combinatorial process join-
ing familiar ideas (in the form of, for instance, concepts,
theories, or artworks) in an unfamiliar way, thereby produc-
ing novel ideas. But although the overall idea of combining
preexisting ideas into new ones seems fairly intuitive and
straightforward, computationally modeling this form of cre-
ativity turns out to be surprisingly complicated: When look-
ing at it from a more formal perspective at the current stage
neither can a precise algorithmic characterization be given,
nor are at least the details of a possible computational-level
theory describing the process(es) at work well understood.

Still, in recent years a proposal by (Fauconnier and Turner
1998) called concept blending (or conceptual integration)
has influenced and reinvigorated studies trying to unravel
the general cognitive principles operating during creative
thought. In their theory, concept blending constitutes a cog-
nitive process which allows for the combination of certain
elements (and their relations) from originally distinct con-
ceptual spaces into a new unified space combining these pre-
viously separate elements and allowing the performance of
reasoning and inference over the combination.

Unfortunately, a proper computational modeling of con-
cept blending as cognitive capacity again is lacking. Neither
do (Fauconnier and Turner 1998) provide a fully worked out
and formalized theory themselves, nor does their informal
account capture key properties and functionalities as, for ex-
ample, the retrieval of input spaces, the selection and trans-
fer of elements from the input into the blend space, or the

further combination of possibly mutually contradictory ele-
ments in the blend.

These shortcomings notwithstanding, several researchers
in AI and computational cognitive modeling have used
the provided conceptual descriptions as a starting point
for proposing possible refinements and implementations:
(Goguen and Harrell 2010) propose a concept blending-
based approach to the analysis of the style of multime-
dia content in terms of blending principles and also pro-
vide an experimental implementation, (Pereira 2007) tries
to develop a computationally plausible model of several
hypothesized sub-parts of concept blending, (Thagard and
Stewart 2011) exemplify how creative thinking could arise
from using convolution to combine neural patterns into ones
which are potentially novel and useful, and (Veale and
O’Donoghue 2000) present their computational model of
conceptual integration and propose several extensions to the
(at that time prevailing) view on concept blending.

Since 2013, another attempt at developing a computation-
ally feasible, cognitively-inspired formal model of concept
creation, grounded on a sound mathematical theory of con-
cepts and implemented in a generic, creative computational
system is undertaken by a European research consortium
in the so called Concept Invention Theory (COINVENT)
project (Schorlemmer et al. 2014)1. One of the main goals
of the COINVENT research program is the development
of a computational-level and algorithmic-level account of
concept blending based on insights from psychology, AI,
and cognitive modeling, the heart of which are made up
by results from cognitive systems studies on computational
analogy-making and knowledge transfer and combination
(i.e., the computation of so called amalgams) from case-
based reasoning. In the following we present an analogy-
inspired perspective on the COINVENT core model for con-
cept blending and show how the respective mechanisms and
systems interact.

Two Mechanisms at the Heart of COINVENT:
Generalization-Based Analogy and Amalgams
As analogy seems to play a crucial role in human cogni-
tion (Gentner and Smith 2013), researchers on the computa-

1Also see http://www.coinvent-project.eu for de-
tails on the consortium and the project.
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tional side of cognitive science and in AI also very quickly
got interested in the topic and have been creating computa-
tional models of analogy-making since the advent of com-
puter systems, among others giving rise to (Winston 1980)’s
work on analogy and learning, (Hofstadter and Mitchell
1994)’s Copycat system, or (Falkenhainer, Forbus, and Gen-
tner 1989)’s well-known Structure-Mapping Engine (SME).

Generally speaking there are (at least) two families of
computational analogy models: one family is based on a
(generalization-free) direct mapping approach, the other one
relies on a two-step procedure with a generalization stage
followed by a subsequent mapping stage. While the for-
mer type of analogy engine is, among others, exemplified
in the SME and its immediate pairwise mapping of domain
elements between elements of source and target of the po-
tential analogy, followed by the accumulation of individ-
ual mappings into more complex structures, the latter cat-
egory is represented by the Heuristic-Driven Theory Projec-
tion (HDTP) framework (Schmidt et al. 2014). As COIN-
VENT, for principled conceptual reasons (see the section on
the idea(s) behind concept blending in COINVENT below),
relies on the generalization-based view on analogy-making,
we shortly introduce this model category in the following
subsection.

In a conceptually related, but mostly independently con-
ducted line of work researchers in case-based reasoning
(CBR) have been trying to develop problem solving method-
ologies based on the principle that similar problems tend to
have similar solutions. CBR tries to solve problems by re-
trieving one or several cases relevant for the issue at hand
from a case-base with already solved previous problems
(cases), and then reusing the past case(s) to also solve the
new task (Aamodt and Plaza 1994). While the retrieval
stage has received significant attention over the last two
decades, the transfer and combination of knowledge from
the retrieved case to the current problem has been studied
in an domain-specific way, with (Ontanón and Plaza 2012)
being a recent attempt at also gaining insights on this phase
of the CBR cycle by suggesting the framework of amalgams
(Ontanón and Plaza 2010) as a formal model for reuse of
multiple cases. The second subsection gives an overview of
amalgams as used in COINVENT.

Generalization-Based Models of Analogy
Generalization-based models of analogy-making share a
close conceptual connection to models of inductive gener-
alization (Smaling 2003). Similar to these, the basic prin-
ciple is the recognition of a common core between source
and target of the potential analogy, which is then used for
guiding the formation process of the analogy and the sub-
sequent content transfer and reasoning steps. Fig. 1 gives a
schematic overview: The common conceptual elements be-
tween source S and target T correspond to a shared gen-
eralization G (subsuming both, S and T ), which also in-
duces mappings between the respective domain elements,
establishing an analogical relation. These mappings, gov-
erned by the generalization, then also subsequently define
how (previously unmatched) knowledge from the source do-
main can be transferred to and integrated into the target do-

Generalization (G)

%%KKKKKKKKKK

yyssssssssss

SOURCE (S)
analogical

relation

TARGET (T )

Figure 1: A schematic overview of a generalization-based
approach to analogy.

main, namely by converting elements from S into their cor-
responding counterparts within T .

The precise nature of the subsumption relation between
generalization and source or target domain, respectively,
is defined by the specific analogy model, possibly ranging
from semantic subsumption in a suitable ontology, through
taxonomic subsumption based on names and labels, logical
subsumption in a model-theoretic sense, to purely syntactic
subsumption in a formal language.

One example for a generalization-based computational
analogy-model (and the system used in COINVENT) is
the already aforementioned HDTP (Schmidt et al. 2014).
The framework has been conceived as a mathematically
sound theoretical model and implemented engine for com-
putational analogy-making, on a syntax basis computing
analogical relations and inferences for domains which are
presented in (when allowing for re-representation possibly
different) many-sorted first-order logic (FOL) languages.
Source and target domains are handed over to the system
in terms of finite axiomatizations and HDTP tries to com-
pute a generalization between both domains. This is done by
aligning pairs of formulae from the two domains by means
of restricted higher-order anti-unification (Schwering et al.
2009): Given two terms, one from each domain, HDTP
computes an anti-instance in which distinct subterms have
been replaced by variables so that the anti-instance can be
seen as a meaningful generalization of the input terms. As
already indicated by the name, the class of admissible sub-
stitution operations is limited. On each expression, only re-
namings, fixations, argument insertions, and permutations
may be performed. By this process, HDTP tries to find
the least general generalization of the input terms, which
(due to the higher-order nature of the anti-unification) is not
unique. In order to solve this problem, current implementa-
tions of HDTP rank possible generalizations according to a
complexity measure on the chain of substitutions — the re-
spective values of which are taken as heuristic costs — and
returns the least expensive solution as the preferred one.

HDTP extends the notion of generalization from terms to
formulae by basically treating formulae in clause form and
terms alike. Finally, as analogies rarely rely exclusively on
one isolated pair of formulae from source and target domain,
but usually encompass sets of formulae (possibly completely
covering one or even both input domains), a process itera-
tively selecting pairs of formulae for generalization has been
included. The selection of formulae is again based on a
heuristic component. Mappings in which substitutions can
be reused get assigned a lower cost than isolated substitu-
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tions, leading to a preference for coherent over incoherent
mappings.

Due to the use of many-sorted FOL as an expressive rep-
resentation language, and the purely syntax-based general-
ization approach underlying HDTP, over the last years the
framework has shown remarkable generalizability and gen-
erality. Having originally been conceived and applied for
modelling the Rutherford analogy and poetic metaphors, as
well as for providing an alternate account of (Falkenhainer,
Forbus, and Gentner 1989)’s heat-flow analogy in (Schwer-
ing et al. 2009), without major changes to the model HDTP
has by now been applied to different tasks from different do-
mains, such as modeling a potential inductive analogy-based
process for establishing the fundamental concepts of arith-
metics (Guhe et al. 2010), or studies applying the framework
to modeling analogy use in education and teaching situations
(Besold 2014).

Combining Conceptual Theories Using Amalgams
The notion of amalgams was developed in the context of
CBR (Ontanón and Plaza 2010), where new problems are
solved based on previously solved problems (or cases, resid-
ing on a case base). Solving a new problem often requires
more than one case from the case base, so their content has to
be combined in some way to solve the new problem. The no-
tion of an amalgam of two cases (two descriptions of prob-
lems and their solutions) is a proposal to formalize the ways
in which cases can be combined to produce a new, coherent
case.

Formally, the notion of amalgams can be defined in any
representation language L for which a subsumption relation
v between the formulae (or descriptions) of L can be de-
fined. We say that a description I1 subsumes another de-
scription I2 (I1 v I2) when I1 is more general (or equal)
than I2. Additionally, we assume that L contains the infi-
mum element ? (or ‘any’), and the supremum element >
(or ‘none’) with respect to the subsumption order.

Next, for any two descriptions I1 and I2 in L we can
define their unification, (I1 t I2), which is the most gen-
eral specialization of two given descriptions, and their anti-
unification, (I1 u I2), defined as the least general general-
ization of two descriptions, representing the most specific
description that subsumes both. Intuitively, a unifier is a
description that has all the information in both the original
descriptions; if joining this information leads to inconsis-
tency, this is equivalent to saying that I1 t I2 = > (i.e., they
have no common specialization except ‘none’). The anti-
unification I1uI2 contains all that is common to both I1 and
I2; when they have nothing in common, then I1 u I2 = ?.
Depending on L anti-unification and unification might be
unique or not.

The notion of an amalgam can be conceived of as a gener-
alization of the notion of unification: as ‘partial unification’
(Ontanón and Plaza 2010). Unification means that what is
true for I1 or I2 is also true for I1tI2; e.g., if I1 describes ‘a
red vehicle’ and I2 describes ‘a German minivan’ then their
unification yields a common specialization like ‘a red Ger-
man minivan.’ Two descriptions may contain information
that produces an inconsistency when unified; for instance

I1 I2

Ī2Ī1

G = I1 u I2

A = Ī1 t Ī2

v
v

v
vvv

v v

Figure 2: A diagram of an amalgam A from inputs I1 and I2

where A = Ī1 t Ī2.

v

vvv

v v

A = S0 t T

S0

S

T

G = S u T

Figure 3: A diagram that transfers content from source S to
a target T via an asymmetric amalgam A.

‘a red French sedan’ and ‘a blue German minivan’ have
no common specialization except >. An amalgam of two
descriptions is a new description that contains parts from
these two descriptions. For instance, an amalgam of ‘a red
French sedan’ and ‘a blue German minivan’ is ‘a red Ger-
man sedan’; clearly there are always multiple possibilities
for amalgams, like ‘a blue French minivan’.

For the purposes of this paper we can define an amalgam
of two input descriptions as follows:

Definition 1 (Amalgam) A description A 2 L is an amal-
gam of two inputs I1 and I2 (with anti-unification G =
I1 u I2) if there exist two generalizations Ī1 and Ī2 such
that (1) G v Ī1 v I1, (2) G v Ī2 v I2, and (3) A = Ī1t Ī2

When Ī1 and Ī2 have no common specialization then triv-
ially A = >, since their only unifier is “none”. For our
purpose we will be only interested in non-trivial amalgams.

This definition is illustrated in Fig. 2, where the anti-
unification of the inputs is indicated as G, and the amalgam
A is the unification of two concrete generalizations Ī1 and
Ī2 of the inputs. Equality here should be understood as v-
equivalence: X ⌘ Y iff X v Y and Y v X . Convention-
ally, we call the space of amalgams of I1 and I2 the set of
all amalgams A that satisfy Definition 1.

Usually we are interested only in maximal amalgams of
two input descriptions, i.e., those amalgams that contain
maximal parts of their inputs that can be unified into a new
coherent description. Formally, an amalgam A of inputs I1

and I2 is maximal if there is no other non-trivial amalgam
A0 of inputs I1 and I2 such that A @ A0. The reason why
we are interested in maximal amalgams is very simple: a
non-maximal amalgam Ā @ A preserves less compatible
information from the inputs than the maximal amalgam A.
Conversely, any non-maximal amalgam Ā can be obtained
by generalizing a maximal amalgam A, since Ā @ A.

There is a special case of particular interest that is called
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an asymmetric amalgam, in which the two inputs play differ-
ent roles. The inputs are called source and target, and while
the source is allowed to be generalized, the target is not.
Definition 2 (Asymmetric Amalgam) An asymmetric
amalgam A 2 L of two inputs S (source) and T (target)
satisfies that A = S0 t T for some generalization of the
source S0 v S.
As shown in Fig. 3, the content of target T is transferred
completely into the asymmetric amalgam, while the source
S is generalized. The result is a form of partial unification
that preserves all information in T while relaxing S by gen-
eralization and then unifying one of those generalizations S0

with T itself. As before, we will usually be interested in
maximal amalgams: in this case, a maximal amalgam cor-
responds to transferring maximal content from S to T while
keeping the resulting amalgam A consistent. For these rea-
sons asymmetric amalgams can be seen as models of a form
of analogical inference, transferring information from the
source to the target by creating a new amalgam that enriches
the latter with the content of S0 (Ontanón and Plaza 2012).

Analogy-Based Concept Blending in
COINVENT

Taking the concept of generalization-based analogies (and
HDTP as suitable framework for the computation of the lat-
ter) together with the notion of asymmetric amalgams, we
now can introduce the core idea(s) behind concept blending
as performed in COINVENT in the next subsection, subse-
quently also showing the feasibility of the approach in two
examples. The general suitability of the approach is demon-
strated revisiting the “sign forest” metaphor from (Kutz et
al. 2012), an implementation using HDTP is exemplified
(re-)constructing the concept of a foldable toothbrush.

The Core Model: An Analogy-Inspired View
One of the early formal accounts on concept blending, which
is especially influential to the approach applied in COIN-
VENT, is the classical work by Goguen using notions from
algebraic specification and category theory (Goguen 2006).
This version of concept blending can be described by the di-
agram in Fig. 4, where each node stands for a representation
an agent has of some concept or conceptual domain. We will
call these representations “conceptual spaces” and in some
cases abuse terminology by using the word “concept” to re-
ally refer to its representation by the agent. The arrows stand
for morphisms, that is, functions that preserve at least part of
the internal structure of the related conceptual spaces. The
idea is that, given two conceptual spaces I1 and I2 as input,
we look for a generalization G and then construct a blend
space B in such a way as to preserve as many as possible
structural alignments between I1 and I2 established by the
generalization. This may involve taking the functions to B
to be partial, in that not all the structure from I1 and I2

might be mapped to B. In any case, as the blend respects (to
the largest possible extent) the relationship between I1 and
I2, the diagram will commute.

Concept invention by concept blending can then be
phrased as the following task: given two representations of

G
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@@
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��@
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~

B

Figure 4: A conceptual overview of (Goguen 2006)’s ac-
count of conceptual blending.

two domain theories I1 and I2, we need first, to compute a
generalized theory G of I1 and I2 (which codes the com-
monalities between I1 and I2) and second, to compute the
blend theory B in a structure preserving way such that new
properties hold in B. Ideally, these new properties in B are
considered to be (moderately) interesting properties. In what
follows, for reasons of simplicity and without loss of gener-
ality we assume that the additional properties are just pro-
vided by one of the two domains, i.e., we align the situation
with a standard setting in computational analogy-making by
renaming I1 and I2. The domain providing the additional
properties for the concept blend will be called source S, the
domain providing the conceptual basis and receiving the ad-
ditional features will be called target T .

In COINVENT’s account, the reasoning process is then
triggered by the computation of the generalization G
(generic space), where for concept invention we will only
need the mapping mechanism and replace the transfer phase
by a new blending algorithm. The mapping is achieved via
the usual generalization process between S and T , in which
a generalized theory is created that reflects common aspects
of both spaces. The generalized theory can be projected
back into the original spaces by specializations �S and �T ,
respectively. As S and T might contain elements which
are not reflected in the shared generalization, it holds that
�S(G) ✓ S and �T (G) ✓ T . While in analogy making the
analogical relations are used in the transfer phase to translate
additional uncovered knowledge from the source to the tar-
get space, blending combines additional facts (i.e., elements
from S \ SC or T \ TC) from one or both spaces. Therefore
the process of blending can build on the generalization and
specializations provided by the analogy engine, but has to
include a new mechanism for transfer and concept combi-
nation. Here, amalgams naturally come into play: The set
of specializations can be inverted and applied to generalize
the original source theory S into a more general version S0

(forming a superset of the shared generalization G, also in-
cluding previously uncovered knowledge from the source)
which then can be combined into an asymmetric amalgam
with the target theory T , forming the (possibly underspeci-
fied) proto-blend T 0 of both. In a final step, T 0 is then com-
pleted into the blended theory and output of the process TB

by applying corresponding specialization steps stored from
the generalization process between S and T (see also Fig. 5).

If we now take the domains to be represented in the form
of finite axiomatizations as processed by HDTP, in an im-
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Figure 5: A general overview of COINVENT’s account of concept blending using generalization-based analogy and asymmetric
amalgams: The shared generalization G from S and T is computed with �S(G) = Sc. The relation �S is subsequently re-used
in the generalization of S into S0, which is then combined in an asymmetric amalgam with T into the proto-blend T 0 = S0 t T
and finally, by application of �T , completed into the blended output theory TB . (Herev indicates subsumption between theories
in the direction of the respective arrows.)

plementation of the general model we can use the analogy-
engine for computing the generalizations and deriving the
corresponding substitutions. In the generalization step be-
tween S and T , as usual pairs of formulas from the source
and target spaces are anti-unified for deriving the general-
ized theory G, and the specializations �S and �T become
substitutions which are computed during anti-unification.

Example 1: The Sign Forest
We now want to revisit the example of the blend sign for-
est discussed in (Kutz et al. 2012), providing an interpre-
tation of the concept from a metaphor-centered perspective
and showing how the general COINVENT model can serve
for reconstructing the blending process. In what follows we
consider sign forest equivalent to the expression “a forest of
signs”, that shows more clearly its metaphorical nature.

The original sign forest blend was defined in the context
of blending ontologies, which means that the involved inputs
for blending were ontological descriptions of trees, forests,
and (traffic) signs. This approach views a concept such as
tree defined as an ontological specification of the concept of
tree: a specification that is ideally so general as to cover all
kinds of trees; the same can be said about forest, and (traffic)
signs. As such, certain properties and relations are selected
to form these specifications that are useful for an ontology
framework. However, our approach follows the notion that
concepts in human cognition can often be viewed, in cog-
nitive science, as bundles of their most typical properties
(albeit typicality may certainly be context-dependent). This
view is also taken in examples by (Fauconnier and Turner
1998) that are used to show how conceptual blending works:
a boathouse has typical properties of boat and house —but
not other properties that may appear in an ontological spec-
ification of boat and house.

Thus, in this approach, the concept of tree is typically
formed by a plant having roots, a trunk and a crown (even if
there may be plants categorized as trees that do not have a
trunk, this is ignored as it does not belong to the bundle of
properties that are typical); this view is depicted as I2 in the
bottom right of Fig. 6, where other properties are included,

like plants being not mobile and the roots fixing the (typical)
tree to the ground. Finally, a forest is commonsensically de-
fined as a group of trees. The second concept, (traffic) sign,
may come in many forms (as we know from own experi-
ence), but the first that comes to mind is the most typical one:
the signpost. The signpost is typically fixed on the ground
near a road, and has a post supporting a surface panel depict-
ing some traffic related information (labeled I1 in the lower
left corner of Fig. 6). The cognitive advantage of a signpost
is that it has a recognizable physical structure, while “traffic
sign” is so generic as to be a merely functional-based con-
cept: any kind of surface panel depicting some traffic-related
information is a traffic sign.

The generic space G of conceptual blending corresponds
to the anti-unification shown as G = I1 u I2 in Fig. 6;
G depicts common structure between a signpost and a tree:
a stem-like object, fixed to the ground, and supporting an-
other object on top. As discussed later, this common struc-
ture is the basis for a metaphor like “a forest of signs” to
make sense — in contradistinction to a metaphor that does
not make sense such as “a forest of chairs”, even when a
typical chair is made of wood.

Now, the construction of the blended metaphor for
sign forest can be interpreted easily in the combined
generalization-based analogy and amalgam framework: the
input spaces can be generalized in different ways (al-
though always satisfying what they already have in com-
mon, namely G). Different generalizations would yield dif-
ferent amalgams, but the one we are considering here can be
seen as generalizing I2 into Ī2, as shown in Fig. 6. Now
this generalization Ī2 can directly be unified with I1, since
Ī1 is identical to I1; this unification yields the amalgam
A = Ī1 t Ī2 that, as shown in Fig. 6, represents a “for-
est of signposts”. Moreover, since I1 ⌘ Ī1, this model is an
asymmetric amalgam, as evidenced by the fact we general-
ize the source (Forest) until it unifies with the target (Sign-
post), while the latter remains fixed (i.e., is not generalized).

In order to support our perspective that a metaphor
(viewed as an analogy and amalgam combination in natu-
ral language) is based on some (strong enough) common
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Figure 6: Blending schema for “Sign Forest” when inputs are typical concepts for “Sign” (traffic signpost) and “Forest” (forest
of typical trees); the arrows indicate subsumption (v) as in Figure 2.

structure of the typical concepts participating in the blending
process, we checked if other metaphors can be constructed,
or better yet, have already been constructed, that are based
on the same kind of generic space G. We used Google’s n-
grams database to search for existing phrases in which “for-
est of X” is used metaphorically2. Most n-grams starting
with “forest of” were about places or kinds of trees, as is to
be expected; still, we found the following metaphors used
on the web: (1) forest of spears, (2) forest of masts, and (3)
forest of marble columns. These three cases have a generic
space that is very similar to G: they all represent a mul-
titude of vertical stem-like objects. Some differences are:
while masts and columns are fixed, spears are not fixed to
the ground, but may be used in a context where they are ver-
tical and immobile stems, supporting a pointed tip; masts

2Google’s 3-grams starting with “fo” are available at: http:
//storage.googleapis.com/books/ngrams/books/

googlebooks-eng-all-3gram-20120701-fo.gz

and columns support different kinds of objects, but all three
examples have generic spaces resembling G in Fig. 6.

What about counterexamples? We did not find “forest of
chairs” of course, and there were other metaphors on forest,
but they were based on different generic spaces and differ-
ent input spaces; we found these metaphors: “forest of X”,
where X could be opinions, possibilities, desires, words, hu-
man experience. Clearly, these metaphors were not based on
the trees being elements of a “forest”, but on the human ex-
perience of (walking in) the forest as a place of multiplicity
of paths, options, destinations. We think they are not coun-
terexamples, but rather examples of blends from different
input spaces.

Example 2: The Folding Toothbrush
Having given an example for the general model in the pre-
vious subsection, we now want to also exemplify a con-
crete implementation of the approach using HDTP as anal-
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Figure 7: Brillo, an example of a foldable toothbrush as pro-
duced by Metaphys.

ogy framework. As application example, we will use the
blending-driven (re-)invention of foldable toothbrushes as,
for instance, the one depicted in Fig. 7.

Currently, when using HDTP, the required subsumption
relation between theories is given by logical semantic con-
sequence |=, i.e., A v A0 if A0 |= A for any two theo-
ries A and A0. In order to make sure that this relationship
is preserved by HDTP’s syntax-based operations, the range
of admissible substitutions for restricted higher-order anti-
unifications has to be further constrained to only allow for
fixations and renamings.

Foldable toothbrushes are a conceptual combination be-
tween a typical toothbrush and a folding mechanism like
that of pocketknives. In order to reconstruct the underlying
blending process, we start with the stereotypical characteri-
zations of a toothbrush and a pocketknife in a many-sorted
first-order logic representation from Table 1.

Sorts:
entity, part, functionality

Entities:
toothbrush, pocketknife : entity handle, brush head, blade, hinge : part

brush, cut, fold : functionality

Predicates:
has part : entity ⇥ part, has functionality : entity ⇥ functionality

Laws of the pocketknife characterization:
(↵1) has part(pocketknife, handle) (↵2) has part(pocketknife, blade)

(↵3) has functionality(pocketknife, cut) (↵4) has part(pocketknife, hinge)

(↵5) has functionality(pocketknife, fold)

Laws of the horse characterization:
(�1) has part(toothbrush, handle) (�2) has part(toothbrush, brush head)

(�3) has functionality(toothbrush, brush)

Table 1: Example formalizations of stereotypical character-
izations for a pocketknife S and a toothbrush T .

Given these characterizations, HDTP can be used for

finding a common generalization of both, for instance (due
to the syntactic similarities and the system’s heuristics)
aligning and generalizing ↵1 with �1, ↵2 with �2, and ↵3

with �3. Subsequently, reusing the same anti-unifications
(corresponding to �S), the source theory S is generalized
into S0 as given in Table 2: �1 corresponds to ↵1/�1, �2 to
↵2/�2, �3 to ↵3/�3, and �4 and �5 are obtained by general-
izing ↵4 and ↵5, respectively.

Entities:
E : entity, P : part, F : functionality

Laws:
(�1) has part(E, handle) (�2) has part(E, P )

(�3) has functionality(E, F )

(�4⇤) has part(E, hinge) (�5⇤) has functionality(E, fold)

Table 2: Abbreviated representation of the generalized
source theory S0 based on the stereotypical characterizations
for a toothbrush and a pocketknife (axioms not obtained
from the covered subset Sc are highlighted by *).

Computing the asymmetric amalgam of S0 with the
(fixed) target theory T , we obtain the proto-blend T 0 from
Table 3. As T 0 still features axioms containing non-
instantiated variables, �T is applied to the theory resulting in
the (with respect to �T ) fully instantiated blend theory TB

from Table 4, describing the concept of a hinge-equipped
toothbrush that can be folded.

Entities:
E : entity

Laws:
(�1) has part(toothbrush, handle) (�2) has part(toothbrush, brush head)

(�3) has functionality(toothbrush, brush)

(�4) has part(E, hinge) (�5) has functionality(E, fold)

Table 3: Abbreviated representation of the proto-blend T 0

obtained from computing the asymmetric amalgam between
S0 and T .

Laws:
(�1) has part(toothbrush, handle) (�2) has part(toothbrush, brush head)

(�3) has functionality(toothbrush, brush)

(�4) has part(toothbrush, hinge) (�5) has functionality(toothbrush, fold)

Table 4: Abbreviated representation of TB = �T (T 0).

Conclusions
We presented a perspective on the blending of concept theo-
ries building on generalization-based analogy and the amal-
gam framework: Building upon analogy models of general-
ization and domain matching, asymmetric amalgams allow
to provide a sound model for the controlled computation of
the concept blend(s) of two input theories.

Clearly, this is not the only attempt at developing a com-
putational model of (some facet of) concept blending: (Mar-
tinez et al. 2014) present an algorithmic approach for blend-
ing mathematical theories, (Kutz et al. 2015) give an account
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of ontological blending, (Li et al. 2012) describe the goal-
and context-sensitive blending-based production of creative
artifacts, and (Martinez et al. 2012) consider concept blend-
ing in a human-level AI context. Still, in combining the
generality of generalization-based analogies and the amal-
gam framework, COINVENT’s approach stands out as high-
level, cognitively-inspired perspective on concept blending.
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Abstract

This paper presents Vismantic, a semi-automatic sys-
tem generating proposals of visual composition (visual
ideas) in order to express specific meanings. It im-
plements a process of developing visual solutions from
‘what to say’ to ‘how to say’, which requires both con-
ceptual and visual creativity. In particular, Vismantic
extends our previous work on using conceptual knowl-
edge to find diverse visual representations of abstract
concepts, with the capacity of combining two images
in three ways, including juxtaposition, replacement and
fusion. In an informal evaluation consisting of five com-
munication tasks, Vismantic demonstrated the poten-
tial of producing a number of expressive and diverse
ideas, among which many are surprising. Our analysis
of the generated images confirms that visual meaning-
making is a subtle interaction between all elements in a
picture, for which Vismantic demands more visual se-
mantic knowledge, higher image analysis and synthesis
skills, and the ability of interpreting composed images,
in order to deliver more ideas that make sense.

Introduction
Aesthetics and meaning are two main concerns of art. The
work presented in this paper focuses on meaning-making in
image generation. Particularly, we are interested in convey-
ing specific meanings, in contrast to vague or divergent in-
terpretations. A common way of constructing meanings in
images is combining objects, where meanings arise from the
objects (denotation and connotation) and the relations be-
tween them. Such combination involves two main decisions:
which objects to combine and how to combine them.

Contemporary print advertisements offer abundant exam-
ples of combining objects to express specific meanings. In
general, an ad tells about a desirable attribute of a product.
Hence, usually two objects are combined, the product (or
something closely related) and another thing that embodies
the attribute. For example, an ad for promoting dairy prod-
ucts shows a bone made of milk. Regarding how to visually
combine two objects, Phillips and McQuarrie (2004) iden-
tified three ways (visual operations): juxtaposition (two ob-
jects side by side), fusion (two objects merged together), and
replacement (only one object is present, which occupies the
usual place of the other object).

Obviously, the above visual operations do not appear only
in ads, and the relations between objects are not limited to
attribute. The news collage in (Krzeczkowska et al. 2010)
(see Related Work) is an example of juxtaposing more than
two objects. Dalı́’s liquid clock1 is an example of fusion, and
Duchamp’s urinal2 surrounded by artworks in an exhibition
can be seen as an example of replacement.

In this paper, we present Vismantic, a semi-automatic sys-
tem combining pictures of objects to express simple mean-
ings described by pairs of a subject word and a message
word. A message may be an attribute of the subject, or have
a causal or an opposite relation to the subject. Vismantic
first searches for photos that represent the subject and the
message respectively and are as diverse as possible. It then
applies juxtaposition, fusion and replacement to the photos
found. We provide the formalization and computational im-
plementation of the three visual operations. Nevertheless,
Vismantic is not yet fully automatic; it needs user filtering at
intermediate stages.

Vismantic is a workflow of integrating conceptual and vi-
sual creativity in making images. Such integration is nec-
essary, since both kinds of creativity are required in com-
mon visual communication tasks and there do not exist many
such systems. We present here the first version of Vismantic
and the results of an informal evaluation, which functions as
identifying the problems in the field. Another important ob-
jective of the present work is using computational modeling
for studying visual compositional semantics. The seman-
tics of an image is a synergy of every element in it, includ-
ing the subtle details. But, there has not been much formal
study on it. Formalization and computational implementa-
tion are great tools for testing rules and hypotheses. Our
newly gained insights are presented in the Evaluation and
Analysis section.

Vismantic focuses on the variety and novelty of compo-
sitions (visual ideas), rather than generating perfect images.
As an example, Fig. 1 shows some of the ideas generated by
Vismantic in order to say “electricity is green (sustainable)”.

In the remainder of this paper, related work is introduced
first, followed by the details of how Vismantic works. We
then present the experiment we conducted to evaluate its

1http://en.wikipedia.org/wiki/The Persistence of Memory
2http://en.wikipedia.org/wiki/Fountain %28Duchamp%29
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Figure 1: Example visual ideas generated for Task 1 “electricity is green (sustainable)”. 1a: a light bulb replaces a tuft of green
leaves; 1b: green leaves are fused with the screw base and wire filament of a light bulb; 1c: a branch of leaves replaces a power
station.

ideation capacity, as well as our analysis of the test results.
Finally, we give conclusions and propose future work.

Related Work
Within the Computational Creativity community, the bulk
of work on visual creativity has concentrated on aesthetics,
while meaning creation has only come into focus lately.

Krzeczkowska et al. (2010) created a computer visual
artist, which has a basic level of intention and expresses
it with collages. At regular intervals it accesses news arti-
cles from a few internet sources, and takes the viewpoints of
the authors by extracting most-content-indicative keywords
(only nouns) from the articles. The keywords are used to
retrieve digital images from a few online and local sources,
including Corel, Flickr and Google Images. The retrieved
images, in their whole or segments, are assembled according
to one of the grid-based templates, which is then rendered
with pencils, pastels or paints. In the example presented in
the paper, ten nouns are extracted in order to cover all the
central subjects of an article. The use of collage makes it
easy to present the multiple facets of an event. In contrast,
Vismantic relates only two objects and intends more specific
messages. Moreover, it combines images in two additional
ways, i.e. replacement and fusion.

Another computer visual artist, DARCI (Digital Artist
Communicating Intent) (Norton, Heath, and Ventura 2010;
2011), renders a given image in order to represent a list
of adjectives. It learns, from human-annotated images, the
mappings between adjective synsets and low-level image
features, including color, light, texture and shape. The map-
ping for each synset is encoded in a series of artificial neural
networks (ANNs). To render an image, DARCI selects a set
of image filters through an evolutionary mechanism, where
the ANNs are used in each generation to assess how well a
rendering reflects the specified adjectives. Unlike DARCI,
which focuses on the overall impression of images and the
meaning-carrying capacity of low-level image features, Vis-
mantic primarily uses objects and their relations to convey
meanings.

In addition, there is work on suggesting objects (in the
form of concepts) for images to be generated. Xiao and Blat

(2013) were interested in the use of pictorial metaphors in
advertisements and created a program proposing metaphor
vehicles, to which a product (metaphor tenor) and a few at-
tributes with different levels of prominence are given as an
input. The program first searches in several commonsense
knowledge bases for concepts that have the main attribute as
one of their stereotypical properties. Then, it evaluates the
aptness of the concepts found as metaphor vehicles, in re-
gard to imageability, affect polarity, attribute salience, sec-
ondary attributes and similarity with tenor. Another work
is a software called Perception (De Smedt et al. 2013),
which assists the brainstorming of artists in general. It is
backed by a semantic network of concepts and their adjec-
tive properties. By concept clustering and graph path find-
ing, Perception is able to find instances of novel concepts
such as ‘creepy animals’, and make analogies, e.g., propos-
ing a toad as a symbol of Brussels. Both works are made
for creative visual tasks, and both touch only the concep-
tual aspect. They are relevant in augmenting the conceptual
creativity of Vismantic.

Outside the Computational Creativity community, a rele-
vant field is Content-aware Image Synthesis (Diakopoulos,
Essa, and Jain 2004; Lalonde et al. 2007; Chen et al. 2009),
which deals with composing scenes (images) using picto-
rial elements taken from photos. Its center of investigation
is how to make a composition look as realistic as possible,
considering that photos normally vary in camera pose, light-
ing, scale, resolution, etc. There is overlap in the image pro-
cessing techniques used in this field and by Vismantic. The
difference is that, in Content-aware Image Synthesis, it is the
user who dictates the composite objects of an image, not the
computer.

Vismantic Workflow
Vismantic takes as an input a subject word and a message
word. To generate visual ideas, it follows three major steps:
I Find representative photos of the subject and message, re-

spectively;
II Preprocess photos found;

III Apply visual operations (juxtaposition, replacement and
fusion).
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Figure 2: Vismantic workflow. * and **: two filterings have different content (see the text for details).

Step I and II both involve user filtering. The above workflow
is also illustrated in Fig. 2 for clarity. The details of the
three steps are presented below. Because the user filterings
in Step I and II are influenced by how the visual operations
are implemented, Step III is introduced first, followed by
Step I and II.

Implementation of Three Visual Operations
In this subsection, we introduce first the specifications we
give to the visual operations and then how they are realized
with several image processing techniques.

Juxtaposition means that two objects are shown side by
side in an image. There is no restriction on whether the im-
age of the subject or message should be on the left or right.
Also, it does not rely on the context in the generated image
to assist understanding.

Replacement means that an object takes the place of an-
other object. The context of the replaced object has to be
able to hint about it. Again, it is arbitrary whether the sub-
ject or the message object should be replaced.

Fusion means that an attribute of an object is fused with
an attribute of another object, which creates a new object
with mixed traits. The new object has to remind viewers of
the original objects, which normally depends on the distinc-
tiveness of the attributes.

The above visual operations suggest using pictures of ob-
jects in their natural surroundings. We chose Flickr3 as im-
age source, attempting to capitalize on its diverse content.

In order to implement juxtaposition, replacement and fu-
sion, we have identified three image processing challenges.
The first is discovering the most prominent object in an im-
age. The second is removing an object from an image and
filling the empty space left in order to make it a natural part
of the background. For fusion, we currently use the tex-
ture of an object to blend with the object region (texture) in
another image. This particular implementation does not re-
quire that the object region has a distinctive texture, except
a good object extraction. Again, either the image of the sub-
ject or message can provide texture or object region. Hence,
the third challenge is blending the texture of an object with
another object so that traits of both objects are still recogniz-
able.

3www.flickr.com

The families of image processing techniques we have cho-
sen for solving the above challenges are saliency-based ob-
ject extraction, inpainting and texture transfer, correspond-
ingly.

Object Extraction refers to finding the most prominent
(salient) region in an image. The available algorithms usu-
ally provide floating point estimation of saliency for each
pixel/segment, which is then binarized to obtain a mask of
the most salient region (see Fig. 3b). This mask can then
be used to extract the most prominent object (Fig. 3c). We
use an algorithm created by Cheng et al. (2011,2015), which
was concluded to be one of the better performing algorithms
in a recent benchmark survey (Borji, Sihite, and Itti 2012).
However, the robustness of object extraction algorithms is
still far from perfection; the deficiencies include, e.g., par-
tial object extraction and the object humans infer as the most
prominent is not extracted. Furthermore, when there is no
objectness estimation for the extraction results, regions in
images with no clear separation of fore- and backgrounds,
e.g., patterns, can be treated as objects.

Inpainting techniques were originally created for restor-
ing damaged images or concealing unwanted objects from
images. Our intention is to remove objects from images by
filling the saliency masks generated by the object extraction
algorithm (see Fig. 3d where the object in Fig. 3c is removed
using the saliency mask in Fig. 3b). Inpainting algorithms
have to deal with textural and structural soundness; textural
soundness means preserving the observed textures around
the mask, and structural soundness means merging the con-
tinuing isophotes (contours of equal luminance) around the
mask. As in object extraction, no existing inpainting al-
gorithm gives decent results across the board. Especially,
when the removed object is big and/or its surrounding area
is diverse, it is difficult to make the inpainted region a nat-
ural part of the original image without manual processing.
Typical defects are clear patch borders and blurred images.
Moreover, in Vismantic, the defects in object extraction may
propagate to inpainting.

We use fast spatial patch blending (Daisy, Tschumperlé,
and Lézoray 2013) as the inpainting algorithm. It iteratively
fits small areas (patches) surrounding the saliency mask into
the masked area. Patch-based inpainting algorithms are a
reasonably fast and convenient way of taking both of the
textural and structural soundness into account. The charac-
teristic of spatial patch blending is that it blends overlap-
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Figure 3: Results of image processing algorithms.

ping regions of adjacent patches making their seams less
prominent. However, it has several parameters that should
be tuned on an image-to-image basis in order to achieve sat-
isfactory results.

Texture Transfer techniques take the texture of an image
and apply it to another image so that the other image’s char-
acteristics are still recognizable. Comparing to more com-
mon texture synthesis methods, which only try to produce
larger continuous texture based on a small sample image,
texture transfer methods also take a map (usually a gray
scale version of the other image or its segment) as an input,
and generate texture to match the map’s shape while trying
to preserve the map’s features. See Fig. 3f where the texture
in Fig 3e has been transferred to the extracted object in Fig.
3c.

We use the texture transfer method by Harrison (2005),
because we perceived it as more robust than other readily
available methods in an informal evaluation. Unfortunately,
it has the same shortcoming as the fast spatial patch blending
– multiple input parameters need to be adjusted for each im-
age in order to get the best results. Harrison’s texture trans-
fer method may produce inferior results on many occasions
even with near optimal parameter settings. We noticed that,
for our purposes, the best quality is obtained when the input
texture and map exhibit similar features, but are still rela-
tively different, e.g., the spatial variability of the texture and
the map should be in the same order of magnitude.

Combining the three algorithms above, we can achieve
our first implementation of the visual operations. Let IS and

IM be the subject and message images, respectively; let Isi
be the saliency mask obtained from the image Ii; let Ioi be
the object extracted from image Ii, given the saliency mask
Isi ; and, let Ipi be the image, where the area of saliency mask
Isi has been inpainted. With these notations, we can realize
the visual operations as follows:

• Juxtaposition: Resize each of the extracted objects IoS and
IoM to be within a bounding box of 240⇥240 pixels (refer
to the resizing method below), and position the resized
objects side by side on a blank 640 ⇥ 400 image, so that
the centers of the objects’ bounding boxes are vertically
centered and at the 1

4 and 3
4 marks on the horizontal axis.

• Replacement: Resize IoS to be within the bounding box
of IoM , and layer IoS to the same position as IoM in the
inpainted image IpM , i.e. overlapping the centers of the
two objects’ bounding boxes.

• Fusion: Transfer the texture from IoM to IoS and overlay
the resulting object upon the original subject image IS .

Here, we have defined the operations only in one way, but
as we pointed out earlier, subject and message images are
interchangeable.

For resizing, let Bw
O , B

h
O be the width and height of the

bounding box of the object to be resized, and Bw
T , B

h
T the

width and height of the target bounding box (240 ⇥ 240 in
juxtaposition and the bounding box of the object to be re-
placed in replacement). We formulate the resizing procedure
as follows:

1. Calculate the width and height ratios between the bound-
ing boxes: rw = Bw

T /B
w
O and rh = Bh

T /B
h
O.

2. If rw  rh, then r = rw, otherwise r = rh.
3. Resize if r < 3

4 or r > 4
3 (this is for using the original

image whenever we can, in order to avoid decreasing the
image quality).

Finding Representative Photos of Concepts
At the first step, Vismantic searches in Flickr for photos that
can represent well the subject and the message, respectively.
Other concerns are diversity, photo quality and (image pro-
cessing) algorithm-friendliness. We also pay attention to the
copyright of photos, only retrieving photos under Creative
Commons license with modification permission.

Both the subject and message can be a physical or abstract
concept. For physical concepts, such as an object, pictures
of the object itself or something closely related, i.e. its in-
ternal components or other objects interacting with it, are
used to represent it. On the other hand, abstract concepts are
represented by pictures of entities through connotation.

When searching in Flickr, the subject and message words
are used as free text search, sorted by relevance. Photos
with more than 15 tags are rejected, considering that too
many tags might imply photographers’ intention of boosting
the rankings of their photos in every query. We also avoid
photos tagged with ‘illustration’, ‘painting’, ‘graphics’, ‘in-
fographic’, ‘text’, ‘collage’, ‘scrapbook’, ‘photoshop’, etc.
The photos downloaded are of medium size: at most 640
pixels on the longer side.
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Additionally, we take advantage of the ‘related-tags’4 pro-
vided by Flickr and one of our previous works (Xiao and
Blat 2012) in order to improve the diversity of the search re-
sults for abstract concepts. (Xiao and Blat 2012) finds phys-
ical concepts that have the intended abstract concept as one
of their stereotypical properties. This is achieved by retriev-
ing strong associations from four semantic knowledge bases
and subsequently filtering associations that are low in con-
creteness and imageability. Take the task in Fig. 1 as an
example, the concept ‘electricity’ is concatenated with each
of 53 physical concepts to form Flickr queries, such as “elec-
tricity storm”, “electricity pylon”, “electricity bulb”, “elec-
tricity windmill”, “electricity plant”, “electricity outlet”, etc.
The photos retrieved by multiple queries are organized in
groups, one group per query.

User Filtering The photos retrieved from Flickr might
not be sufficiently representative for the concept of interest.
Also, the photo quality might be low, due to, e.g., under/over
exposure, blur, highlight, low resolution, colorization, or us-
ing a fisheye lens. Besides, as mentioned in the previous
subsection, the image processing techniques currently used
by Vismantic only work well with certain images. Photos
having a recognizable object that is neither obscured nor too
small, and is situated in a simple context, are preferred. At
present, Vismantic needs a user to choose quality photos that
are representative and algorithm-friendly.

Preprocessing
Each of the three visual operations has distinct requirements
for a pair of input images:

• Juxtaposition: good object extraction for both images.
• Replacement: good object extraction for one image, and

having a suggestive context for the other.
• Fusion: good object extraction for one image, and having

a distinctive texture for the other.

The above requirements have to be satisfied before apply-
ing visual operations, which can be computationally expen-
sive. Furthermore, they prevent unpromising results early
on, which drastically saves the effort needed for evaluating
the final output, since the number of images in the final out-
put without filtering is quadratic to the number of input im-
ages (each photo of a subject is paired with every photo of a
message).

At this step, object extraction and inpainting are applied
to all the photos retrieved from Flickr and selected by a
user. Currently, Vismantic does not have automatic means
to judge the quality of object detection, the indicative capac-
ity of a context, or the distinctiveness of a texture.

User Filtering For each photo, the object/region extracted
is shown to a user, who is asked to decide if it represents
the corresponding subject or message and if it has a distinct
texture which alone cues the concept. The inpainted image
is also shown to the user, together with the question whether
the image reminds him of the concept.

4www.flickr.com/services/api/flickr.tags.getRelated.html

Evaluation and Analysis
To get a first idea of what Vismantic generates, we put it in
a test consisting of five typical visual communication tasks,
where only the authors interacted with the system. In this
section, we first present the output and curation coefficient
at each step of the workflow, along with our analysis of the
output. Next, we reveal the major factors that cause a gener-
ated image to be uninterpretable or end up with unintended
meanings. The five tasks are the following (subject and mes-
sage words in italic):

1. Electricity is green (sustainable).
2. Music is powerful.
3. Lipstick is associated with love.
4. Heating system makes house warm.
5. Earplug reduces noise.

At the first step, the purpose is to find representative, di-
verse, high-quality and algorithm-friendly photos of con-
cepts (subjects and messages). In the test, 50 photos were
collected for each subject and message. For abstract con-
cepts, which lead to multiple queries for searching in Flickr,
the photos were collected by visiting the photo groups (one
group per query) one by one and picking up the first un-
picked photo (the photos in a group are sorted by rele-
vance). The upper part of Table 1 shows the number of
disqualified, qualified, selected and surprising photos for
each concept. Averaging across all ten concepts, 46.4%
of the photos retrieved from Flickr are qualified. The dis-
qualified photos are divided into three categories, i.e. ‘non-
representative’, ‘non-algorithm-friendly’ and ‘low-quality’.
Non-representativenessness, amounting to 35.2%, was the
top reason for rejecting photos. Non-representative photos
either lack relevance or represent a sense of a concept other
than the one intended.

We selected photos from the qualified ones and only kept
those that look quite different from each other. On aver-
age, around 9 photos were selected for each concept. We
also noticed that there were novel representations of con-
cepts among the retrieved photos (the row of ‘surprising’ in
Table 1), which counts for 4.2%.

At the second step, preprocessing, object extraction and
inpainting were applied to the photos selected in Step I, and
the output is shown in the lower part of Table 1. Averagely
speaking, good object extraction was found in 69.3% of the
selected photos. The major types of incorrect object extrac-
tion include: only part of an object was extracted and the
part was not recognizable; the object was not extracted at
all but some other part of the photo instead, e.g., another
object or part of the background; or the whole photo was
extracted. Within the properly extracted objects, distinctive
textures were not so common, counting for 20.5%. Some
examples are green grassland, red lipstick, water, brick wall,
flame and textile. Besides, only 22.7% of the selected pho-
tos had suggestive context around an object region. In many
photos, the object was relatively big and the context was too
small to be distinguishable; or the context could not hint at
the object if it were removed. However, surprisingly, the
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Table 1: Output of Step I Finding representative photos of concepts and Step II Preprocessing.

electricity green music powerful lipstick love house warm earplug noise avg. %avg.
photos retrieved 50 50 50 50 50 50 50 50 50 50
non-representative 13 6 6 25 22 30 2 26 17 29 17.6 35.2
non-algorithm-friendly 6 2 5 1 9 4 10 4 21 2 6.4 12.8
low-quality 3 0 9 3 1 3 3 1 3 2 2.8 5.6
qualified 28 42 30 21 18 13 35 19 9 17 23.2 46.4
surprising 0 2 0 5 5 2 0 1 3 3 2.1 4.2
selected (at Step I) 10 7 9 9 13 8 8 9 6 9 8.8 17.6
good object extraction 6 5 5 5 10 5 8 6 5 6 6.1 69.3
distinct texture 0 5 0 3 3 1 2 4 0 0 1.8 20.5
has-context 0 4 4 4 0 2 0 3 2 1 2 22.7
suggestive context 3 5 6 6 2 4 0 3 5 5 3.9 44.3

Table 2: Output of Step III Applying visual operations. gene. = generated, expr. = expressive, supr. = surprise, % = ratio
between the two numbers ahead.

electricity-green music-powerful lipstick-love house-warm earplug-noise avg.
genr. expr. % genr. expr. % genr. expr. % genr. expr. % genr. expr. % genr. expr. %

juxtaposition 60 0 0 50 46 92 100 54 54 96 56 58.3 60 44 73.3 73.2 40 54.6
replacement 45 12 26.7 60 28 46.7 50 27 54 24 21 87.5 55 30 54.5 46.8 23.6 50.4
fusion 30 9 30 15 0 0 25 1 4 44 3 6.8 0 0 0 22.8 2.6 11.4
total 135 21 15.6 125 74 59.2 175 82 46.9 164 80 48.8 115 74 64.3 143 66.2 46.4

expr. supr. % expr. supr. % expr. supr. % expr. supr. % expr. supr. % expr. supr. %
surprise 21 21 100 74 30 40.5 82 40 48.8 80 80 100 74 32 43.2 66.2 40.6 61.3

errors in object extraction sometimes provided suggestive
context. When only part of an object was extracted, the re-
maining part might be able to cue the object. For instance,
in Fig. 1c, the smoke coming out of the power station was
not extracted. Including these cases, suggestive context were
found in 44.3% of the selected photos.

At the third step, applying visual operations, on average
143 images were generated for each task (Table 2). Most
of them were juxtapositions and replacements, because dis-
tinctive textures were rare. Our primary evaluation criterion
is whether a generated image expresses the meaning speci-
fied in a task. Averaging across all five tasks, 46.4% of the
generated images were considered expressive.

Regarding if there is a general trend that one visual op-
eration works better than another, there was no significant
difference between juxtaposition and replacement. Both op-
erations produced expressive images about half of the time,
54.6% and 50.4% respectively. The difference showed more
in specific tasks. For instance, there was no expressive juxta-
position for Task 1. As seen in Table 2, it seems that fusion
yields less than juxtaposition or replacement. However, a
factor that has to be taken into account is that fusion can
easily go wrong in the current implementation. In juxtapo-
sition and replacement, the image processing involved are
mainly resizing and positioning, while the quality of object
extraction and the indicative capacity of context have been
evaluated in the previous step, preprocessing. On the other
hand, the parameters of the texture transfer technique used
in fusion have to be fine tuned for each image for optimal
performance, which is not yet available in Vismantic. In ad-
dition, the number of textures available for fusion was quite
small. When there are more varieties of textures, one set
of parameters that does not work well with one image may
work for another, which could bring us more expressive im-
ages.

A few examples of the images generated for each task are
shown in Fig. 4. More examples can be visited online5.
Besides, we have a few interesting observations. Firstly,
Vismantic sometimes generates “perfect images” (see Fig.
1a), when some visual features of two objects, such as size,
shape, angle and lighting, match by coincidence. Secondly,
fusion sometimes produces images of high artistic skill (see
Fig. 1b for an example).

As in Step I, we counted the number of surprising ideas
among the generated images, and found that on average
61.3% of the expressive images were surprising. The sur-
prise came from novel representations of concepts and un-
expected combinations of objects in terms of the concepts
they denote/connote or the exact visual representations. Ad-
ditionally, we call attention to Fig. 1c. The meaning of this
image is not as straightforward as “the power station (cov-
ered by the leaves) is as green as the leaves”, which is what
we had envisioned. A plausible interpretation is “the leaves
(or the concept of ‘sustainability’ accompanying it) replaces
the traditional power station”. Owing to the drastic contrast
in size and solidity between leaf and power station in com-
mon sense, this image exemplifies immense boldness, which
has not been explicitly modeled in Vismantic.

In the following subsection, we analyze why some of the
generated images do not express the intended meanings.

Failure Analysis
We have observed that a generated idea may fail mostly in
three aspects, namely semantic interaction, visual operation
implementation and object affordance and composition.

Semantic Interaction For some generated images, there
seems to be no plausible interpretation, divergent interpre-
tations, or an interpretation either the one not intended or

5http://vismantic.hiit.fi/examples/
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Figure 4: Examples of generated visual ideas. 4a: for Task 2 “music is powerful”, a singer replaces part of waves; 4b: for
Task 3 “lipstick is associated with love”, the heads of a kissing couple are fused with a red lipstick; 4c: for Task 4 “heating
system makes house warm”, a house is fused with a pair of crochet mittens; 4d: for Task 5 “earplugs reduce noise”, a helicopter
replaces part of a man’s head with fingers stuck in the ears.

the opposite. For instance, Fig. 5a is a juxtaposition gen-
erated for Task 4 “heating system makes house warm”. It
seems rather difficult to get the feeling that the house is be-
ing warmed up. Nonetheless, this is well achieved by the fu-
sion of the two objects (Fig. 4c). Another example is shown
in Fig. 5b, a replacement (a power station (without smoke)
replaces a line of trees) generated for Task 1 “electricity is
green”. The image looks like a power station in its natural
surroundings, which is unable to allure viewers into think-
ing of other connections between the two objects, such as
grass gives energy to a power station (see Fig. 1a for a com-
parison). Moreover, semantic interaction may not happen as
expected for other reasons, such as objects having opposing
emotional valence.

(a) (b)

Figure 5: Semantic interaction.

Visual Operation Implementation As explained earlier,
fusion requires fine tuning the parameters of the inpainting
algorithm, which is not available in Vismantic at present.
The current resizing method used in replacement does not
produce ideal results when the objects involved have quite
different shapes. Besides, we noticed that additional con-
straints might be applied to visual operations, e.g., texture-
based fusion should avoid objects with similar colors.

Object Affordance and Composition Fig. 6 shows two
different light bulbs placed in the same context, both of
which are replacements for Task 1 “electricity is green”. Fig.
6a works while Fig. 6b does not. The difference between
the light bulbs is that one is for putting on a horizontal sur-
face, such as the ground, and the other is for hanging ver-

tically, such as from a ceiling. The context is a forest with
the ground covered by grass and leaves. The bulb for the
horizontal plane suits this context well, which suggests that
it is the forest where the bulb gets energy. In contrast, the
vertical light bulb can not connect to the forest in a similar
way. This comparison reveals that two objects can only be
connected meaningfully at certain parts, but not every part.

Besides, the left and right order (orientation) of two ob-
jects sometimes can not be arbitrary. Consider whether the
idea is still effective if the singer in Fig. 4a turns his head to
the opposite direction.

(a) (b)

Figure 6: Object affordance.

In Table 3, the numbers of different types of failure are
presented. It shows that semantic interaction was a major
cause of failure for all three visual operations. Failure of
visual operation implementation occurred mainly in fusion
and replacement, since juxtaposition has less constraints on
resizing and positioning. Failure of object affordance and
composition happened largely in replacement and juxtaposi-
tion, because the current implementation of fusion primarily
replies on texture.

Table 3: Failure type. The ratio in parenthesis is against the
number of disqualified images generated by each operation.

juxtaposition replacement fusion
disqualified images 166 116 101
semantic interaction 158 (95.2%) 65 (56.0%) 50 (49.5%)
visual operation implementation 0 (0.0%) 29 (25.0%) 52 (50.5%)
object affordance & composition 8 (4.8%) 21 (19.0%) 0 (0.0%)
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Conclusions and Future Work
This paper presents Vismantic, a semi-automatic system for
generating visual ideas. The workflow it exemplifies has
generality, in the sense that it starts from a conceptual task
(described in text) and outputs visual compositions, which
fit real-life practice. Vismantic takes advantage of both con-
ceptual and visual creativity in its ideation. At present, with
basic conceptual knowledge (semantic associations) and the
first implementation of three visual operations (juxtaposi-
tion, replacement and fusion), it demonstrated the potential
of producing images that are expressive, diverse and surpris-
ing.

Vismantic generates surprising ideas by using novel rep-
resentations of concepts and unexpected combinations of
objects in terms of the concepts they denote/connote or the
exact visual representations. It also generates images with
certain particular flavors, such as extreme boldness, though
it is not supposed to have such sense. In the future, when
deciding objects to be combined, additional effects, such as
surprise, boldness and humor, can be considered.

For Vismantic to have a higher level of automation and
generate more ideas that make sense, we have identified
challenges in three areas:

• Visual Resources: sources of photos with high relevance
and diversity, sources of distinctive textures and sources
of indicative context;

• Image Processing: automatic means of selecting photos
that are high-quality and algorithm-friendly, automatic
means of tuning algorithm parameters, taking into ac-
count visual features (such as color, shape, orientation
and camera angle) when applying the visual operations,
and making use of more sophisticated image analysis to
accurately locate objects in complex scenes;

• Visual Semantics: more visual knowldge, such as object
affordance and the meanings of visual features (e.g., ori-
entation, position and contrast), and the ability of inter-
preting images, i.e. simulating the interaction between all
the meaning fragments generated by visual cues at various
levels.

Last but not least, other visual operations can be added to
Vismantic.
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Abstract

We present and discuss quality assessment of visual
blends based on how humans perceive them. This work
represents part of a wider study aimed at determining
the fundamental characteristics of a good blend. Based
on the obtained insights, we hope to make a more com-
prehensible explanation of some less clear and not fully
described aspects of the conceptual blending mecha-
nism that play a fundamental role in creative thinking.
Additionally, we intend to bring these insights into the
design of artificial creative systems.

Introduction
Conceptual blending (CB) is a vital cognitive mechanism by
which two or more mental spaces are integrated to produce
new concepts (Fauconnier and Turner 2002). Blending is at
the heart of the origin of ideas; a new idea or thought can be
seen as an insight gathered from a blend, i.e., the result from
integrating different mental spaces. Not unexpectedly, the
complexity and the quality of blends can be quite heteroge-
neous. The human brain continuously attempts to blend dif-
ferent concepts either by using a quite uncomplicated web of
mental spaces or a more refined and complex network. The
majority of these attempts fail in producing good blends, es-
pecially because the blend neither has sufficient novelty nor
it has immediate purpose (Turner 2014).

What makes us prefer one blend to another? Is it suf-
ficient to require novelty and value under a given context?
Can quality simply depend on the coherence of the blend
and on the easiness to interpret it? As CB theory inevitably
links with the phenomenon of creativity, that is, the abil-
ity of producing new, surprising, and valuable ideas or arti-
facts (Boden 1991), it is expectable to regard as good blends
the ones which imply a more creative thinking. However,
the “intuitive” nature of creativity hinders the construction
of a system of strict and immediate rules to explain which
mental spaces should be selected and how they should be
integrated in order to achieve creative thinking. Therefore,
giving a more elaborate answer to the question “What makes
a good blend?” is challenging.

In this paper, we present and discuss quality assessment
of visual blends based on how humans perceive them –
as good, as bad, or as surprising and thought-provoking

(AHA!) blends. This is part of a wider study whose fun-
damental goal is to understand what are the key character-
istics of a good blend. By finding them, we hope to make
a more understandable explanation of some less clear and
less described aspects of the blending mechanism that play
a fundamental role in creative thinking. Another goal of
our work is to bring these insights into the design of arti-
ficial creative systems to improve creation and curation pro-
cesses, especially when they rely on computational mod-
els of conceptual blending. We are particularly interested
in contributing to the design of frameworks for creativity
assessment. While there are already noteworthy works in
the field (Ritchie 2001; Colton, Pease, and Ritchie 2001;
Wiggins 2001; Colton 2008; Jordanous 2012), there is still
room for improvement.

To the best of our knowledge, an analysis of blends
based on human perception was only followed by Joy et
al. when analyzing conceptual blending in advertising (Joy,
F. Sherry Jr., and Deschenes 2009). The authors conducted
interviews with 28 volunteers who had to interpret several
advertisements by describing what they thought was their
main messages and how they arrived at such interpretation.
The advertisements used in the experiment provided clear
examples of conceptual blending.

We make use of an online-survey questionnaire in which
participants are asked to evaluate criteria that we assume to
be related to the quality of blends. In the likeness of the
aforementioned work, the examples given to the participants
can be easily perceived as instances of conceptual blending.

The remainder of this paper is organized as follows. In
the upcoming section, we overview the conceptual blend-
ing framework and discuss its relation with creativity. Then,
we present the content of the survey and discuss its results.
Finally, we present concluding remarks and discuss future
research.

Conceptual Blending and Creativity
Fauconnier and Turner originally proposed conceptual
blending theory as an attempt to explain cognitive and lin-
guistic phenomena such as metaphor, metonymy, and coun-
terfactual reasoning (Fauconnier and Turner 1998), but later
it was extended to describe and explain different cogni-
tive phenomena related to the creation of ideas and mean-
ings (Fauconnier and Turner 2002; Turner 2014).
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Mental spaces network
A key element in conceptual blending is the mental space,
which corresponds to a partial and temporary knowledge
structure created for the purpose of local understand-
ing (Fauconnier 1994). Mental spaces differ from frames,
which are more stable knowledge structures. In the CB
framework, there is a network comprising at least four con-
nected mental spaces, as depicted in Figure 1. Two or more
of them correspond to the input spaces, which are the ini-
tial domains. A partial matching between the input spaces is
constructed. This association is reflected in another mental
space, the generic space, which contains elements common
to the different input spaces. The latter space captures the
conceptual structure that is shared by the input spaces. The
outcome of the blending process is the blend, a mental space
that maintains partial structures from the input spaces com-
bined with an emergent structure of its own.

Generic Space

Input 1 Input 2

Blend

Figure 1: The original four-space conceptual blending net-
work (Fauconnier and Turner 2002).

Integration
Integration of input elements in the blend space results from
three operations: composition, completion, and elabora-
tion (Fauconnier and Turner 2002). Composition occurs
when the elements from the input spaces are projected into
the blend and new relations become available in the blended
space. This implies projecting into the blend not only
the matched elements but also other surrounding elements.
Completion occurs when existing knowledge in long-term
memory, i.e., knowledge from background frames, is used to
generate meaningful structures in the blend. Elaboration is
an operation closely related to completion; it involves cog-
nitive work to perform a simulation of the blended space.
Elaboration is also known as “running the blend”. There is
not a pre-established order for these operations and several
iterations may occur.

Optimality principles
Integration is guided by optimality principles, which are re-
sponsible for generating consistent blends which in turn are

more easily interpreted. Fauconnier and Turner (1998) pro-
vided a list of these principles:
OP1 Integration: the blend must constitute a tightly inte-

grated scene that can be manipulated as a unit. More gen-
erally, every space on the blend structure should have inte-
gration. In other words, the integration principle dictates
that the blend must be recognized as a whole and as a new
concept that is coherent.

OP2 Intensifying Vital Relations: compress what is diffuse
by scaling a single vital conceptual relation or transform-
ing vital conceptual relations into others.

OP3 Maximizing Vital Relations: create human scale in the
blend by maximizing vital relations.

OP4 Topology: for any input space and any element in that
space projected into the blend, it is optimal for the rela-
tions of the element in the blend to match the relations
of its counterpart. Put differently, the topology principle
dictates that every element projected into the blend should
maintain the same neighborhood relations as in the input
space. This principle can be disregarded without having
a major impact in the value of the blend, especially if we
are dealing with free combinations, such as an imaginary
object with a given goal (Pereira 2005).

OP5 Web: manipulating the blend as a unit must maintain
the web of appropriate connections to the input spaces
easily and without additional surveillance or computation.

OP6 Unpacking: the blend alone must enable the blend
reader/observer to unpack the blend to reconstruct the in-
puts, the cross-space mapping, the generic space, and the
network of connections between all these spaces. Unlike
other principles, unpacking takes the perspective of the
blend reader, i.e., someone who is not acquainted with
the blend generation process.

OP7 Relevance: all things being equal, if an element ap-
pears in the blend, there will be pressure to find signifi-
cance for this element. Significance will include relevant
links to other spaces and relevant functions in running the
blend. In short, the relevance principle requires the exis-
tence of a reason for the blend to occur.

Blends and creative thought
The theory built around conceptual blending inevitably deals
with the phenomenon of creative thinking. The ability of
producing new, surprising, and valuable ideas or artifacts
comes frequently in advanced forms of conceptual blend-
ing (Turner 2014). Due to the “intuitive” nature of creative
thinking, the construction of a comprehensive theory of such
phenomenon is quite challenging. Conceptual blending the-
ory, without being an exception, is sometimes vague and less
prone to formalization when dealing with crucial aspects of
creative thought. In particular, the framework does not ex-
plicitly deal with novelty and the optimality principles do
not clearly dictate whether a blend is creative or not. How-
ever, it is a common assumption that novelty can result from
the application of these principles.

Despite all these limitations, the conceptual blending
framework provides not only a set of sound principles but
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also a consistent terminology that can be used in creativity
modeling. This has been a major motivation to consider the
design of artificial creative systems based on computational
approaches to conceptual blending.

Looking for good blends
By understanding what humans perceive as a good blend, we
hope to dissipate some of the vagueness surrounding the ex-
planation of parts of the blending mechanism that are not
fully described or even ambiguous. We are primarly in-
terested in analyzing the relevance of the optimality prin-
ciples, the selection of input spaces as well as the projection
of elements. Our goal is not to establish solid rules to the
blending process – as it would be incongruous with the the-
ory – but to provide some hints to questions such as “How
‘semantically far’ should the input spaces be to produce
a good blend?”,“Is there a correlation between the quality
of blends and the number of elements for projection?”, or
“Are all the optimality principles required to produce good
blends?”. In the case of artificial creative systems, we also
expect to find clues to questions such as “Are the typical
relationships found in concept maps sufficient to infer the
quality of a blend?”, “How important is to include common
sense knowledge (sensorial and subjective elements) in con-
cept maps to achieve better blends?”, or “To what extent
is required to have a goal-driven blending to obtain better
blends?”.

It should be noted that we do not use any a priori defini-
tion of what is considered to be a good blend. Constructing
such a definition is actually the goal of this study. Nonethe-
less, our work relies on the premise that good blends are
creative to some extent, whereas the reciprocal is not neces-
sarily true.

In this paper, we focus on visual blends. More accu-
rately, we work with images depicting fictional hybrid an-
imals. Examples of hybrid animals, such as Pegasus or
the lion man, are often presented in the literature as well-
known and/or ancient blends. There are also several ex-
periments in the field of computational creativity involving
the creation of hybrid animals (Pereira and Cardoso 2003;
Neahus et al. 2014). In our case, we opted to analyze this
particular type of blend due to the fact that hybrid animals
tend to be easily perceived as a blend, i. e., the blend reader
can recognize the input spaces and simultaneously identify a
novel creature. Nevertheless, we will try to make generaliza-
tions from our observations rather than drawing conclusions
that only hold for this type of blends.

The survey
To assess the quality of blends, we conducted an online
questionnaire survey in which approximately 100 partic-
ipants judged 15 novel animals which are the result of
blending anatomies from two different animals.1 Each
hybrid animal was depicted in one image/scene (see Fig-
ure 2). The author of all images but two is Arne Olaf
(http://gyyp.imgur.com/). He uses Adobe R� Pho-
toshop R� to create the hybrid creatures. The input images

1Available at http://animals.janez.me.

are put in two layers, adjusted in terms of size and unnec-
essary regions are removed. After that, he applies some
common image processing techniques to make the transi-
tions smoother.

Note that our focus is on blending at the conceptual level,
overlooking aspects related to technical perfection. How-
ever, we are aware that technical perfection of a picture plays
an important role in the perception of visual blends. This is
why we decided to use blends with a similar level of qual-
ity in this respect - all chosen blends could be perceived as
“good” as far as visual presentation is concerned. Moreover,
the pictures share a similar rendering style. This enabled us
to investigate other influential factors with more certainty as
we ruled out rendering or poor presentation as a reason for
bad human perception of a blend. This is particularly im-
portant in looking for findings that would hold also for other
types of blends, not just the visual ones.

One may comment that there are no obviously bad blends
in the dataset. This decision was based on a preliminary
test done by ourselves, in which we noticed that there were
big individual differences in the acceptance of blends, al-
though the blends were all looking “nice” and the dataset
presented good candidates for being well accepted. Our vot-
ing on blends was almost never unanimous, and this is why
we wanted to investigate more thoroughly what could be
expected on a bigger and more heterogenous population of
subjects. With this in mind, “the good” and “the bad” blends
from the title should be understood as “well accepted” and
“not so well accepted” blends, showing the way towards cre-
ation of blends that will be well accepted by humans.

The criteria used in the survey cover some of the opti-
mality principles criteria (e.g., by asking about coherence
and consistency we are checking if a blended creature is
perceived as having its own identity and corresponds to the
optimality criterion of integration) as well as some criteria
that define creativity, i.e., novelty, surprise, and value (Bo-
den 1991). Thus, for each image depicting a hybrid animal,
we asked the participants to rate the following criteria in a
integer scale from 1 (the worst) to 5 (the best):
OI Overall impression;
N/S Novelty/Surprise;
I Interestingness;
AA Aesthetic appeal;
C/H Comicality/Humor;
C/C Coherence/Consistency;
PF Evoques positive feelings;
NF Evoques negative feelings;
CIP Creative industries potential.
The participants were also asked to provide a name to the
hybrid creature as well us to inform us if they could eas-
ily recognize two distinct animals in the image. The latter
question evokes the unpacking principle, i.e., the ability of
the participant to reconstruct the input spaces.

Survey results and discussion
Figure 3 depicts the median overall impression for each of
the hybrid animals in the dataset. According to these results,
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Snorse Chimpanzorse Dorse Guinea bear Hammerorse
(snake, horse) (chimpanzee, horse) (duck, horse) (guinea pig, bear) (hammerhead shark, horse)

Pengwhale Proboscird Elephaneleon Elephuck Guinea lion
(penguin, whale) (proboscis monkey, bird) (elephant,chameleon) (elephant, duck) (guinea pig, lion)

Guorse Hammergull Huck Spider pig Sharkador retriever
(guinea pig, horse) (hammerhead shark, gull) (horse, duck) (spider, guinea pig) (shark, labrador retriever)

Figure 2: Hybrid animals dataset used in the online questionnaire. Each sub-caption contains the corresponding name of
the blend as well as the input spaces. Names were coined by the authors of this paper or by the authors of the images and
were not visible to survey participants. All blends were created by Arne Olaf, with the exception of Sharkador retriever and
Elephaneleon, whose authorship is unknown. For a better visualization, some images were slightly cropped.

the top six best blends are Guinea lion, Pengwhale, Guinea
bear, Elephaneleon, Proboscird, and Dorse, while Spider
pig, Hammerorse, and Guorse were the least favorite blends.

Figure 3: Overall impression (median) for each hybrid ani-
mal.

Figure 4 depicts a more detailed central tendency analy-
sis of the survey results by including the median score for
each criterion. Among the six best blends in terms of over-
all impression, Guinea lion and Pengwhale achieve the best
overall scores. Out of the six best blends, five could be char-
acterized by having a relatively big difference in the size of

the original animal. It is also worth mentioning that Guinea
lion, Elephaneleon, and Pengwhale are all in the best group
with regard to the following criteria: novelty/surprise, inter-
estingness, and coherence/consistency.

Regarding novelty, most blends achieved a median score
of 4. The exceptions are Chimpanzorse, Guinea bear , Ele-
phuck, Guorse, Hammergull, and Huck, which achieved a
median score of 3. As it can be observed, high novelty does
not necessarily lead to high overall impression. For instance,
Guinea bear is a top-rated blend in terms of overall impres-
sion; however, its score in terms of novelty is among the
lowest in the whole group. Conversely, Hammerorse has a
high novelty score but a low overall impression score.

As pointed out by some respondents, novelty became
more difficult to judge after a few images, as there were sim-
ilar blends either in terms of input spaces or in terms of the
elements for projection. This repetition and the fact that im-
ages were shown in fixed order might partially explain the
lower scores obtained by Elephuck, Hammergull, or Huck.

Blends with a high overall impression score tend to have
a high interestingness score. In fact, among the animals with
the highest overall impression scores, Dorse is the only ani-
mal with an interestingness score of 3.

As for aesthetic appeal, we observe that blends with a
low aesthetic appeal have a low overall impression score,
whereas the most aesthetically appealing ones tend to have
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high overall impression scores.
Coherence/consistency scores tend to be well aligned with

the overall impression. The animals with the lowest overall
impression scores – Hammerorse, Guorse, and Spider pig
– have a consistency score of 2. For the remaining blends,
with the exception of Dorse, the median coherence score co-
incides with the median overall impression score. We also
observe that animals with higher overall impression scores
tend to evoke more positive feelings, while animals with
lower overall impression scores tend to evoke more negative
sentiment.

Creative industries potential scores are not always in con-
cordance with overall impression results. Similar results can
be observed for the criterion comicality/humor. However,
blends with the lowest overall impression scores are seen as
having a low creative industries potential.

These results clearly show that the novelty alone does not
guarantee the overall rating nor creative industry potential
nor how interesting the blends are. The one considered to
be one of the most novel ones is Hammerorse, but its has the
lowest overall rating of all. Similarly, Smorse and Sharkador
retriever are among the most novel ones; however, this is not
reflected in their overall impression scores.

Another statistic analysis is given in Figure 5, which con-
tains the correlation among pairs of criteria. As it can be
readily seen, aesthetic appeal is strongly correlated with the
overall impression (⇢= 0.8). There is also a strong posi-
tive association between overall impression and coherence
(⇢=0.76). This result reflects the importance of the optimal-
ity principles, as they are responsible for defining coherent
blends. The correlation between novelty and overall impres-
sion (⇢=0.47) corroborates our previous remarks: it is diffi-
cult to establish a straightforward association between these
two scores.

We received also more than 20 comments related to the
questionnaire. The majority of them were expressing satis-
faction (having fun, enjoying the survey, etc.). The negative
comments related especially to the fact that the survey was
too long and that it got monotonous after a while. Specific
points were commented, such as that coherence was difficult
to judge and that novelty and humor were not applicable af-
ter the first few images. It was also proposed that compar-
ing more animals at the same time would be better. A few
people also explained which were their favorites, with Peng-
whale being mentioned a few times. Some people provided
more original explanations, e.g., “The horse duck was bor-
ing, because they are both vegetarian”.

The interview
We also conducted an interview with 4 people who took part
in the survey. The main goal of the interview was to try to
understand and discuss some of the ratings given by these
participants. There was a general consensus that aesthetic
appeal was an important requirement. For example, blend-
ing animals with similar types of coat – in terms of color,
texture, or pattern – tends to result in aesthetically appealing
blends. Guinea bear and Guinea lion were given as an ex-
amples of aesthetically appealing blends. Snorse was men-
tioned by one of the interviewees as another example of an

aesthetically appealing blend, as there were no major differ-
ences between the snakeskin in the “snake part” and the coat
in the “horse part” of the animal. Pengwhale was also a fa-
vorite among these participants. They enjoyed the fact that
it was very difficult to establish a clear separation between
“the whale part” and the “penguin part”.

Participants took into account proportions when evaluat-
ing the aesthetic appeal. They presented Guorse as an ex-
ample of a badly-proportioned blend: the proportions in the
body of the horse require a head more elongated than the one
of a guinea pig. In Hammerorse, the participants observed
another instance of badly-proportioned parts. In this case,
the head was seen as being too wide for the rest of the body.

One of the interviewees said to prefer the blend Dorse
over the creature Huck because the head of Dorse has more
resemblance with the head of a horse than the head of Huck
has with the head of a duck. The interviewees also shared
the opinion that surprise was required, but only to a certain
extent. Hammerorse and Spider pig were given as examples
of “too much surprise”, which has a negative effect on the
overall evaluation, whereas Guinea bear was presented as a
blend with a minimal level of surprise.

Some participants suggested Guinea lion as a good exam-
ple of comicality/humor due to the contrasting personalities
of the animals given as input spaces. Although these mental
spaces correspond to animals with similar coat and not so
different anatomies, one is seen as a fierce creature, while
the other one is a small harmless rodent

The participants emphasized the importance of recogniz-
ing the input spaces. However, there was the general idea
that they enjoyed more when unpacking took time to occur.

Good blends: input spaces, projection, and
optimality principles
The level of novelty or surprise in a blend is partially dic-
tated by the selection of input spaces and the choice of ele-
ments for projection. While the results from the survey do
not show a direct association between novelty/surprise and
the overall impression of the blend, it is somehow clear that
both novelty and surprise are required to some extent. Se-
lecting seemingly unrelated input spaces seems a good op-
tion only if the choice of elements for projection and sub-
sequent tasks are able to deconstruct the idea that both con-
cepts are unrelated. In this particular case, projection should
be able to highlight various links between the two mental
spaces that are less obvious instead of establishing a reduced
number of more obvious connections.

Figure 6 depicts the concept similarity between different
concepts used in the survey. Instead of using Linnaean tax-
onomy to compute the similarity between two animals, we
opted for a more generic and elaborate measure that is able
to generate more fine-grained results.2 The concept similar-
ity was calculated by applying the Personalized PageRank
(PPR) (Haveliwala 2003) to ConceptNet. PPR is a variation
of the standard PageRank algorithm used to rank nodes in a

2In our experiments with Linnaean taxonomy, the distances be-
tween animals were 5, 6, or 7.
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Figure 4: Survey results for each one the 15 hybrid animals. The bars represent the median score for each of the criteria.
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Figure 5: Matrix depicting correlations among pairs of criteria used in the survey. Non-diagonal elements contain scatter plots
of the variable pairs. Diagonal elements contain histograms of the variables. The slopes of the least-squares lines in the scatter
plots correspond to the displayed correlation coefficients.

network (Page et al. 1999). The PPR of a node v in a net-
work (PPR v) is a vector which, for each other node w in
the network, tells how simple it is to randomly walk from v
to w. It is calculated as a stationary distribution of the posi-
tion of a random walker which starts its walk on node v and
at each step either (with probability p) randomly selects one
of the connections leading out of its current node and travels
along it or (with probability 1�p) travels back to its starting
location. In our experiment, p was set to 0.85.

If the PPR of node w according to node v (PPR v(w))
is high, this means that the node w is easy to reach from
the departing node v. However, the path from v to w is not
symmetric to the one from w to v. Therefore, the similar-
ity measure s is proposed, where s(v, w) = PPR v(w) +
PPR w(v). In short, the higher the score the stronger the
connection between the nodes and the higher the similarity
between concepts.

×10
-4

0 0.2 0.4 0.6 0.8 1

(shark, labrador retriever) 

(spider, guinea pig) 

(hammerhead shark, gull) 

(guinea pig, horse) 
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(hammerhead shark, horse) 

(guinea pig, bear) 

(duck,horse) 

(chimpanzee,horse) 

(snake,horse) 

Concept similarity

Figure 6: Similarity between the input spaces used in the
survey.

For our work, we used the ConceptNet graph to calculate
the similarity between two animals. We ran the PPR algo-
rithm on the network to obtain the personalized PageRank
vector for each of the animals in question. The personalized

PageRank of a vertex is calculated iteratively by spreading
the rank of the original vertex along its connections until the
rank is no longer substantially changing.

This metric cannot be straightforwardly associated with
the overall impression or novelty scores, as it does not faith-
fully reflect how semantically far the concepts are for a given
observer. However, it suggests that sometimes seemingly
unrelated input spaces (e.g, a horse (mammal) and a snake
(reptile)) are sometimes more similar than two mammals
(e.g., guinea pig and bear). We believe that exploring these
less obvious similarities is a good starting point for the con-
struction of high-quality blends.

Not unexpectedly, the results from the survey support the
idea that all optimality principles are relevant, with the ex-
ception of topology (as already explained in the previous
section). Integration is arguably the most important one and
it should not be overlooked. It is necessary (but not suffi-
cient) to dictate the coherence of the blend.

Figure 7 shows the percentage of affirmative answers to
the unpacking question: “Can you easily recognize two dis-
tinct animals in the image?” for each one of the blends. In
general terms, input spaces were easily recognized, although
this task became more difficult when unpacking Guinea bear
and Guorse, as the differences between the animal that pro-
vides the body and the blend are minimal. We believe that
unpacking is a relevant principle, but it should not be given
priority over other principles such as integration. On one
hand, it allows the blend reader/observer to build his own in-
terpretation of the blending process, which is fundamental to
preform assessments from the perspective of the reader/ob-
server. On the other hand, an immediate unpacking some-
times means a lack of surprise or novelty.

Conclusions and Future Work
We presented and discussed an evaluation based on the hu-
man perception of visual blends. This research is part of a
wider study which is oriented towards two major aims: (i)
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Figure 7: Unpacking: percentage of participants who re-
sponded affirmatively to the question “Can you easily rec-
ognize two distinct animals in the image?”.

to help clarify some less clear and less described aspects of
the blending mechanism which play a fundamental role in
creative thinking; (ii) to improve the creation and curation
processes in artificial creative systems.

Although we have only dealt with visual blends depicting
hybrid animals, some of our observations can be applied to
other types of blends. For instance, surprise and novelty
are necessary but not sufficient to guarantee a high-quality
blend. In fact, too much surprise is unfavorable if it affects
the consistency of the emerging structure. The survey results
also reflect the importance of having coherent blends, which
emphasizes the importance of the optimality principles.

In this first experiment, we inevitably dealt with the speci-
ficities of visual blends, all being of similar technical qual-
ity, depicting hybrid animals. The results demonstrated that
aesthetic appeal is an important criterion. Besides the qual-
ity of rendering, there are other aspects, namely symmetry
and proportions, that influence aesthetic appeal. This may
not be a relevant criterion when analyzing non-visual blends.
However, since aesthetic appeal is related to symmetry and
proportions, we argue that this criterion should be consid-
ered even when we are not working in the visual domain.
For this reason choosing blends of similar technical quality,
even at the cost of lower variety on the scale of all possible
blends, seems to be the right decision, if we want to gain
more insight into the conceptual level of blending. An in-
teresting question remaining for future work is whether the
results would be different if only textual descriptions or con-
cept maps were given to the test subjects.

While the correlation of overall scores with other crite-
ria in our experiment helps to identify the blends perceived
as good or bad, the AHA! effect is correlated to the level
of novelty, surprise, unpacking and creative industry poten-
tial. This will be further investigated with the analysis of the
names given to the blends by the test subjects. Some of these
names were very creative and reflected new qualities, exist-
ing in the blend while not being present in the input spaces.
This will help us to understand the role of the emergent new
structure reflected in such names, and might uncover the po-
tential of blends to trigger the highly individual AHA! effect
and human creativity.
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Abstract

This paper motivates the use of computational argumentation
for evaluating ‘concept blends’ and other forms of combina-
torial creativity. We exemplify our approach in the domain of
computer icon design, where icons are understood as creative
artefacts generated through concept blending. We present a
semiotic system for representing icons, showing how they
can be described in terms of interpretations and how they
are related by sign patterns. The interpretation of a sign pat-
tern conveys an intended meaning for an icon. This intended
meaning is subjective, and depends on the way concept blend-
ing for creating the icon is realised. We show how the in-
tended meaning of icons can be discussed in an explicit and
social argumentation process modeled as a dialogue game,
and show examples of these following the style of Lakatos
(1976). In this way, we are able to evaluate concept blends
through an open-ended and dynamic discussion in which con-
cept blends can be improved and the reasons behind a specific
evaluation are made explicit. In the closing section, we ex-
plore argumentation and the potential roles that can play at
different stages of the concept blending process.

Introduction
A proposal by (Fauconnier and Turner, 1998) called concept
blending has reinvigorated studies trying to unravel the gen-
eral cognitive principles operating during creative thought.
According to (Fauconnier and Turner, 1998), concept blend-
ing is a cognitive process that serves a variety of cognitive
purposes, including creativity. In this way of thinking, hu-
man creativity can be modeled as a blending process that
takes different mental spaces as input and blends them into
a new mental space called a blend. This is a form of combi-
natorial creativity, one of the three forms of creativity iden-
tified by Boden (2003). A blend is constructed by taking
the existing commonalities among the input mental spaces
(called the generic space) into account, and by projecting the
structure of the input spaces in a selective way. In general
the outcome can have an emergent structure arising from a
non-trivial combination of the projected parts. Different pro-
jections lead to different blends and different generic spaces
constrain the possible projections.

This poses challenges from a computational perspective:
large number of possible combinations exhibiting vastly dif-
ferent properties can be constructed by choosing different
input spaces, using different ways to compute the generic

space, and selecting projections. Within the Concept Inven-
tion Theory project1 (COINVENT), we are currently devel-
oping a computational account of concept blending based on
insights from psychology, Artificial Intelligence (AI), and
cognitive modelling (Schorlemmer et al., 2014). One of our
goals is to address this combinatorial nature. One potential
outcome of this work is a deeper understanding of the way
combinatorial creativity works in general.

The formal and computational model for concept blend-
ing under development in COINVENT (Bou et al., 2014)
is closely related to the notion of amalgam (Ontañón and
Plaza, 2010). Amalgamation has its root in case-based rea-
soning and focuses on the issue of combining solutions com-
ing from multiple cases. Assuming the solution space can be
characterised as a generalisation space, the amalgam opera-
tion combines input solutions into a new solution that con-
tains as much information from the two inputs solutions as
possible. When input solutions cannot be combined, amal-
gamation generalises them by dropping some of their prop-
erties. This process of generalisation and combination can
be expensive from a computational point of view, depending
on the search space to be explored.

The amalgam-based approach for computing blends
makes explicit the combinatorial nature of concept blending,
which raises the issue of evaluating and selecting novel and
valuable blends as opposed to those combinations that lack
interest or significance. Although Fauconnier and Turner
(1998) suggest a number of qualitative criteria that can be
used for evaluating concept blends, it is not straightforward
to chararacterise them in a computational model.

In this paper, we propose to explore an argumentative ap-
proach to understanding and evaluating the meaning, inter-
est, and significance of concept blends. Specifically, we pro-
pose to view evaluating blends as a process of argumenta-
tion, in which the specifics of a blend are pinpointed and
opened up as issues of discussion. Our intuition is that in
the context of new ideas, proposals, or artworks, people use
critical discussion and argumentation to understand, absorb
and evaluate. We also consider the constructive roles that
argumentation can play in concept blending.

Computational argumentation models have recently ap-
peared in AI applications (Bench-Capon and Dunne, 2007;

1See http://www.coinvent-project.eu for details.
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Figure 1: An amalgam diagram with inputs I1 and I2 and
blend B obtained by combining Ī1 and Ī2. The arrows indi-
cate generalisation.

Rahwan and Simari, 2009), and we believe that incorpo-
rating argumentation can foster the development of a fuller
computational account of combinatorial creativity. The cur-
rent paper develops these themes at the level of (meta-)
design; implementation is saved for future work.

Roles of Argumentation in Concept Blending
Consider the amalgam diagram modeling the concept blend-
ing process (Figure 1): two input spaces I1, I2, two of their
possible generalisations Ī1, Ī2, which have a generic space
G and blend B. When two input spaces cannot be combined
because they do not satisfy certain criteria, the inputs have
to be generalised for omitting some of their specifics. The
combination of each specific pair Ī1, Ī2 yields a blend.

Informally, we can imagine argumentation taking place
at various points in the amalgam diagram. In general this
would happen in response to indeterminacy, that is, when
some features of the diagram are underdetermined. We fore-
see that argumentation can be used:
a. to express opinions or points of view that can be used for

guiding the selection/omission of specific parts of the in-
put spaces; in particular, to select a specific pair of gener-
alisation Ī1, Ī2 of the input spaces in the blending process;

b. to provide a computational setting for modeling discus-
sions around the quality of a creative artefact, with the
aim of evaluating and refining the generated blends.
In the first case, arguments would be about generalisation,

i.e. which features should be preserved from I1 and which
features should be preserved from I2. More complex infer-
ences could be involved, for example in a case where I1 is
fixed, and constraints and various optimality criteria on the
blend are imposed, which then yield various constraints on
what the other input I2 should be. We return to this point in
the discussion section, and we focus for the most part on the
second case.

In the second case, argumentation would be used to eval-
uate a range of blends, and the evaluation is carried out post
hoc, by a variation of try-it-and-see. A range of blends are
trialled, each one bringing out different (un)intended mean-
ings. The evaluation is modeled as an argument, or dialogue
in which the specifics of a blend are pinpointed and opened
up as issues of discussion. This dialogue can be considered
as an introspective evaluation, although it usually takes place
among several parties as a means for the social development
and understanding of creative artefacts. In this paper, we
focus on this role.

Our Approach
To exemplify our approach, we take the domain of computer
icons into account. We assume that concept blending is the
implicit process which governs the creative behavior of icon
designers who create new icons by blending existing icons
and signs. To this end, we propose a simple semiotic sys-
tem for modeling computer icons. We consider computer
icons as combinations of signs (e.g. document, magnifying
glass, arrow etc.) that are described in terms of interpre-
tations. Interpretations convey actions-in-the-world or con-
cepts and are associated with shapes. Signs are related by
sign-patterns modeled as qualitative spatial relations such
as above, behind, etc. Since sign-patterns are used to com-
bine signs, and each sign can have multiple interpretations,
a sign-pattern used to generate a computer icon can convey
multiple intended meanings to the icon. These are subjec-
tive interpretations of designers when they have to decide
what is the best interpretation an icon can have in the real
world. In this paper, we show how the intended meaning of
new designed (blended) icons can be evaluated and refined
by means of Lakatosian reasoning.

Background
Computational argumentation
Computational argumentation in AI aims at modeling the
constitutive elements of argumentation, that are i) argu-
ments, ii) attack relations modeling conflicts, and iii) ac-
ceptibility semantics for selecting valid arguments (Bench-
Capon and Dunne, 2007; Rahwan and Simari, 2009).

The most well-known computational argumentation
framework is due to Dung (1995). Dung defines an abstract
framework to represent arguments and binary attack rela-
tions, modeling conflicts, by means of a graph. He defines
different acceptibility semantics to decide which arguments
are valid and, consequently, how conflicts can be resolved
(Figure 2).

a1 a2 a3

Figure 2: Dung framework example: Nodes represent argu-
ments and edges (binary) attack relations. Argument a1 is
attacked by a2 which is attacked by a3. Thus, a2 is defeated
and a1 can be accepted. a3 is also accepted.

Abstract argumentation frameworks do not deal with how
arguments are generated and exchanged. They merely fo-
cus on attack relations between arguments and acceptibility
semantics. However, the intrinsic dialectical nature of argu-
mentation is fully explored when an explicit argumentation
process is considered. Then, the purpose of a dialogue be-
comes essential to determine how arguments should be gen-
erated and exchanged, and how a dialogue should be struc-
tured (Walton and Krabbe, 1995).

Lakatosian argument and dialogue
Lakatos (1976) was a philosopher of mathematics who de-
veloped a model of argument, presented as a dialogue, to
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Figure 3: Our interpretation of Lakatos’s game patterns.

describe ways in which mathematicians explore and develop
new areas of mathematics. In particular, he looked at the
role that conflict plays in such explorations, presenting a ra-
tional reconstruction of a dialogue in which claims are made
and counterexamples are presented and responded to in var-
ious different ways. His resulting model describes concep-
tual continuity and change in the growth of knowledge, and
contains dialogue moves, or methods, which suggest ways
in which concepts, conjectures and proofs are fluid and open
to negotiation, and gradually evolve via an organic process
of interaction and argument between mathematicians. These
dialogue moves are:
Surrender consists of abandoning a conjecture in the light

of a counterexample.
Piecemeal exclusion is an exception-barring method that

deals with exceptions by excluding a class of counterex-
amples, i.e., by generalising from a counterexample to a
class of counterexamples which have certain properties.

Strategic withdrawal is an exception-barring method that
uses positive examples of a conjecture and generalises
from these to a class of object, and then limits the domain
of the conjecture to this class.

Monster-barring/monster-adjusting is a way of exclud-
ing an unwanted counterexample. This method starts with
the argument that a ‘counterexample’ can be ignored be-
cause it is not a counterexample, as it is not within the
claimed concept definition. Rather, the object is seen as a
monster which should not be allowed to disrupt a harmo-
nious conjecture. Using this method, the original conjec-
ture is unchanged, but the meaning of the terms in it may
change. Monster-adjusting is similar, in that one reinter-
prets an object in such a way that it is no longer a coun-
terexample, although in this case the object is still seen as
belonging to the domain of the conjecture.
The moves above are not independent processes; much of

Lakatos’s work stressed the interdependence of creation and
justification. These moves describe the evolution of both ar-
guments and conclusions in mathematics, and as such con-
stitute argument patterns, or schemes. However, they are
a rational representation of exchanges between mathemati-
cians and describe dynamic, rather than static arguments,
presented as a dialogue. Thus, they also have temporal struc-
ture, and can be seen as a dialogue game, in which at any
point various dialogue moves are applicable (see (Pease et
al., 2014) for a description of Lakatos’s methods in these

terms). The fact that we include negotiations over definitions
and changes in the conclusions being argued means that it is
difficult to apply traditional abstract argumentation frame-
works, which assume that such aspects are stable. However,
we can see some of the moves in terms of Dung’s frame-
work: for instance if an initial argument for a conjecture
forms a1 in Figure 2, then a2 might be a counterexample to
the conjecture, and a3 might be the monster-barring move.

The Lakatosian way of conceiving the reasoning as an
open-ended discussion about a problem suggests that we
can exploit Lakatos’s moves for structuring dialogues for
the evaluation of creative artefacts. Evaluation in creativity
is not a static and rigid process, and the discussion should
flow in a dynamic way. As such, in this paper, we propose
to use Lakatosian reasoning to model the negotiation about
the intended meaning of generated blends (icons). Figure 3
shows the dialogue game we will adopt to model these di-
alogues. For another formal framework of dialogue games
for argumentation see (Prakken, 2005).

Icons and Signs
We follow a semiotic approach to specify the intended mean-
ing of computer icons. Semiotics is a transdisciplinary ap-
proach that studies meaning-making with signs and symbols
(Chandler, 2004). Although it is clearly related to linguis-
tics, semiotics also studies other forms of non-linguistic sign
systems and how they may convey meaning; this includes
not only designation, but also analogy, and metaphor. Al-
though some people may regard Peirce’s Sign Theory as the
origin of semiotics, Saussure founded his semiotics (semi-
ology) in the social sciences. Currently, cognitive semiotics
and computational semiotics take their own perspectives on
the relation between sign and meaning-making. In this pa-
per, we take a semiotic approach to describe computer icons
in the sense that icons, as a spatial pattern of shapes, are
viewed as signs, and compositions of signs are interpreted
to convey a meaning, as when we say ‘this icon means the
download is still active’.

The shapes recurrently used in icons are interpreted as
signs; screens, magnifying glasses and folders are examples
of signs. A magnifying glass sign can be used in different
icons in such a way that its meaning is context-dependent,
that is, it depends on other signs related to it in different
icons. We associate to each sign a set of interpretations, that
encode the kinds of intended meaning associated to that sign
as actions-in-the-world or concepts.

An icon is represented as a pattern defined by a collection
of signs and qualitative spatial relations like above, behind,
etc. We can find patterns of meaning that are shared among
different icons by analysing recurrent patterns of signs and
their spatial relation. We call them sign patterns. A sign
pattern has an associated collection of interpretations that
encode the intended meanings associated to that sign pattern.

Signs, sign patterns, and interpretations, which we will
use in the paper, can be built by analysing and annotating
existing libraries of computer icons. As we shall see, the in-
herent polysemy of signs, sign patterns and icons opens the
way to use arguments for evaluating the quality or adequacy
of new icons created by concept blending.
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(I) The structure of the DOCUMENT sign, including as-
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(II) The structure of the MAGNIFYINGGLASS sign, in-
cluding associated shapes and interpretations.

Figure 4: Example of signs

(a) (b) (c) (d)

Up
Down
Arrow

X

(I) (a) the sign pattern FROM-DOWNARROW with three examples of
the pattern where X is a sign for (b) cloud content, (c) document con-
tent, and (d) audio content.

(a) (b) (c)

Down
Arrow

X
Up

(II) (a) the sign pattern DOWNARROW-TOWARD with
two examples of the pattern where X is a sign for (b) a
hard disk storage, and (c) an optical disk storage.

Figure 5: Example of different sign patterns used with the same sign DOWNARROW

A semiotic system for icons
In this section, we will formalise the notions presented
above. A sign S is a tuple hid,F ,Ai where id is a sign iden-
tifier, F is a set of shapes embodying the sign S and A is a
set of interpretations. We use S to denote the available set
of signs. Figure 4 provides two examples. Figure 4I shows
the structure of the DOCUMENT sign, with several shapes
embodying the sign, and a list of interpretations that express
how this sign is used in different ways to convey meanings
such as info-container, document, text, page, file. Intuitively,
this means that the shapes used in the icons are sometimes
interpreted as a document and other times as a page, etc.
Moreover, the specific shapes can be used interchangeably to
embody a DOCUMENT, i.e. there is no clear distinction, re-
garding the shapes, between document vs. page vs. file. An-
other example of a sign is the MAGNIFYINGGLASS shown
in Figure 4II, with interpretations examine, analyse, preview,
search, and find-in.

We will also describe a library of annotated icons I,
where each icon I 2 I consists of two parts: (1) a spatial
configuration of signs and (2) the intended meaning of that
icon. For instance, in Figure 5I, the icon (b) has the spatial
configuration of a ‘cloud on top of a downward-arrow’ and
its meaning is ‘downloading content from the cloud’.

Sign patterns
In our framework, sign patterns relate signs in icons using
spatial qualitative relationships such as above, behind, up,
down, left, etc. We assume that these relationships are rep-
resented as binary predicates, Above(X,Y), Up(X,Y), etc.,
where X and Y are variables ranging over signs in S . For
our current purposes, we use the qualitative spatial relation-

ships defined in (Falomir et al., 2012).
Let us consider two examples of sign patterns that in-

clude the DOWNARROW sign. DOWNARROW has a vertical
downward-pointing arrow shape and is associated with the
interpretations {down, downward, downloading, download-
from and download-to}. The sign pattern called FROM-
DOWNARROW (shown in the schema labelled (a) in Fig-
ure 5I) uses the qualitative spatial relationship up between
a variable X and the sign DOWNARROW. Examples (b),
(c) and (d) in Figure 5I illustrate the intuitive meaning of
the sign pattern FROM-DOWNARROW: ‘downloading X’.
Thus, example (b) refers to downloading cloud content, (c)
document content, and (d) audio content.

The inherent asymmetry of arrows in general, and arrow
signs particularly, can be appreciated when considering the
opposite spatial relation, when the sign DOWNARROW is
“up” from another sign (Figure 5II). Then, the sign pattern
DOWNARROW-TOWARD is used to mean that X is the des-
tination of the downloading. Example icons (b) and (c) are
intended to mean that the data being downloaded (whose
type or origin is now elided) is to be stored in a destination
such as a hard disk or an optical disk.

Evaluating Blends using Argumentation
As briefly described previously, the amalgam-based compu-
tation of concept blending amounts to combine different in-
put spaces into a new space, called blend, by taking the com-
monalities of the inputs into account, by generalising some
of their specifics and by projecting other elements. In the
following, we describe how concept blending can account
for modeling the creative process of a designer of computer
icons.
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Figure 6: Generating an icon interpreted as Preview-Page
through amalgam-based concept blending.

A design scenario
Assume a designer is looking for creating a new icon with
the intended meaning of previewing a document or a page.
The creation of such icon can be achieved by the following
amalgam-based concept blending process (Figure 6). In ad-
dition to the DOCUMENT and MAGNIFYINGGLASS signs,
we assume we have available a HARDDISK sign and a PEN
sign which have already been used to make icons.

The input mental spaces. The input mental spaces
of the designer are an icon of a hard-disk with a mag-
nifying glass hovering above it, whose meaning is
Search-HardDiskContent, and an icon of a document
with a pen above it, whose meaning is Edit-Document.

The generic space. The sign pattern Above(X,Y)
is used in both icons. The first icon contains
the relation Above(MAGNIFYINGGLASS, HARDDISK)
between the MAGNIFYINGGLASS and the HARD-
DISK, and the second contains the relation Above
(PEN,DOCUMENT) between the PEN and the DOCU-
MENT.

Further generalisation. Two generalisation steps
are needed: Above(MAGNIFYINGGLASS,HARDDISK)
! Above(MAGNIFYINGGLASS,Y); correspondingly,
Above(PEN,DOCUMENT) ! Above(X,DOCUMENT).

Combination via variable substitution. We com-
bine the schemas Above(MAGNIFYINGGLASS, Y) and
Above(X, DOCUMENT) via [X/MAGNIFYINGGLASS,
Y/DOCUMENT]. The icon of a page with a magnifying
glass hovering above it is generated.

The intended meaning. The designer associates to
the icon the intended meaning of Preview-Page, by
selecting the interpretations (Preview, Page) for the
MAGNIFYINGGLASS and DOCUMENT signs.

In this case, the designer decided that the intended
meaning of Above(MAGNIFYINGGLASS, DOCUMENT) is
Preview-Page, that is, a page can be examined without open-
ing it. However, during the creative process, the designer
could have generated other blends, not only by combin-
ing other signs, but also by selecting different interpreta-
tions associated to the MAGNIFYINGGLASS and DOCU-
MENT signs. For instance, the icon in Figure 7 still repre-
sents a page with a magnifying glass hovering above it, but
it has been given a different intended meaning.

Find-in-Page Magnifying 
Glass Document Object Level

Above

Interpretation LevelFind-in Page

Figure 7: An example of interpreting the sign pattern of an
icon as Find-in-Page.

The meaning of a blended icon cannot simply be considered
right or wrong: interpretation depends on different points of
view. Thus the evaluation of whether it is useful or valid for
a specific purpose can be the object of a discussion.

Arguments about intended meanings
In the icon domain, arguments may include a clear interpre-
tation of any constituent signs in the icon if it is a composi-
tion of signs, or a good fit with other icons in the icon set.

For example, we can consider a counter-argument, i.e. an
argument that attacks the interpretation a1 “magnifying
glass above document means Preview-Page” in Figure 6, to
be phrased as follows:

a2 : “However, the icon in Figure 6 can also be inter-
preted to mean Find-in-Page.”

The rationale is that the MAGNIFYINGGLASS sign can often
be understood as finding or searching for something. Thus,
the icon can be also interpreted as Find-in-Page by associat-
ing the interpretation find-in instead of preview for the same
sign MAGNIFYINGGLASS (Figure 7).

This attacking argument can be made at an ab-
stract/conceptual level, for instance, by taking other possible
blends of the DOCUMENT and MAGNIFYINGGLASS signs
related by the sign pattern Above(X,Y) into account. Or, al-
ternatively, if there is an icon library that contains an icon
that ‘satisfies’ the argument above, then this attacking argu-
ment can be supported by a specific counterexample. Any
of these two forms of attack evaluates negatively the icon in
Figure 6. Therefore, if there are several alternative designs
for a new icon, this attacking argument diminishes the de-
gree of optimality/adequacy of that design with respect to
alternative designs.

The original interpretation can be defended, as usually
done in computational argumentation models, by a new ar-
gument that attacks the attacking argument a2. For instance,
the designer may say:

a3 : “The icon in Figure 6 can only be interpreted dif-
ferently if MAGNIFYINGGLASS is understood to mean
find-in instead of preview. However, the other icons in
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my library use MAGNIFYINGGLASS to mean preview,
not find-in.”

Argumentation semantics can then be used, once a network
of arguments is built, to determine the outcome. For instance
whether argument a1, the original interpretation, is defeated
or not can be determined as follows (Figure 2): in this ex-
ample a3 has no attack, so it is undefeated, which means
it defeats a2; since a2 is defeated, the attack against a1 is
invalid and a1 is undefeated (i.e. is accepted).

Arguments about the intended meanings of an icon can
be embedded in a dialogue modeled in terms of Lakatos’s
moves and the dialogue pattern shown in Figure 3.

Lakatosian reasoning for blend evaluation
Here we present a Lakatos-style dialogue between two play-
ers, a proponent P and an opponent O. The goal of each
player is to persuade the other player of a point of view, in
this paper, the intended meaning of a new blended icon. In
such a setting, we expect to see negotiations over the mean-
ing of an icon take place between experts and novices, or
between people designing icons and people using (interpret-
ing) them, or various combinations.

To discuss a given icon using Lakatosian reasoning, we
assume that an initial conjecture is about the interpretation
of an icon usually being an action-in-the-world or a concept,
together with an example of a particular icon and a partic-
ular interpretation. The conjecture could be constructed by
inductive generalisation.
Example 1. In this example, Lakatosian reasoning is used
for discussing the intended meaning of a new icon generated
by concept blending:

P1: “An icon with a magnifying glass over a page means
Preview-Page” (Conjecture)

O1: “I disagree, this icon (Figure 7) means Find-in-page.”
(Counterexample)

P2: “No, this is a different case because the magnifying
glass must be over pages with text on them to magnify (it
shows what we’re about to magnify).” (Monster-barring)

After this dialogue, it is agreed that the intended meaning of
the icon is Preview-Page and the icon itself has been clar-
ified. Alternatively, the proponent and the opponent could
make a different evaluation by following different moves.
For instance, if the proponent accepts the counterexample,
then the intended meaning of the icon can be refined due to
piecemeal exclusion:

P1: “An icon with a magnifying glass over a page mean
Preview-Page” (Conjecture)

O1: “I disagree, this icon (Figure 7) means Find-in-page.”
(Counterexample)

P3: “Ok, only icons with a magnifying glass over a page
with text mean Preview-Page”. (Piecemeal exclusion)

After this dialogue the intended meaning about the new icon
has been changed by modifying the conjecture and taking
the counterexample into account.

Sometimes players have different points of view due to
the sign patterns they have used in their concept blending.

(I) Composite cloud icon (II) Stateful component (III) Processing component

Figure 8: Interpreting the design of cloud icons2

Example 2. Let us imagine that the proponent has gen-
erated an intended meaning for an icon using the FROM-
DOWNARROW sign pattern, whereas the opponent has used
the DOWNARROW-TOWARD pattern (Figure 5 illustrates
these cases). The two players can engage in the following
dialogue:
P1: “Look at icons in Figure 5I, icons with a DOWNARROW

relate to content.” (Initial Conjecture)
O1: “The icon in Figure 5IIb has a DOWNARROW but

doesn’t relate to content.” (Counterexample)
O2: “The icon in Figure 5IIc also has a DOWNARROW but

doesn’t relate to content.” (Counterexample)
P2: “The conjecture is right because the two examples ac-

tually do relate to content as they are to do with storage
and content is part of storage.” (Monster-adjusting)

In this case, the proponent excludes the counterexamples us-
ing monster-adjusting, and reinterpreting them in a way that
they are not counterexamples anymore.

A conjecture might even be at a higher level, for asserting
that a particular metaphor is appropriate or inappropriate.

Example 3. For example, someone who is familiar with the
‘gear means adjust setting’ metaphor in one program may be
comfortable with it in another program:
P1: “ An icon containing the ‘gear’ sign is a good one for

Settings, because it invokes the idea of a gear change on a
bicycle” (Initial Conjecture)

O1: “The ‘gear’ sign does not invoke the idea of a gear
change on a bicycle from my point of view.” (Counterex-
ample)

P2: “Ok, you’re right, it does not invoke the idea of a gear
change on a bicycle, but it is often used for Settings.”
(Monster-adjusting)

Example 4. Argumentation may also consider the role a
given abstract design plays within a given icon set.
P1: “Even without knowing what the first or third icon in

Figure 8I stands for, I can make a conjecture that it has
to do with a server or a user interface accessed via the
cloud. However, with the second icon, I’m not sure what
it means. It is composed of various signs that I don’t un-
derstand. It’s probably badly designed.” (Conjecture)

O1: “Did you notice that icons in Figure 8II and Figure 8III
are both defined as part of the same icon set? They
mean ‘Stateful component’ and ‘Processing component’
respectively. Therefore, the second icon is actually well
designed, because it uses signs appearing in other icons
of the same icon set.” (Counterexample)
2From http://cloudcomputingpatterns.org.
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P2: “But the second icon contains a pipe sign that is not
used anywhere within the icon set, so I still don’t know
what the second icon means. If there were an icon with
a pipe sign with a clear meaning, then I could understand
the second icon better. ” (Strategic withdrawal)

The main characteristic of employing Lakatosian reasoning
is that it allows a dynamic and social development of the in-
tended meaning of blended icons. This cannot be achieved
by using only abstract argumentation frameworks, since
they assume that the object of discussion does not evolve.
Therefore, having an argumentation process of this kind has
several advantages: it promotes not only open-discussions
around the meaning of an icon, but also the construction of
a discourse about how an intended meaning is obtained.

This is a desirable characteristic in computational cre-
ativity when evaluating creative outcomes such as concept
blends. In this way, the evaluation evolves into a refinement
process of an initial created concept, giving much more flex-
ibility at the moment of deciding whether a blend is suitable.

Discussion
We have illustrated the use of argumentation to evaluate
completed blends. We alluded earlier to the role argumenta-
tion can play in the generation of blends, for instance by sug-
gesting different ways to generalise the input spaces. Indeed,
successive statements may serve to carry out the steps in the
blending process iteratively, relaxing or refining as needed.
These steps can be modelled using Lakatos’s moves. From a
conjectural candidate solution, to additional criteria that re-
veal this blend to be a ‘monster’ (i.e. which identify features
of the candidate solution that cannot be allowed in the final
solution for one reason or another), to adjustments that yield
a more complete description of the problem and point the
way toward a more satisfactory solution. An example of us-
ing argumentation for deciding which generalisations to use
for creating a new icon is the following:

A: “We can create a different blend icon starting from the
same icons of before.” (see Figure 6)

B: “We could use the HARDDISK sign from the first icon
and the DOCUMENT sign from the second icon.”

A: “But putting the DOCUMENT sign above the HARD-
DISK does not make sense from my point of view.”

B: “You’re right, let’s use the HARDDISK sign from the first
icon and the PEN sign from the second icon.“

A: “Sounds good, now we have a Write-HardDisk icon.”

From this discussion and the previous sections, we think
that it is feasible to bring the framework of argumentation in-
side the concept blending process. Moreover, this appears to
work in a symmetric direction: the steps in an argumentation
process can be carried out through blending. For instance,
concept blending could be seen as the process behind the
creation of rational arguments (Coulson and Pascual, 2006).

One area closely akin to the icon domain is the domain
of sentences in a natural or artificial language. These can be
evaluated for their coherence, succinctness, and fitness-to-
purpose from a semantic standpoint (including relationship

to other sentences), among other criteria; cf. (Abramsky and
Sadrzadeh, 2014) for a category-theoretic view.

Since people have different standards for evaluation, they
frequently disagree about what constitutes a satisfactory re-
sult, be it a final outcome or a design decision that is only a
step the way to developing an artefact. They may also dis-
agree at a more fundamental level about what can be consid-
ered a valid point of view or an appropriate manner of con-
ducting an argument. For example, “Godwin’s law” states
that an online discussion ends when someone compares one
of the discussants to Hitler and whoever made the compar-
ison automatically loses the debate. Naturally, the validity
of this principle is itself debatable. During the course of ar-
gumentation, the goalposts may shift, as new information is
revealed about the domain under discussion, and about the
discussants themselves. The relationship between argumen-
tation and decision-making has been explored (Ouerdane,
2009), including the case of updating models of preferences
(Ouerdane et al., 2014); the latter is quite similar to our pre-
vious work on Lakatos’s games (Pease et al., 2014).

Conclusion and Future Work
Computational models of combinatorial creativity faces the
daunting issue of evaluating a large number of possible
novel combinations. Particularly, Fauconnier and Turner
(1998) propose a model that includes a collection of opti-
mality principles to guide the construction of a ‘well-formed
integration network’. Our computational model, based on
generalisations of input spaces and amalgams, makes this
combinatorial nature more explicit. The heuristic criteria
called ‘optimality principles’ are too underspecified to be
used as computational measures to evaluate and select pos-
sible blends. Moreover, alternative numeric measures may
be not enough to evaluate the quality or novelty of creative
artefacts. Our intuition is that in the context of creative out-
comes, people use argumentation to understand, criticise,
modify and evaluate them, and that computational argumen-
tation is a useful tool for computational creativity.

The domain of computer icons generated by blending,
where the evaluation of new icons is focused on their in-
tended meaning, shows that symbolic argumentation is a
process that is adequate to distinguish well-formed icons
from mix-and-match combinations, unambiguous and clear
icons from ambiguous or incomprehensible icons. This
domain supports our claim that numeric heuristic evalua-
tion measures are insufficient to recognise good blends, and
shows the usefulness of an argumentation-based process for
identifying good blends, detecting their critical problems,
and refining them in an evolving, open-ended process.

We have shown how Lakatosian reasoning can be used in
evaluating concept blending for icon design. Our approach
offers two main advantages. Firstly, the evaluation process
can improve the blend, since the dialogue about it refines
resulting blends. Secondly, the reasons behind a particular
evaluation are made explicit. This is crucial given recent
work on the importance of context in creativity judgments
(Charnley, Pease, and Colton, 2012; Colton, Pease, and
Charnley, 2011). Argumentation offers a framing story that

Proceedings of the Sixth International Conference on Computational Creativity June 2015 180



shows how and why a particular artefact was constructed,
which can be presented alongside the artefact itself.

We envision several future works. First, we intend to
specify an ontology for modelling the semiotic system pre-
sented and to build a library of icons. Having a domain
knowledge will allow us to generate arguments by induc-
tion, for instance, by analysing icons cases. Moreover, it will
also open the possibility to explore the use of value-based ar-
gumentation (Bench-Capon, Doutre, and Dunne, 2002) for
selecting the input icons to be used in the concept blend-
ing process. This latter point is important, since usually
the inputs of a blending process are assumed to be already
provided. Second, as far as the interpretation of icons is
concerned, we are thinking to take advantage of existing
approaches to natural language processing and understand-
ing, especially Construction Grammars (CxG). In CxG, the
grammatical construction is a pairing of form and content.
In our semiotic system, sign patterns seem equivalent to the
form, while interpretations would be akin to the content.
Working with a grammar would make evaluation more ex-
plicit, e.g. we could use quantitative measures of ambiguity;
and this would open many other domains for application.

Finally, we plan to implement Lakatosian reasoning by
employing existing computational tools for argumentation
(Devereux and Reed, 2010; Wells and Reed, 2012). Our goal
is to provide a computational argumentation framework and
to integrate it into the framework for computational creativ-
ity we are developing in the COINVENT project.
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Abstract

Inspiration is an important aspect of human creativity
and one that creative systems are only recently imple-
menting. In this research, we describe and implement
a transmedia creative inspiration model for generative
art systems. Our implementation of this model is Vi-
sual Information Vases (VIV), an artificially intelligent
ceramicist that creates 3D-printable vases using inspi-
ration from a user-supplied image. VIV scores an im-
age along four aesthetic measures—activity, warmth,
weight, and hardness—by evaluating the image’s color
palette. VIV then attempts to create a vase with simi-
lar aesthetic measures through evolution. The resulting
vases are diverse and functional creations. We hope that
this model will allow future generative systems to create
inspired artifacts from a wide variety of sources.

Introduction
In current models of creative AI systems, one under-
explored aspect of creativity is inspiration: interpreting con-
cepts from one medium and translating them into another.
The analogical mapping of perceptions and concepts (Hof-
stadter and Mitchell 1994) is a critical step in human cre-
ativity since it allows people access to solutions or creations
outside their current mental state through influence by some
external source (Hadamard 1996). This method of inspi-
ration is common in many areas and can produce novel re-
sults. Composers interviewed by McCutchan conveyed their
inspiration came through channels including music, nature,
and poetry. More technical fields also involve creative inspi-
ration, including examples of animals and insects inspiring
work in robotics (McCutchan 2003).

In Thrash and Elliot’s conceptualization of inspiration,
three commonalities arose from their readings on previous
literature: Inspiration is evoked, involves transcendence and
implies motivation (2003). In this paper, we describe a sys-
tem that focuses on evocation of inspiration from a source
domain and transcendence of that inspiration to create an
artifact in an entirely different domain. We also believe mo-

tivation is a critical step in creativity, however one which is
outside the scope of this paper.

A full computational model of inspiration is still a long
way off, however we attempt to close this gap by modeling
one piece of inspiration: cross-domain analogy mapping. In
order to show this is a feasible construct for creative sys-
tems, we developed a framework for transmedia analogy
mapping from color palettes of images to 3D printable vases
using the four aesthetic measures activity, warmth, weight
and hardness. These measures were chosen primarily be-
cause of their importance among sculptors we interviewed,
as well as their history within color science (Eysenck 1941;
Granger 1955; Ou et al. 2004). Our inspiration framework
was derived to mimic a common creative process performed
by many sculptors and artists—choosing a color from an im-
age to be the basis of inspiration for a new piece. The artist
must transfer her feelings about the color onto a completely
different domain. The essence of the inspiration source is
not lost, but expressed in the new domain using techniques
available in the target domain.

Visual Information Vases (VIV) is an AI-based genera-
tive art system which uses our model of inspiration to pro-
duce 3D-printable vases with inspiration from 2D images
uploaded by a user. Users interact with VIV online by up-
loading images, viewing results, and printing vases for ev-
eryday use. Our proof-of-concept implementation presented
in this paper produces vases through evolution using the four
aesthetic measures stated above as primary components of
the fitness function. To our knowledge, this is the first in-
stance of a system using evolution to create content opti-
mized on aesthetic characteristics from an entirely different
domain.

VIV analyzes the colors of a user’s image to create a color
palette from salient and dominant colors. Color palette anal-
ysis is performed to create an aesthetic profile for the image.
VIV then uses an evolutionary algorithm to produce a vase
with a similar profile to that of the user supplied image. The
resulting vase can be printed from a myriad of materials and
printers to produce a functional, decorative vase. Vases are
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described in a manner similar to that of Reed’s while re-
searching beauty as an aesthetic measure for evolutionary
vase creation (2013).

The main contribution of this research is the implemen-
tation of a novel cross-domain inspiration framework which
translates aesthetic qualities from color to vases. This frame-
work resembles a small part of methods used by human
artists to create content with external inspiration sources.
While humans have successfully used this technique perhaps
for centuries (Thrash and Elliot 2003), our goal is to show
this is a viable form of inspiration in generative art systems
through its implementation in VIV and the creation of us-
able, decorative vases.

Related Work
Generative Art Systems
Existing generative art systems use a wide range of
techniques. Some create content based solely on pre-
programmed rules (Cope 1996; Krzeczkowska et al. 2010;
McCorduck 1990; Norton, Heath, and Ventura 2013) while
others use user input (Clune and Lipson 2011; Draves 2005;
Machado and Cardoso 2000; Secretan et al. 2008) or ex-
ternal sources (Cook and Colton 2011; Smith et al. 2006).
Systems that use external inputs could be seen as receiving
inspiration from outside stimuli. However, existing systems
using external inspiration directly map stimuli to generation
rules (Cook and Colton 2011; Smith et al. 2006). Also,
these systems gain their inspiration from a pre-defined do-
main and so their inspiration model is non-extensible. Our
model of inspiration allows an artifact from a wider range of
domains to be used as inspiration for another domain since it
is the high-level aesthetic measures which translate knowl-
edge rather than a direct mapping.

A popular fitness function in generative art systems is to
have either an individual or larger audience choose their fa-
vorite artifact from a set of produced artwork. The system
then generates future content using responses from users.
This method can be seen in Endless Forms (Clune and Lip-
son 2011) and Pic Breeder (Secretan et al. 2008) where
users choose their favorite item from a given set of produced
content. These systems create the next generation of candi-
dates which are variants of a user’s choices. On a larger
scale, Electric Sheep (Draves 2005) produces abstract art
work to please a more global audience. When a computer
goes to sleep, the Electric Sheep come on to create morph-
ing abstract animations that can be voted up by users. More
popular sheep live longer and thus allow the system to evolve
its creations to the favorability of a large audience. VIV was
not created with the intent of personalization. Rather than
have a human intervene in each generation step, VIV gener-
ates vases using aesthetic metrics found to be important by
subjects of a preliminary survey.

In the domain of vase generation, one previous system
has created printable vases through evolution with aesthetic
measures as fitness functions (Reed 2013). Reed’s genera-
tion of vases based on Birkhoff’s beauty metric (Birkhoff
2003) produced many interesting vases rated highly by
viewers. This research differed from previous generative art

Figure 1: Design of the VIV system. The input image is an-
alyzed and scored along the four aesthetic measures of activ-
ity, warmth, weight, and hardness. VIV’s evolution compo-
nent then evolves a vase to match the given aesthetic scores.

research which focused on 2D abstract art by expanding the
application of aesthetic measures to a functional and decora-
tive 3D object. Birkhoff’s metric was adapted to be suitable
as a fitness function in an evolutionary algorithm to great
success. VIV, in contrast, does not have one aesthetic score
which she is trying to maximize each time. Instead, VIV
generates vases using four aesthetic measures with scores
varying between evolutionary runs based on user input.

Cross-Domain Inspiration
Cross-domain knowledge transfer as inspiration is a con-
cept creative people have put to great use throughout history.
Artists, scientists, and social leaders have gained inspira-
tion from supernatural, internal (intrapsychic), and external
(environmental) sources (Thrash and Elliot 2003). Creative
computer systems, on the other hand, are only beginning
to have the concept of inspiration incorporated into their
makeup.

Research by Ranjan et al. (2013) had expert artists cre-
ate paintings that were the artist’s interpretation of one of a
small set of instrumental music pieces. Results showed that
people were able to correctly identify which painting went
with a particular piece of music. The painters in this re-
search did not convey which aspects of the music they were
inspired by and they also did not state how they would man-
ifest that inspiration into their painting. Similarly, viewers
gave no indication of the features they found correlated be-
tween the two artistic mediums.

Similar research was conducted in the opposite direction–
composers were asked to create music pieces using a square,
lightning bolt, curved shape and an edgy shape as creative
stimuli (Willmann 1944). This research showed composers
are capable of interpreting an image, creating abstract con-
cepts based on that image, then constructing those concepts
within the domain of music. This is a complicated set of
events which have yet to be implemented in computational
systems. Our research attempts to close this gap by using
consistent and limited aesthetic measures to demonstrate a
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Figure 2: Two examples of VIV’s color palette extraction
and the resulting vases which correspond to a similar aes-
thetic profile. The left example is a warm, soft vase and the
right is a cool, hard vase.

system can gather abstract characteristics from one domain
and produce those concepts in a different domain with tech-
niques unique to that domain.

One of the few generative systems that uses transmedia
inspiration to create its content is Game Blender (Lopes and
Yannakakis 2014). Game Blender uses conceptual blending
as its means of cross-domain inspiration to create games.
This crowdsourced, mixed-initiative system blends audio,
narrative, ludus, and level architecture facets into a playable
game. Blended creations consist of one artifact from each
facet and can be controlled by the user through a number
of parameters. Rather than a direct conceptual blending ap-
proach, VIV utilizes a mediation layer which performs anal-
ogy mapping from one domain to another. This is an attempt
to move away from domain-specific blending approaches
and towards an a more abstract methodology.

VIV
A diagram showing an overview of VIV’s process is shown
in Fig. 1. This section will detail the image analysis and
vase generation portions of the system.

Image Analysis
VIV extracts a color palette of dominant and salient colors
from the source image in the CIELAB color space. Domi-
nant colors are chosen by selecting the average color from
the most common bins in the image’s color histogram. Col-
ors are determined to be salient if they are at least two stan-
dard deviations from the mean color of an image (Huang,
Liu, and Yu 2011). VIV then ranks salient colors accord-
ing to dominance preventing tiny areas of a few pixels from
making it into the color palette. Duplicates are removed us-
ing the current CIELAB distance function (Sharma, Wu, and
Dalal 2005) and a final color palette is produced with a max-
imum of 8 dominant and salient colors each. An example
color palette obtained from an image can be seen in Fig. 2.

Previous research by Ou et al. developed formulas to
model single color emotion by having Chinese and English
viewers rate individual colors along the aesthetic dimen-
sions of activity, weight, warmth, and hardness (2004). We
use these equations to determine scores for each color in
an extracted color palette along the same four aesthetic di-
mensions. VIV then applies a weighted average of all col-

Figure 3: Example silhouettes of a variety of vases. Beziér
curves for each side can be identical or unique. These curves
are then interpolated around the center axis with a variable
sampling rate.

ors from the dominant and salient color groups. The high-
est ranked colors from the dominant and salient groups are
weighted at 75%. The remaining percentage is progressively
halved until all colors are evaluated in the color palette. We
use a weighted average rather than equal weights to allow for
a more distinct aesthetic profile. We still use all colors in the
color palette, although at reduced levels, since each color is a
prominent color in the image and should have some effect on
the overall analysis. The final aesthetic profile is then passed
to an evolutionary algorithm which will use these scores in
its fitness function. We acknowledge colors are a very small
subset of information processed by human viewers of im-
ages and our color weighting is not necessarily human-like,
however we feel this information is sufficient to demonstrate
transmedia analogy mapping.

Vase Depiction
Similar to Reed’s work with vases, our vases are described
as two Beziér curves interpolated around a center axis. The
distance from each curve to the center axis may vary and be
unique between curves. Also, the interpolation can be per-
formed with a variable sampling rate, producing vases with
triangular, square, or round bases and anything between.
Each vase begins as a cylinder (two straight lines of equal
distance to the center axis). Vase genetic data corresponds
to a set of initial parameters (e.g. starting height, width, in-
terpolation points, number of points per line) and a list of
vase manipulations.

Vase manipulations in our initial implementation are only
squeeze/pull and shorten. Each of these operations can be
done on one or both sides of the vase. Even with these lim-
ited and simple manipulations, definite variation can be seen
(see Fig. 3). The squeeze and pull manipulations are de-
scribed using two numbers: size and depth. The size de-
termines how drastic of an alteration occurs and the depth
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determines how many neighboring points are affected. This
produces manipulations which can be smooth or jagged.
Some constraints were placed on these alterations in order
to maintain a functional and printable vase. For example,
due to 3D printer constraints, a minimum wall width needed
to be enforced so that the vase wouldn’t break during the
printing process. Vases with a minimum distance between
curves below this threshold were considered non-viable and
thrown out during evolution.

Data Collection
In order to determine which vase metrics contribute to each
of our four aesthetic measures, we administered a web sur-
vey to both trained artists and novices. Recruitment was
done through campus e-mails, social media posts and lever-
aging existing professional and artist contacts. There were
50 respondents of which 27 described themselves as artists
with at least three years of experience. The remaining re-
spondents labeled themselves as “hobbyists”, “no experi-
ence” or did not complete demographic information. The
survey was administered anonymously therefore no back-
ground verification was done on self-reported artistic expe-
rience. All demographic information was collected at the
completion of the survey. This questionnaire design was
modeled after previous research which attempted to model
player preference in generated Mario levels (Shaker, Yan-
nakakis, and Togelius 2013). We applied similar techniques
replacing players’ level preference along fun, challenge and
frustration with respondent’s assessment of vase activity,
weight, warmth, and hardness in order to determine features
associated with each dimension.

Survey respondents were given a series of randomly gen-
erated paired vases and asked to compare them along the
four previously mentioned aesthetic dimensions in a four-
alternative forced choice questionnaire. Responses included
“both” and “neither”. An example comparison can be seen
in Fig. 4. Subjects were allowed to do as many comparisons
as they desired before completing the survey and filling out
demographic information. The least number of comparisons
performed by a single respondent was 1 and the greatest was
30 (mean=8.58). Data is still being collected, but at the time
of writing this paper, 430 comparisons had been obtained.
Using these 430 comparisons, vases were ranked along each
aesthetic dimension by number of votes using existing pair-
wise comparison techniques (Shaker, Yannakakis, and To-
gelius 2013). A winning vote garnered one point, each vase
received half a point for a vote of “both”, and losing or
“neither” resulted in no points awarded. Once rankings had
been determined, we then used Principal Component Analy-
sis and Multiple Linear Regression to determine which vase
metrics contributed to each aesthetic measure (Freedman
2009). One big advantage of using Multiple Linear Regres-
sion is that it creates a function which is human-readable and
easily implemented in a computer system.

Feature Selection
We identified several metrics for evaluating the vases. Many
more are possible but using previously applied vase metrics
as a starting point, we compiled the following list:

Figure 4: Example comparison from our four-alternative
forced choice questionnaire.

• H — Height: In vases with a height difference between
sides, the greater of the two is selected.

• Wmax — Maximum width: Greatest total distance per-
pendicular from the center axis.

• Wmin — Minimum width: Least total distance perpen-
dicular from the center axis.

• I — Inflection points: Number of changes in slope along
each side of the vase. Inflection points from each curve of
the vase silhouette are added to obtain the total inflection
points.

• Center of mass: x and y location of the center of mass of
the 3D rendered vase. CoMx denotes the x location and
CoMy denotes the y location.

• Linearity: Variance from a straight line between inflec-
tion points averaged along each side of the vase. A cylin-
der would have a linearity of 1.0 as the base and lip lo-
cation count as inflection points and there is no variation
between the two in the vertical direction.

• S — Sampling Rate: number of equidistant points around
the unit circle which are used during interpolation. Can
also be viewed as the number of points in the base.

We also included additional relational metrics which are the
result of combining these:
• A — Asymmetry. Evaluated as CoM

x

W
max

• Rmin — Minimum width to height ratio. W
min

Height
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Figure 5: Printed vases created by VIV. The left and center
vases were created with inspiration from the artwork in fig. 2
(first example) and the vase on the right is an attempt by VIV
to make her most active vase.

• Rmax — Maximum width to height ratio. W
max

Height

Principal Component Analysis of our survey data for ac-
tivity yielded important vase metrics to be the number of
inflection points, lateral asymmetry and a low number of in-
terpolation points. Warmth was influenced by lateral sym-
metry and a higher number of interpolation points. The ra-
tio of the location of the minimum and maximum widths to
the vase height correlated with weight. Hardness was de-
termined by a high ratio of maximum width to height, high
center of gravity, and less interpolation points. Each of the
vase metrics used are not direct inputs to the vase generation
algorithm. Instead, they are tools for expression of aesthetic
qualities interpreted from another domain.

Vase Generation
Each generated vase is given an aesthetic profile by the four
equations below which was determined through Multiple
Linear Regression of our survey data.

Activity = �0.2 ⇤ I + 2.3 ⇤A� 0.002 ⇤ S + 0.5 (1)

Warmth = �2.0 ⇤A+ 0.001 ⇤ S + 0.41 (2)
Weight = 0.06 ⇤Rwidth � 0.06 ⇤Rmax + 0.6 (3)

Hardness = 0.2 ⇤Rmax � 1.8 ⇤ CoMy

�0.2 ⇤Rmin � 0.01 ⇤ S + 1.6
(4)

The fitness function used during evolution is the Euclidian
distance between an image’s aesthetic profile and the gener-
ated vase’s profile where evolution is trying to minimize this
score.

Vase creation is done through genetic evolution of a pop-
ulation of 100 vases over 100 generations. We used 100
generations because this is the point where additional gen-
erations produced results which were no closer to an aes-
thetic profile than the current population. For each genera-
tion, there is a 10% elitism rate where vases are kept without
change, 40% crossover rate, and 50% mutation rate.

Recall that vase representation is comprised of initial pa-
rameters including starting height, width, sampling rate, and
points per line as well as a list of vase manipulations. Our
crossover implementation involved choosing initial parame-
ters from one parent or the other and combining manipula-
tion lists. Manipulations lists could be combined in a couple

Figure 6: Depiction of the complete vase generation process
using inspiration from one version of the famous Scream
works by Edvard Munch.

of different ways. Most simply, the manipulations from the
second parent could be appended to the first parent’s list.
Alternatively, for each list index, one manipulation was ran-
domly chosen from a parent’s list at that same index.

Mutations involved re-assigning one of the initial param-
eters to a different value, adding a manipulation to the ma-
nipulation list at a random index, randomly removing a mu-
tation, or altering the size of a manipulation.

Results
The examples given in this paper show input from a variety
of famous artworks (see Fig. 6) and the diverse vases created
by VIV using each of these artworks as inspiration. There
is great variety in input and output to the system yet VIV
consistently creates vases with an aesthetic profile which re-
flects that of the inspiring work. Fig. 8 demonstrates a set of
vases produced from the amateur photo in Fig. 7. VIV de-
termined this image to be a light and soft image so the vases
produced tended to be round with a high center of gravity.

Using a generative art system such as VIV coupled with
modern 3D printing techniques, vases can be produced in a
matter of hours which previously took expert artists weeks,
if at all. Fig. 9 is an example which ceramicists we corre-
sponded with stated would be extremely difficult for them to
replicate because of the sharp edges throughout the internals
of the vase.

Discussion
In order to prove our inspiration model, we set out to cre-
ate a working generative art system with this model at its
core. VIV has been used to create numerous distinct vases
with various aesthetic profiles inspired by images ranging
from some of the most famous paintings to amateur photos.
While many may argue VIV is not truly creative since she
neither possesses any type of novelty search nor a true un-
derstanding of her creations, we can see that cross-domain
analogical inspiration is a viable model for generative art
systems.

Our initial implementation uses the four aesthetic mea-
sures of activity, warmth, weight, and hardness as the inspi-
ration channels between two dimensional images and 3D-
printable vases. This model is not confined to our proof-
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Figure 7: An example image and color palette extracted
from an amateur photo.

Figure 8: A set of vases created with the image from Fig. 7
as inspiration. The image was viewed by VIV as soft and
light therefore the vases produced had a high center of grav-
ity and a round base.

of-concept, but extensible to other analogy mappings and
domains. Our implementation has shown how a system can
interpret aesthetic measures from one domain using tech-
niques specific to that domain, create an analogous mapping
to another domain, and produce content within the target
domain using techniques separate from those of the source.
Fig. 5 contains examples of VIV’s final printed output.

Future Work
Color analysis is just one piece of information people take in
when viewing art. In future implementations, a more robust
image analysis which includes line, angle, feature, and ob-
ject detection would be desirable as well as the extension of
our single color affect analysis to color combinations. Just
as human viewers take in a range of stimuli from artwork,
we want VIV to mirror this in her analysis of images with a
more in-depth interpretation.

We plan to conduct user studies in order to quantitatively
determine if our resulting vases fit within acceptable bounds
of the previously stated aesthetic measures for a large por-
tion of human viewers rather than our initial face-value as-
sessment. We envision this proceeding in two phases. For
the first validation phase, we will give subjects a pool of
vases with varying pre-defined aesthetic profiles and ask
them to group together the vases they feel are most similar.
If our vase profile equations are adequate, subjects should be
able to organize vases by aesthetic profile. The second vali-
dation phase would extend this method to grouping vases by
image. Because our inspiration model only uses an image’s
color palette rather than the image as a whole, this validation
may be better suited to grouping by color palette rather than
by original image.

Also, extension of these aesthetic measures to other re-
searched methods would be beneficial. Birkhoff’s beauty
metric is an abstract aesthetic measure which could be in-
corporated since it perhaps is more easily studied in a broad
range of domains rather than something such as warmth or
hardness. As this measure has already been studied in both
the domains of evolutionary vase creation and color science,
its addition to our initial implementation would be rather
straightforward. However, its use in domains where more
granular aesthetic principles are hard to assess could be use-
ful for future applications.

Conclusion
We have presented the detailed design of VIV and her use
of a novel cross-domain inspiration framework. We demon-
strated how VIV uses this framework to create vases with an
aesthetic profile interpreted from a different domain. In this
way, abstract artistic concepts can be gathered from one do-
main and manifested in another mirroring creative methods
utilized by people. Generative art systems in parallel with
new media technologies, allow for a wider range of artistic
content to be produced by both humans and computers. Our
hope is that this model of inspiration can be used to pro-
vide creative systems with the ability to translate high level
knowledge between new domains and expand their expres-
sive range as well as broaden people’s creative potential.
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Figure 9: Example vase from VIV obtained when she tries
to max out the activity measure. This vase was considered
to be difficult to replicate by some ceramicists.

References
Birkhoff, G. D. 2003. Aesthetic Measure 1933. Harvard
University Press.
Clune, J., and Lipson, H. 2011. Evolving 3d Objects with
a Generative Encoding Inspired by Developmental Biology.
SIGEVOlution 5(4):2–12.
Cook, M., and Colton, S. 2011. Multi-faceted evolution of
simple arcade games. In CIG, 289–296.
Cope, D. 1996. Experiments in musical intelligence, vol-
ume 12. AR editions Madison, WI.
Draves, S. 2005. The Electric Sheep Screen-Saver: A Case
Study in Aesthetic Evolution. In Rothlauf, F.; Branke, J.;
Cagnoni, S.; Corne, D. W.; Drechsler, R.; Jin, Y.; Machado,
P.; Marchiori, E.; Romero, J.; Smith, G. D.; and Squillero,
G., eds., Applications of Evolutionary Computing, number
3449 in Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 458–467.
Eysenck, H. J. 1941. A Critical and Experimental Study of
Colour Preferences. The American Journal of Psychology
54(3):385–394.
Freedman, D. A. 2009. Statistical models: theory and prac-
tice. cambridge university press.
Granger, G. W. 1955. An Experimental Study of Colour
Preferences. The Journal of General Psychology 52(1):3–
20.
Hadamard, J. 1996. The Mathematician’s Mind: The Psy-
chology of Invention in the Mathematical Field. Princeton
University Press.
Hofstadter, D. R., and Mitchell, M. 1994. The copycat
project: A model of mental fluidity and analogy-making.
Advances in connectionist and neural computation theory
2(31-112):29–30.
Huang, C.; Liu, Q.; and Yu, S. 2011. Regions of interest
extraction from color image based on visual saliency. The
Journal of Supercomputing 58(1):20–33.
Krzeczkowska, A.; El-Hage, J.; Colton, S.; and Clark, S.
2010. Automated collage generation-with intent. In Pro-
ceedings of the 1st international conference on computa-
tional creativity, 20.

Lopes, P., and Yannakakis, G. N. 2014. Investigating Col-
laborative Creativity via Machine-Mediated Game Blend-
ing. In Tenth Artificial Intelligence and Interactive Digital
Entertainment Conference.
Machado, P., and Cardoso, A. 2000. NEvArthe assessment
of an evolutionary art tool. In Proceedings of the AISB00
Symposium on Creative & Cultural Aspects and Applica-
tions of AI & Cognitive Science, Birmingham, UK, volume
456.
McCorduck, P. 1990. Aaron’s Code: Meta-Art, Artificial
Intelligence and the Work of Harold Cohen. New York: W
H Freeman & Co.
McCutchan, A. 2003. The Muse that Sings: Composers
Speak about the Creative Process. Oxford; New York: Ox-
ford University Press.
Norton, D.; Heath, D.; and Ventura, D. 2013. Finding Cre-
ativity in an Artificial Artist. The Journal of Creative Be-
havior 47(2):106–124.
Ou, L.-C.; Luo, M. R.; Woodcock, A.; and Wright, A. 2004.
A study of colour emotion and colour preference. Part I:
Colour emotions for single colours. Color Research & Ap-
plication 29(3):232–240.
Ranjan, A.; Gabora, L.; and OConnor, B. 2013. The Cross-
Domain Re-interpretation of Artistic Ideas. Proceedings of
the 35th Annual Meeting of the Cognitive Science Society.
arXiv: 1308.4706.
Reed, K. 2013. Aesthetic Measures for Evolutionary Vase
Design. In Machado, P.; McDermott, J.; and Carballal, A.,
eds., Evolutionary and Biologically Inspired Music, Sound,
Art and Design, number 7834 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 59–71.
Secretan, J.; Beato, N.; D Ambrosio, D. B.; Rodriguez, A.;
Campbell, A.; and Stanley, K. O. 2008. Picbreeder: Evolv-
ing Pictures Collaboratively Online. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’08, 1759–1768. New York, NY, USA: ACM.
Shaker, N.; Yannakakis, G.; and Togelius, J. 2013. Crowd-
sourcing the Aesthetics of Platform Games. IEEE Transac-
tions on Computational Intelligence and AI in Games 5(3).
Sharma, G.; Wu, W.; and Dalal, E. N. 2005. The
CIEDE2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical observa-
tions. Color Research & Application 30(1):21–30.
Smith, A.; Romero, M.; Pousman, Z.; and Mateas, M. 2006.
Tableau machine: an alien presence in the home. New York,
NY, USA: ACM.
Thrash, T. M., and Elliot, A. J. 2003. Inspiration as a psy-
chological construct. Journal of Personality and Social Psy-
chology 84(4):871.
Willmann, R. R. 1944. An experimental investigation of the
creative process in music: The transposability of visual de-
sign stimuli to musical themes. Psychological Monographs
57(1):i–76.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 188



The Painting Fool Sees! New Projects with the Automated Painter

Simon Colton1,2, Jakob Halskov3, Dan Ventura4,
Ian Gouldstone2, Michael Cook2 and Blanca Pérez-Ferrer1
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Abstract
We report the most recent advances in The Painting Fool
project, where we have integrated machine vision ca-
pabilities from the DARCI system into the automated
painter, to enhance its abilities before, during and after
the painting process. This has enabled new art projects,
including a commission from an Artificial Intelligence
company, and we report on this collaboration, which is
one of the first instances in Computational Creativity re-
search where creative software has been commissioned
directly. The new projects have advanced The Painting
Fool as an independent artist able to produce more di-
verse styles which break away from simulating natural
media. The projects have also raised a philosophical
question about whether software artists need to see in
the same way as people, which we discuss briefly.

Introduction
The Painting Fool (thepaintingfool.com) is software
that we hope will be taken seriously as a creative artist in
its own right, one day. It is a well established project,
with an emphasis on implementing processes which could
be described as artistic and/or creative, rather than merely
producing images which look like they may have been
painted by a person, as with many graphics packages, as per
(Strothotte and Schlechtweg 2002). Many technical details
of the project and discussions of the outreach activities per-
formed with The Painting Fool are given in (Colton 2012b).
Progress in the project is usually both technical and/or soci-
etal, and the work presented here addresses both aspects.

On the technical side, we have enabled The Painting Fool
to use machine vision techniques before, during and after
painting, to take on more creative responsibility, produce
more interesting pieces and provide better framing informa-
tion. This has involved integrating aspects of the machine
vision abilities of the DARCI system (Norton, Heath, and
Ventura 2013; Heath, Norton, and Ventura 2014). In addi-
tion to being used in art generation itself (Norton, Heath,
and Ventura 2011), DARCI has been used as an artificial art
critic (Norton, Heath, and Ventura 2010), which makes it
the perfect complement to The Painting Fool. Implementing
such synergies is rare in Computational Creativity research,
with a few notable exceptions, such as the combination of
parts of the MEXICA, Curveship and GRIOT programs into
the Slant storytelling system (Montfort et al. 2013).

On the societal side, to get The Painting Fool accepted as
an artist, we engage the public, journalists and members of
the art world (artists, art students, art educators, critics, cu-
rators, gallery owners, etc.), as natural stakeholders in the
question of whether software can be creative or not. Explo-
ration of some of the stakeholders issues in Computational
Creativity is given in (Colton et al. 2015), where The Paint-
ing Fool is a case study. This, along with a philosophical
underpinning given in (Colton et al. 2014) provide a gen-
eral grounding for the design decisions presented here, in
terms of why they represent significant progress towards the
long-term aim of public acceptance of The Painting Fool as a
creative artist. In this context, we describe here three new art
projects where The Painting Fool has used its new visual ca-
pabilities with increasing sophistication, to produce interest-
ing art and experiences for audiences via more autonomous
behaviours in the software. These projects include a mood-
based portraiture demonstration, where the visual process-
ing was used to express intent; The Painting Fool’s first art
commission for a third party; and a private art project.

The collaborative projects with DARCI have progressed
The Painting Fool project along a number of axes. With ma-
chine vision abilities, it can now analyse its output, albeit
simplistically: new functionality with potential to make it
more appreciative in motivating and assessing projects, and
via analysis during sketching activities. Also, choosing ren-
dering styles can now be done by the software itself, rather
than a person. This adds much autonomy, increases impres-
sions of creative responsibility in the software, and has led to
surprising results, as the paintings no longer only resemble
those produced in traditional ways by people. The Painting
Fool uses the digital medium more fully in interesting new
styles difficult for people to achieve, which again increases
the impression of independence and creative responsibility.

This paper is organised as follows. In the next section,
we describe aspects of The Painting Fool and DARCI used
in the collaboration, followed by a discussion of how as-
sociation networks from DARCI were used by The Paint-
ing Fool in increasing levels of sophistication. We then
present the three new art projects enabled by this collabora-
tion, and put these into the context of related work. We con-
clude with a discussion of the advances made in The Paint-
ing Fool project, and we briefly question whether software
artists need to see in the same way as people.
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Figure 1: A workflow representation of The Painting Fool’s
processing for the You Can’t Know My Mind exhibit.

Background
The Painting Fool: Workflows
There is no single way in which The Painting Fool produces
artworks, but rather a set of tasks it can achieve through
performing certain behaviours, and workflows which com-
bine these into art-producing processes. The behaviours
make use of various AI techniques including natural lan-
guage processing (Krzeczkowska et al. 2010), constraint
solving (Colton 2008b), evolutionary search (Colton 2008a),
design grammars (Colton and Pérez-Ferrer 2012) and ma-
chine learning (Colton 2012a). The workflows are con-
structed through a teaching interface currently consisting of
24 screens. An example workflow, for the You Can’t Know
My Mind exhibit (described below) is given in figure 1. This
highlights that the vision system is used both at the start of
the process and towards the end (the ‘AN evaluation’ node).

Before the work described here, The Painting Fool had
a very rudimentary visual analysis system that was able to
evaluate features of an image such as texture, colour vari-
ance and symmetry. It is also able to segment a given digital
photograph into a set of colour regions, using a threshold-
based neighbourhood construction method, path-finding for
edge rationalisation and edge abstraction methods. A way-
point in every workflow is the construction of such a set of
colour regions, which can be achieved using this segmenta-
tion process, via design grammars, variation of hand-drawn
scenes and/or a constraint solver placing rectangles onto the
canvas. The colour regions direct the rendering process,
whereby each region is either filled-in or outlined via the
simulation of natural media such as paints and implements
such as paintbrushes. The rendering of each region can in-
clude multiple fill/outline passes, and the rendering of the
entire segmentation of colour regions can be done repeat-
edly, building up a layered image.

The segmentation and rendering methods are highly pa-
rameterised, requiring 14 and 57 parameters to be set re-
spectively, as described in (Colton 2012b). Choosing from
the space of possible segmentation and rendering methods
constitutes a large part of the creative responsibility taken
on in an art project, along with choosing and arranging sub-
ject matter, etc. We show below how the software now takes
on the responsibility of choosing the rendering settings.

DARCI: Association Networks
One way for The Painting Fool to have an increased appre-
ciation of the artefacts it produces and some level of inten-
tionality (both desirable qualities), is for it to employ a per-
ceptually grounded cognitive model that can associate visual
stimuli with linguistic concepts. That ability was realized by
borrowing a piece of the DARCI system, a visuo-linguistic
association approach, which consists of a set of neural net-
works that perform a mapping from low-level computer vi-
sion features to adjectival linguistic concepts, learned from
a corpus of human-labeled images.

These images come from a continuously growing dataset
obtained via a public facing website (darci.cs.byu.edu)
that solicits volunteer labeling of random images. Volun-
teers are allowed to label images with any and all adjectives
they think describe the image, and as a result, images can be
described by their emotional effects, most of their aesthetic
qualities, many of their possible associations and meanings,
and even, to some extent, by their subject. Furthermore,
through additional labeling exercises, volunteers can spec-
ify labels that explicitly do not describe the image, allowing
the collection of explicit negative labels as well as positive
ones. The result is a rich, challenging, dynamic dataset. A
recent snapshot of the data reveals 17,004 positive labels and
16,125 negative labels using 2,463 unique adjectives associ-
ated with 2,562 unique images, an average of approximately
12 unique labels per image, and 110 adjectives with at least
30 positive and 30 negative image associations.

Images are perceived by the system as a vector of 102
low-level computer vision features extracted from the im-
age using the DISCOVIR system1. This level of image per-
ception does not admit significant semantic understanding,
but it does allow appreciation of concepts that can be ade-
quately expressed with global, abstract features dealing with
characteristics of the image’s color, lighting, texture, and
shape. Given training data in the form of (image feature
vector, adjectival label) pairs, a mapping is learned using
a set of artificial neural networks that we call association
networks. Since learning image-to-concept associations is
a multi-label classification problem, and we cannot assume
implicit negativity, the only appreciation networks trained
for a particular image are those explicitly labeled with (pos-
itive or negative examples of) the associated concept. Each
adjectival concept is learned by a unique association net-
work, which is trained using standard backpropagation and
outputs a single real value, between 0 and 1, indicating the
degree to which an input image can be described by the net-
work’s associated adjectival concept.

1
appsrv.cse.cuhk.edu.hk/

˜

miplab/discovir
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Figure 2: Seventeen painting styles along with layering scheme and partial visual profile.

Implementing Vision-Enhanced Painting
From the DARCI system, The Painting Fool inherited a set
of 236 association networks (ANs), and a method of turning
a given image I into the numerical inputs to the ANs. Each
AN corresponds to a particular adjective, i.e., the higher the
output from the AN for adjective A when given input values
for I , the more likely (the AN predicts) that a viewer will use
A to describe I . We first determined which of the adjectival
ANs were suitable for dealing with The Painting Fool’s out-
put. To do this, we ran each AN over hundreds of painterly
images from The Painting Fool and recorded the range of
the numerical outputs. We found that for the majority of the
ANs, the output range was so low that we couldn’t meaning-
fully claim that it was differentiating between images based
on visual properties. We selected all ANs where the range
of outputs was 0.05 or greater, and then performed a sanity
check on those remaining, removing any which described
images in a particularly counter-intuitive way, e.g., the AN
for ‘red’ outputting a higher score for a patently green image
than for a patently red image.

This left a selection of 65 usable ANs, to which we imple-
mented an interface in The Painting Fool. For each selected
AN, we recorded the highest and lowest outputs over the
hundreds of images mentioned above, and when output from
a new image is calculated, it is normalised between these
extremes. As described below, the ANs have been used in a
number of new workflow behaviours for The Painting Fool.
The simplest of these is to allow the software to frame it’s
output (Charnley, Pease, and Colton 2012) by describing it
visually. It can also compare and contrast images in terms
of a particular adjective, or in terms of a profile of multiple
adjectives. It can also employ the ANs during the painting
process, as described in the following subsections.

A Space of Simulated Visual Art Implements/Styles
Given an image segmentation of colour regions as described
above, The Painting Fool produces a non-photorealistic ren-
dering of it in a series of whole-segmentation layers, during
which each region itself is rendered in multiple layers. Dur-
ing the rendering of each layer, which can either be filled
in, or outlined, the software simulates natural media such
as paints, and the usage of implements such as brushes in
outline/fill styles such as hatching, as described in (Colton
2012b). The rendering of a layer is determined by a set of
57 parameters, which cover the simulation of the media it-
self (e.g., wetness of paint), the implement (e.g., brush size)
the support (e.g., canvas roughness) and the style (e.g., num-
ber of times to draw an outline).

We defined a space of painting styles by fixing the ren-
dering to a single whole-segmentation layer during which
a scheme of up to five rendering layers per region was al-
lowed. The region layering scheme was represented as a
string with letters A,B,C, a, b or c. Upper case letters rep-
resent a fill layer with lower case letters representing outline
layers. Where upper and lower case letters correspond (e.g.,
A = a), all the other settings are the same, hence they rep-
resent the simulation of the same natural media in roughly
the same way, but one produces an outline, the other pro-
duces a fill. For instance, ABCab represents three fill layers
and two outline layers, with all the settings of the first two
fill layers exactly as for the two outline layers. We found
that it increased visual coherence if the fill layers corre-
sponded to the outline layers in this way. After initial ex-
perimentation, we constrained the space to include five lay-
ering schemes: aB,Ba,ABab,Aab and ABCab, which we
found produced a suitably large variety of visual styles.

We generated 1,200 painting styles by randomly sampling
the space of rendering styles with each of the 57 parame-
ters set randomly to an appropriate value in its range, and
then mapping a set of these styles onto one of the five layer-
ing styles above, also chosen randomly. For each style, we
used The Painting Fool to render a given segmentation of
an abstract flower. Then, for each of the 65 selected ANs
described above, we calculated the normalised output for
each of the 1,200 flower paintings, thus creating a visual
profile for each style. Example painting styles, along with
the layering scheme and part of their visual profile are given
in figure 2. The seventeen pictures demonstrate somewhat
the diversity in the painting styles within this space. The
partial profiles indicate that while the AN outputs have a rel-
atively small range, it is sufficient for a choice of painting
style based on these values to be meaningful.

Employing Vision During Painting
To recap, we supplied The Painting Fool with 1,200 differ-
ent painting styles, each with a visual profile derived from
applying association networks. As described above, there
are various workflows for producing images with The Paint-
ing Fool. When the workflow starts with a digital photo-
graph, images are segmented into a certain number of colour
regions, with more regions usually leading to more photo-
realism in the final paintings. Each colour region corre-
sponds, therefore, to a region of the original photograph, and
this photo-region can be interrogated in order to choose an
appropriate painting style. To do this, The Painting Fool ex-
tracts the photo region onto a transparent image, then applies
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all 65 adjectival ANs to the extract, to compile a profile. The
Euclidean distance of this photo-extract profile from the vi-
sual profile of the 1,200 painting styles is used to order the
styles in increasing distance. The distance can be interpreted
as an appropriateness of the painting style to the underlying
photo extract. That is, the style with least distance will ren-
der the region in a way that is most similar in nature to the
original photograph (according to the ANs).

The new workflow for The Painting Fool uses machine
vision during painting as follows: it takes a photograph and
segments it into colour regions. For each colour region, a
photo-extract profile is produced using the ANs, and this
is used to order the painting styles in The Painting Fool’s
database, in terms of how appropriate they are to the photo
extract. From the top ten most appropriate styles, one is
chosen randomly to paint the region in question. Choosing
from the top ten in this fashion means that each time the
same photograph is painted, it produces a different image,
yet each time, each painting style is appropriate to the re-
gion it is used to paint. We have enhanced this workflow by
enabling a sketching mechanism. That is, The Painting Fool
tries all of the ten most appropriate sketching styles in situ,
then produces a visual profile of the resulting region of the
painting, and chooses the one where this profile is closest
to the photo-region profile. This reduces the reliance on the
initial flower experiments somewhat, as The Painting Fool
can see what each style looks like actually in the painting,
before committing to one in particular. It also opens up the
potential for The Painting Fool to produce a sketchbook to
accompany each painting, as framing information.

Cultural Applications
In the subsections below, we describe new cultural applica-
tion projects with The Painting Fool which have been en-
abled by its access to a vision system. These span the kinds
of public, private and commissioned art projects that an artist
might expect to undertake as part of their general activities.

The ‘You Can’t Know My Mind’ Exhibition
For the You Can’t Know My Mind exhibit reported in (Colton
and Ventura 2014), we focused on the question of intention-
ality in creative software. As software is programmed di-
rectly, it is fair criticism to highlight that in most Computa-
tional Creativity projects, the intention for the production of
artefacts comes from the software’s author and/or user. For
the You Can’t Know My Mind project, we raised our inten-
tions to the meta-level, i.e., we intended for the software to
produce portraits and entertain sitters in order to learn about
its own painting styles. However, the aim of each artefact
production session was determined by The Painting Fool it-
self, in order for it to exhibit behaviours that unbiased ob-
servers might project the word ‘intentionality’ onto.

An 8-point description of how The Painting Fool operated
in this project is given in (Colton and Ventura 2014). Of
note here, we used the machine vision system from DARCI
offline, to prepare the software for portraiture sessions. That
is, for each of 1,000 abstract art images produced by the
Elvira sub-module (Colton, Cook, and Raad 2011), and for

Figure 3: Example comparisons of sketch conceptions (left)
and associated portraits (right). The percentages portray the
range of the output from the adjective AN for the second
image in terms of the AN output value for the first image.

each of 1,000 image filters produced by the Filter Feast sub-
module (Torres, Colton, and Rueger 2008), the output of all
of the adjective ANs were calculated. Hence the software
could choose from the most appropriate abstract backdrops
and the most appropriate filters for an adjective, A, chosen
to fit a mood, to produce a sketch conception to aim for with
each portrait. The ‘background image’ and ‘filtered image
conception’ nodes in figure 1 correspond to these.

Under the assumption that the sketch will invoke people
to project certain adjectives onto the image upon viewing,
the sketch conception has aspects which The Painting Fool
aspires to achieve in its painting. The conception image is
segmented into colour regions, and a simulation of various
painting media (paints, pastels and pencils) are used in one
of eight styles, to produce a portrait. At the end of each por-
traiture session, The Painting Fool uses the vision system to
compare the level of adjective projection in the portrait to
that of the sketch. To do this (indicated by the ‘AN evalu-
ation’ node in figure 1), it applies the adjectival AN for A
to the sketch conception and to the final portrait, and com-
pares the output. If the AN output for the portrait, Op, is
within 95% to 105% of the AN output for the conception,
Oc, i.e., 0.95 ⇥ Oc  Op  1.05 ⇥ Oc, this is recorded as
satisfactory. If it is higher than 105%, this is recorded as a
success, and if it is higher than 110%, this is recorded as a
great achievement, with failures similarly recorded. Three
examples comparisons of conception and portrait are given
in figure 3. The level of achievement/failure is used to up-
date a probability distribution that The Painting Fool can use
to choose painting styles later to (attempt to) achieve an im-
age with maximal output respect to a given adjectival AN.
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Figure 4: Front page and excerpt from the Japanese version of the essay for the ‘I Can See Unclearly Now’ commission. Third
image: an early photograph of artwork hung in the Behaviour Informatics Laboratories of UBIC.

The ‘I Can See Unclearly Now’ Commission
UBIC2 is a behavioural information data analysis company
based in Tokyo. In early August of 2014, UBIC’s CTO,
Mr. Hideki Takeda came across The Painting Fool’s website
while exploring recent advances in Artificial Intelligence re-
search on the web. At that time, UBIC’s Behavior Infor-
matics Laboratories (BIL) in Shinagawa, Tokyo, was im-
plementing a complete office renovation scheme reflecting
the company’s reorientation from eDiscovery vendor to sup-
plier of in-house Big Data Analytics solutions powered by
an AI engine called the Virtual Data Scientist. The new of-
fice concept of the BIL can be summed up as: “Shaking the
boundaries between the virtual and the real so as to stimu-
late the senses and promote intelligence and creativity”. For
example, the new office features both real bamboo and bam-
boo imprinted on a glass wall. The choice of bamboo is not
arbitrary, but motivated by the fact that this plant plays a
prominent role in traditional Japanese culture. It is highly
symbolic and associated with, for example, Noh theatre3 in
which the protagonists are often ghosts from another plane
of existence but appearing in the real world.

Mr. Takeda decided to commission artworks from The
Painting Fool, as this would fit very well with the blurring of
virtual and real spaces in the BIL The first author of this pa-
per – who is the lead researcher in The Painting Fool project
– was contacted by the second author acting on behalf of
UBIC, and ultimately three series of images were commis-
sioned, along with an essay highlighting how the machine
vision system was used in increasingly sophisticated ways
from the first to the third series. Constraints were put on the
commission: (i) to include a portrait from a live sitting, and
(ii) to include a piece involving Alan Turing, as an AI pi-
oneer. Moreover, it was agreed that the commission would
involve an element of research and implementation, driving
The Painting Fool project forward. Example images (with
details) from the three series are given in figure 6, and de-
tails from the essay, along with an early photograph of one
of the pieces hung in the BIL are given in figure 4. The ti-
tle of the commission was chosen to highlight The Painting
Fool’s new usage of machine vision techniques, while indi-
cating that the system is far from perfect.

To tie the three series of images together, the same style of
2
www.ubicna.com

3
en.wikipedia.org/wiki/Noh

backdrop was used, consisting of 10,000 adjectives rendered
in a handwritten way in varying shades of greyscale pencil,
onto dark backgrounds. In all the pieces, the mass of ad-
jectives open up in multiple places into which red handwrit-
ten adjectives are strategically placed. For the first series,
StarFlowers, paintings of the abstract flowers used for as-
sessing painting styles were placed using a constraint solver
to avoid overlap, as per (Colton 2008b), with slightly differ-
ing sizes. Before placement, each flower image was assessed
by the 65 adjective ANs, and from the top ten highest scoring
adjectives, two were chosen to appear alongside the flower
in the piece, in red handwriting. The pairs were automati-
cally chosen so that no flower had the same two adjectives
next to it. For instance, in the detail of figure 6, the first
flower is annotated with ‘peaceful’ and ‘warm’.

In the second series, Good Day, Bad Day, two pho-
tographs of the second author seated, posing firstly in a
good mood, and secondly in a bad mood were used. The
65 adjectives were split into positive, neutral and negative
valence categories, e.g., happy, glazed, bleary respectively.
The painting style with the highest average AN output over
the positive adjectives was chosen to paint the first pose,
and the most negative style was similarly chosen to paint the
second pose. Each portrait was annotated at its edges with
red handwritten adjectives appropriate to the painting at that
edge point. In the third series, Dynamic Portraits: Alan Tur-
ing, a photograph of Turing was hand annotated with lines
to pick out his features. We then used the method of arbi-
trarily choosing from the top ten most appropriate painting
styles for each colour region described above, to produce a
number of portraits, with the annotated lines being painted
on at the end, to gain a likeness. The rendered painting was
analysed with the 65 ANs and the 17 most appropriate ad-
jectives were scattered around the backdrop of the image, in
a non-overlapping way, as usual in red handwriting.

Dozens of images from the three series were sent to UBIC
to choose from for the BIL, with very little curation from the
first author. UBIC representatives confirmed that the com-
mission achieved the brief of producing pieces which blur
the line between the real (i.e., painted by a person) and the
virtual (i.e., painted by a computer), and were very happy
with the commission. They produced a translated version of
the essay for visitors to the lab, and hung an example from
each series in the BIL.
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Figure 5: Portrait of Geraint Wiggins.

The Portrait of Geraint Wiggins
In (rather belated) celebration of a milestone birthday, we
used the vision-based sketching approach described above,
to produce a portrait. Given an original image, hand-
annotated with lines picking out facial features, The Paint-
ing Fool segmented it into 150 colour regions/lines, and for
each, chose the top ten most appropriate painting styles,
as described above. For each of the ten, it painted the re-
gion, calculated the visual profile of the region of the paint-
ing that resulted, and finally chose the style with minimal
distance between its visual profile and that of the original
photo-extract. In this way, the painting process was deter-
ministic, but not predictable, and produced a striking portrait
with painterly and distinctly non-painterly effects. To add a
physical uniqueness, the image was printed onto 300 4cm
by 4cm squares which were composed into the final piece
in an overlapping formation, as per the Dancing Salesman
Problem piece described in (Colton and Pérez-Ferrer 2012).
The portrait is shown in figure 5.

Related Work
It is commonplace for an artist to be commissioned to work
with a bespoke piece of software, or even to develop new
code, to produce artwork, with the person using the software
as a tool, and this tool may be generative. However, it is
much less common for a commission to be made specifically
because the software will take on some of the creative, not
merely generative, responsibilities.

The ANGELINA system (Cook and Colton 2014) has
been commissioned to produce games for the New Scien-
tist, Wired and PC Gamer Magazines. In the former, AN-
GELINA designed a game as normal, but its designer pro-
vided custom visual theming, drawing new sprites and cre-
ating sound effects for Space Station Invaders, since AN-
GELINA was not capable of this. The commissions for

Wired and PC Gamer came much later, when ANGELINA
had more independence and could produce full games, given
just an initial theme of a short phrase, proposed by the jour-
nalist. For the PC Gamer game, NBA Mesquite Volume 2,
ANGELINA used a database of labelled textures compiled
from social media mining, for the first time in a released
game. This happened because the theme chosen, ‘avocado’,
matched a label in the database for the first time since the
database had been added. This created an additional talk-
ing point for the article, and in general the games were well
received and drove up online viewing figures.

The Paul drawing robot by Patrick Tresset (Tresset and
Fol Leymarie 2012) has much in common with The Painting
Fool, in that it uses a camera and machine vision techniques
to capture an image, then automatically draws a portrait: in
this case, physically, using a robotic arm and a pen. It also
simulates looking while it draws, but this is only for enter-
tainment purposes, i.e., after the initial photograph is taken,
the vision system is not used again. Paul has been commis-
sioned on a number of occasions, most notably for a week-
long workshop at the Centre Pompidou in late 2013. Tres-
set has also found success in selling versions of the robot
painter to art museums. Another robotic painter, which does
use machine vision during painting and has also been com-
missioned for art is the eDavid system, as described by (Lin-
demeier, Pirk, and Deussen 2013). Here, a camera is used
to photograph the canvas after a series of paint strokes have
been applied, with a vision system employed to optimise the
placement of future strokes based on the visual feedback.

It is beyond the scope of this paper to perform a sur-
vey of commissions where software creators rather than
artists controlling software have produced artworks. How-
ever, we can tentatively introduce some metrics for compar-
ing projects/software/programmers to begin to characterise
such commissions. For instance, one could compare the do-
main specific training of the programmer, e.g., comparing
the commissions of artist Harold Cohen (who represented
the UK in the Venice Biennale) and his AARON system
(McCorduck 1991) with Oliver Deussen (who has no artis-
tic training) and his eDavid system mentioned above, as this
may indicate more autonomy in the software (but doesn’t
necessarily). Other measures could include how much cura-
tion takes place, i.e., how much of the software’s output is
usable; what amount of hand-finishing of output takes place;
and how much extra coding is required for each project.

Conclusions and Future Work
Through the above projects, The Painting Fool has advanced
as an artist in three major ways. Firstly, the creative respon-
sibility of choosing a painting style has been handed to the
software. With the You Can’t Know My Mind project, it
learned a probability distribution which can choose between
one of eight painterly rendering styles, to produce an im-
age which people will probably describe using an adjective,
chosen intentionally to express a mood. With the I Can See
Unclearly Now project, the software gained the ability to
choose between 1,200 painting styles for each colour region
dynamically during painting. With the Portrait of Geraint
Wiggins project, it went further: performing in situ sketches
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to test painting styles in the context of the painting at hand.
Hence, the decision making involved in determining render-
ing styles is now undertaken by the software, which is a ma-
jor advance in autonomy, and potentially towards its accep-
tance as an artist in its own right.

Secondly, on close inspection of the pieces in figures 5
and 6, while the images produced retain a painterly style
somewhat, there are aspects which couldn’t be produced
with natural media simulation. This is because the paint-
ing styles in its database include ones which simulate the
ground in-between natural media such as paints and pastels,
and others which have no analogue in the physical world.
This means that – for the first time – The Painting Fool can
produce images using a much broader range of pixel ma-
nipulations, producing styles which have little grounding in
traditional painting, We also see this as a major advance, as
it extends the variety of images the software can produce,
and potentially increases perceptions of autonomy.

The third advance will be expressed more in future work
than in the projects presented here. Through the mapping
of visual stimuli to linguistic concepts, The Painting Fool is
able to project adjectives onto images, and we plan to en-
hance this with the ability to similarly project nouns. This
will increase its capacity to appreciate its own work and that
of others, enabling it to provide more sophisticated commen-
taries about what it has produced, and we touched on this
with the output in the You Can’t Know My Mind project,
where the conceived and rendered images are compared
visually. We plan to take this framing further, with The
Painting Fool keeping a sketchbook for each project, adding
value, and helping audiences to understand its processes.

It is clear from figure 2 that the visio-linguistic system
does not yet match that of people perfectly. Moreover, we
acknowledge that – as pointed out by a reviewer – we have
not provided data to verify that our strategy to match the vi-
sual profile of an image with appropriate painting styles for
regions is a good strategy, nor have we yet compared and
contrasted alternatives or tested people’s reactions to the art-
works produced. We aim to experiment with this approach
and explore alternatives in future work. However, before un-
dertaking much further work, we wish to raise, discuss and
be guided by responses to a philosophical question for the
Computational Creativity community: is it important that an
automated artist has a visual system similar to that of peo-
ple? For communication/framing value, it might be prefer-
able for the software’s visual judgements to match ours
closely. However, as illustrated by a recent internet storm
about colours in a dress (Rogers 2015), we all have differ-
ent visual perception systems, and notions of beauty differ
from generation to generation and person to person. As art
is driven forward by such differences, it may be more inter-
esting and important artistically for us to learn The Painting
Fool’s visual system, rather than it learning ours.
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Figure 6: Example images, each with detail, from the ‘I Can See Unclearly Now’ commission. First pair: from the Star Flowers
series. Second pair: from the Good Day, Bad Day series. Third pair: from the Dynamic Portraits: Alan Turing series.
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Abstract

We report on the first procedural generation jam,
PROCJAM, an event designed to bring together artists,
researchers and game developers to experiment with
new techniques and applications for generating content
for videogames. Much of the event’s resulting work has
applications beyond videogames, however, and we be-
lieve the event may be a strong platform for engaging
creators and programmers in Computational Creativity
in the future. We discuss the structure of the event, the
results it yielded, and the potential future impact of such
events on the Computational Creativity community.

Introduction
Procedural content generation (PCG) is a crucial and rapidly
developing area of videogames technology (Togelius et al.
2011). PCG is a rich area of games culture – it has been
used as a supplement for human effort (Interactive Data Vi-
sualization 2002), a source of wonder and unpredictability
(Toy et al. 1980), a tool for artistic expression (Betts 2014),
and a unique mechanical design tool (Yu 2009). Its increase
in popularity and its growing importance in the culture of
videogames has also been mirrored by a surge in the aes-
thetic of generative software in art, web culture (such as
Twitterbots) and other creative media. These are all areas
which have considerable overlap with Computational Cre-
ativity in terms of the techniques they use to generate arte-
facts, and represent a great opportunity to share the field’s
philosophy and theory with a vibrant, active community of
people.

Game jams are increasingly common events within the
game development community where people develop games
under the constraints of both a time limit and some kind
of common theme (which might be a technical constraint
such as containing the game within 4 kilobytes of Java1 or
a creative constraint such as incorporating a theme like fish-
ing2). Entrants to game jams typically fall within one of two
categories: novices looking to use the event to create their
first game, and experienced developers looking to experi-
ment and innovate (Zook and Riedl 2013). In both cases the

1http://www.java4k.com
2http://www.fishingjam.com

short timescale helps encourage entrants to set themselves
projects which are small enough to be easily completed.

Popular game jam formats are repeated at regular intervals
throughout the year. Ludum Dare,3 one of the most popular,
runs every four months. Entrants make a game in 48 hours
from scratch, including game design, code, music and vi-
sual art, following a theme voted on by entrants in the week
prior to the game jam. In December 2014, Ludum Dare 31
received over 2000 entries for the theme Entire Game On
One Screen. By running repeatedly, these regular game jams
build communities of creators who meet to create together,
share ideas, give feedback on games (there is an extensive
period of reviews and ratings after the jam) and often form
collaborations or extend their jam entries into full commer-
cial releases (Zucconi 2014). They form strong global com-
munities who share ideas, draw in new practitioners, and
push forward the state of the art (Gray et al. 2005).

In this paper we present a report on the first procedural
generation jam, or PROCJAM, an event held in November
2014. The jam ran over nine days, starting with a streamed
day of talks about procedural generation and ending with
138 entries being submitted in the form of games, tools, ex-
perimental prototypes and artworks. Although styled as a
game jam, PROCJAM deviated from the traditional format
in several important ways, which helped expand the appeal
of the event beyond game developers and draw in people
interested in generative techniques in general. We will go
into these changes to the format in depth later in this paper,
as we believe they are crucial to the success of PROCJAM
and point to a format for generative events that could form
the basis of Computational Creativity outreach in the future.
We also will outline how PROCJAM itself is fostering work
related to Computational Creativity and how this can grow
in coming years.

We believe that the community-building and experimen-
tal aspects of game jams are extremely valuable, and make
the game jam format ideal for engaging communities of
programmers such as Twitterbot writers, programmer-artists
and game developers with Computational Creativity, as well
as being rich sources of inspiration and code which would be
of benefit to everyone working in and around this field. Ad-
ditionally, events like PROCJAM can also be valuable ways

3http://www.ludumdare.com/compo
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to expose people to Computational Creativity for the first
time, in much the same way that game jams encourage peo-
ple to try out making a game, and may serve as a useful
model for student workshops and similar activities.

In this paper, we will outline the format for PROCJAM
and explain how and why we deviated from several com-
mon elements of typical game jam organisation to create a
better community for creating and sharing ideas. We then
give several specific examples of entries to the jam and dis-
cuss their relevance to Computational Creativity. We follow
this with a general analysis of entries, identifying issues re-
lated to Computational Creativity that arose in them, and
also areas where our research could contribute to future en-
tries to the event. Finally, we discuss the jam format as a
model for outreach and engagement, and look ahead to the
future of PROCJAM.

PROCJAM Format and Organisation
PROCJAM took place from November 8th to the 17th 2014,
co-ordinated across the web using Twitter hashtags and a
central website where people could submit their entries.4
Subsequently, the jam has registered its own website to co-
ordinate the community and future events.5

The most common format for a game jam is as follows: at
the beginning of the jam a theme is announced, normally on
the jam’s website so that people can take part from around
the world. Participants then have 48 hours to develop a game
from scratch, including art and music assets, that somehow
incorporates the jam’s theme. Entries are then submitted at
the end of 48 hours. A review phase then takes place in
which people vote for their favourite entries, with the voting
pool consisting either of the general public, other entrants to
the jam, or a select panel of judges. Prizes may be awarded
to the winners.

This format for a game jam is very popular and is repli-
cated hundreds of times a year from large-scale jams with
hundreds of entrants down to small-scale local jams run be-
tween small groups of friends. With PROCJAM we made
several changes to the standard game jam format with the ex-
press aim of increasing participation, particularly with those
who had relevant experience writing generative software but
had not interacted with game developers before. A sec-
ondary aim for the jam’s format was to encourage exper-
imentation and allow people to prototype unusual projects
that stretched the state of the art in generative techniques for
games.

Unlike most other game jams, making a game was not the
only way to enter PROCJAM. Entrants could alternatively
submit a piece of software that simply generated something
(the jam’s slogan was Make Something That Makes Some-
thing). Developing a game is a highly specific skill that peo-
ple are unlikely to have unless they already work in games,
and developing a game in the timeframe of a game jam is
even more difficult. By relaxing this constraint, people who
have interesting ideas, knowledge or skills can contribute
generative systems to the jam that might spur on projects or

4http://itch.io/jam/procjam
5http://www.procjam.com

inspire developers to integrate new kinds of system in their
future games. As a result, the jam received many entries in
the form of complete games, but equally saw systems which
generated dungeons and planets, weapon ideas and fabric
designs, music loops and more. Bringing in people from dif-
ferent backgrounds helped make PROCJAM feel more like
a melting pot of ideas and less like a competition.

We removed the requirement to produce original artwork
and music for the jam, too. Since the primary focus of the
jam was on new ideas in procedural generation, rather than
testing game development skills, it didn’t make sense to re-
quire people to put effort into elements of a game that were
unrelated to their main contribution. This encourages peo-
ple to enter the jam by relieving pressures on them to take
on more work. We also removed a similar requirement that
all code should be written from scratch. Game jam games
tend to be very simplistic in nature because of their short de-
velopment cycles, which works well for the goals the jams
often have. However, in order to allow people to spend the
week focusing on procedural generation, it made sense to
allow them to use existing codebases or even entire games.
One group of developers took a game they had been work-
ing on and added a procedural generation system to it as part
of the jam. This doesn’t just make the jam more appealing
to outsiders, it can also allow deeper work to be done that
builds on existing efforts (Hecker 2012).

By allowing entrants to make anything from a small script
to a full game, and removing the restrictions on existing code
and art assets, the process of evaluation becomes an issue.
This raises the question of how to rate and compare entries
when they are so varied in their origins. PROCJAM circum-
vents this simply by removing the ratings process - people
are encouraged to comment on each others’ entries and share
them among one another, but there is no numerical rating
system and no winners are declared. This solves the issue of
comparing, say, a script which generates quilt patterns with
a full murder mystery game. However it simultaneously en-
courages people to try out more experimental ideas with-
out the intimidation of being judged and ranked by someone
else’s idea of what a good jam entry should be.

All of these changes have the same ultimate aims: to en-
courage people to take part, particularly those who are not
game developers by trade, and to encourage experimentation
and the sharing of new ideas.

We supplemented PROCJAM with a day of talks which
we livestreamed on the web on the first day of the jam6. 80
people turned up to attend the day of talks, with 200 viewers
tuning in to each talk throughout the day, and many hun-
dreds more have viewed the recordings of the talks online
since. The talks provided inspiration to jam entrants, with
many citing the talks during the development of their jam
entry, but they also provided an opportunity to be exposed
to new views on generative systems – the speakers included
an academic researcher, an artist and a creative director at
an indie games studio. One of the aims of the event was
to elevate procedural generation in games beyond “random
levels”, and having a variety of speakers giving talks was a

6http://www.procjam.com/talks/2014
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Figure 1: A screenshot from Dreamer of Electric Sheep.

good way of doing this. We hope to have a speaker at next
year’s PROCJAM event to promote Computational Creativ-
ity as a new philosophy for procedural generation in games.

Selected Entries
In this section we will briefly describe and discuss three en-
tries to the jam. We look at their most interesting features
and the responses some of them received from the games
community. We selected three projects that we believed
would be of most interest to the Computational Creativity
community, either because of their philosophy, innovative
concepts, or the relationship between the techniques used
and ideas within the field of Computational Creativity. We
give details of where to find these entries, as well as all other
jam entries, in the next section.

Dreamer of Electric Sheep
Dreamer of Electric Sheep is a text adventure submitted to
PROCJAM by Tom Coxon, who also gave a talk at the jam’s
opening event about his procedurally-generated adventure
game, Lenna’s Inception (Bytten Games 2014). Like most
text adventures, players are presented with descriptions of
their surroundings and can manipulate the world by in-
putting simple commands for their character to execute.
Dreamer attempts to procedurally generate the game world
using a combination of ConceptNet (Liu and Singh 2004),
a commonsense knowledge database, and Spritely7, a tool
which generates game art from web searches. ConceptNet
stores its data in the form of concepts, series of facts that
are all about a similar topic. These facts are linked to one
another through triplets (such as {magazine, AtLocation,
bookstore}) which can be explored through an API which
Dreamer uses. ConceptNet has seen use in academic Com-
putational Creativity research, such as (Llano et al. 2014).

Dreamer searches the ConceptNet API for concepts which
other concepts are linked to via the relationship AtLoca-
tion. It then populates those places with objects and char-
acters that ConceptNet says should be found in them, and

7http://www.github.com/gamesbyangelina/spritely

Figure 2: A screenshot from Inquisitor showing the conclu-
sion to a case. The player has correctly guessed the motive
but not the murderer or the weapon.

uses Spritely to generate an illustration of the location.
Spritely queries online image databases such as Google Im-
ages and Wikimedia Commons, searching for images that
can be cleanly shrunk down in size with their backgrounds
extracted, to make relatively clear sprites for use in games.

The player can perform common text adventure com-
mands such as moving in the cardinal compass directions to
travel between places, as well as picking up objects. How-
ever, because the game lacks deeper knowledge about the
objects it places in each location, this can result in surreal
interactions like picking up shop assistants and taking them
with you. The game gets around this somewhat by being
set inside a dream world, thereby allowing unusual things to
take place without the game’s sense of reality breaking.

The Inquisitor
The Inquisitor is a murder mystery game by Malcolm
Brown. The game tasks the player with solving a mur-
der by investigating the crime scene, discovering evidence,
questioning witnesses and identifying the murderer, murder
weapon and motive. The crime is procedurally generated,
generating a cast of characters and relationships between
them, simulating the movement of the characters before and
after the murder (so that evidence such as blood trails and
witnesses are realistic and consistent) and then leaving the
player to put together the details within a time limit.

Although the individual generative techniques within The
Inquisitor are not new per se, the way it uses them to gen-
erate murder mysteries is novel and quite effective. In par-
ticular, interviewing witnesses yields partial and sometimes
conflicting information, forcing the player to take notes and
draw up potential scenarios in which certain characters are
lying, and information is procedurally redacted from certain
kinds of evidence, leaving out the contents of a letter but
revealing its author, for example, or smudging the name of
its author but revealing unrequited love. The Inquisitor also
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Figure 3: A screenshot from Secret Habitat showing a gen-
erated gallery in the generative game landscape. The player
can walk inside and view the pieces, as well as exploring
outside to find other galleries.

adds little additional touches on top of the game, such as a
procedural system for applying accents to the pre-written di-
alogue. This takes dialogue written in plain English and then
adds affectations to it to simulate a character who is drunk or
has a particular speech impediment. To our knowledge this
is a completely novel idea for content generation in games.

Secret Habitat
Secret Habitat is an ‘art gallery simulator’ and ambient ex-
ploration game by Strangethink. The game has no obvious
end state. Instead, the player is encouraged to enjoy walk-
ing around the game’s generated world, entering the various
buildings, viewing artworks and listening to audio record-
ings, all of which are also procedurally generated. The
game seems to appeal to a particular aesthetic of wonder and
mystery associated with generative software. One journalist
wrote about the game:

[The paintings] seem to use a similar algorithm, or
similar parts, or similar something, as colours, pat-
terns, and other motifs repeat across them; you can
recognise they’re part of a series. Seeing different spins
on common themes can be delightful, and it’s awfully
exciting when you discover one painting very different
to the rest of its set. (O’Connor 2014)

Strangethink’s biography simply reads I make strange
computer worlds8, and Secret Habitat leans towards digi-
tal, interactive art as much as it does the traditional ideas
of videogames as systems of rules and objectives. Proce-
dural generation has much overlap with both game devel-
opment and interactive art, and generative software has a
unique value in being able to present extremely large or in-
finite scales to a user (Betts 2014).

Analysis of Entries
PROCJAM received 138 entries in total, although more en-
tries may exist that were not officially submitted, since we
are aware that the jam was set as a class assignment in at

8https://twitter.com/strangethink23

least two universities and not all students submitted their
entries to the site. All of the jam entries are available on-
line9. The entries include full games, prototypes, tech de-
mos, tools and libraries designed for developer use, as well
as standalone generators and art pieces. We encourage the
reader to visit the site and browse the entries themselves.

By way of a brief survey, we categorised the entries to
the jam into two categories: game, or tool. The categories
are defined loosely as follows: a game is any software de-
signed to be interactive, but not for the purposes of produc-
ing something; a tool is any software designed to facilitate
the generation of content as part of a larger creative activity.
These definitions are not strict, but we offer them here as a
rough partition of the entrants to the jam. Overall there were
79 game submissions and 59 tool submissions.

The games typically involved some kind of generative ele-
ment in how they set up their game world, such as generating
the 3D galleries in Secret Habitat or using simulation to cre-
ate murder mystery scenarios in The Inquisitor. Most tools
fell into one of two categories: some generated common
kinds of content in accessible ways, such as world map gen-
erators of which multiple were submitted to the jam. This is
partly because procedural generation lacks a cohesive com-
munity and established baseline software that solves com-
mon problems such as world generation - instead, develop-
ers tend to reinvent solutions to common problems repeat-
edly. We believe this is a key problem PROCJAM can tar-
get to benefit the generative software community in coming
years. Other tools generated unusual kinds of content which
are not commonly seen in games, like GlyphGenerator’s al-
phabets or Bootleg’s 3D shoe models. These are exciting
because they break new ground in generative techniques and
offer new applications for games, similar to those submitted
to the jam.

Computational Creativity Issues
PROCJAM’s aim was primarily to produce generative tools
and games, and to bring together both novices and experts
to try out new ideas and learn more about the field. The
theory and practice of Computational Creativity is gaining
awareness in generative communities, but we believe that
many developers are not confident about how to concretely
use these ideas in the software they are building. That said,
many entries to PROCJAM touch upon issues in the field,
and others show clear areas where they could be extended
to take advantage of results from Computational Creativity
research.

Many of the tools explore co-creation, in which the soft-
ware either creates alongside the user or tries to assist the
user in achieving a particular goal, such as (Liapis, Yan-
nakakis, and Togelius 2012). Synthetic Poetry allows the
user to write poetry on alternating lines, along with one
of three poet models based on Keats, Shakespeare and
YouTube Comments. Other entries were more straightfor-
ward tools, such as Nodemancer, which allows users to spec-
ify the components of an item, such as a sword, and then lets
the system design the specific details autonomously. Most

9http://itch.io/jam/procjam#entries

Proceedings of the Sixth International Conference on Computational Creativity June 2015 200



tools focused on the user retaining control, however: SPAR-
TAN proudly announces that ‘the user has complete control
over every step of the generation’ – encouraging people to
explore ideas that break ideas like complete user control is
something that will need to be emphasised in future years of
the jam. We hope to expand the jam’s resource pool to in-
clude tutorials on basic Computational Creativity techniques
and perhaps an invited talk from a Computational Creativity
practitioner in a future event.

Issues relating to framing and context, as in (Charnley,
Pease, and Colton 2012), arise in several entries includ-
ing games like The Inquisitor which generate text as part
of gameplay (for example, to provide dialogue and scene-
setting for the murder mystery). This text is partly game
content but also acts as contextual information that justifies
decisions made by the generative system in producing other
content. We have argued in the past that framing for game
content generation is a broader concept than simply being
‘wall text’, and can extend to text that appears in-game to
help the player understand and contextualise generated sce-
narios and systems (Cook 2014). Many of these games are
beginning to explore these ideas, and we hope to see this
trend continue in the future of the event.

Also related to framing, several entries play with the prob-
lem of communicating the logic, internal representation or
behaviour of the generative system. Both Diversitizer and
Meadows present the player with a natural environment pop-
ulated with various flora. The locations of each plant, as well
as its properties, are governed by procedural systems and
vary each time the game is started. The player can gain an
understanding of these parameters and the expressive range
of the generator by observing the environment and repeat-
edly generating new worlds, even though the software does
not communicate any information to the player through text.
In this way, discovering the decisions made by the software
become part of the purpose of interacting with the artefact,
which is an interesting kind of implicit framing that is not
often discussed in Computational Creativity discourse.

Many entries to the jam have clear ways in which they
could be extended using techniques from Computational
Creativity if the developer wished. Identifying simple ways
in which common game ideas can be extended is important
both in planning ‘code camp’ events for Computational Cre-
ativity, and for giving compelling examples at events like
PROCJAM to show developers steps they can take to be-
gin exploring the field. Many generative systems use pa-
rameters selected by the developer, such as Infinity Explorer
which generates 3D worlds for the player to fly around in an
airship. Encouraging developers to build their systems such
that they can select parameters either based on external, con-
textual factors as in (Colton, Goodwin, and Veale 2012) or
by evaluating its own output as in (Smith and Mateas 2011)
is a good way to begin to move some of these generative
systems in new directions.

The idea of the software evaluating its own work seems
to be one of the most accessible ideas from Computational
Creativity that generative software developers can start ex-
perimenting with. Generative systems tend to be developed
in such a way that they are guaranteed never to produce bad

output: in other words, they rely on reorganising hand-made
elements that the developer knows in advance will produce
reliable content. This is an effective method for game de-
velopment as it ensures the player will not be disappointed,
however the culture of experimentation that we tried to en-
courage makes PROCJAM an ideal place for people to try
out ideas that are less robust but perhaps more interesting
and experimental.

Discussion
PROCJAM has relevance to the Computational Creativity
community because it represents the founding of an inter-
disciplinary community of generative programmers who we
hope will, over time, be introduced to and begin experiment-
ing with ideas and approaches from Computational Creativ-
ity too. The results of the jam and the details about its or-
ganisation are important in their own right; that said, we
believe that PROCJAM also holds interesting potential for
future events that could strengthen and broaden the appeal
and reach of our field.

Computational Creativity is a relatively young academic
field that is still laying some of its foundations (Colton and
Wiggins 2012). At the same time, many of the aims it has
and the technologies and techniques it uses are highly rele-
vant to movements in digital art, videogames and web cul-
ture as it stands today. In much the same way that outreach
events must target academics in related fields, we should
also look to engage these non-academic communities, to
share solutions, and to encourage the adoption of our ideas.
We often use the term ‘mere generation’ as a way of de-
scribing purely generative software, but we must also bear in
mind that a lot of exciting and interesting work is being done
in generative software communities, and we should seek to
engage with these communities, learn from them, and try to
convince them that ideas from Computational Creativity are
exciting and interesting, too.

The format of an event like PROCJAM, particularly with
some of the changes we made that we discussed earlier,
make it ideal for informally bringing together several com-
munities at once, making new connections and allowing
them to demonstrate their working practices and techniques
to one another. It also serves as a small-scale and self-
contained event to set for students who may be interested
in the field; PROCJAM was a credit assignment for one
university class in particular, and we understand that feed-
back from the students was extremely positive. With en-
couragement and additional resources about Computational
Creativity, future versions of PROCJAM (or perhaps a sepa-
rate Computational Creativity jam) could serve as informal,
global workshops that introduce people to the area in a prac-
tical way.

Despite their short length and highly applied nature, jams
can serve a similar purpose for researchers as they do for
programmers. There already exist examples of published re-
search work which started off as a jam submission, in which
an idea was quickly prototyped and then later developed af-
ter the jam (Cook and Colton 2014). PROCJAM also played
host to jam games which were implemented to demonstrate
an existing research tool or technique in a more concrete
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way (Cerny 2014). We hope that subsequent PROCJAMs
will see more researchers from this community take part to
produce games or tools that demonstrate their work to game
developers.

PROCJAM also leaves a legacy of code and ideas that per-
sists after the jam has ended and gives the event lasting value
in the months when it is not running. PROCJAM’s 138 sub-
missions offer ideas and inspiration, and in some cases code
samples and open source projects. Entrants to the jam have
already collaborated with one another, expressed intentions
to develop their entries into full games, and in one case an
academic issued an open call to the PROCJAM community
for PhD applications, which was taken up by one entrant.
PROCJAM had multiple features written about it in indus-
try magazines and several others on major websites1011, and
many of the games created for the jam were individually fea-
tured and written about as well. The jam’s slogan, Make
Something That Makes Something, has reappeared in other
events relating to procedural content generation too12. All of
this shows that the jam is more than just the week in which
it is held – it has a larger impact by creating a community of
people that we hope will thrive.

To build upon this, we are planning for PROCJAM 2015
to have more resources ready online before the jam be-
gins, aiming to encourage newcomers to writing generative
games, tools and software. Through talking to entrants,
we’ve identified several ways in which we can make the
event easier to enter for people. We are hiring an artist to
produce some public domain art assets for people to use,
specifically designed to be easily recombined and mashed
up in procedural systems. We’re also talking to developers
and researchers with the aim of producing some short tuto-
rials that demonstrate simple generative techniques. These
resources will persist beyond the jam itself, hopefully mak-
ing it easier for people to begin learning about generative
techniques at any time of year. We intend to include ideas
from Computational Creativity among these resources, in
the hope that it will encourage people to think of these ideas
as being as essential as any algorithm for making things that
make things.

Next year we hope to run some analysis on the entrants
to the jam, primarily through optional surveys. This will
help us get an idea of the jam’s makeup, and people’s mo-
tivations for entering the event. We are concerned that the
lack of evaluation will make the jam complicated for peo-
ple to curate and explore afterwards, and also acknowledge
that some people will be interested in being rated by their
peers. We are still reviewing our decision to remove rating
altogether from the jam - we may make alterations in 2015
to improve filtering and curation, although it is still unlikely
we will implement global ratings that declare overall win-
ners, as we felt the lack of rating contributed a lot to the
jam’s informal atmosphere.

10http://tinyurl.com/procjampcgamer
11http://tinyurl.com/procjameurogamer
12http://tinyurl.com/aigameslecture

Conclusions
In this paper we reported on the first procedural genera-
tion jam, or PROCJAM. The event was designed to create
a new community around generative techniques for games
and other software, with an emphasis experimentation, shar-
ing of ideas and introducing new people to writing genera-
tive code. We described the changes we made to the classical
game jam format to encourage more participants and make
the event more accessible. We believe we were successful
in this regard, but we also know that there is a lot of work
left to be done in maximising the event’s impact and acces-
sibility, which we hope to address in future years. We then
showed some illustrative examples from the 138 entries re-
ceived, and discussed the potential for jams to impact com-
munities close to Computational Creativity and potentially
nurture relationships and collaborations between them.
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Abstract

Music is based on the real world. Composers use their
day-to-day lives as inspiration to create rhythm and
lyrics. Procedural music generators are capable of cre-
ating good quality pieces, and while some already use
the world as inspiration, there is still much to be ex-
plored in this. We describe a system to generate lyrics
and melodies from real-world data, in particular from
academic papers. Through this we want to create a play-
ful experience and establish a novel way of generating
content (textual and musical) that could be applied to
other domains, in particular to games. For melody gen-
eration, we present an approach to Markov chains evo-
lution and briefly discuss the advantages and disadvan-
tages of this approach.

Introduction

Some traditional works in music or lyrics generation already
take into account real-world information. For instance,
Colton et al.’s work creates a mood based on a newspaper
article, and uses this to generate a poem (Colton, Goodwin,
and Veale 2012). In general song composition process, the
composer takes inspiration from his life experiences and per-
ceptions of the world around him. This can enrich the fi-
nal result, creating meaningful pieces of melody, harmony
and/or stories.

Dynamic music generation in itself is not novel. Algo-
rithmic music composition has been actively researched for
the last several decades, using a large variety of approaches.
Some examples include Mezzo’s take into creating Renais-
sance style music through manipulation of leitmotifs (Brown
2012); the Cell-based approach (Houge 2012) used in Tom
Clancy’s EndWar; and the use of neural networks to create
musical improvisations (Smith and Garnett 2012).

This work attempts to create lyrics from academic pa-
pers and appropriate melodies to go with them. We believe
this system can also be modified to use different initial data
sources, be it text sources for the lyrics or music sources
for the music style. We chose academic papers as input due
to their diversity and availability. Furthermore, due to their
usual seriousness, it was our opinion that it would be amus-
ing, not only for readers but also for authors, to see these
works in a different light.

We believe that this system has value in being an inter-
esting novel idea, and for creating a playful experience with
something that, generally, very much lacks fun and playful-
ness.

We also see the proposed approach applicable in multi-
ple areas. The most interesting for us would be in games:
we think that our system (or a fork of it) could be used
to improve player experience. For example, to create con-
tent for games where story is expressed through music (e.g.
Karmaflow (Karmaflow ) or Brutal Legend (Studio 2009)).
Or by increasing re-playability and personalized content cre-
ation in games where music plays an important part in, either
as ambiance or gameplay. Some adventure games even use
music in small game sections to remind the player of the
game’s story or to provide a little comic relief moment (e.g.
Deponia (?)).

This paper is divided in six sections. The following sec-
tion (2nd) will describe background theories that we have
adopted and the state of the art of research in those par-
ticular areas. The third and fourth section will present our
approach for music and lyrics generations respectively, giv-
ing special attention to our algorithms’ behaviours. Then we
will present our results and, finally, section six will discuss
these and expose our conclusions.

Background

Lyrics generation

Natural Language Generation, a sub-field of natural lan-
guages processing, has been the focus of several studies
across the years. It includes creating text which is contex-
tual, grammatical and lexical coherent, and is strongly re-
lated to poetry and lyrics generation.

One of the most important works in poetry generation
uses a grammar-driven approach to create poetry, out of
a given subject, that is metrically constrained. This work
define three evaluation criteria to poetry generation: gram-
maticality, meaningfulness and poeticness(Manurung 2004).
Grammaticality means that the poetry/lyrics must follow lin-
guistic conventions dictated by a grammar; meaningfulness
states that the work must convey a context or message that is
understandable; and poeticness involves poetic aspects, such
as rhyme and rhythm.

A different approach uses a corpus-based approach to
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write lyrics about an user-specified theme (Toivanen et al.
2012; 2013). It copies a piece of text (in this case, a poem)
and iteratively alters it, changing the words one by one.
These words are extracted from a graph and are morpholog-
ically similar to the original. The novelty of the final piece
is evaluated by calculating how many words were changed.

Oliveira’s “PoeTryMe”(Oliveira 2012; Oliveira et al.
2014) uses semantic networks, generation grammars and
sets of relation instances to create sentences. Nguyen and
Sa generate rap lyrics, by extracting words from a database
of real rap songs, and a rhyming database produces words
that rhyme with the extracted ones (Hieu Nguyen 2009). Fi-
nally, they combine them into a fixed song structure.

There has been a great amount of work dedicated to cre-
ate Tamil lyrics. Tamil is an old language spoken mainly
in Tamil Nadu and Sri Lanka, with literature that goes back
two thousand years(Suriyah et al. 2011). Sridhar et al(Srid-
har et al. 2014) use the ontological meaning of a scene and a
N-gram based approach to generate verses in this language.
It identifies syllable patterns for the lyrics, and then create
sentences that match said patterns.

Case-based reasoning has also been applied by the COL-
IBRI poetry generator to generate poetry from text provided
by the user (Dı́az-Agudo, Gervás, and González-Calero
2002). The quality of this approach results rely heavily on
the quality of the original user-given text.

It is also possible to find applications online for this pur-
pose. Country Western Song Machine1 randomly creates
country musics using a templates, and can output a very
large amount of possible combinations. The Romantic Love
Poetry Generator2 uses pre-defined templates and user in-
puts to create poems. The words simply replace specific
spaces in the template. Similarly, the Song Lyrics Gen-
erator3 allows the user to select a style (e.g. “Freestyle”
or “Love song”) or an artist (e.g. “The Beatles” or “Katy
Perry”), and to fill a form, that varies according to the
style/artist. The form answers replace words in real music.

Our method differs from previous work in the sense that
we extract structures from real songs, unlike (Oliveira 2012;
Oliveira et al. 2014) extraction of words or the use of tem-
plates. Thus, we believe our system can allow for more di-
versity and expressiveness. Also, none of the cited works
use the same input as we do (scientific papers), and very few
try to parse information about the real-world into lyrics.

Music generation

Procedural generation of music content is an interesting field
which has received much attention over the last decade. Ex-
amples of research on this topic range from creating sim-
ple sound effects, to avoid repeating the same clip over and
over, to create even more complex harmonic and melodic
structures (Shaker, Togelius, and Nelson 2014). While many

1Country Western Song Machine, 1998,
http://www.outofservice.com/country/

2Romantic Love Poetry Generator:
http://www.links2love.com/poem generator.htm

3Song Lyrics Generator: http://www.song-lyrics-
generator.org.uk/

games use some sort of procedural music structure, there are
different approaches (or degrees), as suggested by Wooller et
al.: transformational algorithms and generative algorithms
(Wooller et al. 2005).

Transformational algorithms act upon an already prepared
structure, for example by having the music recorded in lay-
ers that can be added or subtracted at a specific time to
change the feel of the music (e.g., The Legend of Zelda:
Ocarina of Time (Nintendo 1998) is one of the earliest
games that used this approach). Note that this is only an
example and there are a great number of transformational
approaches (see GenJam (Biles 1994) and Music Sketcher
(Abrams et al. 1999)), but we won’t discuss them in this
paper.

Generative algorithms instead create the musical structure
themselves, which increases the difficulty in maintaining
consistency between the music and the game events. This
approach usually requires more computing power as the mu-
sical materials have to be created on the fly. An example
of this approach can be found in Spore (Maxis 2008): the
music written by Brian Eno was created with Pure Data,
where many small samples created the soundtrack in real
time. Also note that hybrid approaches are possible, see Ex-
periments in Music Generation (Cope 1996)

In this project we adopt the generational approach, al-
though limited to the generation of melodies. The moti-
vation for us choosing this approach is that we believe we
can create more novel content this way, instead of applying
transformations to already existing content. Another pitfall
of the generational approach is the amount of time neces-
sary for generating the content; in our case, as the evolution
of the Markov chains that will generate the melody is done
a priori, we have a very fast (and inexpensive) generation of
melodies.

Lyrics generation

The lyric generation process used in this approach takes as
input an academical paper in PDF format, and output a series
of verses. It has two main steps: pre-processing and lyric
generation.

Pre-processing

Pre-processing involves populating databases of words (and
their stems) and song structures. It needs to be executed only
once, prior to the first lyric generation. Firstly, the word
database was populated using Google searches for lists of
word types (e.g. verbs, prepositions, pronouns). For each
word in the database, its stem value was also extracted using
SnowbalStemmer(Porter and Boulton 2001).

Afterwards, it was necessary to populate the structure
database. By structure we define a group of word types in
sequence that represent a sentence. For instance, the struc-
ture for “We see our big, blue sky” would be “Pronoun verb
pronoun adjective comma adjective other”. Possible values
for the structure are: verb, pronoun, preposition, adjective,
adverb, conjunction, other, onomatopoeia, comma and dot.
“Other” represents both nouns and words that may not fall
into other categories. We chose to use it, instead of “noun”,
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because it allows a higher level of diversity while choos-
ing the word. This way, not only can we choose a noun,
but also any of the other categories previously mentioned as
well. Onomatopoeia is an other value with less than three
letters (e.g. “Po-po-poker face” would be represented as
“onomatopoeia onomatopoeia other other”). These types are
represented, in code, as integers.

To identify structures in real songs, a group of 50 songs
were analysed. These songs were selected from famous
artist (e.g. Rihanna, Michael Jackson), using as criteria that
all songs need to be in English and there cannot be more
than 3 songs per singer. For each sentence in the lyrics, the
algorithm extracted its equivalent structure which is then in-
serted into the structure database.

Lyric generation

The process for generating lyrics is divided further into three
steps: parsing and analysis of paper, creation of song struc-
ture, and lyrics word generation.

In the first step, the algorithm receives a PDF file con-
taining the paper and extracts its words using the PDFBox
library4. Then, the text is processed, removing everything
before the abstract and after the references. This aims at
avoiding inputting data that will not significantly improve
the user’s understanding of the paper. If the system cannot
identify the abstract or the introduction (in the absence of
the abstract), it will start at the very beginning.

In order to evaluate the importance of each word in the
text, a word count is performed. It uses the stem value of
the word, and is calculated as the sum of all occurrences of
words derived from this stem, in the text. For instance, as-
sume that “wait” appears once and “waiting” appears twice
in text. The count would be 3 for both of them, because they
have the same stem “wait”. Also, each word was added to a
collection of values types present in paper, according to their
value type (see Section Pre-processing).

Secondly, the algorithm randomly selects a number of
structures from the database. They will represent the total
structure of the music, i.e. each structure will represent the
structure of a line in the final lyrics. For the purposes of this
paper, all songs have a total of 24 structures, divided into 6
groups of 4 structures each.

Finally, for each structure chosen, a sentence is created ac-
cording to type values in the structure. Comma and dot val-
ues are translated directly into “,” and “.”. Types verb, pro-
noun, preposition, adjective, adverb and conjunction trig-
ger a roulette selection among all words from that type that
appeared in text. This selection uses the word count as
probability. Onomatopoeia inserts either “aah”, “ooh” or a
random word from text with its start repeated (e.g. “ta-ta-
taxonomy”). Lastly, other trigger a roulette selection with
all words in text.

Music generation

To create a melody we decided to use two Markov chains.
These are mathematical systems that undergo transitions

4PDFBox is a Java open-source PDF library:
https://pdfbox.apache.org/

from one state to another on a state space (Norris 1998). A
Markov chain is a stochastic process with the Markov prop-
erty: the next state to be selected only depends on the previ-
ous one.

Markov models can be trained using existing sequences
of events (e.g., words in a book, or notes in a musical piece)
and, once trained, be used to generate a new sequence of
events statistically similar to the training data. It is highly
unlikely for a Markov model to recreate an exact training se-
quence as it contains an intrinsic stochastic element. How-
ever this depends very much on the training data. An im-
portant limitation of Markov chains is that they capture sta-
tistical similarities only on a local scale, and not on a high
level; this means that we lose information of structures like
repetition of musical phrases in different part of the compo-
sition. Nevertheless, even with this disadvantages Markov
chains have classically been extensively used for the pur-
pose of melody generation, as they can be trained easily to
create sequences of notes (Ames 1989).

Examples of research that use Markov chains and Evo-
lutionary Algorithms are Manaris et al.’s Monterey Mirror
(Manaris, Hughes, and Vassilandonakis 2011) and Bell’s
work (Bell 2011). Manaris’ work focuses on evolving
Markov chains to obtain the rare chains that will with high
probability reproduce high-level structure (repetition of en-
tire phrases or in general more structured music) while Bell’s
work uses interactive evolution to produce chains that create
music pleasant to the listener. These are much more complex
works that generate complete music and not just melody, as
in our case.

There are some reasons why we have decided to approach
the creation of these Markov chains through such an un-
orthodox method of using evolutionary algorithms (unortho-
dox only in this particular application of course). Using
traditional (EM-based) training would have been faster and
easier, yet it is in its nature to lead to an overfitting of the
chain to the training set. What we hope to achieve through
our approach is obtaining a chain that would reflect the char-
acteristics of the training set while avoiding overfitting: in
short obtaining a chain that reflects the characteristics of the
training set while maintaining some diversity.

Another interesting feature that this approach gives us is
introducing constraints through the fitness function. This
gives us the option of tuning our chain in more interesting
ways (of course this means in parts deviating from the train-
ing set, but that’s exactly the point). These constraints could
be musical rules, for example avoiding too large intervals
between notes. We discuss these in the fitness function sec-
tion.

Markov chains and Representation

In our approach we decided to use two Markov chains: one
to determine the notes of our melody and another one to
select the duration of these notes. Markov chains can be ex-
panded to include some memory of the previous states by
considering as state not only the current one but some of the
previous ones. The amount of previous states we “remem-
ber” is called order of the Markov chain; if we consider a
chain of order 2, it means that every state is a couple con-
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Figure 1: Fitness changes in the notes Markov chains pop-
ulation during 5000 generations. In black is represented the
fitness of the best individual of the generation, while in blue
is the average fitness of the population.

sisting of the previous note and the current one. In our final
implementation we decided to use an order 2 chain.

We implemented a Markov chain as a hash-map. Labels
(or keys) are the name of the state (the current note), and
values are another hash-map containing the probabilities of
choosing a note (transition) from the current state. We also
adopt this hash-map as our genotype. You could visualize
it as a labelled bi-dimensional matrix, with as labels states
and transitions, the next state can be calculated as: (previous
state - older note) + transition.

The state space can be calculated as n!
o!(n�o)! where n is

the amount of notes we consider and o is the order of the
chain. In the case of our order 2 chain, where we consider
3 octaves (36 notes) it would be 36!

2!(36�2)! = 630. To re-
strict this space we apply restrictions to remove states which
we consider not to be good, in particular all the states that
contain a transition between notes with intervals higher than
an octave. To avoid leafs in our chains we do not allow for
allowed states to have a 0 probability to move to any other
(allowed) state.

To extract musical information without be restricted by
the key of the song, we have our Markov chain for note gen-
eration work by degrees. In music degree is defined as the
position of a note in a specific key’s scale: for example a C
can be considered differently depending what is the key of
the song, in a C major song it will be a Ist degree, while in
a G major song it would be a IVth degree (as the scale of G
would be [G A B C D E F]]).

Evolving Markov Chains

We evolved our Markov chains using a genetic algorithm.
The parameters used for our final chains are:
• Population size = 200
• Generation number = 5000
• Elitist factor = 1/4 (this means that we keep the best 1/4th

of the population in the next generation)

Figure 2: Fitness changes in the durations Markov chains
population during 5000 generations. In black is represented
the fitness of the best individual of the generation, while in
blue is the average fitness of the population.

• Mutation chance = 10%
The procedure to create the new generation is to copy to the
new one the best individuals of the previous, then we fill the
rest of the population with offspring of randomly selected
individuals from the previous generation. Finally each indi-
vidual has a chance of mutating.

To create offspring we use a one-point crossover ap-
proach: we select a random index of the states in our Markov
chain (hashmap) and we create two new chains, the fist will
contain the values of the first parent until the index and the
values of the second parent for the following ones, while the
second one the opposite. Because of the way we are repre-
senting the chains all of them always have the same amount
of states, so the only thing changing while doing crossover
are transition probabilities between states.

We are aware that using crossover will sometimes lead
to broken Markov chains, with some orphan sub-chains
that will result unreachable. This is an inherent issue with
crossover, but we assume that a broken chain with high fit-
ness will still present the characteristics that we desire and
through our elitist strategy we will be able to preserve the in-
dividuals that presents good gene combination, be they bro-
ken or not. Vice versa, a broken chain with low fitness has a
higher chance to be replaced.

To mutate a chain we consider a chance of
1

numberOfStates for each state to randomize it’s transi-
tions; this way we will statistically only have one state
changing when mutating the chain, but still allowing for
bigger mutations (or no mutation) to happen.

Fitness function

The fitness function we have chosen to apply for the evolu-
tion of the chains can be described as:
f =

X
Si2Songs

PredictRew(Si)� ConstraintsPen

where Songs is a set of melodies from existing songs,
PredictRew(Si) is defined as the probability of the Markov
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Figure 3: Output of program the program for a paper by Togelius et al.(Togelius et al. 2011). a) Actual lyric generated. b)
Random structure used, represented in code. c) Same structure, in natural language.

chain we’re currently evaluating to predict the melody in the
song Si and ConstraintsPen is the penalty assigned to the
chain according to the constraints we want to apply to it.

By considering Si = {n0, n1, ..., nk}, where ni is the i-th
note in the melody and k + 1 is the amount of notes in the
melody, we calculate PredictRew(Si) as:

PredictRew(Si) =
X

{ni,ni+1,ni+2}⇢Si

P (ni+2|ni, ni+1)

where P (ni+2|ni, ni+1) is the probability that the Markov
chain we are evaluating presents for the transition ni+2 from
the state (ni, ni+1). To make a practical example, if the song
presents a sequence of the type (C,D,E), the fitness of the
chain will increase by the probability it has of making the
transition E from the state (CD).

ConstraintsPen is composed by two rules we intro-
duced to eliminate cases we consider musically uninterest-
ing:

ConstraintsPen = BigLeap+ SameNoteLoop

where BigLeap is defined as:

BigLeap =
X

nk|(ni,nj)2Chain
P (nk|(ni, nj))

if |(nk � nj)| > 12

So it will increase for every transition that appears in the
chain that presents a voice movement bigger than an octave
(e.g. (C1, C1) ! D2 ). SameNoteLoop is instead defined
as:
SameNoteLoop =

X
ni|(ni,ni)2Chain

P (ni|(ni, ni))

This way we will have a higher penalty for transitions that
keep us in the same state when the state is comprised of a
couple of identical note (e.g. (C1, C1) ! C1 ).

The fitness function for the chain that will determine the
duration of the notes (instead than the notes themselves) is
evaluated the same way, but without ConstraintsPen, as
these constraints are pitch specific.

Our Songs set consists of 20 songs taken from a list of
most popular pop songs. It presents a variety of styles, but
all the songs are in a major mode. This limits our generation
to melodies in major mode, while for minor melodies we
would have to evolve a new chain using a set of songs in mi-
nor key. This is necessary because the intervals between the
notes in a major and minor scale differ, making us hypoth-
esize that our chain will only be able to produce melodies
appropriate for the key of the songs used to calculate the
fitness.

The elements of the set are the voice track from the songs;
we have isolated the voice melody and stored it in a MIDI
file, from this file we extract the degrees of the notes of the
melody (by considering in which key the song is) and the
duration of these notes. We will then use these values in the
evaluation of our chains (remember that to abstract the key
our chain work by degrees).

From text to melody

To create a melody to go with some particular lyrics we our
method is:

1. Find the total amount of “syllables”. In this case we con-
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sider a simplistic concept of syllable: we consider a sylla-
ble for every time we encounter a vowel (groups of vowels
are considered as part of the same syllable).

2. Create as many notes as the syllables in the lyrics using
the notes chain

3. Define the duration of the notes using the durations chain
4. Add rests after each word (with a 30% chance that there

is going to be no rest)
Finally, for easy usage and visualization of the melody we

produce a midi file representing our melody.

Results

Lyrics

Figure 3 shows two verses of lyrics generated using To-
gelius et al. paper (Togelius et al. 2011), and it’s basic struc-
ture. It is possible to notice some degree of understanding in
the sentences, and diversity in word choices.

Figure 4 shows a small part from lyrics generated by the
system using Darwin’s paper (Darwin 1991), with melody.
Another verse from the same work goes as follows:

Natural who in, throw all selection
Re-re-related nature relations law on any
Cl-cl-class that false but it inhabitants generic
It natural origin its, species to sp-sp-special and on its
.
That more be all, – reflecting
Each relations on these – natural
Each dr reflecting gr-gr-grouping circumstances
Selection introduction

Figure 5 show some verses from a song generated with
this paper. In a different iteration, the following verses were
generated:

Parent chain mutating
Another should, we pre-processing musical be with pr-

pr-pre-processing states
That songs structures that, sridhar, other possibility use
Im-im-improve, pr-pr-priori, ad-ad-add, im-im-

improved, rh-rh-rhyming, on-on-on, ooh
’
Papers to music lyrics generation, figure
Generation that, consider, generate, correct, with we is

using
Restrict input and note statistical final as music
Create it, approaches, create, be, into it chains gener-

ated

Music

In this section we’ll try to analyse some of the melodies our
generator produced.

In figure 4 we can see an example of a melody generated
by our system from Darwin’s paper On the origin of species
by means of natural selection, the generation of melodies is
very fast, as the training is done a priori. Interesting to note
is how our generator doesn’t create melodies that strictly
stick with the diatonic scale but introduces alterations.

In the figure we can see how in the fifth bar it lowers the
VII degree to a B[, and more interestingly how it presents
the note again on a different octave. Looking at the other
notes played in the chord we can recognize how the chord
underlying the measure could well be a C7 with the omission
of the V degree [C E B[]. While this chord goes out of the
normal key it is not uncommon to use it in this key and it
doesn’t necessarily signify a change of key.

Another example generated from this paper can be ob-
served in figure 5. This score shows even more alterations
than the other one with a more dissonant and almost jazz-
like feel. Interesting to note how musical passages seem to
emerge and be repeated with alterations: for example the
succession E-D-C (bars 1, 2 and 3, with a rest in the latter)
and the succession C-C-B[-C] (repeated two times in bar 4
and inverted and transposed just afterwards becoming C-C-
D[-C].

Nonetheless, we haven’t conducted an evaluation study on
the melodies produced so we cannot make any statement on
how interesting or musically pleasing the melodies are to the
listener. Also we believe that to achieve a more interesting
result we would need a harmonic framework to give more
musical context to the produced melody; as we discussed in
this section we can see some passages that seem to present
some chord, but that is a purely emergent behaviour.

Discussion

This section will discuss our main findings in this project,
and final considerations about them and the work in general.

Lyrics

Regarding lyric generation, although our approach may be
perceived by some as simplistic, we believe it is capable
of creating relatively fluid and interesting lyrics. The sen-
tences structure seem somewhat sensible, although there are
definitely space for improvement. Rhyming also happens
in some moments, however it does occasionally, as the cur-
rent version of the system cannot guarantee rhyming. We
intend to correct it in further implementations, perhaps us-
ing a rhyming library or accessing a service online to check
possible words. This would permit to create musical rhyme
patterns (e.g. ABAB or AABB, where A and B represent
rhyming endings of sentences). The size of sentences, too,
varies, and a syllable measure constraint could help improve
it.

Furthermore, it is possible to understand, to some extent,
basic ideas transposed from the paper to lyrics. Some words
that are clearly significant in the paper also appear in the
lyrics. But there is no perceptible line of thought. It would
be interesting to take the structure of the paper into account
in the generation, by changing the probability value of words
according to the current verse number. For instance, in the
first verse, words from the paper’s introduction would be
more likely to be chosen than others. We would also like
to try different techniques, such as an evolution strategy, to
see if the outcome presents higher or lower semantic mean-
ing in comparison to this approach. Further mechanisms for
dealing with the meaningfulness of lyrics need to be applied.
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Figure 4: Excerpt from the score generated from Darwin’s paper On the origin of species by means of natural selection (Darwin
1991) C major.

Figure 5: Excerpt from the score generated from this paper in C major.

Music

The main point we have to discuss is our choice of adopt-
ing evolution of Markov chains instead of the more com-
mon method of training them. While this method is more
time consuming, we believe it is interesting. There is an ar-
gument of novelty, because the method of evolving Markov
chains for music production, while not completely new, is
not very explored.

As we stated at the beginning of the Music Generation

section, we believe that this method results in lower de-
pendency on the training set than traditional training. We
think that, this way, our chains should be able to express a
greater music space while maintaining some structure from
the training set. One cost we expect to have to pay is a
smaller rate of emulation of the training set style. Sadly, at
the moment we don’t have enough data to support this state-
ment, but an evaluation study is already planned. Another
pitfall is the possibility of getting in a part of the melody
space where there is not enough information to create mu-
sically interesting melodies, degenerating in the worst case
scenario to a random search.

As seen in section , we see some interesting emergent
behaviour (like the almost key changes and the jazzier sec-
tions) which might hint to how the Markov model might not
be very effective at producing a coherent whole.

Still, we believe that our approach will be able to cap-
ture the style of a specific genre/style of music with a large

enough corpus of songs to use in our fitness function. We
have to recognize how we might have achieved better re-
sults by having a bigger training set, but we believe we have
already achieved some very interesting results.

Finally by observing the increase of the fitness function of
our evolved population in Figures 1 and 2 we notice how the
duration chain evolves much faster and with higher fitness.
This is due to the smaller space we consider for this chain,
which is less than half of the notes chain’s one.

Conclusions

We have presented a method for creating melody and lyrics
using real-world data. To do so, we developed a musical
generator that evolves Markov chains to create melodies,
and a lyric generator, that extracts content from academi-
cal papers and transforms them into songs. We have a fully
functional system that complete both tasks, taking an aca-
demic paper in PDF format and outputting a melody and the
according lyrics. Our generator seems to produce interest-
ing music/lyrics combinations, but we still have to conduct
further studies to prove their interestingness. The generator
also still shows much room for improvement, as discussed
previously, and future work will be in both fine-tuning the
evolutionary approach and introducing more features in the
lyrics generation, such as rhyming, stricter metric structure
and improved semantic content transfer from the original pa-
per. Still, we need to recognize that there might be issues
inherent to using Markov chains for melody production that
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might not be resolved, like insuring the production coherent
whole.

Ultimately, we believe think these techniques might be
used in music-based games to add and customize content.

References

Abrams, S.; Oppenheim, D. V.; Pazel, D.; Wright, J.; et al.
1999. Higher-level composition control in music sketcher:
Modifiers and smart harmony. In Proceedings of the ICMC.
Ames, C. 1989. The markov process as a compositional
model: a survey and tutorial. Leonardo 175–187.
Bell, C. 2011. Algorithmic music composition using dy-
namic markov chains and genetic algorithms. Journal of
Computing Sciences in Colleges 27(2):99–107.
Biles, J. 1994. Genjam: A genetic algorithm for generating
jazz solos. In Proceedings of the International Computer
Music Conference, 131–131. International Computer Music
Association.
Brown, D. 2012. Mezzo: An adaptive, real-time composi-
tion program for game soundtracks. In Proceedings of the
AIIDE 2012 Workshop on Musical Metacreation, 68–72.
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full face po-
etry generation. In Proceedings of the Third International
Conference on Computational Creativity, 95–102.
Cope, D. 1996. Experiments in musical intelligence, vol-
ume 12. AR editions Madison, WI.
Darwin, C. 1991. On the origin of species by means of
natural selection, 1859. Murray, London.
Dı́az-Agudo, B.; Gervás, P.; and González-Calero, P. A.
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Abstract

This paper details an expert cocktail generation system.
After using expert knowledge to break down cocktails
into eight categories, the system generates cocktails
from a particular category using a context-free stochas-
tic grammar. These cocktails were then evaluated by
human participants in a research setting. Participants
evaluated the cocktails on the basis of quality, novelty
and typicality to check the creative potential of the gen-
erator’s output.

Introduction

Some domains, such as music and visual art, have been
studied in depth by the computational creativity and pro-
cedural content generation (PCG) communities. Yet other
domains, such as preparing food, have not. Part of this is
that food preparation is a complex task, not only in dealing
with which particular combinations of ingredients should be
used, but also how those ingredients should be prepared and
transformed into a finished product. Even simple domains,
such as chocolate chip cookies, can have many ingredient
and preparation step permutations (Kenji López-Alt 2013).
However, there is a strong interest in artificial chefs, servers
and bartenders, as evidenced by the steady rise of restau-
rants featuring robotic servers and bartenders (Sloan 2014;
Kross et al. 1976) as well as home meal serving and bartend-
ing robots (Glass 2014; Monsieur, LLC 2015). The next step
for this niche mechanization of the food and beverage indus-
try is to implement an AI system that can create new dishes
or drinks to prepare for patrons.

A factor analysis on the Creative Achievement Question-
naire (CAQ), a creativity assessment test, revealed three cat-
egories of creative achievement: Expressive (Visual Arts,
Writing, Humor), Performance (Dance, Drama, Music),
and Scientific (Invention, Scientific, Culinary). This result
shows that culinary creativity falls into a similar domain as
scientific and innovative creativity (Carson, Peterson, and
Higgins 2005). This implies that techniques used in creative
recipe generators have applications in problem solving and
research direction. Therefore, the development of creative
recipe generation and other culinary arts may have applica-
tions for more general-purpose problem solving AI.

We can break recipes into two parts: the static ingredi-
ent list and the dynamic preparation instructions. The in-

gredient list is composed of the ingredients that the recipe
will use; the preparation instructions are how those ingre-
dients are transformed into a final dish. However, there are
a very large number of potential ingredients that could go
into any dish, and even more ways those ingredients can be
combined to become a final product. Therefore, work with
smaller, less complex domains is needed to gain insight into
the problem of an artificial chef. One such useful domain
is mixed drinks, as the potential ingredient space for cock-
tails is smaller than that of culinary dishes and the mixing
instructions are far simpler, while still retaining a lot of the
interesting complexity. As such, we developed an expert
system for cocktail generation and evaluated the artifacts it
generated to start understanding the nature of computational
cooking.

Related Work

PIERRE (Morris et al. 2012) uses a genetic algorithm to
generate crock-pot recipes from a corpus gathered from var-
ious websites. The fitness function is based around novelty,
trying to maximize the number of rare n-grams in a recipe.
Recipes have also gotten attention from case-based AI plan-
ners, such as CHEF (Hammond 1986). Both these genera-
tors have a high chance to output a ‘bad’ recipe. PIERRE
makes no claims about the quality of its output, and CHEF
needs to learn from bad examples in order to create good
ones. A similar branch of research to this is JULIA (Hinrichs
1992), which uses case-based design techniques such as case
adaptation to determine how to best design and present a
meal. Our work does not need to learn from ‘bad’ examples
and attempts to always produce a believable drink.

Pinel and Varshney have worked on a recipe generator
(Pinel and Varshney 2014), which unlike PIERRE or CHEF
does not deal with a particular style or type of cooking. Us-
ing a cognitive model of creativity and a large knowledge
base built from scraping recipe wikis, they created a mixed
initiative generator that produces ingredient lists and rough
steps to completing a recipe. This work is part of a larger
system by Pinel, Varshney and Bhattacharjya (Pinel, Varsh-
ney, and Bhattacharjya 2015) that generates recipes by min-
ing data from the Wikia recipe repository and Wikipedia to
build an extensive knowledge base of recipes. From there,
the system uses a mixed initiative approach, in which a new
recipe is generated with user-selected categories. Varshney
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et al. (Varshney et al. 2013) discuss many of the difficulties
in working with recipe generation, emphasizing that how
something tastes is actually the result of all five classical
senses working together, plus several psychological, neuro-
logical and social phenomena.

Cocktail generation has been done, although not on any
formal level. The Mixilator (Haigh 2004) is an online cock-
tail generator based on the writing of mixologist David Em-
bury. The Mixilator picks a random ingredient from each of
the three categories defined by Embury, and makes a prede-
fined cocktail from it, with mixing instructions hardcoded.
Although it uses an impressive amount of ingredients, the
generator is highly constrained—Embury believed all drinks
should contain at least three ingredients, so the Mixilator
can never create a gin and tonic, for example. The Mixilator
also has no knowledge about how combinations of ingredi-
ents function. It assumes that, as long as it picks from each
correct category, the resultant cocktail will be good. Yet,
as the authors point out, no considerations for quality went
into its development. While investigating the Mixilator in
writing this paper, ingredient combinations like lime sher-
bet and maple syrup were suggested for cocktails. Another
drink called for “2 drops of liqueur” without ever specifying
which flavor of liqueur. This makes the Mixilator’s output
appear more whimsical than structured cocktail generation.
While related investigations like the Mixilator are hobbyist
projects, and some large scale recipe generators give a pass-
ing glance to the cocktail domain, we aim to be the first to
take a domain sensitive, computational creativity approach
to cocktail generation, and maintain a critical eye towards
drink quality and expressive potential.

Mixologists have been inventing new drinks in popular
literature. One of the first books on mixology as an art,
The Fine Art of Mixing Drinks(Embury 1953), by David
Embury, details a basic ratio to follow for cocktails, as
well as several ingredient categories to use. More re-
cently, DIY Cocktails (Simmons 2011), details several ba-
sic ratios for a wide variety of drinks. However, mixology
books commonly focus on presentation or are just a com-
piled list of cocktail recipes(such as (Regan 2003; Joseph
2012)). Sadly, mixologist blogs ((Bovis 2015; English 2015;
Jamieson 2015), for example) also tend to focus on recipe
compilation or product review rather than cocktail theory.

Computational creativity is a vibrant field, with a plethora
of definitions, theories and evaluation methods for creative-
ness in computer programs. Much modern work stems from
three techniques (Boden 1998) and their formalisms(Wig-
gins 2006) for establishing creativity in AI: by producing
novel combinations of familiar ideas, by exploring potential
conceptual spaces or by making transformations that allow
the generation of previously impossible ideas. These relate
to creativity in the process of artifact generation. The other
side of the coin refers to creativity as a quality in gener-
ated artifacts (e.g. the difference between “this painting was
made by a creative person” vs. “this painting is creative”).
In these terms, metrics for evaluating the creativity of gen-
erated artifacts have been proposed (such as (Pease, Winter-
stein, and Colton 2001)), and we evaluate our cocktails on
the categories of quality, novelty and typicality as defined in

(Ritchie 2007).

Expert System Constraints

The cocktail generation system defined here is derived from
the rules and opinions of two primary texts: The Fine Art of
Mixing Drinks (Embury 1953) and DIY Cocktails (Simmons
2011). Both texts treat cocktail creation as a process, and
outline several basic rules to follow in the terms of ratios
and ingredient categories. In addition, they provide mixing
instructions for various categories.

Multiple source texts were used to try to minimize the
amount of author bias in the system. The Fine Art of Mixing
Drinks is an older text. Several common modern cocktails
are impossible to create by following its rules alone, and to-
day there are far more popular cocktail ingredients than there
were in Embury’s time. By augmenting Embury’s rules with
a more modern text, the generator can be more expressive
and better reflect modern cocktail design aesthetics.

In addition, DIY Cocktails (Simmons 2011) gives a theo-
retical basis for which ingredients work well together. This
helps the cocktail generator avoid various pitfalls in ingre-
dient choice (such as combining a citric acid and a cream,
which will curdle the cream), and also be smarter in select-
ing which ingredients to use to create a cocktail.

Finally, there were some constraints set at the discretion
of the authors. Shooters and shots are not considered cock-
tails, and are ignored. In addition, the generator does not use
overproof spirits (those that contain more alcohol than proof
spirit), as they can be difficult to acquire.

Cocktail Properties

We divide a recipe into two parts: the mixing instruc-
tions (dynamic instruction) and the ingredient list (static ele-
ments). Cocktail mixing instructions are either derived from
the ingredients used in the cocktail or previously decided
steps in the mixing process. Lighter ingredients (juices and
spirits) only require stirring; heavier ingredients (syrups and
purees) may require shaking or rolling in a cocktail shaker.
There are a few generally uncommon preparation instruc-
tions that are more common to cocktails, such as muddling
(mashing the ingredient in the bottom of the glass). As it
makes no sense to muddle an ingredient in a shaker for mix-
ing and/or rolling (the straining head of the shaker would
keep the muddled ingredients in the shaker and not in the
glass), step order occasionally matters. However, someone
could shake various juices and pour them into an ingredient
they had muddled, so keeping track of what process is being
applied to which ingredient is important. There are several
other ways to mix a drink that deal with spectacle: floating
a high proof liquor on the top of a drink before setting the
liquor on fire, or floating several ingredients on top of each
other to provide a layering effect. These techniques do not
have a strong bearing on flavor, so they are not considered
by the cocktail generator.

The ingredient list is more complicated. Depending on
the source, the raw ingredients of a cocktail can either have
many very fine qualities (such as undertone, notes or hints)
or be very basic (sweet, sour). This makes it difficult to
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Figure 1: System Architecture. A grammar is chosen from
a list of various cocktail grammars and then expanded as a
set of symbols, from functional to terminal. For some ex-
pansions, symbols are built on the fly by requesting infor-
mation from an external data structure. Once the grammar
has expanded to terminal symbols, it is rendered as a human
readable recipe and presented to a user.

Figure 2: Three general categories of grammar expansion.

ascertain a good top-down or bottom-up model of how a
particular ingredient tastes—do notes of elderberry work
well with sour? Should undertones be sweet or smoky or
smoky-sweet, and does any of that work well with strawber-
ries? However, this also is not how common sense reason-
ing about taste functions. When someone hears the ingre-
dients in a drink (or dish), they recall what each ingredient
tasted like in the past, and make some guesses as to what
they might taste like together. The cocktail generation sys-
tem was built on this basic reasoning concept. Rather than
try to accurately model how each ingredient tastes, the gen-
erator keeps track, on an abstract level, which ingredients
work well together, and then creates drinks with combina-

tions of good ingredients. These ingredient pairings were
built based on expert knowledge, rather than a database or
chemical hypothesis, as in (Ahn et al. 2011).

In addition, the cocktail generation system breaks cock-
tails into eight categories. Each of these categories is based
around a particular set of exemplars in cocktail literature.
These exemplars either all share an ingredient category
(such as the use of cream for drinks derived from a White
Russian) or a particular ratio (2 to 1 ratios for drinks de-
rived from a Gin and Tonic). It is important to note that
all of the International Bartenders Association official cock-
tails roughly fall into these eight categories. Although this
categorical system does not perfectly cover every potential
drink, it encapsulates most of the space of potential cock-
tails.

Generator Architecture

The cocktail generation system has four main components:
a set of stochastic, context-sensitive cocktail grammars, an
engine to expand the grammars, a set of outside data struc-
tures used to build grammar symbols and a text rendering
system to present generated recipes, as seen in Figure 1. All
four of these components work in a serial fashion to generate
a new cocktail; no part of the system runs in parallel. One of
the main difficulties when designing the cocktail generation
system was the amount of symbols in the grammar. There
are at least 260 symbols, so writing rules out directly would
have taken a large amount of human authoring time.

Cocktail Grammars

Following the research on mixology, most cocktails can be
broken down into eight categories of drinks. The categories
are all based on exemplar drinks; the Old Fashioned cate-
gory uses the same ratios present in an Old Fashioned, for
example. Sometimes a drink is considered an exemplar be-
cause it has a unique and useful ratio (the margarita’s 3 parts
strong : 2 parts sweet : 1 part sour), or a particularly im-
portant ingredient (the cream in a White Russian). Usually,
a category also has a trend: Old Fashioned based drinks al-
ways have muddled ingredients or syrups, while Margarita-
like drinks always use a liqueur as one of their sweetening
agents. As such, to capture these trends, a unique grammar
needs to be built for each drink category. The categories are
Old Fashioned, Martini, White Russian, Margarita, Daiquiri,
Mai Tai, Gin and Tonic, and Mojito.

All the grammars use the same set of symbols, but each
category has its own unique production rules and con-
straints. Several rules were reusable (a single context free
replacement rule, for example), however, each grammar has
several custom, unique rules.

There are three basic ways that a grammar expands, as
seen in Figure 2. The first two examples shown here are
deterministic, although they both have stochastic variants
where a random choice is made from a list of potential sym-
bols. The last example is always stochastic. First, grammar
symbols can expand without considering what other sym-
bols are currently in the grammar, commonly referred to as
context-free expansion. This expansion is shown at the top
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Figure 3: Overview of database expansion.

of the figure, where an expansion function, f(), takes an in-
put grammar, the symbol to be expanded (‘A’) and the sym-
bol to expand to (‘B’) and returns an output grammar where
‘A’ has been replaced with ‘B’. Second, grammar symbols
sometimes do care about context, and look at the other sym-
bols in the current string before expanding. If certain sym-
bols are present, then that symbol expands differently. This
is referred to as context-sensitive expansion. This expansion
is shown in the middle of Figure 2. The expansion function,
g(), takes an input grammar, the symbol to be expanded (‘B’)
and the symbol to expand to (‘D’). g() scans the input string,
and since the grammar contains both B and C, transforms B
to D. Unlike other context sensitive grammars, the C’s lo-
cation in the string is unimportant—if the string contains a
C, B will transform to D. Finally, some rules, instead of go-
ing from one symbol to the next, instead request an external
structure to supply the next symbol. These rules can be con-
text free or context sensitive. This expansion is shown at
the bottom of Figure 2. The expansion function, h(), takes
an input grammar, the symbol to be expanded (‘E’) but does
not have a symbol to expand to. Instead, h() makes a request

of an external data store as to what ‘E’ should expand into.
The data store returns ‘F’, and the function replaces ‘E’ with
‘F’ and returns the grammar.

External data structures make no promises about being
able to fulfill a request. When a database cannot fulfill a re-
quest, grammar expansion is restarted from the axiom. Ex-
ternal database calls are outlined in Figure 3. The top graph
in Figure 3 shows expansion using the ingredient graph.
When queried, the expansion function either passes a sym-
bol that has a node in the graph (in this case, gin) or polls
the graph randomly. The node’s neighbors are returned, and
the function chooses one to use for expansion. The bot-
tom graph shows expansion using the ingredient list. When
used, the list is supplied a symbol that needs to be expressed
(in this case, mint). The list returns all the possible ex-
pressions of the symbol, and then the expansion function
chooses which one to use.

Symbols also have a flag that is set to ‘false’ for context-
free symbols and ‘true’ for context-sensitive symbols. This
flag is used to allow for context-free symbols to be expanded
before context sensitive symbols, so that symbols that need
context will have as much information as possible before
expanding.

To help keep track of how a grammar is expanding, sym-
bols are actually a (symbol, type) tuple. The symbol is what
gets replaced or used for replacement, while the type helps
various context sensitive rules determine the right time in
the expansion to execute. Types work like walls, all sym-
bols need to be of a particular type before the next set of
rules can apply. The types used are functional, ingredient,
expression, and terminal. Functional symbols are qualifiers
like “strong”, “sweet” or “sour”. They describe the func-
tion of a particular ingredient, according to a ratio. So, a
margarita can be described in rough terms as 3 parts strong
: 2 parts sweet : 1 part sour. Ingredient level symbols fill
in the functional symbols with high level ingredient quali-
fiers, so, “lemons” could fill in for “sour”. The next type
of symbols, expression symbols, tell us how each ingredient
is going to be expressed in a cocktail. So, “lemons” could
become “lemons-juice” or “lemons-muddled”. Most expres-
sion symbols are also terminal symbols, however, occasion-
ally the grammar needs to add a few more details to a symbol
before it can get rendered to text.

Symbols keep track of what they replaced, which allows
us to trace a symbol’s lineage. This commonly happens
when we divide up the ingredients into parts. If a drink
calls for 2 parts sour, and both lime and lemon juice are be-
ing used, then the cocktail generation system checks that the
juices both come from the same original sour symbol. It then
correctly divides the parts equally among the juices.

It is also possible for a rule to rewrite a symbol’s lineage,
as in Figure 4. Lineage rewrites perform abstraction and
recategorization within a set of rules. This increases the ex-
pressive potential of a particular category, so that it can still
accurately represent the drinks that fall into that category
without resorting to having a collection of starting axioms.
This also allows for axiomatic change based on how a cur-
rent grammar is expanding. If it suddenly makes more sense
for a particular expansion of symbols to have been derived
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Figure 4: Overview of a lineage rewrite rule. The rule trans-
forms a strong symbol into a sweet symbol. Normally, new
symbols are appended as children to the symbol they ex-
panded from, but for lineage rewrites, we replace the symbol
and the symbols it descended from.

from a similar axiom, the axiom can shift to reflect that.
Each grammar expands until it hits a set of terminal sym-

bols. Then, the set of symbols is passed off to the text ren-
derer to generate a human readable recipe. Axioms for a
cocktail grammar start with a set of functional symbols, and
the amount of each symbol that should be in the final drink
expressed in parts. An example grammar (the Old Fashioned
grammar) is presented in Figure 5.

Ingredient Representation

There are two data structures that the expansion engine can
query for information to build new symbols. How both of
these structures are used is outlined in Figure 3. The first
structure is used primarily for expanding ingredient sym-
bols; the second structure is used for expanding expression
symbols. The first data structure is the ingredient graph, a
bidirectional graph where each node corresponds to an in-
gredient such as chocolate or strawberries. Adjacent ingre-
dients on the graph work well together in a drink, according
to experts. So, if we already know we are going to use one
ingredient, we can get that ingredient’s neighbors in order to
see what other ingredients should be used with it. There are
some nodes that are connected to every other node, but it is,
in general, a sparse graph.

The other main data structure is a list of ingredient ex-
pressions, organized by ingredient. This lets us look up how
lemons can expand, and pick an expression that fits a rule.
The list makes no promises about having the right entry for
a rule. If a rule is looking for a puree and is trying to expand
lemons, the query on the list will return nothing (as lemon
puree was not considered a valid ingredient by experts).

Expansion Engine

The expansion engine takes a cocktail grammar axiom and
expands it in turn, from functional symbols to ingredient
symbols, then to expression symbols, then to terminal sym-
bols, as seen in Figure 1. The engine also makes requests of
the outside data structures to get information needed to cre-
ate a symbol when required. The engine has a hard rule: ex-
pand context free symbols before context sensitive symbols.
In addition, when two or more context sensitive symbols can
expand, and no context free symbols can expand, a random
one is chosen to expand first.

The best way to go over the expansion engine is to go
through a sample run. A user has asked for the system to
generate something based off of a White Russian. The gram-
mar starts with three symbols: (strong, function), (sweet,

function) and (mild, function). Now, the system looks
through the current rules it has and there are two that can
potentially apply: perform a lineage rewrite to transform the
strong symbol into a sweet symbol, or expand the strong
symbol into an ingredient level base spirit. As these are
both equally valid rules, the system picks one at random,
and decides to transform the strong symbol into a sweet
symbol. The grammar now reads like (sweet’, function),
(sweet, function), (mild, function). The grammar now has
several context-free rules it can apply, expanding sweet’ into
a ingredient level sweet symbol, expand sweet into an in-
gredient level sweet symbol and expand mild into an in-
gredient level mild symbol. The grammar randomly picks
among these three rules, as all of them are context-free.
After those rounds of expansion, the grammar now looks
like (generic-sweet, ingredient), (generic-sweet, ingredient),
(generic-mild, ingredient). Now, there is a context-free rule
for expanding the generic-mild symbol, whereas expand-
ing generic-sweet is context-sensitive. So, generic-mild gets
expanded next and the grammar now looks like (generic-
sweet, ingredient), (generic-sweet, ingredient), (cream, ex-
pression). At this point, we start to expand one of the
generic-sweet symbols and the grammar needs outside help,
as there are many symbols that it can expand into. The in-
gredient graph is queried, looking for neighbors of the cream
symbol. A list of neighbors is returned. This is stored,
in case the grammar needs to expand another ingredient
from the graph. One is picked from them: mint. The first
generic sweet symbol is expanded, and now the grammar
looks like (mint, expression), (generic-sweet, ingredient),
(cream, expression). The grammar then checks the stored
symbols from the last graph query and selects another one
to expand the last generic-sweet symbol into. The grammar
now looks like (mint, expression), (chocolate, expression),
(cream, expression). The last round of expansion has the
grammar query the ingredient list three times, once for each
of these symbols to look for valid ways to express them. The
end grammar string is (mint-creme, terminal), (chocolate-
liqueur, terminal), (heavy cream, terminal).

Text Rendering

The last part of the system is the text renderer. After expand-
ing out the grammar, we have ingredients and the amount
of each ingredient expressed in parts. This still needs to be
converted to a human readable recipe. For the most part, this
means replacing the dash in the symbol with a space. Some
symbols are important to a cocktail, but are not given a part
amount because they are used for garnishes, taste or in such
small amounts it makes no sense to display them as a part.
A prime example would be bitters, used in cocktails based
on the Old Fashioned. In this case, amounts given in dashes
are used (or other garnishing terms, like a “twist of lemon”).

The mixing instructions are appended to the ingredient
list. The mixing instructions come directly from the original
category of drink and the ingredients used, with some simple
replacement (such as ingredient names rather than functional
terms) to make the recipe easy to follow. Finally, a name
(currently an adjective, noun pair) is added to the cocktail.
An example final recipe is presented in Figure 6
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Figure 5: Diagram of the Old Fashioned grammar

Figure 6: A cocktail generated with the Mai Tai grammar.

Expressivity

In both PCG and computational creativity, the expressive
range of a generator is a strong consideration for how well
that generator performs. Expressive range can be thought of
as the range of parameters that change the kind of content
the generator can produce(Smith and Whitehead 2010). For
a cocktail grammar, expressive range is tied with the con-
nectivity of the ingredient graph (the more connections the
graph has, the more symbols a particular grammar can ac-
cess). In addition, we can look at how ‘open’ a particular
grammar is to various ingredient expressions. If a grammar
can use a lot of ingredient expressions, then it can generate
many more combinations.

To measure this, each grammar generated 1,000 cocktails,
and the amount of times a particular terminal symbol oc-
curred was counted. As we have a list of all potential termi-
nal symbols, if a symbol was never used, it was given a use
count of zero. The result of this count is shown in Figure
7. Each cocktail grammar is not equally expressive. Some
categories are more restrictive than others, and lean more
heavily on particular ingredients. However, each grammar
seems to focus on different parts in the potential ingredi-
ent space, and when looked at all together, the entire system
does a good job of making sure that all provided ingredients
get used.

Evaluation

To see if a particular generated artifact is creative, three met-
rics were used: quality (the measure of how well an artifact

performs a particular purpose), novelty, (the measure of how
unique an artifact is to an evaluator), and typicality (the mea-
sure of how well the artifact fits in a particular class of arti-
facts). For cocktails, quality is how well the cocktail tastes
as compared to other cocktails the taster has drank. Nov-
elty is how different a cocktail tastes as compared to other
cocktails the taster has drank. Typicality is how much like
a cocktail a current cocktail tastes like. This forms an eval-
uation space, where differing rating triples have meaning.
High ratings in quality but low ratings in novelty imply that
a cocktail was good, but very similar to what the taster usu-
ally orders. High in novelty and low in quality implies an
interesting cocktail, but one that does not taste very good.
A low score in typicality implies that the cocktail does not
taste like a cocktail at all, and tastes closer to a non-alcoholic
drink or straight base spirit. In order to be considered cre-
ative, a generated artifact needs to perform highly in all three
categories, as per artifact-focused definitions of creativity.

Figure 7: Ingredient use heatmap. The x-axis graphs in-
dividual ingredients, the y-axis graphs the grammars using
them. As squares get lighter, they were used more times in
the generated run.
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Figure 8: Quality ratings for the generated and baseline
drinks. Quality in the generated drinks appears to be more
polarizing than quality in the baseline drinks.

Figure 9: Novelty ratings for the generated and baseline
drinks.

Table 1: P-Values
Category Quality P-Values Novelty P-Values
Overall 0.048 0.344

Margaritas 0.001 0.003
Martinis 0.505 0.118

Margaritas have detectable differences in both quality and
novelty, martinis have no detectable differences and there is

a detectable difference in quality but not novelty overall.

To this end, we had two of the eight grammars evalu-
ated for quality, novelty and typicality by human tasters.
Two cocktails from both the Margarita grammar and the
Martini-based grammar were generated. In addition, two es-
tablished cocktails that followed the rules for each grammar
were chosen as a baseline to compare the generated cocktails
against. Participants tasted each cocktail and then evaluated
the cocktail based on their sip. Cocktails were presented in a
random order, and participants were told that all eight cock-
tails were generated.

The use of a baseline to compare the generated drinks

against also helped reduce taste effects—if a particular par-
ticipant did not like martinis, for example, they were ex-
pected to rate both the generated martinis and the baseline
martinis low.

One third of the participants had prior experience mixing
drinks. All participants had at least two cocktails over the
past year, with 20% having had two to four cocktails, 33%
having had five to seven cocktails and the rest having had
more than seven. All participants were at least 21 years old.
60% of participants were 25-29, ⇡ 27% were 21-24, and the
rest were 30 or older. 40% of participants were female, the
rest were male. The tastings occurred in an office environ-
ment.

Participants were asked to evaluate the cocktails on qual-
ity and novelty using a five point scale, with a score of one
being low and a score of five being high. To rate the cocktails
for typicality, participants were asked if they believed what
had been served was a cocktail, and to try to classify which
exemplar the cocktail was based on. Table 1 contains the p-
values from an unpaired t-test between the baseline and the
generated cocktails. There was not a detectable difference in
the novelty metric, overall. However, the generated drinks,
overall, did perform slightly detectably worse in the quality
metric. These results are captured in Figures 8 and 9.

For typicality, the generator performed well, with very
few participants believing that they were not served a cock-
tail. However, when asked to try and identify which ex-
emplar drink the cocktail had come from, participants did
poorly. Participants only correctly identified the exemplar
cocktail 26.67% of the time. This can imply two things: 1)
that a general audience does not have enough skill in cock-
tails to taste where particular drinks came from and/or 2) the
classification scheme used by the generator is not how the
average person classifies cocktails.

Threats to Validity

With no detectable difference in novelty between the base-
line cocktails and the generated drinks, we can not conclude
anything about the generated drinks compared to the base-
line. In addition, the generator and evaluation did not take
into account the environment the cocktail should be con-
sumed in. It is possible that bar ambiance could impact the
perception of flavor. Garnish selection is not considered in
the current generator, and garnishes can strongly impact how
people perceive cocktails.

There are weaknesses in any expert system—how well
did the experts describe their process, and how well was
that process encapsulated in the system? The majority of
the cocktail generation system came from expert knowledge,
from the structure of the ingredient graph to the types and
numbers of grammars used. This still leaves out certain
cocktails. A Cement Mixer, for example, breaks one of the
cardinal rules of the system (citric acid and cream should not
be mixed) to create a novel texture.

There are several weaknesses with the open loop of gen-
erating, then evaluating with human evaluators. The gener-
ator itself cannot react to the evaluations of its own output
and make adjustments to its internal drink mixing philoso-
phy. As pointed out by Stokes(2011) as well as others, this
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implies that the current generator is not creative, regardless
of how highly its output is scored. In addition, the gener-
ator makes no attempt to account for any sort of taste. It
blindly puts ingredients together without understanding why
those ingredients might work well together. This genera-
tor will also never modify either ingredient representation to
discover new cocktails.

Discussion and Future Work

Other computational ways to evaluate the system could be
employed. Output recipes could be compared to existing
rated recipes from online websites and databases, and a qual-
ity, novelty and typicality metrics could be derived from
this comparison. However, the use of human evaluators, at
least in the current state of the field, is important, because
there are aspects of taste not captured in an ingredient bill or
preparation steps.

Data driven cocktail generators are a strong next step.
This, generally, would mean scraping various lists of cock-
tails (either from the web or from popular literature) and
attempting to derive some heuristic for cocktails from the
data. Online databases are particularly attractive, as they
may have both good and bad examples to learn from.

As alluded to earlier, typicality can be a tricky part of the
generator to evaluate. A way around this problem would
be to have evaluators rate several well-known variations, to
establish a baseline for ’cocktail recognition’ that the gener-
ator’s output can be compared to.

Finally, there is a need to evaluate cocktails on the merits
of taste. In turn, we need a computational model of taste
to see how potential drinks might taste. This lets us truly
close the loop so the generator can evaluate its own work.
This sort of model would allow for the use of modification
or repair to a poorly evaluating dish, like several case-based
reasoning techniques modify plans to best fit the current sce-
nario. In addition, such an evaluator could evaluate many
recipes, far faster than a human could.
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Abstract 

Dr Inventor is a system that is at once, a computational 
model of creative thinking and also a tool to ignite the 
creativity process among its users. Dr Inventor uncov-
ers creative bisociations between semi-structured doc-
uments like academic papers, patent applications and 
psychology materials, by adopting a “big data” perspec-
tive to discover creative comparisons. The Dr Inventor 
system is described focusing on the transformation of 
this textual information into the graph-structure re-
quired by the creative cognitive model. Results are de-
scribed using data from both psychological test materi-
als and published research papers. The operation of Dr 
Inventor for both focused creativity and open ended 
creativity is also outlined. 

Introduction 

This paper describes the Dr Inventor project that is both a 
creativity support tool while its internal operation means 
that is also functions as a model of creative discovery. One 
of the core artifacts processed by Dr Inventor to boost sci-
entific creativity is represented by Research Objects (RO) 
(Belhajjame et al., 2012), which are creative academic out-
puts including academic publications, patent applications 
and related data. Dr Inventor aims to actively explore crea-
tive bisociations (Koestler, 1964) between these Research 
Objects using a cognitively inspired model of creative 
thinking. This paper adopts a big data perspective on Re-
search Objects attempting to uncover latent creative com-
parisons that might lie undiscovered within its dataset. Dr 
Inventor directly addresses two of Honavar’s (2014) facets 
of computationally mediated scientific discovery: firstly 
the development of computational representations and sec-
ondly, computationally augmenting scientific discovery. 

This paper is structured as follows. We first present a 
case for bisociative and analogy-based creativity, address-
ing some issues arising from Boden’s attribution of bi-
sociative reasoning to a category called “combinatorial 
creativity” (Boden, 1998). We then describe the Dr Inven-
tor model, focusing on the processes that enable it to iden-
tify analogies between its text-based inputs. Next, we out-
line some results from text-based sources including human 
psychological tests and published research papers, illustrat-

ing its operation as both a tool for focused creativity and 
also for open ended creativity. Finally a summary and 
some concluding remarks are made.  

Analogical Reasoning and Creativity  
The model of bisociative reasoning developed in this paper 
is built primarily on a computational model of analogical 
reasoning, which is extended to include additional back-
ground information. While computational treatments of 
analogy originally focused on the analogy per se, recent 
attention has focused more on situated models addressing 
topics like Ravens Progressive Matrices (Kunda, 
McGreggor and Goel, 2013). The analogy process provides 
a unique perspective from which to view computational 
creativity, lying at the crossroad of research in areas in-
cluding cognitive science (Gick and Holyoak, 1980), de-
velopmental psychology (Rattermann and Gentner, 1998), 
computer science (Ramscar and Yarlett, 2003; 
O'Donoghue, Bohan and Keane, 2006; O'Donoghue and 
Keane, 2012) and neuroscience (Green et al., 2010) . Re-
search in these areas often constrain one another and offer 
the possibility of uncovering truly deep insights into the 
creative process. This may ultimately lead to formation of 
a cohesive multi-perspectival vision of one mode of crea-
tivity.  

Analogy in Creative Reasoning 
Psychological evidence has highlighted people’s ability to 
reason using analogical comparisons in the laboratory set-
ting (Gick and Holyoak, 1980). Subjects are typically pre-
sented with two analogous stories and are required to de-
velop the latent analogy as a key to solving a problem in 
one of those stories. Later in this paper we shall demon-
strate Dr Inventor’s ability to take the texts used in these 
psychology tests and develop the same analogies as ob-
served in (many) human participants in these trials.  
 The use of analogy has also been described in a “real 
world” scenario. Blanchette and Dunbar (2001) recorded 
and described the use of real-world analogies during labor-
atory meetings of molecular biologists and immunologists. 
They examined 16 different meetings in a number of dif-
ferent laboratories. They identified over 99 analogical 
comparisons and scientists typically used anything from 3 
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to 15 analogies in a one-hour meeting. The majority of the 
analogies discovered were between biological and immu-
nological information – the so called “within-domains” 
analogies. However , the authors noted that scientists used 
more “between-domains” analogies (involving semantical-
ly distant source domains such as literature or engineer-
ing), when the goal involved a creative task such as formu-
lating an hypothesis.  

Goldschmidt et al, (2011) and others have highlighted 
that “problem fixation” often frustrates peoples efforts to 
think creatively. That is, people experience difficulties in 
seeing new uses for existing information. The authors ar-
gue that to overcome this fixation and to promote creative 
thinking, that people be presented with semantically distant 
comparisons for a given problem.  Research by Bowden et 
al (2005) and others has highlighted that insight occurs 
when problem solvers suddenly see a connection that pre-
viously eluded them. One possible mechanism of support-
ing insight is the discovery or a creative bisociations, like 
analogies and blends (Fauconnier and Turner, 1998).  

Analogy and Transformational Creativity 

Margaret Boden (Boden, 1990) offers three well-known 
levels of creativity, with increasingly impressive impact at 
the levels of improbable, exploratory or transformational 
creativity. Boden argues that analogy is effectively the 
lowest form of creativity (improbable); however we argue 
that when analogical reasoning is seen within the context 
of a cohesive system of human reasoning the picture is less 
clear. If the inferences mandated by an analogy contradict 
some fundamental axiomatic belief, especially beliefs with 
that numbers of associated deductions and inferences, then 
resolving this contradiction might well involve the “shock 
and amazement” associated with Boden's highest level of 
transformational creativity. It appears that analogies may in 
fact, drive creativity at any of Boden’s levels of creativity. 
Our creativity model is domain independent and does not 
include a pragmatic component or domain context. So, as 
our model does not use domain-specific knowledge, argua-
bly it cannot be easily cast as one of improbable, explora-
tory or transformational creativity in Boden’s terms.  

Creativity Producers and Consumers  
Creativity is generally seen from the perspective of the 
creator. But, Dr Inventor needs to make a distinction be-
tween itself and its users who are consumers of its creative 
outputs. O’Donoghue and Keane (2012) made the point 
that a creative process may present a creative comparison 
so as to highlight the latent similarities, perhaps using ter-
minology that highlights this commonality. However, dis-
covering such creative comparisons will generally have to 
combat these differences in order to discover that com-
monality ab initio. 
 When they encounter a creative artefact, the interested 
consumer should also experience an episode of creativity, 
once they engage properly with the artefact. The process of 
engaging with a creative artefact should empower the con-
sumer, ultimately leading them to a new conceptual space 

akin to that of the creator. If the artefact doesn't cause this 
reaction, then its creative impact is greatly lessened and 
may be considered less creative. So, a truly creative output 
is not merely a recorded by-product of the creative experi-
ence of its creator, but it must also engender creativity 
within those consumers that engage properly with it. To 
achieve this, creative artefacts must have communicative 
potential and arguably, multiple creative artefacts may be 
necessary to clarify a new conceptual space - or to con-
vince an unwilling consumer. 
 We call secondary creativity the act of engaging with a 
creative artefact so as to transform ones conceptual space, 
with primary creativity being the initial creative episode. 
We believe that secondary creativity is also essential for 
truly creative artefacts, helping wide adoption of this new 
perspective. Dr Inventor is concerned with both finding 
creative bisociations and with presenting these outputs to 
its users. It will use both ontology and visual analytics to 
support this secondary creativity.  

Dr Inventor 

Dr Inventor is a computationally creativity system that can 
both model scientific creativity and can also use its outputs 
to stimulate creative thinking within its users. It is as con-
cerned with the process of creativity as it is with the prod-
ucts that arise from these processes (Stojanov and 
Indurkhya, 2012). Dr Inventor is built on a cognitively 
inspired model of human bisociative reasoning, based on 
analogical comparisons and the counterpart projection of 
conceptual blends (Fauconnier and Turner, 1998; Veale, 
O'Donoghue and Keane, 2000). CrossBee (Jursic et al., 
2012) looked at exploring scientific papers, its focus lay in 
finding bridging terms between them. The focus of Dr In-
ventor is on finding and extending systemic similarities for 
creative purposes. 

 This paper focuses primarily on three of the four spaces 
of conceptual blending, namely the two input descriptions 
and the generic space. The dotted lines in Figure 1 indicate 
the correspondences between these inputs, derived with the 
help of Gentner’s structure mapping theory (1983). Dr In-
ventor’s 3-space model identifies a generic space contain-

Counterpart 
mapping Input 

ROS-1 

Generic and 
Ontology 

Input 
ROS-2 

Output ROS 

Figure 1: Conceptual spaces used by the bisociative model of 
Dr Inventor including the analogically founded mapping be-

tween the inputs 
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ing the ontological similarity between paired relations from 
the Input 1 and Input 2. Dr Inventor thus identifies the ge-
neric space corresponding to the aligned items from the 
bisociation. This generic space also enables Dr Inventor to 
monitor the semantic congruity within a bisociation, to 
uncover comparisons more in fitting with the users’ needs. 
Finally, the output space represents the new interpretation 
of one of those inputs. As each “target” maybe re-
interpreted by multiple sources, and because that target 
may also act as a source for some other Research Object 
Skeleton (ROS), each newly created ROS is stored sepa-
rately. For simplicity, this paper generally uses the terms 
source and target, unless specific point about the Blend is 
being made.  
 This means that a new ROS may act to later inspire sub-
sequent creativity. Thus, Dr Inventor can potentially oper-
ate as a “Self-sustaining” creativity model as of described 
in O’Donoghue et al (2014). One of the chief obstacles 
hindering Dr Inventor in achieving this self-sustaining cre-
ativity lies in the quality of the new ROS and a sufficiently 
diverse knowledge base from which to progress.  
 The core data artefacts used by Dr Inventor are Research 
Objects (Belhajjame et al., 2012), which are research out-
puts including publications, patents, data, software 
(O'Donoghue et al., 2014b), social network information 
and other resources. Dealing with such heterogeneous data 
sources, characterized by consistent amounts of infor-
mation to integrate and process, big data approaches and 
technologies are essential in order to enable the computa-
tional approaches to creativity in Dr Inventor. This paper 
focuses on the textual contents of RO, particularly of pub-
lications and patents. These documents are first subject to a 
number of processing activities to properly mine their con-
tents in order to generate inputs that are useful to Dr Inven-
tor's analogy-based model.  
 From each RO Dr Inventor generates a graph-based rep-
resentation called the Research Object Skeleton (ROS) 
representing the key concepts and relationships extracted 
from that RO. Dr Inventor identifies similarities between 
these ROS with a view to extending these similarities and 
uncovering creative possibilities.   

Dr Inventor Model 
The overall Dr Inventor model contains components that 
deal with document summarization, information extraction; 
ontology learning, matching and personal recommenda-
tion; ROS generation, assessment, similarity and analo-
gy/blending; validation, mapping, retrieval and finally vis-
ual analytics. The discussion in this paper will focus on the 
ROS generation, analogy/blending model and the creativity 
assessment components. 

Mining Textual Contents to Populate ROS 
In Dr Inventor, Research Object Skeletons (ROSs) are built 
by mining the contents aggregated by the corresponding 
Research Objects (ROs). To populate a ROS, Dr Inventor 
mainly relies on the extraction of information from the 
textual contents of a RO. To analyze these contents, Dr 
Inventor integrates a Natural Language Processing Pipeline 

(DRI-NLP pipeline) that aggregates and customizes several 
Information Extraction (Piskorski and Yangarber, 2013) 
and Text Summarization (Saggion, 2014) approaches and 
tools. 
 Since scientific publications constitute one of the main 
kinds of textual documents included in a RO, DRI-NLP 
pipeline has been properly structured to support the analy-
sis of research papers. The great majority of papers are 
currently available as PDF files. As a consequence, the 
conversion of PDF into plain text constitutes an essential 
prerequisite to properly perform any further text analysis. 
To this purpose, DRI-NLP pipeline relies on PDFX 
(Constantin, Pettifer and Voronkov, 2013) that converts a 
PDF document of a scientific publication to a semi-
structured text (XML). The plain text output of PDFX is 
thus processed so as to identify sentences by means of a 
custom rule-based sentence splitter. Each sentence is pro-
cessed by means of the MATE dependency parser (Bohnet, 
2010) to extract dependency relations which are represent-
ed in a dependency tree. DRI-NLP pipeline dependency 
parser has been customized in order to properly deal with 
several peculiarities of scientific publications, including 
the presence of inline citations. In particular, inline citation 
markers like “(AuthorA et al.)” or “(1)” are excluded from 
the dependency tree if they have no syntactic functions in 
the sentence where they are present. Dr Inventor is focused 
on the discipline of computer graphics as its test-bed, thus 
a particular challenge has been dealing with the many 
mathematical expressions in these papers and allowing 
their treatment separately from the main body of the text. 
Besides dependency parsing, DRI-NLP pipeline enables 
the creation extractive summaries of papers by ranking 
their sentences by relevance (Saggion, 2014). 

 As result of dependency parsing, each word of a sen-
tence is characterized by its Part-Of-Speech (POS) (noun, 
verb, adjective, etc.) and dependency relations (subject, 
object, verb chain, modifier of nominal, etc.). The linguis-
tic information extracted from each publication can be 
condensed in the tables: the Syntactic dependency and the 
POS tag table. In particular, Figure 2 focuses on the analy-
sis of a specific sentence taken from the abstract of a paper. 
 While Dr Inventor is focused on the test-bed of comput-
er graphics publications, it remains a general model capa-
ble of dealing with arbitrary text inputs. This paper also 
uses data derived from psychology text materials and work 
is ongoing using the texts of patent applications.   

Figure 2: Processing PDF papers by Dr Inventor Natural Lan-
guage Processing Pipeline 
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ROS Generation 
The next task for Dr Inventor is to generate a ROS from 
the results of the parsing process. The representation we 
chose for these graphs is sufficiently general to represent 
different types of RO. Since we want to structure objects 
and their inter-relationships this information is stored as a 
graph, aimed at supporting the later structure mapping pro-
cess (Gentner, 1983).  

 Each ROS is constructed as an attributed relational 
graph (ARG), which is a directed graph where nodes and 
edges may contain additional properties like labels, catego-
ries and numeric values. If required, we can store addition-
al identifying information (e.g. Author, Affiliation, etc.) 
within the graph, but this information is not required for 
the analogy process per se.  

 The primary information in a ROS is the concept nodes 
(nouns) and the relationships (verbs) between them. Con-
cept nodes are not linked directly to one another but are 
connected with relation nodes. To generate the ROS we 
use the general structure “subject” – “verb” – object” - as 
required by SMT. These triples arise from the dependency 
and POS tables as the input to ROS generation. Early test-
ing has shown that taking triples directly from the depend-
ency table typically leaves many of them incomplete, leav-
ing ROS without the necessary structure to support identi-
fication of creative inter-domain correspondences. There-
fore, Dr Inventor performs a deeper exploration of the ta-
bles in order to generate more useable ROS structures.  
 By constructing a dependency graph from the tables and 
applying a set of heuristics to the graphs, a more complete 
set of triples is generated. The heuristics involve combin-
ing some of the nodes and tracing through the graph find-
ing pairs for each verb.  
 Figure 3 depicts two ROSs generated for the “Zerdia” 
and “Karla” stories (Table 1) used in human psychological 
studies (Gentner and Landers, 1985). They were generated 
by the text mining and ROS generation techniques dis-
cussed earlier, but some manual post-editing was per-
formed to identify co-referencing concepts nodes in the 
ROS. In the “Zerdia” story the word “it” is used twice, but 
the ROS were edited so one instance was replaced by the 
referent “Zerdia” and another by “Gagrach”. In the “Karla” 
story the word “she” refers to “Karla” and “he/him” refers 
to “hunter”. While these co-referents were resolved manu-
ally work is underway in the text pipeline to automatically 
resolve these referents.  
 Dr Inventor explicitly represents higher-order (causal 
relations connect first-order relations) relations within a 
ROS. A distinct set of nodes represents the higher-order 
relations, these connecting the first-order (and potentially 
other high-order) relations. However, ROS generated from 
within our Research Objects corpus show that high-order 
(causal) relations are rarely explicitly identified. As we 
shall see, this influenced our choice of mapping algorithm.  

Karla the Hawk: 
Karla, an old hawk, lived at the top of a tall oak tree. 
One afternoon, she saw a hunter on the ground with a 
bow and some crude arrows that had no feathers. The 

hunter took aim and shot at the hawk but missed. Karla 
knew the hunter wanted her feathers so she glided down 
to the hunter and offered to give him a few. The hunter 

was so grateful that he pledged never to shoot at a hawk 
again. He went off and shot a deer instead. 

 Zerdia True Analogy:  
Once there was a small country called Zerdia that 
learned to make the world’s smartest computer. One 
day Zerdia was attacked by its warlike neighbor, 
Gagrach. But the missiles were badly aimed and the 
attack failed. The Zerdian government realized that 
Gagrach wanted Zerdian computers so it offered to sell 
some of its computers to the country. The government of 
Gagrach was very pleased. It promised never to attack 
Zerdia again 
 

Table 1: Textual contents of “Karla” and “Zerdia” 

Figure 3: ROS for the “Karla” and “Zerdia” analogy used in human studies and Dr Inventor 
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Graph Storage 
Dr Inventor uses the Neo4j graph database to store its 
ROSs. Neo4j has as its core structures; nodes, relationships 
between them and properties on both, this being the same 
structure as the ARG. Additional information such as the 
SentenceID or SectionTitle for each triple can also be 
stored in the Neo4j database. This can be useful when we 
want to map only between particular sections (e.g. Abstract 
or Conclusion) and also to reference back to the original 
sentences from which the triples were extracted.  

Data Differences 
Previous analogy models like SME (Forbus, Ferguson and 
Gentner, 1994), IAM (Keane and Bradshaw, 1988) and 
Kilaza (O'Donoghue and Keane, 2012) used hand coded 
data. The ROS generated above differs from the earlier 
hand-coded data in at least two significant respects. First 
ROS contain very few high-order relations, which are 
heavily used by mapping models mentioned above. Dr 
Inventor does not focus on the hierarchical structure of 
hand-coded data, using instead some lower level topologi-
cal structure. Secondly (as mentioned in (O'Donoghue and 
Keane, 2012)) hand coded data often simplifies the com-
parison process by using relations that highlight the latent 
similarity. Dr Inventor must uncover and identify the hid-
den similarity even in the absence of such lexical cues.  

Dr Inventors Creativity Engine 

This paper focuses on the creativity engine that lies at the 
heart of Dr Inventor. Thus, we focus on creative analogy-
based comparisons and show a number of features of Dr 
Inventor that specifically attempt to support the identifica-
tion and generation of these creative analogies.  

Creative Analogies 

A number of properties appear to be shared amongst many 
creative analogical comparisons (O'Donoghue and Keane, 
2012) and these facets are used to generate novel and po-
tentially useful analogies and blends. Firstly the source 
(domain) of inspiration is typically semantically different 
from the given target problem. That is, creative sources 
tend to be sufficiently different and any similarity is non-
obvious and has not been previously explored in detail. 
Secondly, the creative source contains the necessary struc-
tural similarity that is required to generations of viable 
analogy with the given problem.  

To this end, Dr. Inventor specifically seeks out bisocia-
tions that involve two semantically distant domains, that 
form a rich inter-domain mapping and that yield inferences 
suggesting something new about one of those domains.  

Graph Mapping  
To support creative analogies Dr Inventor’s retrieval and 
mapping activities makes frequent use of topological fea-
tures derived from each ROS. For analogical mapping we 
exploit features such as type of the nodes (verb, noun), 
types of relationships (subject, object), degree (in-degree, 

out-degree) and node rank values calculated by Node Rank 
algorithm (Bhattacharya et al., 2012).  

We initiate the mapping process by calculating the Node 
Rank and by sorting the nodes in a descending order. The 
ranking allows us to start the graph matching process from 
the most centrally connected and useful node.  This will 
further be used to serve as a threshold to screen useful 
nodes to improve the performance of the mapping process. 
The results presented in this paper have been generated 
using smaller RO (such as the abstracts of graphics paper 
RO), so performance has not been an issue. However this 
situation will change when mapping between ROS with 
large number of nodes is required.  
 The relation (verb) nodes in each ROS are represented 
distinctly, with one instance of a relation node for each 
verb contained in the RO. Verb nodes are central to the 
process of representing the content of the RO, however 
their connectedness is limited to a degree of 2 and thereby 
affects the resulting Node Rank values. However, multiple 
references to the same concept (noun) node will appear in 
the ROS as a single concept node – but referenced multiple 
times by each distinct relation node. Thus concept nodes 
have the greatest direct impact on the Node Rank values as 
a single concept node may be linked through many rela-
tions within a ROS. The mapping process avails of this 
referential structure when generating the largest graph-
mapping between two ROS.  

 To identify a pair of mapping nodes from the source 
to the target, we used structural similarity score (using the 
connectedness of the nodes) and the literal similarity score. 
Using structural similarity, we consider two nodes as can-
didate mapping nodes if they have a higher similarity 
score. Whereas, literal similarity calculates the similarity 
coefficient between two words and yields a value between 
0 and 1, where 0 indicates no similarity and 1 indicates 
complete similarity (synonym). This is achieved by using 
the Wu&Palmer (Wu and Palmer, 1994) WordNet-based 
similarity metric.  

The mapping algorithm firstly selects a pair of nodes 
P(sNode, tNode) from the source and the target respective-
ly, with the highest node ranked nodes being selected first. 
In this way, the algorithm focuses on highly connected 
nodes within the graph because they contribute most to the 
mapping and analogical inference activities. Secondly, the 
mapping process checks if the selected pair P(sNode, 
tNode)  is structurally feasible for analogical mapping. A 
structurally feasible pair contains a source node which has 
degree (in degree and out degree) greater than or equal to 
degree (in degree and the out degree) of the target node 
respectively. The comparison ensures the identification of 
a sub-graph or an isomorphic graph of the target graph in 
the source graph.  It further assesses the semantic similarity 
of the two nodes using Wu& Palmer. Next, mapping adds 
P(sNode, tNode) to the inter-domain map to incrementally 
build a mapping sub-graph, if P(sNode, tNode)  is feasible. 
The mapping stores the pair of mapping nodes along with 
their similarity scores.  
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The mapping process then generates new candidate 
mappings by expanding sNode and tNode of P(sNode, 
tNode) to their respective connected nodes that are not al-
ready expanded. By following the “subject” or “object” 
relationship path it reaches the connected nodes of the 
graph, incrementally adding these to the inter-domain 
mapping. After the candidate pairs are generated, they are 
ranked using their semantic similarity score. Ranking the 
candidate pairs will give us a chance to expand pairs with 
the highest semantic similarity first.  

After including all mappings arising from the initial root 
mapping, the process then resumes with the next highest 
ranked and unmapped predicates. The algorithm employs 
depth first search to expand the nodes in the graph to iden-
tify new mapping pairs. Finally, it selects the mapping that 
contains the largest sub-graph and returns the mapping 
nodes together with their semantic similarity score. 
 We now look at the results produced by generating a 
mapping between the “Karla” and “Zerdia” psychology 
materials listed above, with the corresponding ROS being 
depicted in Figure 3. We note that this simulation of hu-
man analogy process began with the same text materials 
that were presented to human subjects. This comparison is 
an example to focused creativity, where both the source 
and target have been pre-identified.  
 The mapping between “Karla” and “Zerdia” gives us 11 
mapped nodes between the source and target (Table 2). For 
example the noun node “Karla” maps to “Zerdia”, “Feath-
er” maps to “Computer” and “Hunter” maps to “Gagrach”. 
Such a mapping identifies analogous items between the 
source and the target and is crucial for transferring new 
knowledge form the source to the target.  In this specific 
example 50% of the nodes in the target ROS are mapped to 
the source ROS with an average Wu&Palmer similarity 
score of 0.56. The original domains can often include in-
formation that does not participate in the mapping, such as 
the (missile be-take-aim attack) in the Zerdia story. How-
ever the absence of this relation from the mapping is not 
terribly significant as it is an isolated fragment of infor-
mation and does not contribute largely to the main story – 
that contributes to the largest connected component of that 
ROS.  
 
Mapping Nouns Mapping Verbs 
Source Target Source      Target 
Hunter Gagrach Want Want 
Crude World Live Offer_to_sell 

Feather Computer Arrow_have Learn_to_make 
Want Country Glide_offer_to_give Be_attack 
Karla Zerdia Glide Promise_to_attack 

  Know Call 
Table 2: Mapping between “Karla” and “Zerdia”.  

Analogies within Graphics Collections 
To examine the mapping process, we used 10 papers from 
computer graphics domain. The abstracts of the papers 
were extracted and were processed using the previously 
described steps. Each ROS were mapped to the other 10 

ROS including itself. The most basic step is to compare a 
ROS against itself. For all the 10 papers Dr Inventor yields 
the highest number of mapped nodes when a ROS is com-
pared with itself – with all or almost all nodes being suc-
cessfully mapped. This could be considered as a very basic 
step toward the evaluation of the mapping component of 
Dr Inventor.  
 The mapping of a ROS against the remaining 9 ROS 
identifies pairs that have the highest mapping nodes and 
pairs that have the lowest mapping nodes. The most analo-
gous papers are those with large number of mapped nodes 
and highest similarity score. For example, the most similar 
non-identical mapping among the 10 papers is between 
“Bar-Net_Driven Skinning for Character Animation” and 
“Real Time Large Deformation Character Skinning in 
Hardware” with 14 mapping nodes and an average 
Wu&Plamer similarity score of 0.36. While the semantic 
similarity score may appear quite low, this was achieved 
from within a small collection of papers. We conducted a 
quick manual comparison between the abstracts of these 
papers and initial results indicate that these papers can be 
considered somewhat analogous to one another as for ex-
ample, both papers present different approaches to the 
computer graphic topics of “skinning”. This analogy arose 
from the desire to identifying the largest mapping with the 
strongest semantic similarity from within the 10 papers 
however, the next section will discuss a more creative Use 
Case scenario.  
 The lowest mapping occurs between the papers “Curve 
Skeleton Skinning for Human and Creature Character” 
and “Pose Space Deformation: A Unified Approach to 
Shape Interpolation and Skeleton-Driven Deformation” 
with 5 mapping nodes and average similarity of 0.35. The 
mapping process, as it is expected, is not symmetrical, i.e. 
mapping between (S, T) may not be the same as mapping 
between (T, S). For example, saying “a man is like a pig” 
is not the same as saying that “a pig is like a man”!  How-
ever, in this specific data set, it does not significantly affect 
the highest mapping node pairs.  

Analogical Inference and Pattern Completion 
Once we find a mapping between the two ROS, the next 
phase is to generate the resulting inferences by applying a 
“pattern completion” process to that mapping. This adds 
the newly inferred information to the target ROS to pro-
duce the new interpretation of that concept. In the explora-
tory analogy mapping process, the user may be interested 
to explore all the candidate nodes once he/she knows the 
existence of analogy between the source and the target.   

Creativity Support and Evaluation in Dr Inventor  
Dr Inventor is focused firstly on operating as a Creativity 
Support Tool (CST) and secondly, as a simulation of the 
analogy process. Shneiderman (2007) noted that there are 
no obvious metrics to quantify for CST's and this problem 
lies at the core of creativity assessment and evaluation. The 
following two approaches are useful to evaluate the level 
of creativity support provided by Dr Inventor.  
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 Among the functionality being developed for Dr Inven-
tor is an “Inspire Me” Use Case, enabling users to creative-
ly re-interpret one of their own papers. This will be 
achieved by using the paper as a target and searching the 
archive for papers that can act as a creative source domain, 
forming a large and semantically well-balanced mapping 
by making use of the topological structure of each ROS. Dr 
Inventor will identify and present to the user those analo-
gies offering a collection of novel inferences that highlight 
the potential benefits of adopting this creative analogical 
comparison. Internal metrics will serve to select the most 
promising analogies to present to users, assessing the struc-
tural and semantic foundations of the comparison.  
 Implicit feedback on the presented analogies will be 
gathered by the user interface, enabling comparative evalu-
ation of different comparisons by monitoring user engage-
ment. Explicit user feedback also plays a very important 
role in evaluating Dr Inventor, using experts in computer 
graphics for evaluation. The Creative Support Index (CSI) 
(Cherry and Latulipe, 2014) is a psychometric survey that 
will serve to assess the creativity support provided by Dr 
Inventor. It is quick and easy to administer and is com-
posed of two sections; a rating scale section and a paired-
factor comparison section. It identifies 6 major factors of 
creativity, namely: enjoyment, exploration, expressiveness, 
immersion, results worth effort and collaboration. Under 
each of the factors, CSI asks two questions that are rated 
between 0 and 10, where 0 indicates the lowest value and 
10 indicate the highest achievement. The paired-factor 
comparison section consists of each factor paired against 
every other factor for a total of 15 comparisons. As Dr In-
ventor will support users with different levels of expertise 
(first year PhD students to experienced Professors), this 
factor in particular will have to be controlled monitored 
during the evaluation process.  
 The Creative Achievement Questionnaire (CAQ) 
(Carson, Peterson and Higgins, 2005) is a very broad and 
general creativity assessment technique. Within the context 
of Dr Inventor, achievements appear to be primarily as-
sessed by qualifying the number of published scientific 
papers. But the CAQ provides poor coverage of lower lev-
els of creative achievement (before publication) that could 
guide development of the Dr Inventor project. However, 
the CAQ might be useful for the final evaluation of Dr 
Inventor.  
 We also note that (Jordanous, 2014) identifies five crite-
ria to support meta-evaluation of computational creativity 
per se, as opposed to our current focus on Dr Inventor as a 
creativity support tool.  

Summary and Conclusions 

Dr Inventor is a computationally creative model that acts 
as both a simulation of human creative reasoning and also 
as a creativity support tool. We described how Dr Inventor 
performs text extraction from research publications pre-
sented in pdf format, describing how it addresses many 
complications that result from use of the pdf format. The 
dependency parser was described, as was the process of 

constructing the graph representation used by the core 
model. Some peculiarities of the resulting graphs were 
noted, particularly the extreme rarity of identifiable higher-
order causal relations. Some implications were noted the 
process of identifying the inter-domain correspondence. 
The text used from human psychological trials showed the 
ability of Dr Inventor to generate comparison using these 
same textual materials. Results for other Research Objects 
were outlined.  
 The mapping and evaluation process uses ontological 
information as a preference criterion to choose compari-
sons with the greatest potential for creativity on Dr Inven-
tor users. Ontology also opens the way to re-describe the 
original documents, highlight the identified similarities. 
While this work is ongoing, it opens the way for early 
evaluation of Dr Inventor by comparing the impact upon 
users of creatively re-interpreted documents. 
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Abstract

Many creativity tools exist to support task-focused cre-
ativity, but in recent years we have seen a flourish-
ing of autotelic creativity tools, which privilege the en-
joyable experience of explorative creativity over task-
completion. Because these tools are much smaller in
scope, less commercially significant, and less ”serious”
than their larger siblings, they have been overlooked in
academic research. This paper coins the term ”Casual
Creators” for these tools, and provide a definition to
identify tools that belong to this category. We also iden-
tify the particular design considerations that arise from
autotelic creativity, and propose a number of strong de-
sign patterns that serve those considerations, patterns
which are demonstrated by case studies of software built
with those patterns. We believe that once this field is
identified and named, the currently-isolated practition-
ers who make these casual creators will be able to share
knowledge, like these design patterns, and develop a
community of practice.

Introduction
An alternative design space
Often when we talk about tools to support creativity, the
‘creators’ exhibiting creativity are task-oriented profession-
als or amateurs, who have a specific problem to solve, or
design task to accomplish. There exist many complex, pow-
erful, and frequently expensive tools for different kinds of
creative tasks: Maya for 3D modeling, FinalCutPro for edit-
ing video, Ableton for music production, Photoshop for im-
ages. These professional tools must support a broad range
of possible actions with a focus on efficient task completion,
as their users are typically being paid to complete predefined
design tasks. Design, as an activity, is ”goal-oriented”, ”in-
tentional, purposeful” (Gero 1994). ”Task” is an appropri-
ate, and common, term for the primary action of using these
tools, because the goal is to enable productive labor from the
user.

Is this the only way to use creativity tools? Is productivity
the only goal of creativity?

We propose the category of Casual Creators as an
alternate design space for tools which support creativity
as an intrinsically pleasurable activity, rather than as an
extrinsically-motivated way to accomplish tasks.

Creativity is often an autotelic activity: we paint, draw,
sculpt, sew, write and make music creatively, often with
complete disregard for the quality of the final product (much
less concern for task productivity), because the activity itself
is so enjoyable.

This autotelic, intrinsically-rewarded form of creativity is
psychologically quite distinct from creativity exhibited in
a environment with extrinsic motivation (Amabile, Gold-
farb, and Brackfleld 1990). We should expect that support
tools for autotelic creativity will be correspondingly differ-
ent. There is a thriving ecosystem of appropriately-designed
software tools to support task-focused creativity, so why
isn’t there a corresponding set of software to support au-
totelic creativity?

One reason is economic: the labor of the creative person is
of commercial value to either their employer or their client,
so there is a market incentive to maximize that output with
effectively-designed tools, either to be purchased by the cre-
ative person themselves (for an independent contractor) or
by their employer.

The other reason is the perceived “seriousness” of out-
put. This division between serious and frivolous output mir-
rors the division in creativity research, between psycholog-
ical (“P”) creativity and historical (“H”) creativity (Boden
2009). Psychological creativity is the ‘everyday’ (Kaufman
and Beghetto 2009) creativity of average people, while his-
torical creativity is the ‘eminent’ creative ability ascribed
to famous world-changing creators and their innovative cre-
ations. Historical creativity is more valued socially and eco-
nomically, so when building a tool to support creativity, tool
designers like to imagine that it will be used by the next great
artist or genius inventor (Shneiderman 2003), or at least used
to make some famous or commercially successful product.
We believe, however, that it is also important to build tools
supporting ”everyday” creators in enjoying pleasant and ful-
filling creative exercise, even if they never produce world-
changing output.

Existing creators
Despite these reasons for not receiving ”serious” attention,
there are many small applications that do exist to support ca-
sual creativity. The recently-developed app marketplaces for
mobile have provided a perfect haven for this sort of creativ-
ity app. These apps each support creating only a single kind
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of artifact, such as abstract generative pictures (Secretan et
al. 2011), virtual pottery (”Let’s Create! Pottery” 2014),
or 3d printable bracelets (System 2015). These apps cre-
ate artifacts from a greatly-reduced possibility space, com-
pared to the previously mentioned general-purpose profes-
sional tools. The narrowness of the possibility space allows
the tool to provide greater support for the user, eliminating
potential bad artifacts and speeding the process of creating
good ones, at the expense of flexibility and versatility. This
loss is acceptable, however, as these products aren’t being
created in response to the exacting demands of a boss or
client, but rather because they are intrinsically fun to make.
In fact, the end product may be discarded entirely after com-
pletion! (Nilsson 2003).

Other examples of autotelic creativity tools have come
from games, a field that has always valued pleasurable user
experience over productivity. Not every game contains cre-
ative activities, but many games do feature the creation (and
curation) of a house, creature, or avatar, and these creativity
tools can end up being more fun than the eventual gameplay.

And yet, though these tools exist, there is no central com-
munity in which their designers can communicate shared
knowledge. There is no set of best practices that can be ref-
erenced by those who are attempting to make such a tool, or
even a name for them so that the tool-maker can describe
what they are making. The World of Warcraft (Blizzard
2004) character-creator and the ”Let’s Create! Pottery” vir-
tual potter’s wheel (to choose two out of many, many exist-
ing tools) may not seem to have much in common at first
glance, or even share the same marketing category. We hope
that by identifying this software genre, including lessons and
design patterns learned from existing examples, we can de-
fine a distinct area for future research and tool implementa-
tion.

Introducing Casual Creators

Casual creators can be distinguished from other creativity
support tools by their goal of supporting autotelic creativ-
ity, not task-focused creativity. From this initial difference
in goals arises a variety of other differences: in design con-
siderations, optimal design patterns, and the psychological
states that they encourage in the user. To that end, we pro-
pose the following definition, which encapsulates the very
exciting alternate design space of Casual Creators.

Definition
A Casual Creator is an interactive system that encour-
ages the fast, confident, and pleasurable exploration of
a possibility space, resulting in the creation or discov-
ery of surprising new artifacts that bring feelings of
pride, ownership, and creativity to the users that make
them.

Casual Creators are interactive systems. There are histor-
ical examples of non-digital casual creators, like the classic
generative art toy Spirograph or the knitting toy Knit Magic,
though digital software systems provide more affordances.
They do, however, need to be interactive, driven by the user,
because the learning and creating process is so core to the

psychological experience of using one. Computational cre-
ativity can be used to assist the design process, but must be
in a mixed initiative partnership with the user.

Casual Creators are tools that create artifacts, of some
kind, which may be instances of virtual models or static im-
ages, or more abstract artifacts like story grammars or AI
behaviors. Each creator has some possibility space, the set
of all possible artifacts that could be created using that tool.
The user creates (or discovers) artifacts by searching or ex-
ploring the space for ’good’ artifacts. For the casual creator
to be successful tool, there must be a way for users to find
artifacts meeting functional and aesthetic criteria, avoiding
getting stuck in a space of bad artifacts.

The possibility space should be narrow enough to exclude
broken artifacts (such as models that fall over or break when
3D printed) but broad enough to contain surprising artifacts
as well. The surprising quality of the artifacts motivates the
user to explore the possibility space in search of new dis-
coveries, a motivation which disappears if the space is too
uniform. It also provides feelings of ownership and creativ-
ity when the artifact is discovered. In a sufficiently multidi-
mensional possibility space, ‘search’ and ‘creation’ become
blurred, as the only way to arrive at a particularly interest-
ing artifact is to move through the space intentionally, rather
than randomly searching. The user will feel greater owner-
ship and creativity the more they attribute their discovery to
their own actions, and pride is increased further when they
feel that their discovered artifact is somehow special, sur-
prising within the possibility space.

How does the user navigate this possibility space? Do
they make tiny adjustments, tentatively inching through the
possibility space, or do they make wild jumps, from solution
to novel solution, exploring large regions of the space over
a short period of time? An optimal creative process is de-
scribed as making ‘creative leaps’, so we want to guide the
user toward a fast-moving and confident exploration of the
possibility space. The user’s experience should feel playful,
powerful, and pleasurable, like a flow state.

The user of a casual creator is a casual user, and the sys-
tem can expect no previous domain knowledge, no previous
technical experience, or adherence to a long learning pro-
cess. All of the learning and creativity described above must
occur in the first few minutes, and provide a good experience
even if the user never spends time to gain mastery.

This definition focuses on the design goals of a Casual
Creator, the experiences that Casual Creators are particu-
larly suited to create. How we can design tools that achieve
these goals is explained in the rest of this paper, through a
description of design patterns and case studies that tested
them. Some patterns come from existing Casual Creator-
like tools, like the Spore Creature Creator, Nervous System’s
design tools (System 2015), and academic experiments like
Picbreeder (Secretan et al. 2011). More patterns come from
our current understanding of autotelic creativity, anticipating
design patterns that support such a psychological state. To
predict these new potential patterns, we draw from existing
theories of creativity, flow, and design.
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Related Fields
Reflection-in-action and Direct Manipulation
During the creative design process, the user modifies the ar-
tifact, moving quickly through a cycle of evaluation, plan-
ning, modification and reevaluation. This process shows the
“Reflection-in-action” theory of learning, in which a learner
hypothesizes, acts, and reflects on the results as a way to it-
eratively understand a domain or problem. The originator of
that theory, Donald Schon, also applied it to the process of
designing (Schon 1992) in which the designer ”sees, moves
and sees again”. The seeing and moving are grounded in the
materials themselves. This cycle cannot take place disem-
bodied in the mind but must be enacted in dialogue with the
artifact.

Seeing may include the user’s visual perception of the ar-
tifact, but is also a way to describe the evaluation of the ar-
tifact. Is it aesthetically pleasing, stable, strong? How does
the designer predict that it will perform in its intended role?
Some of these evaluations could be performed or assisted
computationally. Schon surmises that while the reflective
design process itself is not well suited to unsupervised com-
putational processes, computation could provide new ways
of “seeing”, or provide constrained micro design spaces “ex-
tending the designer’s ability to construct and explore them.”
He concludes that “The design of design assistants is an ap-
proach that has not in the past attracted the best minds in AI.
Perhaps the time has come when it can and should do so.”

In Direct Manipulation (Shneiderman 1993), a UI con-
cept that parallels reflection-in-action, a complex software
system provides ”continuous representation of the object
of interest” and “[r]apid, incremental, reversible operations
whose impact on the object of interest is immediately visi-
ble” and promises that “after obtaining reinforcing feedback
from successful operation, users can gracefully expand their
knowledge of features and gain fluency.”

The user can manipulate the system with rapid operations,
then evaluate the effect immediately, because the artifact is
always visible and responds immediately to the modifica-
tion. The actions are reversible so the user is encouraged to
experiment without anxiety, incremental, so subtle changes
can be observed, and rapid (and rapidly seen), so that this
learning cycle can operate continuously with each tiny iter-
ation.

Flow
Csikszentmihalyi’s Flow theory is influential in games and
creativity studies, but seems particularly well suited to the
autotelic creativity of casual creators as“[i]deally, flow is the
result of pure involvement, without any consideration about
results.”(Csikszentmihalyi 2000) For flow to be achieved,
the activity must have goals to create a sense of progress,
immediate feedback so that progress can be sensed, and a
balance between their perceived skills and challenges. Flow
can be disrupted if the user feels frustrated, intimidated, or
overwhelmed by choices.

Flow has a complex relationship with goals. Though the
activity should be enjoyable in itself, without the pursuit of
an outside reward, goals provide the required direction and

progress. Goals can be provided as preset challenges, but of-
ten it is better to encourage the user to develop their own in-
ternal design goals. A good goal can be evaluated moment-
to-moment, may change over time, and can be either highly
specific to the user, or come from knowledge of the design
space.

The flow state is very conducive to both creativity and
an autotelic experience, and so provides important design
considerations for potential Casual Creators, especially for
avoiding conditions which disrupt flow, like choice paralysis
or hard failures.

Creativity Support Tools
Lubart (Lubart 2005) identifies several categories of human
and computer collaboration in the creative process: the com-
puter can act as nanny, coach, pen-pal or colleague. Riedl
and O’Neill (Riedl and ONeill 2009) suggest ”audience” as
a fifth role for the computer. These categories provide a use-
ful taxonomy, but do not provide implementable patterns.

The field of Creativity Support Tools, of which Casual
Creators could be considered a subcategory focused on au-
totelic creativity, provides many concrete design patterns.
Resnick et al (Resnick et al. 2005) identify many such pat-
terns. Some, like “Support Exploration” and “Make It As
Simple As Possible - and Maybe Even Simpler” are patterns
to support flow experiences and reflection-in-action styles
of learning. Other principles like “Support Many Paths and
Many Styles”, “Low Threshold, High Ceiling, and Wide
Walls” reflect how users will start with diverse goals and
skills, which will further evolve as they use the system.

Some principles, “Choose Black Boxes Carefully,” “Sup-
port Collaboration,” and “Support Open Interchange”, ask
the designer to reflect on the communities in which creative
collaboration and learning occur, and how creativity devel-
ops as multiple users share knowledge. When we look at
the creative communities that flourished for tools like Spore,
Scratch (Resnick et al. 2009), and Twine (Klimas 2012), it
becomes clear that, though the design of the single-user soft-
ware is important, the technology decisions of data format,
data interchange, hosting, and modifiability are equally crit-
ical to enabling creativity and fostering ownership. Creativ-
ity occurs between the user and client-side application, but
also in the communities of practice that develops outside of
the app, so creativity support tools must consider both sites,
personal and communal (Maher 2012).

Generative Methods and Computational Creativity
Computational creativity is the science (and art) of encod-
ing human-style creative process as automatable systems,
with the goal of building a system which “exhibits behav-
ior that would be deemed creative in humans.” (Colton et al.
2009). How ‘creativity’ can be detected in the finished ar-
tifacts of these systems is its own difficult problem (Maher
2012), but the field has successfully built generators that can
design artifacts for domains as diverse as jokes (Petrovic and
Matthews 2013) and paintings (Colton 2012).

These systems create artifacts by encoding the process of
creating art (or literature, jokes, game levels, music, etc).
The resulting algorithms must be able to create not only one
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successful example, but a wide and interesting space of pos-
sible valid artifacts, some of which should be able to surprise
even the person who wrote it. Such algorithms can be called
generative methods (Compton, Osborn, and Mateas 2013);
they use a range of technologies (genetic algorithms, gram-
mars, declarative modeling), but all share the goal of creat-
ing large possibility spaces of valid-yet-surprising artifacts.
This is the optimal type of possibility space for computa-
tional creativity systems, and also for Casual Creators.

Computational creativity and generative methods are of-
ten a poor fit for productivity-focused creativity apps. Pro-
fessional creativity involves creating to very specific require-
ments, requires complete control and the ability to fine tune
the resulting work. Generative methods create a lot of work,
very fast, but with minimal control over the output (com-
pared to hand-authored content) and often no way to iterate
on the output. A casual user, without the need for complete
control, is willing to trade a loss of control for the speed,
power, and surprise of generative methods.

The expressive range of such systems must always be bal-
anced with the need to produce valid content. A system
could produce a wide variety of mostly broken artifacts, or
produce a set of high-quality yet homogeneous artifacts, but
both of these are failures. We have found the phrase ‘1000
bowls of oatmeal’ useful to describe the common antipattern
of generating a set of artifacts which are technically distinct
to the computer, but perceived by humans as uniform.

Computational creativity systems usually run au-
tonomously and unsupervised by humans. Pairing these
methods with human users can add additional power to the
process (Davis et al. 2014), as humans provide aesthetic
evaluations and intuitive leaps to the rapid generativity
of the computation creativity processes. Mixed initiative
systems, in which the computer and human users operate
simultaneously or by turn-taking, support a creative cycle
in which each user reflects on the previous contributions
of their collaborator and modifies the artifact according to
their particular abilities. The end products of the creative
process are improved, and ideally the user enjoys the
experience of collaboration, if the system is well designed.
Interaction with a highly generative system has a particular
set of pleasures, whether in the context of a game or a
creativity tool. Chaim Gingold refers to such pleasurably
interactive systems as ‘Magic Crayons’ (Gingold 2003):
computational, accessible, sketchable, expressive systems
which invite the user to play with them and discover hidden
secrets and affordances.

Design Patterns
The definition of a Casual Creator as an autotelic creativity
tool provides an abstract guide for what we would want a
potential Casual Creator to accomplish. To actually design
such a tool, these high-level patterns must be interpreted into
concrete design patterns. We have identified a number of
these patterns, drawing from existing Casual Creators, and
from the related fields, and tested them by using them to cre-
ate a wide variety of systems, described in the Case Studies
section below. These design patterns are not exhaustive, but

are representative ones that are versatile, common, and easy
to apply.

Instant feedback Recall that both direct manipulation and
reflection-in-action require the user to observe the artifact,
make a change, and see the results, a process which allows
them to discover patterns and affordances in their possible
changes, mastering the system while iterating on an artifact.
In the instant feedback pattern, the changes should be imme-
diately visible in the modified artifact. However, just visu-
ally regenerating the artifact in response to changes, even in
real-time, is not necessarily enough to provide appropriate
feedback.

‘Seeing’, in the reflection-in-action model, encompasses
more than just ‘looking at’. ‘Seeing’ actually encompasses
the entire process of sensing and evaluating the artifact’s fit-
ness according to both the potential use case and the user’s
own design model. For objects with a strictly aesthetic role,
this is easy: the user glances at it, and can instantly decide
their opinion of it. Other evaluations are complex, and must
be either mentally simulated by the user, or else evaluated
by the system. Requiring the user to mentally simulate com-
plex consequences will take a lot of time and attention, and
the evaluation could be inaccurate or flawed, slowing the it-
eration process. The instant feedback pattern would recom-
mend computationally simulating and visualizing as much
as possible so that the user can get feedback at a glance.

The Chorus Line Named after the choreography concept
in which many dancers all execute the same routine simulta-
neously, the chorus line pattern was used in Spore (Hecker
et al. 2008) as an internal tool to test animations on a wide
range of creature morphologies. The chorus line is a sub-
pattern for instant feedback, in situations where what is be-
ing generated is not a single artifact, but a space of arti-
facts. In that situation, the user should be able to ‘see’ (in
the reflection-in-action sense) the space of their creation, in-
stantly. Instead of generating one example, this pattern sug-
gests generating many examples, and overlaying them (spa-
tially, temporally, graphically) to make subtle differences
and similarities easier to spot.

Simulation and approximating feedback Automated vi-
sualization becomes especially important when the artifact
being generated would take minutes or even hours for the
user to evaluate, rather than milliseconds for an image, or
seconds for an animation. For artifacts such as game lev-
els, the artifact is judged by the many gameplay traces over
time that could be played on it, which cannot be visually
evaluated with much accuracy by a casual user. Nor can a
system show the user all possible gameplay traces, so the
user must be shown a proxy of the evaluation. When Riedl
and O’Neill (Riedl and ONeill 2009) add ‘computer as au-
dience’ to Lubart’s categories, their simulation proposed to
accurately model how a human reader would evaluate gen-
erated stories. In Sentient Sketchbook (Yannakakis, Liapis,
and Alexopoulos 2014), the system calculates “navigational
and topological properties” as the user interacts with it, pro-
viding instant feedback for a complex artifact. This eval-
uation does not fully encapsulate the actual gameplay im-
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plications of the map, which for a finished level being put
in a game, could be a potential design issue. However, for
a Casual Creator, the goal of the evaluation is to provide
the sense of progress towards a goal necessary for achieving
flow. Only the perception of progress is necessary: as long
as the user perceives progress, the accuracy of the evaluation
is irrelevant.

Entertaining evaluations One nice benefit of relaxing the
need for accurate evaluations is that the evaluations can
themselves be pleasurable and entertaining. In the Spore
Creature Creator, when the user modifies their creature the
creature will respond by laughing and shaking the new body
part in appreciation, or, less commonly, expressing distress.
The choice of happy or sad reaction does not actually rep-
resent any real system state, it just provides arbitrary feed-
back. That feedback is psychologically significant, for en-
couraging the flow state, but also for letting the user feel
pride in pleasing their little AI judges. Even if the user starts
with no particular design direction of their own (a common
issue with casual artists) having a simulated critic present
can suggest a direction for the user, even if they choose
to ignore it. The abstract generative art game BECOME
A GREAT ARTIST IN JUST 10 SECONDS (Brough and
McClure, 2014) waggishly compares the user’s glitch art to
classic masterpieces and rates it with a percent similarity,
an intentionally arbitrary metric that still serves to provide
optional direction to the casual user.

No blank canvas One benefit of focusing on these
intrinsically-motivated users is that they are often much
more flexible about the final product. In contrast to a system
like Maya, which must support extremely broad use cases
and a high degree of fine-tuning in order to make a very par-
ticular finished product, a casual user will have more flexi-
ble requirements for their product. They likely want it to be
functional and aesthetically pleasing, but are willing to con-
sider many more possible kinds of solutions, or may not even
start with any particular solution in mind (Nilsson 2003)

Professional artists know the terror that comes from fac-
ing a blank canvas (Bayles, Orland, and Morey 2012), but
this experience is also intimidating and paralyzing to the
novice user. However, this can be very easily mitigated, by
providing either a starting shape (Spore) or a suggested chal-
lenge (Let’s Create! Pottery). The first move is the hardest,
so this restricts the first move to a single decision: accept the
prompt, or discard it. Once this one move is taken, subse-
quent actions are easier.

Limiting actions to encourage exploration This restric-
tion of actions can be useful even after the user has moved
past the blank-canvas moment. To achieve a flow state
(Csikszentmihalyi 2000), the user should be able to quickly
and confidently make decisions, which is easier if the avail-
able choices are appropriate, limited in number, and their
consequences are clear (or at least suggested) to the user.

One strategy is modal interaction: limiting actions by the
particular mode that the creator is in. This approach is com-
mon in character creators like that in World of Warcraft and
Spore Creature Creator, which have different modes corre-

sponding to user actions like painting or building and panels
with sub-actions within those modes, to choose hair or faces,
revealing only actions for the mode that the user is currently
in. Another approach is to limit the actions available, slowly
unlocking them in response to experience, challenges de-
feated, purchases, or some other pacing mechanism. If the
possibility space is temporarily restricted, the ability to more
fully explore the space scaffolds the user’s understanding of
the possibility space.

Figure 1: Top: Mutant-shopping for images in Picbreeder.
Though the user can control the rate of mutation, they can
only ‘create’ an image by selecting the parents of the next
generation. Below: Sentient Sketchbook shows automated
evaluations, allows direct editing, and also provides some
alternate mutants on the right

Mutant shopping One feature that can help the user find
unexpected solutions in the possibility space is not a creative
‘action’ at all, but the availability of suggested alternatives,
like artifacts near the current one in the possibility space. In
some tools, the user is not given any way to edit the artifact,
and must navigate the possibility space by picking one of the
new options, as in Picbreeder (Secretan et al. 2011).

In other cases, as in the parametric tree modeler Dryad
(Talton et al. 2008), the user may use these alternative to
browse the space, but can also further edit the artifacts that
they discover in that way. A third framing of this pattern
is found in Sentient Sketchbook (Yannakakis, Liapis, and
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Alexopoulos 2014), in which the user edits a game level nor-
mally, but the system uses that information to generate ad-
ditional suggested artifacts that are ‘nearby’ for some more
abstract calculated metric, rather than ‘nearby’ in their un-
derlying representation.

Although this process has a lot in common with evolu-
tionary algorithms (specifically human-guided evolutionary
algorithms (Klau et al. 2010)), the focus is not on produc-
ing an optimal specimen, but on the enjoyment that the user
feels from this process. For this reason, we named this pat-
tern mutant shopping to capture the psychological pleasures
and motivations of a less-directed browsing and discovery
process like shopping.

Modifying the meaningful In Spore, parts can be placed
anywhere on the creatures, then modified by rotation or
pulling on their morph handles. In a traditional sculpting
program like Maya, these handles would be expected to con-
trol a clear parameter like z-scaling, for maximum control
over the changes. The Spore designers discovered that it
was more interesting to have these handles control higher
level changes, like shifting a jaw from top-heavy overbite to
jowly underbite, or extending a foot’s shape from round toes
to pointed claws. Higher-level modifications like these give
the user a more meaningful space to explore.

Saving and sharing As noted in the “Design principles
for tools to support creative thinking” report, the client-side
application where the user is editing their artifact is only one
site where creativity occurs, and designers of Casual Cre-
ators should also consider how they support creativity out-
side of their app. One example of this principle is the use
of common, free, human-readable filetypes for saving data,
such as JSON or images. Spore embedded the creature’s
save data stenographically in a PNG image, and the latest
version of Twine 2 embeds the editable hypertext into the
HTML that plays the Twine game. Even if the client app
is still necessary to rebuild the content from the saved data,
as in Spore and Twine, users can share their data using ex-
isting platforms. Most hosting sites allow text and images,
but not arbitrary files. If users can easily host their save files
on such hosting sites, they can build communities indepen-
dently from the makers of the original casual creator app.

Hosted communities An alternate pattern is to provide a
hosted community that is tied more closely to the client app,
as Picbreeder and Let’s Create! Pottery do. Casual cre-
ators should encourage the user’s pride in their discovered or
created artifacts, so providing a showcase where user’s can
publish their work to share it with others supports this feel-
ing of ownership. Creations are often annotated or tagged,
and usually there is a commenting and messaging system,
enabling a large community to communicate within itself.
Modification is its own form of communication, so if the
system supports modification of artifacts, they should show
their ancestry, and notify the original creators so that they
can take pride in their influence.

Modding, hacking, teaching Users of casual creators will
quickly find that the tool does not support every action that
they want. The tool and its surrounding community support

should facilitate users in teaching each other mods and hacks
that expand the boundaries of what’s possible with the tool.
The previous two patterns support this pattern, as this teach-
ing can happen on external sites, or internal ones, but the
easier it is to find a clever hack, import it into the tool, and
modify it and republish the new results, the quicker these
ideas will spread through the community.

Case Studies
Instant Feedback: PendantMaker
PendantMaker is an online design tool for creating 3D print-
able pendants. We observed that although 3D printing is in-
teresting to many people, the tools to create printable content
are difficult, with many potential pitfalls for making unprint-
able and broken content. By restricting the domain space to
extruded tubes, we could guarantee that our generated geom-
etry would be valid for printing, and print reliably on a cheap
printer (a difficult set of physical constraints). When com-
bined with turning sliders, supporting the Direct Manipula-
tion patterns of “rapid, incremental, reversible operations”
(Shneiderman 1993), PendantMaker provided a very ‘safe’
place for the user to experiment without fear of failure.

We also noted that casual users often doubt their drawing
ability (Bayles, Orland, and Morey 2012) and lack direc-
tion, so we designed a generative algorithm in which undi-
rected scribbles from the user would be reflected around an
axis, creating a design of surprisingly attractive symmetry.
We provide a canvas for the user to draw a line, which is
extruded, shaped, and reflected into the many intersecting
tubes on the right, creating the printable pendant in real time.
This very immediate feedback was critical: users could draw
aimlessly, but notice when the reflections would intersect or
join together, allowing the users to easily create a compli-
cated knotwork of intersecting tubes that would be impossi-
ble to predict without feedback. We also added sliders for a
variety of tuning values, reflecting the Modifying the Mean-
ingful pattern above. Some sliders corresponded to clear val-
ues like thickness and arm count, but ‘bloom’ performed a
complicated sculptural task of flaring the outermost tubes
in a curved shape. Complicated tools like bloom are only
usable with rapid feedback: their action is indescribable to
the user, but with a little experimentation, the user quickly
learns how to use them artistically.

Sharing and Ownership: IceMaker
IceMaker was an evolution of PendantMaker’s design, to
create extruded 3D snowflakes, and similarly uses tuning
sliders, symmetry, and extrusion to create complex geom-
etry that is both modifiable and guaranteed valid, with im-
mediate feedback. The extrusion path is not controlled by
the user’s drawing, as in PendantMaker, but rather by a par-
ticle simulation. The behavior of the particles would be very
hard for a casual user to program, so instead we provide slid-
ers for values that represent the resulting appearance of the
path (‘complexity’, ‘wiggle’, ‘sharpness’) allowing the user
to explore the possibility space while not having to under-
stand the complex process behind it (Fig. 2).
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Figure 2: Ice-Maker, a 3D snowflake maker, guides the user
to create a snowflake and further personalize it with a mes-
sage, then embed the design into a single URL that the user
could share.

Since this interaction provides less agency than the draw-
ing interface in PendantMaker, we wanted to augment Ice-
Maker with other ways to declare ownership of the discov-
ered snowflake. Following the Saving and Sharing pattern,
we encoded the snowflake into a unique URL which the user
could share, post or send as a ‘saved’ version of their artifact.

Search and Discovery: Funky Ikebana and Tiny
Dancer

Creativity-as-discovery is further explored in Funky Ike-
bana, in which L-system flowers are are generated from a
‘DNA’ of floating point tuning values. Similar to exploration
process in Dryad (Talton et al. 2008), the user iteratively
selects the flowers that they like, and the system generates
more nearby examples. This human-guided evolutionary al-
gorithm allows for ‘optimization’ of the flower, but as this
was designed as a Casual Creator, we focus on the pleasures
of mutant shopping more than potential optimization. The
flowers are arranged together, which makes different ones
easy to spot, so the user can pick from flowers that are very
different, or mostly the same. Regeneration when one flower
is selected and its children repopulate the space is instanta-
neous, so the user can very quickly move through the space
of flowers. Picking from one of 10 children limits the num-
ber of actions that the user can take, so choice paralysis does
not occur, as shown in previous mutant shopping examples
like Picbreeder (Secretan et al. 2011).

Unlike the Dryad and Picbreeder systems, we were also
able to use the L-system to create a simple animation for
the flowers, causing them to ‘dance’. Flowers danced differ-
ently, an emergent property of their morphology, and users
could selectively evolve flowers for their movement instead
of just shape. Because we used the chorus line pattern
to show many flowers dancing at once, the user was able
to notice particularly graceful or vigorous ones, and select
for that. Tiny Dancer takes this idea further by simultane-
ously evolving the morphologies of ragdoll dancers and their
dance-responses to music, so that the dances can also be se-
lected by mutant shopping on a chorus line.

Figure 3: Iteratively evolving smaller flowers in Funky Ike-
bana, starting with the center flower in the first image. The
user’s current heuristic is to pick small simple flowers, but
that heuristic can change each time the user spots a flower
style that they like better.

Interventions: BotPrint and Binary Fission
The Casual Creator framework has been usefully applied as
an intervention in two existing designs, successfully modi-
fying the designs to improve the user’s creative experience.

BotPrint was an existing application to design laser-
cuttable robotics kits for children. Users could drag handles
to shape the outline of the bot’s chassis, and some automa-
tion would occur to figure out placement of components.
Unfortunately, the implications of moving components and
changing chassis size were not visible to the users, so mak-
ing modifications felt meaningless. Using casual creator de-
sign patterns, we updated the system to simulate the bots
moving in an ‘arena’ with many other similar bots. This
provided a way for the user to evaluate the behavior of the
bots visually (chorus line), see and select variants (mutant
shopping) and enjoy watching the bots struggle for victory
(entertaining evaluations), while also directly modifying the
bots and then rereleasing them into the arena.

Binary Fission is a game designed to help the user make
binary decision trees to filter loop invariant data for a crowd-
sourced science task about software verification. At first,
this does not seem to be a creative task, but by using ca-
sual creator patterns to emphasize the creative side of se-
lecting the filters to build the filter tree, users enjoyed the
task and were able to explore the possibility space of trees
much faster. The biggest insight provided though the casual
creator lens was to show many filters for each choice point.
Calculating how well a filter would behave is a very arduous
evaluation for the user to perform themselves, so we colored
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each by how well it filtered data at that point. Users were
able to glance through this potential ‘filter space’ for suitable
filters, and were able to apply them, see their implications,
and rebuild trees very quickly, turning what could have been
an opaque and arduous task into a fun reflection-in-action
learning experience.

Conclusion
This paper defines a new term, Casual Creators, to iden-
tify a category of interactive systems which prioritizes the
experience of autotelic creativity above productive output,
an exciting new design space that is distinct from existing
productivity-focused creativity support tools. We have illus-
trated the distinct design considerations of Casual Creators
by identifying and describing representative design patterns
drawn from theories of creativity and current successful sys-
tems. These patterns were used to design several new sys-
tems, and to evolve some existing designs to better support
casual creativity. From these case studies, we learned that
these patterns do clarify and inspire the process of building
systems to support casual creativity, as it was easy to identify
new system features from the patterns. Additionally, using
the lens of Casual Creators enabled us to easily find exam-
ples of those features in a wider range of existing systems
than would have otherwise been possible.
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Abstract 

This article presents a novel approach to authoring co-
creative systems - called interaction-based authoring - 
that combines ideas from case-based learning and imi-
tative learning, while emphasizing its use in open-ended 
co-creative application domains. This work suggests an 
alternative to manually authoring knowledge for com-
putationally creative agents that relies on user interac-
tion “in the wild” as opposed to high-effort manual au-
thoring beforehand. The Viewpoints AI installation is 
described as an instantiation of the interaction-based 
authoring approach. Finally, the interaction-based au-
thoring approach is evaluated within the Viewpoints AI 
installation and the results are discussed guiding devel-
opment and further evaluation in the future. 

Introduction 
Within the computational creativity community, our re-
search has focused on domains that are open-ended, artisti-
cally performative, improvisational, and co-creative be-
tween human and AI agent. co-creative AI agents that can 
succeed in these kinds of domains tend to be large-scale 
and knowledge-rich since they have to collaborate crea-
tively on an equal footing with humans. Therefore, one of 
the key bottlenecks for developing co-creative agents has 
been the knowledge-authoring bottleneck. According to 
Csinger et al. (1994), the difficulty, cost, or delay in acqui-
sition of expert instantial knowledge followed by its subse-
quent structuring and storage so as to enable efficient fu-
ture utilization is often referred to as the knowledge-
authoring bottleneck. In fact, the knowledge-authoring 
bottleneck has historically been a significant problem for 
the intelligent agent community in general and the compu-
tational creativity community in particular.  

Many solutions have been proposed in the past to miti-
gate the problem. Case-based reasoning (CBR) approaches 
and machine learning approaches have utilized online case 
acquisition and data mining from corpora as fundamental 
methods for dealing with the knowledge-authoring bottle-
neck. Data mining approaches have faced a general lack of 
corpora for instantial or behavioral content within improvi-
sational performative domains. Traditional CBR systems 
while learning from experience still require instantial con-

tent to be authored in the form of an initial case library. 
Learning by demonstration or observation can avoid these 
pitfalls, but traditionally require explicit training or teach-
ing phases before they can be used in the final task. 

Within the games research community procedural con-
tent generation (PCG) research has focused on developing 
algorithms to generate the instantial content that was once 
manually authored by expert designers. This has seen suc-
cess with the development of procedurality-centric games 
such as Spore and Galactic Arms Race (Hecker et al. 2008; 
Hastings et al. 2009). However, PCG systems have yet to 
focus on generating behavioral content that is flexible 
enough to work in open-ended improvisational domains. 

In contrast to the previous authoring approaches men-
tioned, this article describes a hybrid knowledge-authoring 
paradigm that combines case-based learning with learning 
by observation / imitative learning – called interaction-
based authoring. Interaction-based authoring aims to i) 
minimize the authoring bottleneck while ii) ensuring that 
the subjective experience of interacting with the system is 
high quality and that iii) the computer collaborator sup-
ports equal creative agency (the extent to which a creative 
collaborator can take decisions, make choices, and affect 
co-creation). It proceeds to demonstrate the interaction-
based authoring paradigm within an improvisational inter-
active art installation called Viewpoints AI (Jacob et al. 
2013a) after comparing the installation to related work in 
the field. A brief updated system description is provided 
(c.f. Jacob et al. 2013b). Finally, the paper details an initial 
attempt to evaluate the interaction-based authoring ap-
proach instantiated within the Viewpoints AI installation 
and discusses the results as a guide for iteratively develop-
ing / refining the installation. 

Interaction-Based Authoring 
Interaction-based authoring is a hybrid approach to author-
ing instantial knowledge and control knowledge for co-
creative interactive systems, combining case-based learn-
ing with imitative learning. While using an interaction-
based authoring approach learning occurs over the lifetime 
of the full performance and not during an explicit training 
or teaching phase. This is done to boost participant motiva-
tion and engagement encouraging prolonged interaction 
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with the agent thereby facilitating greater knowledge ac-
quisition. 

There are three main aspects to interaction-based author-
ing. First, case-based learning is used to index and store 
agent experiences in a reusable manner that can be utilized 
to drive future behavior or responses in general. Cases can 
be stored as input–output pairs (from the agent’s perspec-
tive) with a process to map between inputs and outputs in 
order to use them interchangeably. 

Second, an imitative learning / learning by observation 
system (Tomasello 2000) that can model the way a human 
partner responds to the agent’s actions is utilized in order 
to interact with other partners in other interaction contexts. 
If the new partner’s input action (from the new interaction 
context) is similar enough to an input action it has learnt a 
model for in the past, it can use that to select an output 
action. The agent takes the interactor’s role in that case and 
responds, as they (presumably) would have. 

Finally, an open-ended co-creative improvisational do-
main in which to situate the agent is required so that the 
participant or interactor is engaged and therefore motivated 
to teach the system for an extended period of time. The 
open-ended nature of the domain encourages exploration 
of the interaction space, increasing the coverage of the 
learning algorithms for future interactions. The co-creative 
and improvisational aspects of the domain emphasize the 
egalitarian nature of creative decision-making. They also 
encourage the user to further explore novel regions of the 
interaction space in the event that the system makes a 
‘poor’ choice of response, thinking of it as an interesting 
offer that they hadn’t considered rather than a mistake. The 
interaction-based authoring approach has been instantiated 
in an interactive improvisational human–AI art installation 
called Viewpoints AI. A description of the installation fol-
lows a brief account of related work. 

Related Work 
Technology has been contemporarily used to augment per-
formances and art installations (Reidsma et al. 2006; Latu-
lipe 2011; MacDonald et al. 2015). These pieces use per-
formance technology as an integral part of their overall 
aesthetics and content of the artwork. However, these tech-
nologies have been subservient to human performers, with 
shallow knowledge, and / or a lack of clear collaboration 
between the machines and humans on stage. 

Combining research in arts, AI, cognitive psychology 
and philosophy, the field of computational creativity has 
focused on many different creative domains (c.f. Boden 
2003; c.f. Colton 2012). However, most traditional compu-
tationally creative systems assemble pre-authored content 
in novel combinations, without attempting to solve the 
knowledge-authoring bottleneck, leading to small systems 
with limited scope. In addition, many in the past have ig-
nored creative collaboration or co-creativity focusing on 
systems that do not involve humans except as consumers 
or evaluators of the creative artifact or process. 

Computationally co-creative systems on the other hand 
collaborate with humans in order to participate meaning-

fully in the creative process or outcome. Much work has 
been done on co-creative agents in the music improvisation 
domain (Thom 2000; Hsu 2008; Hoffman and Weinberg 
2010). The Digital Improv Project virtual agents that could 
perform theatrical improvisation (O’Neill et al. 2011) and 
the Computational Play Project virtual agents that could 
play pretend with people using toys (Magerko et al. 2014) 
are examples of co-creative systems in other domains. 
Both however, required extensive pre-authored instantial 
content to produce improvisational behavior. The Digital 
Apprentice (a virtual collaborator for abstract visual / 
sketch art creation; Davis et al. 2014) is a co-creative sys-
tem that closely resembles an instantiation of the interac-
tion-based authoring approach. 

The Viewpoints AI Installation 
The Viewpoints AI installation is a participatory interac-
tive installation where a human interactor and a virtual 
agent – named VAI – collaborate to improvise movement-
based performance pieces together in real-time. The instal-
lation (see Figure 1) is composed of a large translucent 
muslin projection screen that has a human-sized manifesta-
tion of VAI projected onto it from the front and the interac-
tor’s shadow cast onto it from the rear. This enables an 
occlusion-free juxtaposition of the interactor’s shadow 
onto the projected virtual agent when their positions over-
lap. While the installation is highly participatory in nature 
and the experience of improvising is intrinsically tied to it, 
an audience can also watch the unfolding performance 
from the front of the installation. 

Participants interact with the virtual agent behind the 
muslin screen while a Microsoft Kinect depth camera sens-
es and records their movements. Recorded movements are 
analyzed systematically using a formal version of the 
Viewpoints framework, as described by Bogart and Landau 
(2005). Viewpoints is used in theatrical movement and the 
staging of scenes to focus on the physicality of action and 
analyze performance in terms of the physical Viewpoints 
of time (tempo, duration, kinesthetic response, and repeti-
tion) and space (shape, gesture, spatial relationship, topog-
raphy, and architecture), as well as the vocal Viewpoints 
(pitch, dynamics, acceleration, silence, and timbre). The 

Figure 1: The Viewpoints AI Installation 
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participant’s movements are interpreted through a subset of 
the Viewpoints framework and are then responded to by 
the agent. The formalization of Viewpoints is thus used as 
a framework to represent and reason about movement. 

The Viewpoints AI installation uses contrasting visual 
elements of light and shadow to showcase how the human 
participant and the virtual agent arrive at this liminal inter-
action space from two very different worlds. Visually, VAI 
is a glowing anthropomorphic character composed of a 
playful cloud of fireflies. The participant’s crisp shadowed 
form is transported to the ephemeral 2D space between the 
two worlds through the medium of shadow theatre. 

System Description 
The Viewpoints AI installation is powered by an agent 
architecture that is conceptually composed of three mod-
ules – perception, reasoning, and action. Earlier versions 
of the system are described in Jacob et al. (2013a; 2013b). 
The following sections describe the agent architecture 
briefly, going into more detail where necessary to illustrate 
updated aspects of the system. 

Perception 
The Viewpoints AI agent architecture receives input from 
the depth camera as a frame of joint positions in continu-
ous 3D space at a certain frame rate to get “joint space” 
gestures. It then discretizes the joint space gestures and 
derives additional information about them in real-time us-
ing a formalization of the Viewpoints framework to get 
discrete “predicate space” gestures. These two types of 
gestures are then sent along to the reasoning module. 

Parsing Viewpoints Predicates The Viewpoints predi-
cates that have been formalized to date make up a subset of 
the physical Viewpoints, including tempo, duration, and 
repetition, as well as parts of spatial relationship, topogra-
phy, shape, and gesture. The current version of the installa-
tion has a general purpose machine learning toolkit (Hall et 
al. 2009) integrated within the agent architecture that clas-
sifies Viewpoints predicates using classifiers trained using 
supervised learning on expert movement-practitioner / 
dancer data. Adding new predicates to the system is as 
straightforward as training new classifiers with more data 
demonstrating or exemplifying that particular attribute or 
aspect of the Viewpoints framework. Emotional content of 
the performance portrayed through gestures are also classi-
fied through this supervised learning process. 

The current movement analysis pipeline employs modu-
lar feature detectors for motion-based features (eg. vertical 
knee velocity, tangential knee acceleration, etc.) of the 
joint space gestures. These are then used to feed classifiers 
(with the specific classification algorithm chosen empiri-
cally according to classification performance). Training 
data for classification is obtained by collaborating with 
expert local movement-practitioners and dancers. 

Turn-taking Model Turn-taking refers here to the process 
of naturalistically timing the use of the shared performance 

space so as to coordinate each other’s (potentially overlap-
ping or simultaneous) movements. This can be decom-
posed into the problems of how to best time the agent’s 
movement turns coordinating with the interactor and how 
to segment a user movement turn or gesture. The first 
problem is solved by the interaction convention that the 
agent moves whenever the interactor does, either mirroring 
them (when they move arrhythmically) or improvising an 
original response to their movements (when they perform 
rhythmic repeated movements). The second problem is 
discussed below. 

In the current version of the installation the agent tries to 
detect a beat to the interactor’s movement (helped by play-
ing dance music during the interaction) and segments their 
gestures using the detected beat. It does this by creating a 
set of 1D motion vector-based local beat detectors for each 
moving joint. These report possible joint-level candidate 
beats by looking at the half period of the joint motion. 
When candidate beats are repeated multiple times, they are 
confirmed and reported to a global tracker. The global 
tracker then chooses a candidate local beat as the global 
beat, which is then used to segment the movement at the 
start and end of the beat duration. Additional trimming of 
the segment is done so that the start and end are the same. 

Reasoning 
Segmented gestures in both joint and predicate space are 
sent to the reasoning module for the agent to determine an 
appropriate response gesture. Joint space gestures are then 
stored in a gesture library in exemplar clusters, each cluster 
having a universally unique identifier number (UUID). 
These clusters are produced through an approximate ges-
ture recognition algorithm using a content vector of aggre-
gated versions of the same set of motion-based features 
used earlier in Viewpoints predicate classification. This is 
done in order to find patterns in interactions and cluster 
similar gestures together. It is a simplification of the hard 
problem of online matching in real-time of an input gesture 
to one (or potentially none) out of a potentially unbounded 
set of gestures without prior training of any sort. The cor-
responding predicate space gesture is then sent to a Soar 
agent (Laird 2012) for further processing in order to 
choose a response gesture. This case-based learning is a 
key mechanism within the Viewpoints AI installation that 
helps it instantiate interaction-based authoring. 

Response Strategies The Soar agent has a set of strategies 
for selecting responses to the input gesture that are then 
output to the action module. These strategies are selected 
amongst using pragmatic and aesthetic rules for agent be-
havior. The response strategies were chosen using an anal-
ogy to methods that jazz improvisers use to respond to 
offers from fellow musicians. For example, repetition is 
important for establishing a motif, signaling understanding 
or acceptance of a communicative intention, signaling 
which performer is being lead by another, etc. 

The most important response strategy, which forms the 
lynchpin of the interaction-based authoring approach, is the 
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application of observationally learned input–response ges-
ture pairs. The agent observes the collaborator’s response 
to its action and builds an association with parameters to 
control its application. The use of observed action response 
association leverages the collaborator’s more advanced 
reasoning faculties in order to respond to some other in-
teractor in another context. 

For example, when the agent learns to associate “wav-
ing” gesture inputs to “bowing” gesture responses by 
watching the collaborator execute “bowing” responses to 
its own “waving” gestures, it can respond using the learned 
association of “waving” and “bowing” gestures when a 
new interactor “waves” at the agent. Of course in this ex-
ample, “wave” and “bow” gestures are actually clusters of 
gestures with corresponding IDs to which the actual input 
gestures match approximately (as mentioned earlier) – no 
semantics of the words “wave” or “bow” are implied to be 
understood by the agent. 

A key assumption that the input response association is 
based on is that the interactor’s response is always related 
to the previous gesture from the agent and that there is al-
ways some reason behind it. Both of these could well be 
false, if the interactor gets bored and tries something com-
pletely new for example. However, associations that are 
seen more often are given positive reinforcement helping 
to weed out weaker associations. This role-taking process 
forms the key mechanism for learning by observation and 
imitative learning within the Viewpoints AI installation 
that helps it instantiate interaction-based authoring. 

Another response strategy is the selection of emotional 
reflex reactions to emotional content portrayed in the ges-
tures. There is an “emotional algebra” authored in the sys-
tem that responds according to a commonsensical set of 
rules (e.g. responding to angry input gestures with angry or 
fearful responses). This emotional algebra is rigid and un-
complicated yet enables a simple short-circuit reflex re-
sponse system to quickly respond to portrayed emotionally 
salient content within gestures. 

An important response strategy is for the system to mim-
ic the interactor’s input gesture back to them. Mimicry / 
repetition is important in facilitating smoother interactions 
between people (Behrends et al. 2012). In contrast, a (trivi-
al) response strategy involves performing no response at 
all, though this promotes a sense of uncertainty and is thus 
discouraged unless as a last resort. 

Another response strategy is for the agent to consider an 
existing gesture and transform it. This creates a variation of 
that gesture using dimensions or aspects of the Viewpoints 
framework (eg. faster in tempo, smoother in movement, 
adding repetitions, etc.). In addition, the system can use 
acontextual functional transforms to add variety in the en-
acted form of the gesture, such as reversing the direction of 
movement, changing the limb in which movement takes 
place, etc. See Jacob et al. (2013a; 2013b) for more detail. 

A final response mode is for the agent to consider past 
experiences from its episodic memory and choose a similar 
gesture to bring into the new interaction context. This is 
achieved using Soar’s episodic memory partial graph 

matching capabilities in order to approximately match the 
Viewpoints predicates of gestures and / or the direct predi-
cate space representation of their movements from other 
interaction contexts to the current interaction context. This 
is valuable to inject novelty into the current interaction 
context. It uses the lower dimensionality (and higher level 
of abstraction) of the Viewpoints predicate space to pick a 
gesture that is roughly midway on a scale of novelty (from 
completely identical to absolutely novel). This episodic 
retrieval process is a key mechanism for case-based learn-
ing within the Viewpoints AI installation that helps it in-
stantiate interaction-based authoring. Viewpoints predi-
cates form the index vocabulary for the case-based retriev-
al. It should also be noted that this particular response 
strategy introduces novelty to the creative experience, bal-
ancing the predictability of other response strategies such 
as the application of observationally learned patterns. 

Action 
The action module receives both predicate and joint space 
gestures from the reasoning module and proceeds to create 
the suitably transformed and rendered virtual agent embod-
iment procedurally. The Viewpoints predicates associated 
with the gesture being performed directly affect the visual-
ization (e.g. the energy of the agent’s movements control 
the colors of the agent). The visual embodiment of VAI is 
an anthropomorphic figure with a body composed of glow-
ing particles that keep to the bounds of the figure while 
flying around probabilistically. In the current version of the 
installation, the agent also has a region around the chest of 
a corresponding interactor that glows with a diffuse red 
colour in time to a rhythm if the agent has detected the user 
moving to a beat. This has the visual effect of a glowing 
heart beat that rises and falls with the interactor’s move-
ments. This was also designed to serve as a subtle form of 
coordination between the two collaborators. For more de-
tail see Jacob et al. (2013a; 2013b).  

Interaction-Based Authoring Beyond the 
Viewpoints AI Installation 

The Viewpoints AI installation instantiates the interaction-
based authoring approach to acquire knowledge from in-
teractors while attempting to provide a high quality subjec-
tive experience to the interactors and support their creative 
agency. It does this through knowledge acquisition of two 
kinds. Firstly the case-based learning component stores all 
gesture content it has seen or experienced in episodic 
memory. Secondly it learns how to use these gestures to 
respond to people by learning interaction patterns or pairs 
of gestures from observing people and then imitating their 
actions in a novel context. Finally the installation is situat-
ed in a co-creative performative domain so that there is a 
low bar for meaningful collaboration as well as to encour-
age exploration of the interaction space due to player en-
gagement and acquire more knowledge as a result. The 
approach differs from others by attempting to provide a 
full-fledged co-creative experience right from the outset 
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without requiring explicit training or teaching phases. 
The approach can be extended beyond the movement-

improvisation domain to increase the scalability of other 
co-creative agents as well. The instantial gesture content 
that the system learns using case-based learning can be 
generalized to other types of response content, for example 
strokes on a canvas or notes played on a synthesizer. Imita-
tion learning in turn can also be used to learn more general 
response control knowledge. For example, the system 
could learn patterns of strokes on a canvas or sequences of 
notes. Currently the Viewpoints AI installation only does a 
first order pairwise learning of gestures, however that 
could be extended to higher order sequences of patterns. 

Evaluation Methodology 
The following sections describe an initial effort to evaluate 
the success of the installation in addressing three main re-
search questions. RQ1: Can the interaction-based author-
ing approach minimize the authoring bottleneck? RQ2: 
Can usage of the interaction-based authoring approach 
create high quality subjective experiences using the sys-
tem? RQ3: Can systems built with the interaction-based 
authoring approach support collaboration with equal crea-
tive agency (the extent to which a creative collaborator can 
take meaningful decisions, make meaningful choices, and 
affect the co-creative process or product)? 

RQ1 was evaluated with formal analysis of authorial 
leverage (Chen et al. 2009) as an initial attempt. More de-
tailed, pragmatic testing is required next. For the analysis, 
three cases were compared: 1) a purely mirroring version 
of the installation where the agent would only mirror the 
movements of the interactor but not respond in any other 
way, 2) a version of the installation with a pre-authored 
tree of ‘plot points’ (pairs of input gestures and agent re-
sponses) of arbitrary length and branching factor, and 3) 
the full Viewpoints AI interactive art installation. 

The RQ2 and RQ3 were evaluated using empirical quan-
titative and qualitative methods in a pilot study (sample 
size of 10). For the empirical evaluation, three different 
experimental conditions were used. Condition 1 had only 
mirroring of interactor movement as our baseline for com-
parison. Condition 2 had mirroring of interactor movement 
along with random movement responses, selected from a 
library of prerecorded movements, when the participant 
was performing rhythmic repeated movements. Finally, 
condition 3 had the full response capabilities of the agent 
available to respond whenever the interactor was making 
rhythmic repeated movements. The order of the experi-
mental conditions was also randomized each time. In each 
case, participants interacted with the experiment for 3 
minutes, filled out two surveys administered online, and 
then debriefed with a semi-structured interview. RQ2 was 
evaluated using a set of validated survey instruments 
measuring system usability, flow, and enjoyment of the 

installation (Brooke 1996; Jackson et al. 2008; Vorderer et 
al. 2004). RQ3 was evaluated using a set of validated sur-
vey instruments measuring the creativity support index 
(CSI) and effectance of the installation (Cherry and Latu-
lipe 2014; Klimmt et al. 2007). The individual scales (ex-
cluding the CSI) were administered online as part of the 
IRIS Measurement Toolkit (Vermeulen et al. 2010). The 
CSI had responses on a 7 point Likert scale while the IRIS 
Measurement Toolkit used a 5-point Likert scale. 

Results 

Formal Analysis  
The interaction-based authoring approach was designed 
primarily to address the knowledge-authoring bottleneck. 
Therefore the results of the formal analysis directly esti-
mate how much of an improvement is achieved using this 
approach for acquiring knowledge within a co-creative 
agent in the movement improvisation domain. For the three 
experimental conditions described earlier (as with most 
existing literature in the field) only the variability was used 
as a factor for quality of the user experience. Therefore 
authorial leverage was calculated as the ratio of the number 
of unique experiences (variability) to the number of autho-
rial inputs involved in creating the system. In addition, a 
few assumptions were made during the calculation. 1) In 
order to compare the Viewpoints AI installation variants to 
existing interactive narrative literature, the notion of plot 
points was loosened to represent sequences of human – 
agent movements or gestures. 2) The authorial inputs were 
considered to be the sum of the number of gestures that 
were authored prior to the start of the calculation in addi-
tion to any manually authored transition rules between 
them or between interactor gestures and agent responses. 

For the first condition evaluating the purely mirroring 
agent, it was assumed that both interactor and agent 
movement responses were occurring simultaneously. Thus 
a plot point would represent the interactor gesture and the 
same agent gesture performed simultaneously. Therefore 
the same sequence of N interactor gestures input to the 
system would always return the same sequence of N ges-
tures back as responses. The authorial leverage is thus 
nearly infinite since there is almost no prior manual author-
ing of instantial content (authorial inputs near zero). 

For the second condition with the pre-authored branch-
ing tree of input gesture and agent response pairs, a tree of 
average branching factor b and depth d would have at most 
a total of (b�(bd)−1) ⁄ (b−1) nodes or loose analogs to 
plot points. Also, such a tree would have at most (bd) linear 
paths through it from root to leaf node representing unique 
experiences. Therefore, the authorial leverage is roughly 
(bd)�(b−1) ⁄ (b�(bd)−1). This function has an asymptotic 
upper bound of 1 given any b or d.  
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Finally, the third condition with the full installation ac-
tive has the capability to select responses dynamically 
based on the reasoning processes mentioned earlier. For 
the first condition, the only possible response was to mirror 
the interactor’s input gesture simultaneously. In the full 
installation that capability is present (though mimicking 
not mirroring) in addition to various other responses possi-
ble. Therefore the number of unique responses possible for 
a specific input gesture can only be higher. 

For the same N input gestures as in the first condition, 
the number of possible agent responses would be RN, 
where R is the total number of unique responses to any one 
input gesture given a set of response strategies (rather than 
just mirroring). In the worst case this is 1 and RN reduces 
to N possible unique agent responses. In the best case, this 
becomes ΣRiN where Ri represents the total number of 
unique responses to one input gesture from the ith response 
strategy. Each of the response strategies is analyzed below. 

For the “no response” response strategy, there is only 
ever one agent response. For the “repeat input gesture” 
response strategy, RiN is N since each input gesture returns 
the same gesture as the agent output. For the “transform 
input gesture” response strategy, RiN becomes 2(V+F)N, 
where V and F are the number of Viewpoints dimensions 
and functional transformations that the agent can use to 
transform the input gesture into an agent response. In this 
case 2(V+F) represents the cardinality of the power set con-
taining (V+F) elements. For the “emotion algebra” re-
sponse strategy, the number of emotionally appropriate 
gestures available to respond with is dependent on the past 
history of gestures learned by the agent. For a history of H 
gestures with h appropriate gestures, that amounts to hN 
possible responses. In the worst case, this reduces to re-
peating the input gesture and RiN reduces to N. This is 
justified by equating the emotional mirroring taking place 
with emotional contagion (Hatfield et al. 1994). In the best 
case, the entire history of gestures has the appropriate emo-
tional content and RiN becomes HN. For the “novel re-
sponse from episodic memory” response strategy, the exact 
magnitude of RiN is difficult to estimate for the best case 

since it is completely dependent on the past ordering of 
learned gestures and received input gestures. However, the 
lower bound for RiN is N since in the worst case, if no 
gesture is found that is similar to the input gesture, the in-
put gesture is repeated as the agent output. Finally, for the 
“learned interaction patterns” response strategy, given a set 
of b learned responses on average for the right hand side of 
each of N input gestures, the RiN would be bN. 

Therefore RN or ΣRiN for all the i response strategies in 
the Viewpoints AI installation becomes 1 + N + 2(V+F)N + 
N + N + bN or (1 / N + 3 + 2(V+F) + b)×N in the worst case. 
This becomes (1 + N + 2(V+F)N + HN + ≥N + bN) or (1 / N 
+ ≥2 + 2(V+F) + H + b)×N in the best case. Thus, the num-
ber of unique experiences possible with the full installation 
is much higher than in the first condition. The amount of 
authorial input is equally minimal in the full Viewpoints 
AI system. Therefore, since the authorial leverage for the 
first condition is very large, the authorial leverage for the 
full Viewpoints AI system is even larger. In addition, if 
complexity were a factor in our calculation of authorial 
leverage, it is visibly clear that the full installation has sig-
nificantly higher complexity in its decision-making and in 
the user experience offered than the mirroring version of 
the system.  

Pilot Empirical Study 
The aggregated results for both the IRIS Measurement 
Toolkit and Creativity Support Index are presented in Fig-
ure 2. The system usability, flow, and enjoyment scales 
were used to evaluate the system in terms of its ability to 
produce high quality experiences for the user. The ef-
fectance and creativity support index scales were used to 
evaluate the ability of the system to co-create alongside the 
participant with equal creative agency. The results show 
that each of the experimental conditions did well, though 
no statistically significant results could be obtained be-
tween the different conditions potentially due to the small 
sample size (sample size of 10). However, regardless of the 
apparent lack of difference between the conditions, the 

Figure 2: Results of Pilot Empirical Study. For descriptions of specific questions refer provided citations. 
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survey ratings for the third condition show clearly that us-
age of the interaction-based authoring approach instantiat-
ed within the Viewpoints AI installation can indeed both 
create high quality subjective experiences for participants 
interacting with the installation as well as support collabo-
ration with equal creative agency. 

The semi-structured interviews were used to guide fu-
ture development and contained questions regarding feed-
back about the experience, goals that users had while inter-
acting with the system, what they liked / disliked about the 
installation, etc. The feedback was overwhelmingly posi-
tive, with particular emphasis on the aesthetics of the 
VAI’s visual representation, freedom of creative expres-
sion felt by participants, amount of fun had by users, and 
sheer “cool factor” of the installation. Some of the negative 
feedback suggested that more was required to show that 
the agent was actually doing something other than mimick-
ing the user. In addition, potentially indicating a miscom-
munication of the design goals for the installation, it be-
came clear that some users felt like they should have been 
able to control the agent’s actions to a greater degree. The 
goals of the users varied depending on how many times 
they had interacted with it and how inhibited they were. 
The goals generally went from exploring the boundaries of 
the system, to trying to get the agent to do certain reactions 
/ responses, to trying to do novel interactions with the sys-
tem that hadn’t been tried before. 

Discussion 
The results given above help answer the three questions 
used to evaluate the interaction-based authoring approach 
instantiated within the Viewpoints AI installation. Using 
the interaction-based authoring approach led to a signifi-
cantly higher authorial leverage (the ratio of variability of 
the experience, or more generally the quality of the system, 
to the amount of authorial input) than any pre-authored or 
pure mirroring version of the installation. The pilot study 
showed that the interaction-based authoring approach also 
led to high quality experiences, as judged by the system 
usability, flow, and enjoyment metrics administered. In 
addition, the study revealed that the interaction-based au-
thoring approach was able to support collaboration with 
equal creative agency using the effectance and creativity 
support index metrics. However, it did not show a signifi-
cant difference in ratings between the three experimental 
conditions for any of the survey metrics. 

The lack of significant different between ratings for the 
different experimental conditions could be because of a 
number of reasons. Firstly, the study was conducted using 
a very small sample size. However, given that the ratings 
were so similar for all three, it is also possible that users 
had difficulty distinguishing between the different condi-
tions in terms of the metrics used. Secondly, in terms of the 
evaluation, users were blind to the nature of the experi-
mental condition as well as blind to the processes occur-
ring within the virtual agent. According to Colton (2008), 
the process and the product are equally important to influ-
ence evaluation of creativity within the system. Therefore 

Turing-test style approaches to evaluation are found lack-
ing. This seems particularly true when the creative domain 
is improvisation where participants evaluate the improvisa-
tional experience / process. 

The results (especially from the semi-structured inter-
views) suggest that in order to improve the differential 
ratings of the full Viewpoints AI installation to the other 
conditions, the system’s actions and outputs should be 
more noticeably different to highlight the system’s original 
efforts better. This points to the requirement for a more full 
featured list of implemented transforms (both Viewpoints 
and functional transforms as well as gestural combination). 
In addition, video analysis showed that novice users had a 
hard time triggering the system’s rhythmic repeated 
movement gesture segmentation mechanic. Thus current 
efforts focus on replacing the existing gesture segmenta-
tion algorithm with a more naturalistic automated gesture 
segmentation algorithm from Kahol et al. (2004). Finally, 
the experimental design is being refined to make the fram-
ing more explicit and will be scaled up.  

Conclusion 
In conclusion, this paper introduced a hybrid approach to 
knowledge authoring for co-creative systems called inter-
action-based authoring. The approach incorporates ideas 
from case-based learning and imitative learning, while em-
phasizing incorporation into open-ended co-creative appli-
cation domains. This paper then presented an instantiation 
of the interaction-based authoring approach within the 
Viewpoints AI installation. The installation was then eval-
uated in terms of the extent to which it mitigated the 
knowledge-authoring bottleneck, produced high quality 
subjective experiences, and supported equal creative agen-
cy. Finally, the results of the evaluation were discussed in 
terms of guiding the future iterative development and eval-
uation of the installation. 
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Abstract

Imagination is considered an important component of the cre-
ative process, and many psychologists agree that imagina-
tion is based on our perceptions, experiences, and concep-
tual knowledge, recombining them into novel ideas and im-
pressions never before experienced. As an attempt to model
this account of imagination, we introduce the Associative
Conceptual Imagination (ACI) framework that uses associa-
tive memory models in conjunction with vector space mod-
els. ACI is a framework for learning conceptual knowledge
and then learning associations between those concepts and
artifacts, which facilitates imagining and then creating new
and interesting artifacts. We discuss the implications of this
framework, its creative potential, and possible ways to imple-
ment it in practice. We then demonstrate an initial prototype
that can imagine and then generate simple images.

Introduction
The concept of imagination is not often talked about in
cognitive psychology without reference to creativity (Gaut
2003; Vygotsky 2004). In fact, the term ‘imaginative’ is
many times used as a synonym for ‘creative’. Defining
imagination, like creativity, is difficult because the word
is used broadly and depends on the audience, the level of
granularity, and the context (Stevenson 2003). In cogni-
tive psychology, imagination is commonly generalized as
thinking of something (real or not) that is not present to the
senses (Beaney 2005). In terms of creativity, it is being able
to conceive of and conceptualize novel ideas. Imagination,
thus it seems, should be an important consideration when
developing creative systems.

In the field of computational creativity, imagination is dis-
cussed explicitly only on rare occasions, such as Colton’s
creative tripod (2008). Most creative systems incorporate
imagination implicitly and do not model it directly. In this
paper, we propose a computational framework that attempts
to explicitly model imagination in order to perform cre-
ative tasks. Our framework, called the Associative Concep-
tual Imagination (ACI) framework, uses associative mem-
ory models (AMMs) combined with vector space models
(VSMs) to enable the system to imagine and then create
novel and interesting artifacts.

We begin by looking more closely at the psychology lit-
erature in order to establish a cognitive basis for imagina-

tion, which will motivate the design of our framework. We
then consider how current computational models of creativ-
ity both succeed and fail at addressing imagination. We
then outline in detail the ACI framework for imagination and
demonstrate an initial implementation (proof-of-concept) in
the domain of visual art. Finally, we discuss the possibilities
this framework can afford us in building creative systems
and talk about questions regarding its application.

Psychology of Imagination
Imagination is ubiquitous in everyday life. We can visu-
ally imagine a world described through narrative, or imagine
how to get to the grocery store, or imagine what it would be
like to be a celebrity. We can imagine what a lion crossed
with an eagle could look like, or imagine new ways to ex-
press meaning through art. Although most often thought
of as visualizing in the mind, we can imagine in conjunc-
tion with any of our senses. Indeed, we can talk about
imagination across the whole range of human experience.
Imagination is a broad term with many different taxonomies
and ways to interpret it. We restrict our view to two major
types of imagination that are commonly used by psycholo-
gists (Currie and Ravenscroft 2002).

The first type of imagination is sensory (or reproductive)
imagination. This is mentally recalling past experience,
which is directly related to our memories. For example, one
can imagine what their favorite food tastes like without ac-
tually tasting the food, or imagine their mother’s face when
she is not present, or imagine an annoying song that is stuck
in one’s head. This type of imagination can be thought of as
creative in the sense of recreating in one’s mind a previous
experience.

The second type of imagination is creative (or productive)
imagination. It is the ability to combine ideas in different
ways never before observed, or the ability to think about the
world from a different perspective than previously experi-
enced. For example, one can imagine what a hairy banana
monster could look like, or what life would be like if born
in another country, or imagine how to compose music that
is happy and uplifting. This type of imagination is more
clearly tied to creativity and some have argued that it forms
a necessary basis for creativity (Vygotsky 2004), while oth-
ers have argued that imagination is merely a tool used in the
creative process (Gaut 2003).
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Most psychologists agree that our senses, our conceptual
knowledge, and our memories form the bases of imagina-
tion (Beaney 2005; Barsalou 1999). As we perceive the
world and have experiences, we create memories by estab-
lishing and strengthening connections in our mind. These
connections form concepts, which are in turn intercon-
nected. Memories are often argued to be distributed and
content addressable across groups of neurons (Gabora and
Ranjan 2013). This means that multiple neurons respond
in varying strengths to certain experiences, different experi-
ences may activate overlapping neurons, and similar expe-
riences will have more overlapping neurons than dissimilar
experiences. This distributed memory allows the brain to
implicitly associate concepts and experiences together.

Thus we have associations between concepts (e.g., rain is
related to water) and between what we perceive and these
concepts (e.g., apples look round and are typically reddish
in color). Creative imagination cannot make something out
of nothing, nor is it random; everything we imagine is an-
chored to things we have actually experienced in the past
and on their connections (Vygotsky 2004). The novelty is
in combining these experiences in different ways. When a
chef imagines new recipes, she uses her knowledge of ex-
isting recipes, ingredients, methods, and kitchen tools. The
new recipe is essentially a recombination of this previous
information in a novel and (hopefully) delicious way.

A computational model of imagination should address the
abilities to perceive, to create memories, and to learn asso-
ciations between concepts. Such a model should then be
able to reconstruct this information (sensory imagination),
as well as recombine this information in novel ways to cre-
ate new and interesting things never before experienced (cre-
ative imagination).

Related Work
In accounting for creativity in computational systems,
Colton was one of the first to explicitly mention imagina-
tion as part of the creative process (2008). In order for a
system to have imagination, it should be able to produce ar-
tifacts that are novel. Others have mentioned imagination in
relation to a creative system that produces narratives (Zhu
and Harrell 2008).

A computational system that explicitly tries to model
imagination is SOILIE (Science Of Imagination Laboratory
Imagination Engine) (Breault et al. 2013). SOILIE main-
tains a large database of labeled images, and words are as-
sociated together when they appear as co-occurring labels.
For example, a picture of a face could be labeled with ‘face’,
‘ear’, ‘mouth’, etc. and the system learns to associate those
labels together. A word is given to the system which then
finds 5-10 associated words and creates a collage out of im-
ages that have been labeled with those associated words.
This system demonstrates a rudimentary form of sensory
imagination in which it tries to recreate an image of the in-
puted word. SOILIE is similar to one of the abilities of the
Painting Fool, which can extract key words from a text doc-
ument and create a collage by finding images of those key
words in a database (Krzeczkowska et al. 2010).

Creative imagination was partially demonstrated in a sys-
tem that used recurrent neural networks to produce melodies
according to a set of other melodies arranged on a 2D
plane (Todd 1992). Each of the melodies in the training
set were tied to a specific 2D location, and the model was
trained to reproduce each melody at their respective loca-
tions. After training, the system would be given a new lo-
cation on the 2D plane and could essentially interpolate a
new melody according to its proximity to the original set of
melodies. This is the beginnings of creative imagination in
that the system is blending melodies together according to
spacial proximity.

Imagination has been mentioned in conjunction with sys-
tems that perform conceptual blending to produce metaphors
and narratives (De Smedt 2013; Zhu and Harrell 2008;
Veale 2012). Conceptual blending is the process of taking
two input mental spaces (representing concepts) and mixing
them together to make a blended mental space that is novel,
meaningful, and has emergent structure (e.g., lightsaber is
a blend of sword and laser) (Fauconnier and Turner 1998).
Computational models of conceptual blending have been
used to produce narrative (Permar and Magerko 2013), po-
etry (Harrell 2005), and even mathematical axioms (Mar-
tinez et al. 2011).

Conceptual blending certainly has potential for imagina-
tion as it explicitly attempts to blend conceptual knowledge
into novel ideas. Although there are still many technical
challenges in autonomously blending input spaces, concep-
tual blending does seem to address creative imagination.
Unfortunately, most implementations do not consider sen-
sory information and the input spaces are typically hand en-
gineered, so the system does not learn from experience and
cannot imagine sensory type artifacts. However, one com-
putational system does try to implement conceptual blend-
ing with images (Steinbrück 2013). The system takes two
pictures that each represent a concept and blends them by
extracting commonly shaped objects in one image and past-
ing them over similarly shaped objects in the other image
(e.g., a globe in one image is pasted over a bicycle tire in
another image).

Evolutionary computation is a common method incor-
porated into creative systems because of its innate ability
to yield unpredictable yet acceptable results (Gero 1996).
Indeed, evolutionary computation seems to at least par-
tially model creative imagination in that it recombines and
modifies existing artifacts through crossover/mutation and
can, thus, diverge and discover novel artifacts. The fit-
ness function also guides the evolutionary process to con-
verge on quality results. Many systems incorporate the use
of evolutionary techniques to produce artifacts in domains
such as visual art (Machado, Romero, and Manaris 2007;
DiPaola and Gabora 2009; Norton, Heath, and Ventura
2013), music (Miranda and Biles 2007), and semantic net-
works (Baydin, de Mántaras, and Ontañón 2014).

Evolutionary computation appears to have potential in ad-
dressing both sensory and creative imagination. However,
the creative intent seems to reside solely in the fitness func-
tion, which is separated from the actual generation of ar-
tifacts. The creation of artifacts is an independently ran-
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Figure 1: An overview of the Associative Conceptual Imag-
ination framework. The vector space model learns, from a
large corpus, how to encode semantic information into con-
cept vectors that populate conceptual space. Multiple asso-
ciative memory models can then learn associations between
these concept vectors and example artifacts from various
domains, such as art, music, or recipes. These associative
memory models are bi-directional and can not only discrim-
inate, but also generate artifacts according to a given con-
cept vector. The semantic structure encoded in the concept
vectors allows the framework to facilitate the imagining of
artifacts according to concepts for which it has never seen
examples.

dom event that is not connected to any associations learned
through experience (except for maybe the population of ar-
tifacts themselves). The act of imagination in this case is
mostly a selection/filtering process, which, although viable,
doesn’t seem to capture the complete picture. In its basic
form at least, there is no notion of associations between con-
cepts and artifacts.

Associative Conceptual Imagination
We attempt to explicitly model imagination through a com-
putational framework called the Associative Conceptual
Imagination (ACI) framework. ACI uses ideas from other
domains in a novel way that is capable of both sensory and
creative imagination. ACI is composed of two major types
of components, a vector space model and associative mem-
ory models as shown in Figure 1. We will discuss the major
components of the ACI framework, how they interact to per-
form various imaginative tasks, and the creative potential of
systems built using this framework.

Vector Space Model
Creativity is valued not just because of the novelty of things
created, but also because of their utility. For example, in
domains such as visual art, the value is in how the art con-
veys meaning to the viewers (Csı́kzentmihályi and Robinson
1990). There is an element of intentionality as an artist pur-
posefully expresses meaning through art. How can an artist
intentionally express meaning without having knowledge of
the world and of what things mean? Conceptual knowledge
helps to provide a foundation for the ability to imagine and

Figure 2: A 2D visualization (projected from high dimen-
sional space) of several word vectors color coded by top-
ics. These concept vectors were learned using the skip-gram
VSM, which was incorporated into the DeViSE model (vi-
sualization courtesy of Frome et al. 2013). Note that con-
cepts from similar topics generally cluster together because
the concept vectors encode semantic relationships.

create. Incorporating conceptual knowledge into a creative
system can potentially be achieved through Vector Space
Models (VSMs) (Turney and Pantel 2010).

It is commonly agreed that a word (or concept), at least
in part, is given meaning by how the concept is used in con-
junction with other words (i.e., its context) (Landauer and
Dumais 1997). Vector space models take advantage of this
by analyzing large corpora and learning multi-dimensional
vector representations for each concept that encode such se-
mantic information. These models are based on the idea that
similar words will occur in similar contexts and words that
are often associated together will often co-occur close to-
gether. These models reduce words to a vector representa-
tion that can be compared to other word vectors. VSMs have
been successfully used on a variety of tasks such as infor-
mation retrieval (Salton 1971), multiple choice vocabulary
tests (Denhière and Lemaire 2004), TOEFL multiple choice
synonym questions (Rapp 2003), and multiple choice anal-
ogy questions from the SAT test (Turney 2006).

Concepts similar in meaning will have vectors that are
close to each other in “vector space”, which we will refer
to as conceptual space. Associations between concepts are
implicitly encoded by their proximity in conceptual space.
Figure 2 shows relationships between example word vec-
tors that correspond to various topics projected onto a 2D
plane. These concept vectors capture other interesting se-
mantic relationships that are consistent with arithmetic op-
erations. For example, vector(“king”)�vector(“man”)+
vector(“woman”) results in a vector that is closest to
vector(“queen”).

The potential of VSMs in creative systems has been dis-
cussed before, and we aim to make use of them in this frame-
work (McGregor, Wiggins, and Purver 2014). The semantic
information encoded in the vectors provides a form of con-
ceptual knowledge to the ACI framework, which will help
provide a basis for imagination.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 246



Associative Memory Models
In addition to knowing how concepts relate to each other, the
ACI framework needs to allow understanding of how con-
cepts relate to actual artifacts. In other words, ACI systems
should be able to perceive and observe the world (i.e., to be
grounded in sensory information). ACI incorporates Asso-
ciative Memory Models (AMMs) to learn how to associate
artifacts with concept vectors. For example, models built us-
ing ACI can learn what a ‘cat’ looks like by observing pic-
tures of ‘cats’, or learn what a ‘car’ sounds like by listening
to sound files of ‘cars’.

Here we use “associative memory model” as a generic
term that refers to any computational model or algorithm
that is capable of learning bi-directional relationships be-
tween artifacts and concept vectors. Not only should the
AMM be capable of predicting the appropriate concept vec-
tor given an artifact, but it should also be capable of going
the other direction and producing an artifact given a concept
vector. Of course, the quality of learning will be dependent
on the quality and quantity of labeled training data, as well
as on the characteristics of the particular associative memory
model that is chosen.

Bidirectional associative memory models (BAMs) seem
like an obvious possible choice to implement the
AMM (Kosko 1988). A BAM is a type of recurrent neu-
ral network that learns to bidirectionally map one set of pat-
terns to another set of patterns. Given an artifact (encoded
into a pattern), a BAM could return the appropriate concept
vector. Conversely, given a concept vector, a BAM could re-
turn an appropriate artifact, which can essentially be thought
of as performing sensory imagination. Variations of BAMs
have been used in computational creativity to associate in-
put patterns to features in order to model the phenomenon
of surprise (Bhatia and Chalup 2013).

Another family of algorithms that have potential use in the
ACI framework are probabilistic generative models. These
models learn a joint distribution for observed data and their
respective labels/classes. Once trained, not only can these
models classify new data, but they can also be used gener-
atively to create new instances of data that correspond to a
particular label. For example, a Deep Belief Network (DBN)
is a generative model that can also be thought of as a deep
neural network in which several layers of nodes (or latent
variables) are connected by weights from neighboring lay-
ers, while nodes of the same layer are not connected (Hin-
ton, Osindero, and Teh 2006). Hinton et al. used DBNs
to classify images of handwritten digits (0-9) by training on
several examples and then used them generatively to “imag-
ine” what a 2 looks like by creating several images that each
uniquely looked like a handwritten two, thus demonstrating
a form of sensory imagination.

Another generative model uses a hierarchical approach to
recognize and then generate unique images of handwritten
symbols, again demonstrating sensory imagination (Lake,
Salakhutdinov, and Tenenbaum 2013). Sum Product Net-
works (SPNs) have also been used to learn bidirectional
associations between patterns (Poon and Domingos 2011).
Given a picture of half a face, SPNs were able to infer (or
imagine) the other half. These generative models can often

be applied directly to the raw inputs (i.e., directly to pixels
in an image) and thus seem to exhibit advanced perceptual
abilities and in turn can generate artifacts directly.

The associative memory model implementation is not
limited to a single model, but could be split into separate
discriminative and generative parts. A machine learning al-
gorithm could be the discriminative part and be trained to
predict a given artifact’s concept vector (e.g., given a ‘sad’
melody, the learning algorithm predicts the ‘sad’ vector).
The generative part could be implemented by a genetic algo-
rithm that uses the discriminative model as the fitness func-
tion. For example, a genetic algorithm could be given the
‘sad’ vector to imagine a ‘sad’ melody, and the discrimina-
tive model knows what characteristics a ‘sad’ melody should
have and could then guide the evolutionary process.

Other specific associative memory models could be in-
corporated depending on the domain, its representation, and
available training data. Additionally, multiple AMMs for
different domains could be incorporated into the framework
simultaneously (i.e., one model learns images while another
learns sounds for each concept), with the AMMs then indi-
rectly related through conceptual space.

Performing Imagination
Once an implementation of the ACI framework has its com-
ponents in place and properly trained, it is ready to imagine,
and even create, artifacts. To perform sensory imagination,
an ACI model can generate artifacts for a particular concept
that it has previously learned. For instance, after having seen
example images of ‘cats’, the system has learned an internal
representation for what a ‘cat’ looks like. The associative
memory model can then start with the ‘cat’ concept vector
and generate a unique image that would likely be associated
with the ‘cat’ vector, presumably an image of a ‘cat’ (see
Figure 3(a)). In the case of using probabilistic generative
models, the probabilistic nature of the model and the distri-
bution of various poses, angles, and colors learned from the
many example ‘cat’ images allow the system to generate a
unique ‘cat’ image each time.

To perform creative imagination, the framework takes in-
spiration from the DeViSE model, which uses VSMs to
aid in correctly recognizing images of objects (Frome et al.
2013). The DeViSE model first learns word vectors from a
large corpus using a VSM. The model is then trained with
raw image pixels using a deep convolutional neural network
that learns to predict the correct labels’ vector (instead of
the label directly). Cosine similarity is performed between
the predicted vector and the other word vectors to determine
what the correct label should be. Since the vectors encode
semantic relationships between concepts, the model can suc-
cessfully label an image with a word for which it has never
seen example images (called zero-shot prediction). For ex-
ample, the system may have been trained on images of ‘rats’
and ‘mice’ but not on images labeled ‘gerbil’. Given a pic-
ture of a ‘gerbil’ the model can still successfully label it as
such because a ‘gerbil’ is similar (according to the VSM) to
a ‘rat’ and a ‘mouse’.

Replacing the convolutional neural network with, say, a
probabilistic generative model could allow the system to act

Proceedings of the Sixth International Conference on Computational Creativity June 2015 247



(a)

(b)

(c)

(d)

(e)

Figure 3: Different ways the Associative Conceptual Imag-
ination framework can be used to imagine artifacts. The
green rectangle with black dots represents concept vectors
in conceptual space, which are learned from a vector space
model. The Associative Memory Model (AMM) associates
concept vectors to artifacts. The framework allows the imag-
ining of artifacts for concepts it has previously observed (a).
It can facilitate the imagining of artifacts for concepts it has
not previously observed but that are similar to other concepts
that is has observed (b). The framework allows the imagin-
ing of artifacts that are combinations of two (or more) pre-
viously observed concepts (c). Models based on ACI can
imagine changes to a previously observed concept (d). Fi-
nally, the framework can facilitate imagination across differ-
ent domains by observing an artifact in one domain and then
imagining a related artifact in another domain (e).

in reverse. We could input the vector for ‘gerbil’ and the sys-
tem could imagine what a ‘gerbil’ looks like without having
ever seen a picture of a ‘gerbil’, because of the semantic

knowledge encoded in the vectors (see Figure 3(b). Simi-
larly, the system could take advantage of the semantic struc-
ture of the VSM and imagine what a concept sounds like
without having heard any example sounds for that concept.
For example, the system could have been trained on sounds
for ‘horses’, ‘tractors’, ‘dogs’, and ‘trumpets’, but not have
been exposed to any sounds for ‘donkeys’. Yet, the system
could still generate a unique sound for a ‘donkey’. The re-
sult may not sound exactly like a ‘donkey’, but it will sound
closer to a ‘horse’ than to the other concepts because the sys-
tem knows that ‘donkeys’ are more similar to ‘horses’ than
to the other concepts. An ACI model can imagine its own
‘donkey’ sound in a way that is novel, yet still reasonable by
leveraging semantic information gained through the VSM
and transferring it to the task of generating sound.

In another situation, a system based on ACI can imag-
ine what a combination of concepts could look like by start-
ing with a vector that is in between concepts in conceptual
space. As shown in Figure 3(c), the system could imagine
what a ‘cold’ and ‘fiery’ image looks like by starting with a
vector part-way between the ‘cold’ and ‘fiery’ vectors. The
system should generate a novel image that is some blend-
ing of the two concepts (and perhaps other surrounding con-
cepts). The system is essentially imagining what new com-
binations of concepts look like, while being anchored in past
experience.

ACI could facilitate the imagining of distortions to exist-
ing concepts by gradually venturing away from a concept’s
vector along different dimensions (see Figure 3(d)). The sys-
tem could generate images of ‘roses’ starting with the ‘rose’
vector, but then gradually move away from the ‘rose’ vector.
The resulting images should become distorted depending on
the direction and distance from the original vector.

Finally, an ACI model could generate artifacts across dif-
ferent domains. The system could learn, using separate asso-
ciative memory models, what concepts look and sound like.
Given a picture of a ‘dog’, the system could then imagine
what the ‘dog’ sounds like. The ACI model simply uses the
AMM for images to predict the vector associated with the
‘dog’ picture and then feeds that predicted vector into the
AMM for audio and has it generate a unique sound. The
system could also be given a melody and then imagine an
image to go with it, the two domains being tied together
through the conceptual space as shown in Figure 3(e).

The ACI framework provides potential for these types of
imaginative (and creative) abilities. It has been designed to
model imagination by learning conceptual knowledge, per-
ceiving concepts (artifacts), and generating novel artifacts
never before experienced in several ways. Of course, this
is only a framework, and the actual power of it depends on
the abilities of the specific VSM and AMM implementations
chosen for each domain (and their training data). Current
state-of-the-art models are probably not yet capable of gen-
erating (or even classifying) large, detailed images of arbi-
trary concepts at the pixel level. Nor are they likely yet able
to perceive sophisticated music in the general case. How-
ever, these capabilities do seem to be on the horizon with the
advent of generative deep learning systems (such as DBNs).
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Figure 4: Example training images for each of the four
known 2D vectors shown in conceptual space.

Imagining Images
In order to show how the ACI framework could work in
practice, we created a simple toy implementation that can
imagine basic binary images. Instead of using a vector space
model, we manually specified the conceptual space as a 2D
plane in order to more easily visualize how images at var-
ious vector locations relate to one another. We then chose
four vectors in the 2D conceptual space that are spatially lo-
cated at four corners. The four vectors are ~

tl = (0.0, 0.1),
~

tr = (1.0, 1.0), ~

bl = (0.0, 0.0), and ~

br = (1.0, 0.0), to
which we will refer as the known vectors.

We then generated four sets of training images for each
of the four known vectors that are 32 ⇥ 32 pixels in di-
mension and are binary (i.e., black and white). The train-
ing images were pictures of actual corners, and example im-
ages for each of the four known vectors can be seen in Fig-
ure 4. We implemented the associative memory model using
a sum product network (SPN) and trained the SPN using cor-
ner images paired with their associated known-vectors (per-
turbed slightly using Gaussian noise). To learn the struc-
ture and parameters of the SPN, we used a modified version
of the LEARNSPN algorithm that is able to accommodate
both categorical and continuous random variables (Gens and
Domingos 2013). The result was a model that represents a
joint probability distribution over image-vector pairs. We
used the efficient, exact-inference capabilities of the SPN
to generate novel images by sampling from the conditional
probability distribution of images, conditioned on the con-
cept vector. This was done by clamping the concept vector
to a specific value and sampling the image pixel variables.

The model can perform sensory imagination by generat-
ing images for each of the four known vectors that it has
learned. The bottom set of images in Figure 5 are exam-
ple images imagined for the ~

br = (1.0, 0.0) vector. Notice
how each imagined image is unique yet still looks like the
training images in Figure 4.

The system can also perform creative imagination by gen-
erating images for vectors for which it has never seen exam-
ple images. These imagined images should look more sim-
ilar to nearby known vectors than to known vectors farther
away. The top set of images in Figure 5 were produced for
the vector (0.8, 0.2). These images are indeed similar to the
images at vector ~

br = (1.0, 0.0) (bottom set), which is the

Figure 5: The bottom set of images were imagined for the
vector ~

br = (1.0, 0.0), which is one of the four vectors
on which the system had been trained. The top set of im-
ages were imagined for the vector (0.8, 0.2), which is a
vector on which the system was not trained. The top im-
ages are similar to the bottom images because the vector
(0.8, 0.2) is close, in conceptual space, to the known vec-
tor ~

br = (1.0, 0.0).

closest known vector. Although the system was never shown
images for vector (0.8, 0.2), it could still imagine what the
images could look like by leveraging the information rep-
resented by the vectors in conceptual space (in this simple
case just spatial information).

To further illustrate the imagining capabilities in this sim-
ple example, we had the system generate images at vector
locations all over the 2D plane in 0.1 increments. In order to
help visualize how the various generated images transition
along conceptual space, we generated 100 images at each
vector location and averaged them into a single image. We
then arranged each averaged image on the plane according
to their respective 2D vector (see Figure 6).

Moving from corner to corner on the 2D plane essentially
shows the known images morphing into each other. The cen-
ter image becomes a blend of all four corner shapes, while
the images in the middle of the edges are a blend of the two
corners on that edge. The model has only seen images for
the corner vectors, which provide a basis for the other vec-
tors in the 2D plane. The model cannot imagine images that
do not relate to the four known corner images, which the
results seem to confirm.

Admittedly, this toy example with a small 2D conceptual
space and simplistic binary images is not visually impres-
sive. It may be hard to ascribe imagination to a model that
just seems to be doing a form of interpolation. Keep in
mind that this example is only intended to be a proof-of-
concept that demonstrates how the framework could work
to generate actual artifacts. This example also allows us to
understand why the model is generating the images that it
does—because of the training images (perceived artifacts)
and the spacial arrangements of the vectors (conceptual re-
lationships). A full implementation of this framework would
be dealing with thousands of concepts in a conceptual space
hundreds of dimensions in size, which is a much richer rep-
resentation of conceptual knowledge. Also working with
real artifacts, such as actual visual art or music, has the po-
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Figure 6: The average of 100 rendered images for each 2D
vector in conceptual space at 0.1 increments. The system
was trained on example images only for the vectors located
at the four corners and then the system had to imagine what
images at vectors in the middle would look like based on the
images observed for each of the four corner vectors. Note
how the images start to blend together as their corresponding
vector approaches the middle of the space.

tential to yield much more impressive results.

Conclusions and Future Work
We have outlined the Associative Conceptual Imagination
framework, which models how imagination could occur
in a computational system that generates novel artifacts.
The ACI framework accounts for the cognitive processes
of learning conceptual knowledge and concept perception
(via artifacts). The framework proposes using vector space
models to learn associations between different concepts, and
using associative memory models to learn associations be-
tween concepts and artifacts. This network of associations
can be leveraged by the system to produce novel artifacts.

We have demonstrated a basic implementation of ACI and
applied it to simple binary images. We showed that the sys-
tem could perform both sensory and creative imagination
through the images it was able to produce.

The ACI framework poses some interesting questions.
How will this framework perform when applied to real ar-
tifacts? What implementation and corpus should be used
for the VSM? What models are appropriate to use for the
AMMs? Does the choice of the model depend on the do-
main? Does the choice of the model depend on the artifact’s
representation (e.g., an image could be represented by raw
pixels, extracted image features, or parameters to a proce-
dural algorithm)? Research needs to be done to implement
and refine this framework for various domains in order to
explore these questions, and we are confident that the ACI

framework will be useful for computationally creative sys-
tems.

In future work, we plan to apply the ACI framework to
DARCI, a system designed to generate original images that
convey meaning (Heath, Norton, and Ventura 2014). We
plan to use the skip-gram VSM (Mikolov et al. 2013) trained
on Wikipedia, which will learn vectors for 40,000 concepts
in 300 dimensional space. Initially, we intend to implement
the AMM using a discriminative model and a genetic algo-
rithm. We will use 145 descriptive concepts (e.g., ‘violent’,
‘strange’, ‘colorful’, etc) to train the discriminative model to
recognize those concepts in images. For example, the model
will learn to predict the ‘scary’ vector when given a ‘scary’
image.

Once trained, the discriminative model will act as the fit-
ness function to the genetic algorithm, which can then ren-
der images in ways that convey descriptive concepts (i.e., it
can render a ‘sad’ image). The system will also be able to
render images that convey concepts on which it has not been
trained (beyond the 145) because of the semantic relation-
ships encoded in the vectors. In other words, it will be able
to imagine what other concepts would look like based on
past experience and conceptual knowledge.

This framework could also be extended to include ideas
involving conceptual blending. As it stands, the conceptual
space does not change once the VSM learns the concept vec-
tors and blending occurs through the associations between
concepts and artifacts. It could be interesting to find ways
to blend the concepts themselves together to produce new
concepts that can then be expressed through artifacts.

References
Barsalou, L. W. 1999. Perceptions of perceptual symbols.
Behavioral and Brain Sciences 22(04):637–660.
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Abstract 

Creativity, whether seen in personal or historical scope, 
is always relative, subject to the contextual expectations 
of an observer. From the point of view of a creative 
agent, such expectations can be seen as soft constraints 
that must be violated in order to be deemed as creative. 
In the present work, learned conventions are modeled 
as emergent activity clusters (pre-concepts) in a self-
organizing memory. That is used as a framework to 
model such phenomena as stereotypical categorization 
and mental inertia which restrain the mind when search-
ing for new solutions. Using the kinematics of a robotic 
hand as an example, the models' dynamic behavior 
demonstrates primitive creativity without symbolic rea-
soning. The model suggests cognitive mechanisms that 
potentially explain how expectations are formed and 
under which conditions an agent is able to break out of 
them and surprise itself. 

 Creativity is in the Eye of Beholder 
Creativity is a concept that defies exact definition. The 
commonly accepted view that creativity is a process result-
ing in novel and useful products (Mumford 2003) appears 
to be loose, because in the strict sense even a slightest 
modification would make the product novel. Another often 
cited definition is by Newell et al. (1959) who generously 
view it as a problem-solving process presenting one or 
more of the following: novelty and value, unconventional 
thinking, high motivation, and ill-defined problems. They 
continue by admitting that no more specific criteria can be 
set for separating creative from non-creative thought pro-
cesses. 
 Surprise, more or less as a synonym of unconventional 
or unexpected, is often considered a necessary condition 
for creativity (e.g. Boden 1990). However, it may be diffi-
cult to distinguish unconventional from mere novelty, as it 
depends on the observers' subjective experience and con-
ventions. Moreover, novelty is a moving target: once an 
invention is made it becomes legacy – unless it is forgotten 
and may be reinvented. Like Grace and Maher (2014), we 
conclude that creativity is in the eye of beholder, and can-
not be defined objectively. 
 To get a grasp of the relative nature of creativity we 
adapt the generate-and-verify model by Newell et al. 
(1959) into variable scopes (Fig.1). The products of a gen-

erator (G) passing the evaluation (E) on one level are used 
as input to evaluation on the next level. A person using 
computer as a generator (Gp) may find designs passing her 
evaluation criteria (Ep), but while showing these to others 
she (together with her computer) acts as a generator (Gh) 
for the society where others collectively act as evaluators 
(Eh). 
 On the societal level creativity appears to be a statistical 
concept formed by opinions of the population under study. 
Czickszenmihaly (1997) studied individuals (Gh) with a 
reputation of being creative. Maher et al. (2013) studied 
the evaluation (Eh) with a temporal regression model of car 
designs, where outliers have higher potential for surprise 
and creativity. 
 In this paper we concentrate on the personal level (P-
creativity), trying to computationally model some of the 
phenomena happening in a person's mind when a creative 
moment is encountered. In this respect the generative pro-
cess is not in our focus. Although various control strategies 
(analogy, negation, metaphors, etc.) can make it more effi-
cient and interesting, it may as well be a black box. Essen-
tial for creativity is the evaluation process, which recog-
nizes value and novelty in products of the generator. It 
becomes surprised if something unexpected is produced, 
i.e. if  its expectations are violated. 

 
Figure 1. Context defines the expectations (E) against which the 
creativity of a generative process (G) is evaluated (from Takala, 
2005). 
 
 What are the expectations then? They can be understood 
as constraints on the product (or process): what it should or 
is assumed to be (or how it is assumed to be done). They 
may be hard (defining the domain), such as laws of nature 
and logic or explicit rules of a game, but they can also be 
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soft (acquired) constraints: habits, conventions, manners, 
fashion, social norms, political correctness, etc. These soft 
constraints are contextual and subject to consideration, 
applying in one situation but irrelevant in another. But they 
can be very hard in practice if based on psychological re-
pression. This may serve as an interpretation of Boden's 
expression that creativity produces "previously impossible 
ideas". An idée fixe, or design fixation (Jansson and Smith 
1991) may be the most common obstacle hindering creativ-
ity. Such soft constraints form the "box", out of which we 
are supposed to take a leap. 
 What makes creativity valuable is that it is a construc-
tive, sense-making act, not just anarchy that randomly de-
fies any rules without a purpose. The new act must in some 
(novel) way be regular and repeatable. Creativity is search 
for a constructive and consistent solution assuming some 
constraints but neglecting or modifying others. By and 
large, creativity is management of constraints for finding a 
resolution of conflicts among them. 
 Different degrees of creativity can be identified accord-
ing to the level of abstraction, or cognitive complexity: (1) 
Most trivial, though subjectively surprising, is the case 
when a solution is already known but happens not to be in 
the current scope of attention: "It just didn't come to my 
mind". (2) Some effort is required if the solution is not 
familiar as such but is potentially reachable by known 
methods or rules. Then essential is the selection of right 
starting points and methods to proceed with, while neglect-
ing the obvious ones that may distract the process. An ex-
ample of this is the need to backtrack in order to avoid an 
obstacle instead of stubbornly pushing straight towards a 
goal. (3) Yet a higher level comes if the solution is poten-
tially reachable within the hard constraints, but requires 
constructive actions on the metalevel, i.e. new rules or 
methods. (4) Finally, even if the product is actually not 
realizable, we may still act creatively by imagination, ne-
glecting the physical constraints. 
 The first two degrees, interpreting unexpectedness as 
changes in the scope of attention (relaxing soft constraints 
and that way releasing latent possibilities), are demonstrat-
ed below using a self-organizing memory as a model. The 
higher levels, requiring symbolic rules to be changed, are 
out of the scope of this paper. So is the sometimes required 
property that creativity should reflect itself, consciously 
recognizing that something novel and valuable has been 
formed. 

On Representations 
What can be done (consciously acted on) in problem solv-
ing, depends on its conceptual representation. This is an 
important research issue for cognitive science. The main 
bulk of AI research concentrates on the symbolic level, 
dealing with logic, language and inference rules. Another 
end is the subsymbolic sensory area, dealing with neural 
networks, associative memory and statistical inference. 
The well-known frame problem, or symbol grounding, 
calls for connections between the two. In the present work, 
we are not trying to fill the gap fully, but approach it from 

bottom up, demonstrating how primitive conceptual repre-
sentations possibly form from the embodied information. 
 As the enaction theory (Stewart et al 2011, Rosch et al. 
1992) assumes, regularities of the world are learned by 
receiving repeated stimuli and doing explorative actions. 
Conditioning and mimicking are two basic psychological 
principles facilitating this. Later, abstractions of experienc-
es form as subsymbolic concepts. They facilitate more ef-
ficient behavior as perceptions are immediately categorized 
into known classes that may trigger preprogrammed reac-
tions. 
 Such predefined reactions are of advantage in the world 
where things are quite predictable. A repeatedly adequate 
behavior gradually becomes the expected, a rule to be fol-
lowed. Novel reactions are necessary only if the conditions 
change – as the proverb says: "necessity is the mother of 
invention". From evolutionary perspective, however, it 
may also be of advantage to try out novelties even without 
a reason, to become prepared for changes. Such tendency 
is called curiosity, or creative personality. 
 In neural networks, the sensory information is modeled 
statistically as conditional distributions and associations. 
Connecting this to the higher cognitive processes has long 
been a challenge. Gärdenfors (2000) suggests conceptual 
spaces as a potential bridge between sensory and symbolic 
levels, a theory of concept formation on supersensory but 
subsymbolic level. The idea is to describe objects with 
their properties that act as dimensions of a geometric (met-
ric or topological) space. Individual objects are represented 
as points in this space, and their generalized conceptual 
representations as (convex) areas. Inspired by prototype 
theory (Rosch 1973) Gärdenfors suggests that natural cate-
gories may be represented as a Voronoi tessellation around 
central points representing stereotypical prototypes. This 
way the extensional (set of experienced samples) is con-
verted into a more efficient intensional (set of constraints) 
representation. 
 In this paper, a somewhat similar framework is built, 
though not relying on a geometric feature space like 
Gärdenfors (2000) and Chella et al. (2014), but letting the 
neural cells of a self-organizing network to serve as repre-
sentative samples of the sensory input. Concepts are not 
formed explicitly but just as (dynamic) clusters of similar 
cells. Thus we call it preconceptual, resembling the devel-
opment stage of mind before actual conceptual thinking, in 
which sensorimotor activity predominates. Pylyshin (2001) 
uses the term in a compatible manner to describe situated 
vision, referring to objects that are identified but not de-
fined by their properties. The idea also closely relates to 
'proto-symbols' by Brooks and Stein (1994), who use the 
term for patterns of behavior that represent generalizations 
but appear rather as signals than formal symbols. Creativi-
ty is then demonstrated in primitive form, i.e. problem 
solving and conflict management using implicit concepts 
without symbols (Brooks 1991). 
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Implementation with Self-Organizing Map 
 
The computational framework we use is based on the Self-
Organizing Map (SOM) by Kohonen (2001). It is a widely 
used clustering device in pattern recognition and data anal-
ysis. As a biologically motivated neural network it is an 
interesting model for cognitive science. It has been sug-
gested by Gärdenfors (2000) as a means of implementing 
conceptual spaces, though his approach is rather program-
matic than an actual implementation. 
 The SOM is a neural network consisting of an array of 
cells connected to a vector of input values (Fig.2). The 
connection weights wij of a cell are initially random but are 
changed as follows: Given an input vector x, the cell with 
best matching weight vector wj is selected, and its weights 
are tuned towards the input values. A similar tuning is also 
done in its neighbor cells.  
 

… 

… 
wij 

xi 

 
 

Fig. 2: The principle of SOM. Input vector X is compared with 
weight vectors Wj of the cells. The best matching unit is selected 
and its weight vector tuned towards the input in the training 
phase. As associative memory, SOM returns Wj as output in re-
sponse to partial input (an example: active elements emphasized). 
 
 With a large number of input samples, the network or-
ganizes itself by unsupervised machine learning instead of 
using explicitly given concepts. Effectively it builds a 
model of the training input's statistical distribution, such 
that each cell represents a collection (a vector) of associat-
ed input values, and the number of cells with similar values 
reflects the density of those value combinations in the in-
put. Usually SOM is implemented with low-dimensional 
topology (typically a regular 2-D array), and becomes 
folded if applied to higher dimensional input. An example 
is given in Figure 3. 
 

 
 
Fig. 3: One-dimensional SOM (chain of cells) trained with data 
from a 2-D distribution concentrated in the grey areas (cells are 
visualized in the input space in locations of their learned values). 
 
 In pattern recognition SOM is widely used as a classifi-
cation device. It tells efficiently if a given input vector be-

longs to one category or another. This helps in data com-
pression as complex input vectors can be quantized and 
represented with a smaller number of dimensions. 
 In SOM, similar cells emerge close to each other result-
ing in associations between a cell and its neighborhood. If 
there are concentrations in the input distribution, similar 
cells form clusters separated by dissimilar boundaries 
(Figs. 4a). 
 

 (a)   (b)   
 
Fig. 4: A two-dimensional SOM trained with RGB values of (a) 
discrete colors (b) flat color spectrum. Cell color shows its 
learned values, cell size indicates similarity with its neighbors. 
 
 As each cell represents a vector of correlated input val-
ues, the SOM can act as an associative memory. A partial 
input (i.e. the values given for some inputs, and the rest 
undefined) as a stimulus activates the cells according to 
their similarity with the defined inputs. As result we get for 
each cell the probability of its value vector to become the 
output. Then we select the cell best matching the partial 
input, and take its weight vector as output (see Fig.2). Ef-
fectively the associative memory would fill in the unde-
fined values by those from a cell selected by highest prob-
ability. Practical applications are found in image comple-
tion (Kohonen 2001), or information retrieval (Kohonen et 
al. 2000), for example. 
 The separable clusters (as in Fig. 4a) can be interpreted 
as primitive concept formation ("preconcepts"). When an 
input activates some cells, their similar neighbors are acti-
vated as well in the cluster. Then if the cluster were labeled 
with semantic information (such as color name), the input 
would be identified with that. The behavior resembles cat-
egorical perception in psychology (Goldstone and Hen-
drickson 2010) in the sense that the classification of any 
input within a cluster would get strong support by a group 
of cells, whereas an input falling to an area boundary 
would be in "unknown" territory where classification is 
unreliable. This coincides with the phenomenon in categor-
ical perception that stimuli near category boundaries are 
more difficult to identify than within categories. 
 It is not clear if the human perceptual categories are in-
dependent of symbolic concepts, nor if they are presented 
by stereotypical prototypes or area boundaries. We hypoth-
esize that it is possible to form concepts without higher 
level semantics, if such identifiable areas emerge. Such 
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does not happen if the input distribution is flat without 
statistical foci (Fig. 4b). 

A Case Study 
In this section, we show how an associative SOM can be 
used to solve the control problem of a kinematic hand,  and 
demonstrate preconceptual creative behavior in that con-
text. 

Setting the Scene 
An articulated kinematic hand mechanism consists of a set 
of links connected at rotational joints to make a chain. In 
our case there are two such links (Fig. 5). Using the two 
joint angles (α and β) as motoric controls, the hand can 
reach points in the (x, y) plane within an area delimited by 
its physical constraints (i.e. the allowed ranges of control 
angles, and possible other geometric obstacles). The hand 
position can easily be calculated by trigonometry from the 
angles and lengths of the joined links, whereas the inverse 
is non-trivial. This inverse kinematics (IK) problem, find-
ing control values for angles, given a target position, is 
generally a hard problem without analytical solution. A 
simple solution exists for our case with only two degrees of 
freedom, but it is still interesting due to its non-linearity 
(including singularities), physical constraints, and non-
uniqueness of the solution: the same point can be reached 
by left or right handed configuration (negative or positive 
values of β, respectively). 

x 

y 

α 

β 

(x,y) 

 
Fig. 5: Kinematics of a robotic hand 
 
 Among many other techniques, feed-forward neural 
networks have been proposed to solve the IK problem by 
training the system with random samples from the configu-
ration space (e.g. Duka 2013). In case the problem is un-
der-constrained (i.e. the robot has redundant degrees of 
freedom), sampling can be utilized to satisfy additional 
goals, such as moving in a certain style. Wiley and Hahn 
(1997) propose building from the given positions a 
resampled grid that serves as a geometric index, out of 
which the final angle-target combinations are calculated by 
interpolation. Our approach is similar to both of these in 
the sense that a neural network is trained to form a grid-
like index, from which candidate starting points are select-
ed for final approach to the target. 
 Let us assume our humanoid robot has two hands with 
their physical limits (hard constraints) similar to those of 

the human left and right hand. Each hand is trained to work 
in its most natural area (left/right in front of the base) as in 
Fig. 6a. The system is implemented in one SOM with two 
inputs for hand position (x, y), two for joint angles (α, β), 
and one (binary) input for handedness. Then clusters auto-
matically form in SOM corresponding to left and right 
handed operation (Fig 6b). Their actual shape is random, 
sometimes bifurcated or consisting of multiple foci, but the 
areas are clearly identifiable. The clusters are separated by 
a boundary where the cells are less similar with their 
neighbors (shown in yellow). 
 

(a)     
 

(b) 

α β x y L/R 

 
 
Fig. 6: Training areas of hands (L=green, R=red) in the experi-
ment. a) in robot space, b) as clusters formed in SOM. Two sam-
ple positions shown: white cells in SOM and the corresponding 
left (solid) and right (shadowed) hand positions. 
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 The IK problem is solved by association, taking the tar-
get's coordinates as partial input, finding the cell(s) that 
best matches with it, and returning its weight values for the 
missing inputs (the control angles α and β): 
 

ƒ: (x, y, ?, ?)  ⟶  (x',y', α,β) 
 
Although the result as such is not exact, it provides a good 
starting point for an iterative final approach. The move-
ment direction needed in the iteration phase can be esti-
mated from the cell's neighborhood by differentiation (ap-
proximating the Jacobian of parameters). This is a common 
strategy with actual robots and well grounded by biological 
action where proprioceptive memory and motor programs 
(Keele 1968) quickly lead to approximately right position 
and the final approach is done with the help of sensory 
feedback. In our implementation this phase is computed 

explicitly, but the Jacobian differentials could as well be 
learned by the SOM, if continuous movements instead of 
random positions were used in the training phase. 
 Targets within the trained areas are easily reached with 
the method above, and if the target is not too far out from 
the trained area, it usually can be reached from the closest 
starting point by the final iteration (Fig. 7a). 

Acting Creatively 
Now let us take a challenge where the simple approach 
does not work, by setting the target in a place not reachable 
from the closest point by direct iteration. This may be 
caused by a limitation of the mechanism itself or happen 
due to a physical obstacle (such as the box wall in Fig. 7c). 
Then the final approach gets stuck and we need to find a 
new starting point. 

 

 (a)     (c)    
 

  (b)      (d)    
 
Fig. 7: Creativity in search for IK solutions. (a) target point reachable with left hand (final iterative approach shown as a sequence of red 
dots), (b) SOM cell (white circle), found in a recently active cluster (pink), defines the starting point for approach, (c) target appears im-
possible for the left hand due to the wall obstacle at its "elbow" (shadowed), but a new starting point feasible for the right hand is found 
(solid), (d) corresponding activity in SOM, where the previous starting point is surrounded by negative feedback effect (blue) due to unsuc-
cessful trials, and the new point gets positive feedback (pink) which propagates to neighboring cells. 
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 Though in principle any starting point could be consid-
ered as a new candidate, a random search is not very effec-
tive. Even if a cell's probability to be selected is weighted 
by its correlation with the input, a random method would 
mostly suggest candidates near the one which already lead 
to a dead end. The obvious engineering solution, trying out 
all candidate points in successive order, is not suitable here 
because sorting would call for higher level conceptual 
thinking and a different memory organization. We do not 
want to give the system any ready-made domain specific 
heuristics either, but want it to rely on very generic princi-
ples. As such an approach we utilize supervised reinforce-
ment learning with a short-term memory (STM).  
 We implemented a distributed STM as an additional 
variable in each cell. It modulates the cell's probability to 
be selected as candidate for a trial. Its value would be in-
creased by positive feedback from a successful case and 
decreased if the trial fails. Following the self-organization 
principles, these changes are also propagated to the cell's 
neighborhood but only among similar cells. To keep the 
operation dynamic, both positive and negative effects are 
gradually faded, possibly with different time constants. 
 The system's behavior now depends on its short-term 
history, its sensitivity to feedback, and the relative time 
constants. Let us assume the robot has operated for a while 
with targets in the left-hand area. Then the cells in the cor-
responding cluster(s) have been activated a lot, and due to 
positive feedback their probability to be selected again is 
high (pink color in Fig. 7a-b). When the target moves to a 
near but unreachable position (Fig 7c), the same cells con-
tinue to be activated as candidates, but a failure to reach 
the goal from one starting point will make the probability 
of that cell (and its close neighborhood) low. However, 
because of recent positive activity, the search will still con-
tinue with other cells in the same cluster. Then the further 
course of action is determined by the system's history and 
parameters as follows. 
 If a cluster's temporal activity is high (due to operating 
long in that area) and fading slower than the effects of neg-
ative feedback, the system will continue search within the 
same cluster despite of being unsuccessful. This corre-
sponds to mental inertia, the tendency to keep on temporal 
preferences, i.e. the agent's expectation that a recently use-
ful concept will continue to be so, an idée fixe. 
 However, if the negative feedback is more persistent and 
eventually dominates the whole cluster (indicated by blue 
color in Fig 7d), then a cell in some other cluster (probably 
one with next best correlation with the target) gets highest 
probability and will be taken as starting point for a trial. If 
it does not succeed, negative feedback will make its neigh-
borhood less probable and the search continues somewhere 
else. Effectively this would implicitly perform an ordered 
search, though without explicit sorting. 
 Once a successful case is found (possibly requiring itera-
tive final approach as in Fig. 7c), it will get positive feed-
back which is diffused to its neighbors in the same cluster, 
too (pink color in Fig. 7d). If the agent's operation contin-
ues with further targets nearby, this neighborhood will 

provide successful candidates again, and eventually the 
cluster becomes predominant: a primitive paradigm shift 
has happened, heureka! 

Analysis of system behavior 
We can evaluate the system theoretically and get the fol-
lowing qualitative observations, also confirmed by experi-
ments with different parameters and test conditions. 
 In the above case, the creative leap was required because 
the left hand was unable to continue operation due to a 
constraint. Had the system a different history, with the 
right hand recently used before going to the new target, the 
new solution would have been obvious because of the pre-
dominant right hand: no creative moment, nothing unex-
pected, although new compared to what had been learned 
and stored in the long term memory (SOM). This is in 
alignment with the general observation that mental fluidity 
is induced by pressures (Hofstadter and Mitchell 1995) and 
may not happen otherwise. 
 Sticking with recently used behavior and building ex-
pectations is necessary for the system to act creatively, but 
it is not sufficient alone. Without negative feedback from 
an unsuccessful trial the system will keep trying the same 
over and over without getting anywhere.  
 Without any (positive or negative) feedback the system 
looses its temporal properties and reacts always the same 
way in a given situation, governed by the associative 
memory alone. 
 An interesting situation is encountered if we neglect the 
positive feedback but keep the negative. This leads to an 
"anti-sticking" behavior: once a cell has been used, neither 
it nor its close neighbors will be used for the next trial, but 
something loosely associated with the input. As the effect 
of negative feedback gradually fades away, the system may 
return to this cell if its association to the input is high, but 
only temporarily, and then jump to another cell. Overall, 
this resembles divergent thinking: variable alternatives are 
tried out, not randomly but guided by associations. 
 In our case study the robot's handedness was given as an 
explicit input feature to the SOM. This makes a clear dis-
tinction between clusters corresponding to left and right 
handed operation, respectively. However, this feature ap-
pears to be unnecessary, as similar behavior may emerge 
anyway if there only are two or more separate clusters 
formed from the distribution of input value combinations. 
 The ability to act creatively depends on the problem 
domain and its representation: if there are local optima 
where one may get stuck, there is a possibility for radical 
moves – otherwise a too simple route may lead to the solu-
tion. In this respect our system can be compared with op-
timization: Gradient search is a sticky strategy correspond-
ing to the case with positive feedback only. Parallel search 
methods, such as genetic algorithms and simulated anneal-
ing, may lead to unexpected solutions, though in their basic 
form they have no such concept as surprise. However, the 
'temperature' that makes simulated annealing process to 
look for more random options may well be compared to the 
negative feedback in our system. 
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Discussion 
Different degrees of creativity, as mentioned in the intro-
duction, can be demonstrated with our system. The case 
when a solution is already familiar (or reachable by itera-
tion) but "didn't come to my mind" is modeled if the recent 
history has built strong temporal preference for a subset of 
solutions. This manifests itself as the agent's "sticky" ten-
dency to sometimes utilize iterative approach from recently 
used starting points even if there were a better starting 
point stored in SOM, but this alternative is in a different 
cluster. 
 The more interesting case, target reachable within hard 
constraints but outside the most obvious trained area, is 
demonstrated when starting to use the other hand after try-
ing and failing with one (as in Fig. 7). This can be inter-
preted as transformational creativity on preconceptual lev-
el, a change in the predominant cluster (rule) used in the 
agent's operation. It involves relaxation of soft constraints 
(giving up accustomed solutions), an essential property of 
creativity. 
 Whether this should be called creativity, may be an ar-
guable question. Hristovski et al. (2011) have studied a 
similar situation of limb movements in the context of box-
ing. On the one hand, they state that any novel movement 
that has not been performed previously by an individual 
can be considered a P-creative act. On the other hand, they 
note that movement system bistability yields too much 
predictable behavior to account for creativity. Our case 
may be interpreted as the latter due to the binary choice of 
left or right hand in any situation, or the former because the 
exact hand movement is not predictable. A deeper analysis 
of the system's dynamics may be needed to take a stance. 
 Although our model shows qualitative changes in the 
robot's dynamical behavior, it is missing temporal anticipa-
tion, which could be utilized for creative planning of ac-
tions. The implementation as such does not support reason-
ing about an action's consequences that would be needed 
for goal-oriented behavior and higher-level expectations 
(Lorini and Falcone 2005). However, similar techniques 
might be used for learning temporal associations as well, 
thus making it a platform for further development. 
 Lorini and Falcone (2005) used formal logic to describe 
expectations and surprise in symbolic domain. At the other 
end of the scale, specific neural assemblies have been 
found that correspond to these phenomena in visual cogni-
tion (Egner et al. 2009). This suggests that a neural net-
work model may be feasible. Gabora (2010) presents a 
schematized associative memory where neural cliques are 
alternatingly recruited for analytic and associative modes 
of thought, which is supposed to be essential for creativity. 
The model does not consider expectations and surprise, nor 
computational implementation, but the activation function 
of neurons may be comparable to our feedback mecha-
nism. 
 The Copycat system (Hofstadter and Mitchell 1994) has 
a somewhat similar feedback mechanism as our STM. Its 

global 'temperature' and the 'unhappiness' of objects serve 
as measures controlling the random choices that facilitate 
unexpected behavior. The main differences are that it 
works on textual objects instead of continuous signals, and  
its architecture is based on a crowd of heterogeneous 
codelets instead of neural networks. The latter feature 
makes it more reminiscent to Brooks' robots. 
 Relaxation of hard constraints, e.g. leaving the physical 
space and thinking in another context by analogy or meta-
phor, would call for higher level conceptual models than 
neural networks, and is out of the scope of this paper. The 
same applies to reflective thinking. Our poor system itself 
does not recognize creativity, though it may be possible to 
detect it from the abrupt changes happening in the STM 
values during a creative leap. 
 Had the system a measure of cumulative effort used be-
fore a successful trial, or about the time spent without a 
goal at all, it could model the emotional frustration and 
boredom that are supposed to control creative behavior on 
a higher level. In previous work (Takala 2005) these were 
used to control the recruitment of alternative methods to 
solve given problems. Combining the mechanisms with the 
present work may result in interesting behaviors. 
 Our general approach follows much that suggested in 
robotics (Brooks 1991, Brooks and Stein 1994). Although 
the current implementation is based on a single neural net-
work, and a multilevel hierarchical organization of several 
SOMs may be possible, a more heterogeneous architecture 
may also be due.  

Conclusion 
This work emphasizes the contextual nature of creativity, 
culminating to expectations and their role as soft con-
straints that must be violated in order to find novel and 
surprising solutions to problems. Concentrating on the pre-
conceptual level of cognition, it contributes to an area rare-
ly touched in previous works. 
 A computational model is presented that implements a 
primitive form of creativity, which may serve as a basis for 
further development. Autonomous formation of conceptual 
spaces is demonstrated with the self-organizing memory, 
and a learning mechanism proposed that simulates the 
temporary preferences typical in idea fixations. Though our 
example case is about kinematics, the model is domain 
independent and may be applied in many different areas. 
 The creativity model proposed in this paper is based on 
various ideas that are not novel as such but presented in 
multiple previous works. The main contribution appears to 
be the implementation where a self-organizing neural net-
work is combined with control mechanisms usually applied 
on the symbolic level. Our system is not using predefined 
heuristics or encoded algorithms but applies generic learn-
ing principles to form (pre)concepts, on which the feed-
back mechanism operates. 
 A theoretical conclusion is that creativity cannot happen 
just anywhere, but requires certain conditions: In order to 
be surprising, the situation should involve expectations, or 
temporary preferences, that are violated in a creative act. If 
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the system acts in a continuous parametric domain, such as 
movement, the setting (or its representation) should be 
non-monotonic, such that the system may get stuck in a 
local optimum. Yet another condition, though mostly over-
looked in the present work, is motivation. If the problems 
to be solved are given from outside, the system acts in a 
slave mode, whereas a truly creative mind would be curi-
ous and willing to set problems, not just to solve them. 
 An immediate future work is to study the proposed 
mechanism in more complicated cases, such as a real ro-
bot, taking into account physical continuity of movement 
and not only static positions. Another extension is to facili-
tate explorative creativity by letting the robot move ran-
domly around and learn continuously. Long term goals 
include developing the proposed approach towards higher-
level cognition and conceptual thinking, including analogi-
cal reasoning and emotional self-control. 
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Abstract

This paper describes a framework by which creative
systems can intentionally exhibit transformational cre-
ativity. Intentions are derived from surprising events in
a process based on specific curiosity. We argue that au-
tonomy of intent is achieved when a creative system di-
rects its generative processes based on knowledge learnt
from within its creative domain, and develop a frame-
work to elaborate this behaviour. The framework de-
scribes ways that transformation of the creative domain
can arise: from learning, from a serendipitous situation,
and as a result of intentional exploration. Examples of
each of these kinds of transformation are then illustrated
through examples in the domain of recipes.

Introduction
Significant effort has been devoted to developing computa-
tional models that can recognise creative artefacts, on the
assumption such a capability could be used to generate cre-
ative artefacts if paired with an appropriate search algorithm.
However, generate-and-test creative systems lack any kind
of autonomous intent: they never decide to make a green
artefact, or a loud one, or a happy one, unless such quali-
ties are built into their externally-provided objective func-
tion. As classically formulated, a search function does not
distinguish two points within its space in any way but by
the objective, and thus has no intent that can be defined
with the representations that define that space, only in how
the resulting artefacts perform. Search functions that can
modify their goals while searching (Gebser, Kaufmann, and
Schaub 2009), or that search based on specific past experi-
ences (Cully, Clune, and Mouret 2014) do exist, but, from a
computational creativity perspective, there remains an unan-
swered question: under what conditions should a system de-
cide to modify its search?

At first this lack of autonomous intentions in our systems’
search processes may fail to seem problematic: we are not
constrained by cognitive plausibility. There is no inherent
reason why intentionality, while clearly a quality of human
creators, should be required in their digital analogue. Our
goal is systems which produce output that would be con-
sidered creative, regardless of the processes involved. On
closer inspection, however, autonomy of intention may not
be so easily discarded from creativity. Intent is intrinsically

tied to definitions of art and creativity (Dewey 2005), where
the debated questions concern not whether an artefact’s cre-
ator had intent, but whether that intent should be privileged
over observers’ interpretations (Best 1981). Intention is seen
among human creators as critical both to the production and
consumption of creative artefacts – evidence that argues for
its role in appreciative as well as generative computational
processes.

Autonomy of intent also provides critical information for
use in framing. A creative system’s ability to construct fram-
ing narratives for its work – considered critical to any com-
putationally creative construct (Charnley, Pease, and Colton
2012) – stems from its ability to provide justification for
creative decisions. Without autonomy of intent these jus-
tifications can only be driven by external objectives (e.g. “I
wanted to make the artefact seem brighter”), not intrinsic
motivations (e.g. “I was exploring how colour influenced
brightness”). Human creators make the decision to explore
a particular set of concepts, and follow that exploration to
its resolution by way of creative expression. Framing, as
the channel by which a creative system can convince its
audience of its creative autonomy, should explain such ex-
plorations. Previous models of intent in framing have been
based on information extrinsic to the creative domain, such
as the day’s top news stories (Krzeczkowska et al. 2010), but
we argue that without learning how to connect such external
knowledge to the creative domain (e.g. through analogy),
then such intent cannot be autonomous.

How, then, can a creative system derive intent from its
knowledge about the creative domain? On what basis should
it transform its inspiring set and own past creations into con-
textual constraints on its search process? For one possible
answer we turn to cognitive studies of how human designers
think during the process of designing, and how their search
for a creative solution affects itself. Human designers do
not sequentially analyse a problem, synthesise solutions to
it and then evaluate those solutions, but instead switch be-
tween those processes iteratively (Schön 1983), finding new
problems as frequently as they find new solutions (Weis-
berg 1993). This co-evolution of problem-framing alongside
problem-solving becomes more evident in expert designers
(Cross 2004), and – more critically for our purposes – has
been shown to produce more valuable output (Getzels and
Csikszentmihalyi 1976). A cognitive protocol analysis of
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sketching architects found that not only did they regularly
unexpected discover features in their own drawings, but that
those discoveries often led to reformulation of the design
task (Suwa, Gero, and Purcell 1999). These reformulations
led in turn to more unexpected discoveries, evidence that
this cycle of intentionality and exploration is beneficial, if
not central, to human creativity. We seek to capture this cy-
cle in the computational model presented in this paper.

We propose that the inspiration for a computational model
of intentional creativity can come from the iterative process
of defining the creative task and solving it in parallel. We
propose that intentions are not created de novo, but that they
arise from a drive to explore what the system has observed
but not understood, both from its own output and that of
other creators. The catalyst for this exploratory behaviour
is unexpectedness: a creator being surprised by an artefact,
and forming the intention to explore some part of the design
space in return. We refer to this as a kind of specific cu-
riosity, after the distinction between specific and diversive
curiosity first articulated by Berlyne (1966).

We frame our model for specific curiosity as an extension
of Wiggins (2006) framework for describing exploratory and
transformational creativity. With that symbolic representa-
tion we can then describe how transformational creativity
leads to surprise, and how surprise can in turn lead to further
creativity.

Transformational creativity, surprise and their
effects on behaviour

This paper describes a model of autonomous intent in cre-
ative systems, drawing on theories of evaluating creativity,
psychological studies of curiosity and cognitive studies of
how designers respond to unexpected discoveries. We intro-
duce each of those literatures here.

Three long-lost cousins: novelty, transformational
creativity and surprise
Novelty (Newell, Shaw, and Simon 1959; Saunders and
Gero 2001), surprise (Macedo and Cardoso 2001; Grace
et al. 2014) and domain transformation (Boden 2003;
Wiggins 2006) are three core ideas around which the debate
on how to computationally recognise creative artefacts has
revolved. In Grace and Maher (2014) we outlined how each
of those three could be connected to the notion of unexpect-
edness, establishing one possible way to compare them in a
common language.

Novelty was, to the authors’ knowledge, first floated
alongside value by Newell, Shaw and Simon (1959), form-
ing the closest thing to a broadly-accepted definition for
creativity that we have today. Novelty and value are pro-
posed as necessary and complementary aspects of creativ-
ity: a solely valuable artefact is merely good, while a solely
novel artefact is merely weird. Novelty is typically con-
ceptualised as difference from that which is known (Stern-
berg and Lubart 1999), and usually operationalised by a dis-
tance measure between a new observation and past experi-
ences. An alternate view of novelty is based on the degree
to which observing an artefact helps an agent to understand

the world (Schmidhuber 2010), proponents of which criti-
cise the distance-based approach as attributing overly high
novelty to noise.

Boden (2003) proposed another solution to the problem
of distinguishing meaningful novelty from noise by focus-
ing on impact. Transformational creativity is based on the
degree to which an artefact changes the creative domain
to which it belongs. This is suggested by Boden to be a
more significant form of creativity than the combination of
“mere” novelty and value, which she considers the result of
exploratory creativity. Wiggins (2006) formalises Boden’s
definition of transformational creativity and provides a gen-
eral description of a creative system that is capable of it,
although he questions Boden’s strict hierarchical superiority
of transformation over exploration.

The authors have previously proposed unexpectedness
and surprise as an alternative formulation of novelty (Grace
et al. 2014), although we are far from the first to do so
(Macedo and Cardoso 2001). Unexpectedness is the de-
gree to which observing an artefact violates (i.e. opposes) an
agent’s confident predictions about the world. The flexibility
of this approach is in the source of predictions, which may
be relationships within the artefacts, trends derived from the
domain’s history, or other sources of knowledge. Novelty
can be described from this perspective as a form of un-
expectedness based on the predicting that the domain will
continue as it has in the past. Surprise is an affective re-
sponse to unexpectedness: unexpected artefacts induce sur-
prise in their observers. Transformational creativity can be
described as a quantification of surprise based on how much
a new artefact changed domain knowledge. This connection
was described in Baldi and Itti (2010), who used an infor-
mation theoretic perspective to connect measuring surprise
by (un-)likelihood to measuring it by impact on knowledge.

Throughout this paper we adopt the viewpoint that these
three notions are intimately connected, constituting com-
plementary perspectives on how a creative artefact can be
meaningfully different from those that preceded it. We ar-
gue that the evaluative processes of creative systems should
possess the ability to detect all of the above aspects of mean-
ingful difference, and that any one of them – in conjunction
with value – can indicate creativity.

Curiosity and the pursuit of novelty
Curiosity is an overloaded term in psychology, referring
both to a trait possessed by different people to different de-
grees, as well as to motivating state that drives its experi-
encers to seek novel stimuli (Berlyne 1966). The latter def-
inition, curiosity as a state, has been proposed as a motiva-
tor for computational creative systems (Saunders and Gero
2001; Merrick and Maher 2009), based on the principle that
novelty-seeking (alone or alongside value) will drive explo-
ration towards creative solutions.

Berlyne distinguishes state-curiosity along two axes: per-
ceptual vs epistemic and specific vs diversive. Perceptual
curiosity is the drive towards novel sensory stimuli, and has
been observed in a variety of animals of different cognitive
capabilities. Epistemic curiosity is the drive to acquire novel
knowledge This conceptual curiosity can be modelled by
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systems that learn a conceptual space and measure novelty
within it, rather than measuring between artefacts at the level
of sensory input (Saunders and Gero 2001). The distinction
between creativity at the sensory and knowledge-levels has
been drawn within computational creativity by Smith and
Mateas (2011), who refer to the latter as “rational curiosity”.

The specific/diversive division has received less attention
in computational creativity. Specific curiosity is the search
for observations that explain or elaborate a particular goal
concept. Diversive curiosity, on which most computational
models of curiosity have focussed, is the search for new in-
formation without any specific targets. While the search for
a specific concept can be modelled by search, the challenge
is how to trigger specific curiosity: when and why should a
creative system become specifically curious? This is related
to the broader issue of creative autonomy (Jennings 2010;
Saunders 2011). In this paper we develop a model of spe-
cific curiosity that uses surprise as a way to address this chal-
lenge.

How surprises affect designing
Cognitive studies of human creators – particularly in the
field of design – have shown that surprise significantly im-
pacts the creative process. Designing has been described as
a “reflective conversation with the medium” (Schön 1983),
meaning that designers iteratively synthesise new additions
to their emerging design and then reflect on their effects. Ex-
pressing creative artefacts through rough yet external rep-
resentations – usually referred to as sketches in the case
of human designers – is a critical component of the cre-
ative process as it allows designers to observe changes
they did not consciously make (Schon and Wiggins 1992;
Goldschmidt 1991). Through this externalisation a de-
signer may perceive an emergent shape, discover a new re-
lationship between components, or construct an analogy to
past designs. Several computational creativity systems have
adopted this cyclical reflective approach in whole or in part,
including the search-bias transformation in DeLeNoX (Li-
apis et al. 2013), the interpretation-driven mapping of Idiom
(Grace, Gero, and Saunders 2015) and the expectation-based
reinterpretation of Kelly and Gero (Kelly and Gero 2014).

This iterative process of “seeing” (perceiving an emerg-
ing design) and “moving” (making a change to it) allows
designers to read more off a sketch than they originally
put there (Schon and Wiggins 1992). Though the term
has since been corrupted beyond recognition, this was the
original meaning of design thinking: an iterative, reflec-
tive, solutions-focussed strategy as opposed to a step-by-
step, analytical problem-focused one (Lawson 2006). In
a “think aloud” cognitive protocol study where architects
were observed designing, unexpected discoveries were bi-
directionally causally connected to reformulation of the de-
sign goals, i.e.: surprises led to transformation of the prob-
lem, and transformation of the problem led to surprises
(Suwa, Gero, and Purcell 1999). These results with hu-
man creators suggest that surprise-triggered specific curios-
ity might be useful for encouraging transformative creativity
in artificial creative systems. In the remainder of this paper
we develop a framework for how that behaviour could be

operationalised.

Unexpectedness-triggered specific curiosity: A
model of transformation-seeking behaviour

We adopt the creative systems framework from (Wiggins
2006) to describe our model of unexpectedness and specific
curiosity. Wiggins’ framework describes a creative system
in terms of a search process that traverses a conceptual space
to generate artefacts, coupled with a metacognitive search
process that traverses the space of all possible conceptual
spaces. The resulting system is capable of both exploratory
and transformational creativity, with the latter represented as
exploration at the meta-level. The following symbols define
the core of the framework, although readers are encouraged
to familiarise themselves with the original, which affords
each definition far greater depth:

U is the universe, the space of all possible distinct
concepts that make up all possible representations
of artefacts in the current creative domain.

L is the ruleset language, the set of all possible rules
that act on concepts the creative system can con-
struct.

J.K is the definition interpreter that takes a subset of L
and acts on a set of concepts, yielding real numbers
in [0,1]. This is used to apply a rule set to a set of
concepts, assigning a value to each.

R ✓ L is a constraint ruleset, by which the system defines
the scope of the conceptual space (within U).

C is a conceptual space is the current subset of U
permitted by R. i.e., C = JRK(U).

T ✓ L is a traversal ruleset, by which the system explores
C.

E ✓ L is an evaluation ruleset, by which the system eval-
uates proposed concepts.

c
in

is the input set, a totally ordered subset of U that
reflects the list of artefacts known to the system, in
the order of the system’s observation of them.

c
out

is the output set, a totally ordered subset of U that
reflects the output of the creative system after a par-
ticular generative iteration.

hh., ., .ii is the generation interpreter that takes three sub-
sets of L, the rules that define the conceptual space
R, the rules that define how to traverse that space
T, and the rules that assign value to members of
that space, E and acts on the set of all previously
observed artefacts to generate a new set of arte-
facts. i.e., c

out

= hhR,T,Eii(c
in

).
LL is the meta-level ruleset language, the set of all

possible rules that act on rulesets (i.e., on L) the
creative system can construct.

RL ✓ LL is a meta-level constraint ruleset, by which the sys-
tem defines the scope of the meta-conceptual space
of possible rules that can be part of L.
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TL ✓ LL is a meta-level traversal ruleset, by which the sys-
tem explores the space of possible rules for L.

EL ✓ LL is a meta-level evaluation ruleset, by which the
system evaluates proposed rulesets for their ability
to generate valuable concepts.

The differentiation of R, the rules defining the concep-
tual space, from T, the rules defining the search process
which acts on that space, is a significant addition to Bo-
den’s notion of transformational creativity. With this dis-
tinction Wiggins can describe two kinds of transformational
creativity: R-transformation of the space of possible con-
cepts, and T-transformation of the search process for gen-
erating new concepts. R-transformation, closest to Boden’s
original conceptualisation of transformative creativity, con-
cerns the redefinition of what a creative system considers
possible. T-transformation concerns the redefinition of how
a creative system creates.

The definition of a creative domain – as captured by Wig-
gins’ R – is a socially grounded construct. While it is useful
from the perspective of defining transformation across a cre-
ative domain to think of that construct as stable across all
members of a society, in practice this knowledge must be
learnt by each member. In Boden’s original model, the def-
inition of the creative domain is agreed amongst all partici-
pants, and this knowledge is not expected to be constructed
through exposure to the domain. Wiggins hints at the social
nature of R, but does not distinguish individual and soci-
etal transformation of the conceptual space. To model the
influence of artefacts created by others on a system’s be-
haviour, we must capture this distinction: we will use R
to refer to an individual creative system’s definition of the
space, but one could imagine a broader, socially grounded
historical-R of the sort Boden describes emerging from the
cross-pollination of ideas and norms.

Our intent is to capture specific curiosity – intentional
pursuit of further transformation along a search trajectory
incited by a particular transformative example – within an
expansion of this framework. To achieve this, we need to
expand Wiggins’ formalisation in four ways:

• To enable a creator to be surprised by its own output, as
in Schön (1983), a creative system must externalise and
re-perceive its creations as part of the generative process.

• To incorporate the influence of other creators, the input
to a creative system’s generative process must include all
artefacts it has observed, not just its own creations.

• To model the probabilistic nature of expectations, the con-
ceptual space should be a fuzzy set of probable concepts,
not a crisp set of possible concepts.

• To separate unexpectedness from inexplicability, the sys-
tem should be aware of its confidence in the predicted
likelihood of any concept being in the conceptual space.

These changes capture the situated, social, and
expectation-based nature of creative systems, allowing
us to use Wiggins’ formalisation to explore the question of
when, where and why transformative creativity occurs.

Surprise as R-transformation
We now formally describe the above expansion of the frame-
work. The literature on design cognition describes how cre-
ators can be surprised by their own creations. For this to be
possible in an artificial creative system those creations must
be represented in a way that contains additional information
not used to create them. To reflect this we add a step to the
post-generation process of the creative system. First, hh., ., .ii
is used to generate a new set of outputs, c

out

, from the cur-
rent inputs, and then instead of those outputs being directly
appended to c

in

for the next iteration, they are first reified via
a function r, which maps from a concept to an externalised
representation of that concept which we call an “artefact”,
and then re-perceived by a function p, which maps from an
artefact back to a concept in U. The nature of perception,
reification and the space of possible artefacts is beyond the
scope of this paper.

To capture a society of creative systems that influence
each others’ work, we must amend the generative step of
Wiggins’ formalisation: instead of applying the interpreter
hh., ., .ii to just c

in

, the ordered set of that system’s own past
creations, we must apply it to all an ordered set of all con-
cepts the system has previously observed, regardless of their
source. We assume our creative system is part of a society
of creative systems that are all producing artefacts within
the same domain (by which we mean they share at least U).
Each creative system possesses an additional ordered set of
concepts, c

obs

that it has observed but did not create. Dif-
ferent societies may have different structures in which cre-
ative systems are exposed to each others’ work in more or
less selective ways, but c

obs

is generated by applying the
perception function p defined above to some subset of the
artefacts externalised by other creative systems. If c

obs

is
non-empty before a creative system has generated any con-
cepts of its own, then those pre-existing known artefacts are
the system’s inspiring set (Ritchie 2001). We can now de-
scribe the generation step in our amended formalisation, ap-
plying the interpreter to the union of creations and observa-
tions, and afterwards reifying and re-perceiving the output,
i.e. c

out

= p(r(hhR,T,Eii(c
in

[ c
obs

))).
Wiggins suggests that the output of the interpretation

function for R (a real number in [0, 1]) be converted to a
boolean value indicating membership in C. We propose in-
stead that C be considered a fuzzy set, with the output of
the interpreter defining a membership function l :U! [0, 1]
that indicates the likelihood of observing each concept as
part of the domain. This transforms Wiggins’ space of pos-
sible artefacts into a space of probable artefacts, and lets us
capture all the rich relationships between concepts that influ-
ence their mutual likelihoods. We derive this interpretation
from our previous work on expectation, novelty and trans-
formation, see Grace and Maher (2014) for details.

We introduce into our framework a notion of confidence.
This serves to differentiate unexpectedness (a violation of
confident expectations) from ignorance (Ortony and Par-
tridge 1987). To achieve this we replace the J.K interpreter
from Wiggins with a modified version, L.M, which differs
only in that it returns a 2-tuple of real numbers in [0,1] for
each artefact to which it is applied. The first, as in J.K, is
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the truth value, which becomes the value of the likelihood
function l that defines the artefact’s membership in the re-
sulting set. The second value is the system’s confidence,
with 0 indicating a complete lack of confidence and 1 indi-
cating complete certainty. This confidence becomes another
function c :U! [0, 1]. We use L.M when generating the con-
ceptual space with R, as in:

C = LRM(U )

As a result our C is a fuzzy set of concepts with a mem-
bership function l defining the likelihood of observing each
concept in U, as well as a similar confidence function c
defining the system’s confidence in each artefact’s likeli-
hood. These functions are compiled from the first and last
elements, respectively, of the tuples output by L.M. That is,
for each concept a 2 U, given LRM({a}) = (a

l

, a
c

) and
assuming a

l

> 0:

a 2 C , l(a) = a
l

, c(a) = a
c

From this perspective, Wiggins’ R becomes the creative
system’s expectations about the creative domain. This con-
nection between conceptual space membership and expecta-
tion allows us to describe the influence of surprise on cre-
ative search. In our amended framework, R-transformation
is commonplace and necessary, a natural effect of creative
systems acquiring the knowledge they need to competently
model the society’s rules about the domain through their
own experience.

A creative system experiences expectation failure when
the conceptual representation of a newly observed artefact
has a low a-priori likelihood in the conceptual space. We can
then distinguish two kinds of artefact that cause expectation
failure: inexplicable ones, where the system is not confident
of its predicted low likelihood, and unexpected ones, where
it is. An unexpected artefact a

u

is one for which:

a
u

2 (c
in

[ c
obs

), l(a
u

) ⇡ 0, c(a
u

) ⇡ 1

Complementarily, for an inexplicable artefact a
i

:

a
i

2 (c
in

[ c
obs

), l(a
i

) ⇡ 0, c(a
i

) 6⇡ 1

Only in the first case can we say that the agent’s expecta-
tions were violated – in the absence of a confident prediction
the system was merely ignorant. Both inexplicable and un-
expected artefacts should by rights induce a transformation
of the domain knowledge in R, as well as potentially trans-
formations of T. Those transformations can be considered
a result of creativity if the artefact(s) that caused them are
valuable under E. Given our definition of unexpectedness in
terms of R we can restate how our expanded formalisation
captures the dyad of novelty and value. The rules in E will
be concerned with the evaluation of artefacts’ performance,
quality, style, and other components of value, and some por-
tion of T will use those evaluations to direct search. Con-
trastingly, some other subset of T will be concerned with
novelty seeking: evaluating the dissimilarity of new arte-
facts to existing ones using measures of novelty, surprise and
transformativity. We refer to this novelty-seeking subset as
T

n

⇢ T. These latter traversal rules will be based on the

likelihoods, confidences, and transformations of L associ-
ated with artefacts.

We do not seek to resolve the disputes surrounding the
definitions of novelty, surprise or transformation, only sug-
gesting that T

n

could contain metrics for any or all of those,
but we do require that for any creative system T

n

6= ;.
Any artefact valued by both T

n

and E can be considered
p-creative. This generative act is serendipitous if the search
process possessed no specific intent to create that artefact or
anything like it. An artefact discovered to be transforma-
tive by T

n

after its creation was not the result of a directed
search, for the system cannot know how its knowledge will
be transformed by new observations. This places limits on
a creative system’s ability to generate framing about its cre-
ative output: serendipity defies satisfying explanation.

In the next section we use our definitions of inexplica-
ble and unexpected artefacts to describe different possible
kinds of transformational creativity. We also propose how
a system might adopt constraints on its future generation in
response to unexpectedness, and thereby intentionally seek
out further unexpected discoveries.

Specific curiosity as a consequence of surprise
A system that has observed inexplicable artefacts will at-
tempt to learn: to improve its (clearly insufficient) knowl-
edge of U. We consider learning to be a creative system’s
response to the inexplicable, and it is our first possible kind
of R-transformation. Learning can be expressed as the ap-
plication of TL to produce new R and/or T in response
to inexplicable artefact(s) in c

in

or c
obs

. While the mecha-
nisms of learning will be specific to the rules in LL, we can
describe its effects: it attempts to transform R such that the
likelihood of previously observed artefacts increases.

A system that has observed unexpected artefacts will be
surprised. We consider artefact-induced surprise to be a cre-
ative system’s response to unexpected artefacts, and it is our
second kind of R-transformation. Artefact-induced surprise
can be expressed as the application of TL to produce new R
and/or T in response to unexpected artefact(s) in c

in

or c
obs

.
Learning occurs from unexpected objects as it does from in-
explicable ones, producing R-transformations that increase
the expected likelihood of previous observations.

Inspired by cognitive studies of reflection in human de-
signers by Suwa et al (1999) and others we can now con-
sider how surprise might affect a system’s future generative
behaviour (i.e. cause transformation of T). Specific curios-
ity, as introduced earlier, is the deliberate pursuit of specific
new knowledge or stimuli through the adoption of goals or
constraints on behaviour. In the context of a creative system
this is T-transformation with the goal of exploring an unex-
pected stimulus, based on the hypothesis that (as observed in
human designers), surprise begets further surprise. This can
also be considered a form of active learning (Cohn, Ghahra-
mani, and Jordan 1996), where the system actively tries to
fill the gaps in its knowledge through generation.

To become specifically curious about an artefact is to seek
to create more artefacts that embody the interesting things
about it. We formalise this as follows: given an unexpected
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artefact a
u

we can determine the subset of rules that con-
tributed to its confident low-likelihood prediction: R

au ✓
R. These rules embody the domain knowledge that was vi-
olated by the perception of the new artefact, in that they pro-
duced a confident prediction that was proven wrong. This
subset forms the basis of the system’s specific curiosity, in
that the system can use them to pursue artefacts that are un-
expected according to just those rules. To define this we
induce r, a relevance function over concepts that measures
the complement of the likelihood of a concept occurring in a
conceptual space defined exclusively by R

au . Accordingly
r(a) ⇡ 1 for any artefact a that would be considered unex-
pected according to the same rules as was a

u

, including a
u

itself. Conversely, any artefact that is not unexpected, or is
unexpected due to other rules not in R

au , would produce a
lower value of r. We can then define specific curiosity about
a
u

as replacing T
n

with a single rule that seeks artefacts for
which r(a) ⇡ 1. This (temporarily) redirects the system’s
general (i.e. diversive) search for novel artefacts towards
those that are unexpected according to the same rules as the
one that caused the surprise.

By constructing a relevance function from the rules vio-
lated by the unexpected artefact we focus the system upon
the parts of its own knowledge that produced the unexpected
result. The results of this specific curiosity will vary based
on the structure of the knowledge that was violated. If the
rules define boundaries of the domain, the relevance func-
tion will value artefacts that break the same boundaries as
the focus of curiosity. If the violated rules placed the focus in
a new or rare category, the relevance function will value arte-
facts in that category. If the violated rules define an expected
relationship between components of the artefacts’ represen-
tation, the relevance function will value artefacts that break
the same relationship in the same way as the focus. In each
case the relevance function will value artefacts that are in
some way similar to the one that caused surprise, but with
that similarity determined by the system’s knowledge.

The hypothesis driving this specific curiosity is that re-
gions of the conceptual space that generate one unexpected
artefact likely have the potential to generate more, and
searching nearby has a greater chance to yield further un-
expected (and therefore potentially creative) artefacts than
searching elsewhere in the space. This behaviour aligns with
the concept of creative autonomy and situational adaptation
of goals described in (Jennings 2010).

In the following section we illustrate the above kinds of
R-transformation with examples from the domain of recipe
generation.

A worked example of
unexpectedness-triggered specific curiosity

As a hypothetical example of our unexpectedness-triggered
reformulation approach, consider the creative domain of
recipes. Culinary creativity has recently attracted attention
in the computational creativity community (Morris et al.
2012; Varshney et al. 2013), and we draw upon it as a way
of illustrating our model of specific curiosity.

Assume a hypothetical recipe generation system inte-

grated with a large online recipe repository. The system has
access to all the recipes posted by humans, and is tasked with
supplementing that database with its own creations. Each
recipe is an artefact represented by its ingredients and their
quantities, the preparation steps, and metadata such as cook-
ing time and user-applied tags. This is supplemented by be-
havioural information for each recipe: the full text and rat-
ings of its set of user reviews. The system’s task is to gener-
ate novel and valuable recipes, and submit them for human
consumption and review. E is based on aggregated user rat-
ings. R is based on domain knowledge represented by a set
of predictive models that describe the likelihood of various
combinations of ingredients, quantities, tags, categories, re-
views and ratings occuring. We can now describe three ways
that this implementation of our framework could encounter
transformative creativity.

The first cause of R-transformation is encountering an
inexplicable recipe. This would be commonplace while the
system developed its knowledge about the domain (as the
pre-existing human-created recipes that form its inspiring
set were added to its database). For example, assume that
the system, early into its learning, encountered its first slow-
cooked dish. The existing rules in R would assign a very
low a-priori likelihood to a recipe with an eight hour cook-
ing time, but having seen so few previous recipes of any kind
it would also assign a low confidence to that prediction. The
result would be learning – transforming R to incorporate the
new range of observed cooking times. No surprise or spe-
cific curiosity would result – the system’s understanding of
the conceptual space improved as a result of observing new
kinds of artefact that had been produced by others, a nec-
essary and commonplace step of acquiring competency in a
creative domain.

The second cause of R-transformation is an unexpected
recipe. This occurs when the system makes confident pre-
dictions of the likelihood of observed recipes, but is still
wrong, possibly as the result of a change in the behaviour
of the other creative systems in the society (which, in this
case, are the human submitters of recipes). Consider what
would happen to the system’s knowledge about the ingre-
dient “ginger” if its inspiring set (i.e. the recipes in c

obs

it
used to populate R before generating any artefacts of its
own) contained mostly Western recipes, and it developed
confident predictions about that ingredient before being ex-
posed to Eastern-inspired recipes. It would confidently ex-
pect that ginger was found mostly in sweet baked goods,
alongside ingredients like butter, sugar and flour. Encoun-
tering a recipe for ginger-and-soy chicken would be highly
surprising, causing it to adapt its domain knowledge to fit the
new recipe. In this case the creative system had a robust, but
incomplete model of the creative domain, and observed an
artefact that it would consider p-creative, even though that
artefact’s creator may have considered it novel.

The third cause of R-transformation is as a result of spe-
cific curiosity caused by an earlier surprising recipe. As an-
other example, consider “chicken paprikash”, a Hungarian-
inspired dish that combines a roux-based sauce with curry-
like spices (cumin, paprika and chili). This is an incongru-
ous combination of ingredients and instructions, as the ma-
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jority of roux-based sauces are flavoured with herbs, stocks
and/or cheeses. Our creative system encounters this recipe,
becomes surprised as in the ginger-and-soy chicken exam-
ple, and uses that surprise to trigger specific curiosity. The
rules in R that confidently assign a low likelihood to a recipe
containing both the steps for a roux and the ingredients for a
curry are extracted as Ra

u

. A relevance function is then
constructed from those rules that evaluates the degree to
which a recipe violates them, and this function replaces the
novelty-seeking rules in T

n

. The system begins generating
recipes that violate these specific rules, such as a roux-based
sauce with other unexpected ingredients (such as choco-
late), or curries with unusual preparation steps (such as be-
ing baked into a pie). The authors feel compelled to mention
that they are not chefs, but encourage readers to assume for
the sake of argument that those new recipes are both novel
and valuable. The observation of these new recipes would
lead to additional R-transformation, and this time that trans-
formation can be said to have a deliberate cause. These arte-
facts were not created serendipitously, they were intention-
ally generated as the result of a targeted exploration of a
specific region of the creative domain, and their discovery
further transformed the conceptual space.

Specific curiosity can be triggered both from a creative
system’s own creations, or from those of the other creative
systems within its society (here the human user-base of the
recipe website). In the case of the chicken paprikash above,
the specific curiosity episode was triggered by the observa-
tion of a surprising creative artefact generated by a human –
other likely external curiosity-triggers in this domain could
include the addition of bacon to sweet foods, the inclusion
of leafy greens in smoothies, the rise of a new and novel
“superfood”, or a seasonally resurgent ingredient.

The creative system could trigger its own specific curios-
ity episodes by generating recipes that, once reified and re-
perceived, were considered surprising. Consider, for exam-
ple, rules in our creative system’s T that use computational
analogy-making to map between two recipes and then trans-
fer a new ingredient from the source to the target. An anal-
ogy could be constructed between a calzone and an omelette,
as both consist of a base layer to which toppings are added
before the base is folded over to create a filled final product.
The rules for analogical transfer in T identify that the tomato
paste spread on the calzone is missing from the omelette, and
create a new recipe in which a tomato sauce is spread over
the omelette before folding. This would be considered un-
expected by the rules in R that pertain to omelettes, which
would make confident predictions that a tomato-based sauce
would be unlikely to be involved in an omelette recipe. The
authors again remind the reader that we are definitely not
chefs, but let us assume that the resulting sauced omelette
was also considered valuable. Specific curiosity about that
unexpected combination of ingredients and cooking meth-
ods would result in a transformation of T

n

to specifically
seek out further recipes involving unusual ingredients being
added to omelettes during cooking. Generating new arte-
facts under this transformed search trajectory could lead to
the recipes with further unexpected mid-omelette additions
such as spices or fruits. These new creative artefacts would

further transform the rules in R that pertain to omelette cre-
ation, and if they were also considered valuable according
to E then they would constitute intentional transformative
creativity.

Conclusions
We have described an extension to Wiggins’ (2006) frame-
work that captures the notions of unexpectedness, surprise
and specific curiosity. This approach is motivated by the
need for creative systems that can make autonomous evalu-
ative decisions and exhibit intentional behaviour (Jennings
2010; Saunders 2012). The solution proposed in our frame-
work draws on literature from design cognition which sug-
gests that human creators are not only capable of self-
surprise but that it is a significant driver of creative output.
Based on this inspiration from cognition we model surprise
based on violation of a creative system’s learnt model of the
conceptual space, and describe specific curiosity behaviours
that explore surprising stimuli.

Within our framework we can distinguish three causes
of transformational creativity: inexplicable artefacts, unex-
pected artefacts, and specific curiosity. If found in an arte-
fact that was also valuable the first would not be creative (as
the transformation resulted from a lack of sufficient knowl-
edge to make predictions), the second would be serendipi-
tous creativity (as the system stumbled upon it without any
deliberate goal), and the last would constitute intentional
creativity. Specific curiosity describes the iterative cycle be-
tween the R-transformation that occurs when observing or
creating an unexpected artefact, the T-transformation that
facilitates the resulting search for more, similarly surprising
artefacts, and the resulting R-transformation that heralds the
success of that deliberate search. Our future work involves
the development of systems like the one presented here as
an example: creative machines capable of surprise, specific
curiosity and autonomous intent.
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Abstract

Creativity cannot exist in a vacuum; it develops through
feedback, learning, reflection and social interaction
with others. However, this perspective has been relat-
ively under-investigated in computational creativity re-
search, which typically examines systems that operate
individually. We develop a thought experiment showing
how structured dialogues can help develop the creative
aspects of computer poetry. Centrally in this approach,
we ask questions of a poem, inviting it to tell us in what
way it may be considered a “creative making.”

Keywords: computer poetry, social creativity, flow-
charts, Writer’s Workshops

‘We can talk,’ said the Tiger-lily: ‘when there’s anybody
worth talking to.’

Through the Looking Glass, Lewis Carroll

Introduction

We are writing in a large part to champion Alan Turing’s
proposal that intelligent machines should “be able to con-
verse with each other to sharpen their wits” (Turing, 1951).
The formalism that we propose builds on the notion of so-
cial cybernetics that flows from the following propositions
of Heinz von Foerster’s, which he uses to theorise systems
in which participants can responsibly specify their own roles
in relationship to other system participants:

“Anything said is said by an observer.”
“Anything said is said to an observer.”

(Von Foerster, 2003 [1979])

According to Jaako Seikkula and Tom Arnkil, who draw
on the philosophical and literary analysis of Mikhail Bakhtin
(Bakhtin, 2010 [1986], 1984 [1963]) in their approach to
psychosocial work,

“Dialogues could be called ‘the art of crossing bound-
aries’. Instead of trying to control others, the parties
reach out towards each other to hear their views bet-
ter, to generate shared languages and to join resources.”

(Seikkula and Arnkil, 2014, p. 23)

⇤Corresponding author. Email: j.corneli@gold.ac.uk

This paper outlines a study of social creativity with a dia-
logical emphasis, taking computer poetry as our working do-
main. It uses the Writer’s Workshop model (Gabriel, 2002)
as the virtual laboratory in which to conduct a thought ex-
periment. The findings of our study are applied to the FloWr
system (Charnley, Colton, and Llano, 2014). We focus on
the following questions in turn:

– How has the social dimension of creativity been explored
in CC to date?

– How can a created artefact tell us about its making, and
what can this contribute to CC?

– How can computer poetry contribute to developing a
process-based theory of poetics?

– What would have to change about the FloWr system to
implement the computational poetry workshop approach?

– What are the pros and cons of the workshop approach?
– What might be the future role of dialogue in CC?

Background

Social creativity in CC

Minsky noted that computers need to be social if they are to
deal with problems of any great complexity (Minsky, 1967,
1988). We believe that this is particularly true for chal-
lenges in computational creativity, since the essence of cre-
ativity lives in its appreciation by the creative entity itself
and its audience. With creativity in ‘the eye of the beholder’
(Cardoso, Veale, and Wiggins, 2009), the ability to respond
to evaluation during the creative process (Poincaré, 1929
[1908]; Csikszentmihalyi, 1988) becomes pivotal. Social
creativity expands this paradigm by introducing co-creators
to the process, and creating works that rely on dialogue, re-
flection, and multiple perspectives (e.g. the stages suggested
by (Gervás and Leon, 2014)). ‘Results’ may be steeped in
process and are not always based on consensus.

The Four Ps of creativity – the creative Person, Product,
Process and Press (i.e. environment) (Rhodes, 1961) – have
been emphasised in general creativity research. Pluralising
these terms (Persons, Products, Processes) calls further at-
tention to a social dimension of creativity, and would em-
phasise the way the “Press” accommodates multiple multi-
directional perspectives akin to a social network in both the
modern and original senses. The Pluralised Ps remind us

1
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that in order to understand creativity it is not sufficient to
model a lone creator or to generate an attractive artwork.

To date, computational creativity research has achieved
many successes in computational generation of creative
products, but the question of how these systems could ad-
apt and learn from feedback to improve their creativity is
less-explored in computational creativity (Jordanous, 2015).
Evaluation has been advanced as a pivotal contributory part
of the creative process, but researchers often give priority
to generating artefacts that could be seen as creative over
the task of incorporating feedback and evaluation within the
processing of a creative system (Jordanous, 2011).

At the previous year’s International Conference on Com-
putational Creativity (ICCC 2014) the opening session had
the theme “co-creation.” However in the main proceedings
of the conference, 36 out of 49 papers (approximately 3
in 4 papers) do not appear to mention social interaction or
the ability to respond to feedback. Some notable excep-
tions highlight the usefulness of interaction and feedback
for creative systems (McGraw and Hofstadter, 1993; Colton,
Bundy, and Walsh, 2000; Sosa, Gero, and Jennings, 2009;
Pérez y Pérez, Aguilar, and Negrete, 2010; Pease, Guhe,
and Smaill, 2010; Saunders, 2012). Some of this work is in-
fluenced by the DIFI (Domain-Individual-Field-Interaction)
framework (Csikszentmihalyi, 1988). However, social in-
teraction between creative agents and their audience is of-
ten overlooked or relatively simplified: some examples in
the domain of computer poetry presented below give the
flavour. Increased development of the interactivity of cre-
ative systems, especially where this affects the way these
systems works, has been highlighted as deserving more at-
tention (Colton and Wiggins, 2012).

FloWr is a framework for implementing creative systems
as scripts over processes that can be manipulated visually
as flowcharts (Charnley et al., 2014). Its general approach
consists of linking the inputs and outputs of code modules,
called ProcessNodes, together to create a linear flow of data.
The resulting Flowcharts can be constructed and executed
visually through a GUI; however, they are ultimately rep-
resented as scripts, which are the main medium of FloWr.
Experiments with automatic process generation in FloWr,
reported in (Charnley et al., 2014), highlight the ability of
the tool to do meta-programming and modify its own flow-
charts. This suggests that FloWr has potential as an environ-
ment for modelling social creativity, where the observers are
nodes and flowcharts, and their languages are, respectively,
programming and meta-programming instructions.

. . . and in computer poetry

In the domain of poetry-generation, there have already been
several attempts to simulate social creativity by incorporat-
ing multi-agent systems. In WASP (Gervás, 2010), social
behavior is simulated by incorporating a cooperative soci-
ety of readers/critics/editors/writers consisting of special-
ized families of experts that cooperate during the poetry-
generation process. The McGONAGALL system (Manur-
ung, Ritchie, and Thompson, 2012) incorporates diverse
modules as operators in evolutionary algorithms that pro-
duce poems fulfilling the constraints on grammar, meaning
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Figure 1: (A) gives a simple recipe for the growth and de-
velopment of a writer; (B) response always has dimensions
that goes beyond the utterance that is overheard; (C) adds a
reader who shares the context with the writer and responds.

and poeticity. This approach facilitates the pursuit of sev-
eral alternative solution paths in parallel, focusing on more
promising results or coming back to former ideas. However
McGONNAGALL does not provide any communication
between modules. In the MASTER system for computer-
aided poetry generation (Kirke and Miranda, 2013) a society
of agents in various emotional states influences each other’s
moods with their pieces of poetry. The poetry-generation
process is based on social learning as the agents interact by
reciting their own pieces of poetry to each other. The gen-
erated poems are based on repeated words and sounds, and
are closer in some ways to music than to typical language.
Montfort, Pérez y Pérez, Harrell, and Campana (2013) and
Misztal and Indurkhya (2014) use blackboard approaches to
poetry-generation, in which independent specialized mod-
ules cooperate via a shared global workspace, à la (Baars,
1997). “Experts” exchange information using the black-
board, but without direct communication and without feed-
back about the reception of their created artifacts.

In connection with our work in the current paper, we did
a limited proof-of-concept reimplementation of some of the
core methods of blackboard poetry system inside of FloWr;
we include one of the generated poems and the correspond-
ing flowchart.

Methods

“What are the proposed ‘lab rats’?”

The generative side of the cycles in Figure 1 has been studied
more than the reflective side. Our “lab rats” are, accordingly,
not poems per se, but rather, instances of reading and re-
sponding to poetry. Naturally, such responses could be more
or less “canned” (as with Michael Cook’s humorously non-
specific AppreciationBot2), so the question becomes: what
constitutes an interesting and useful response, and how will
these be developed? The idea of responses is useful at vari-
ous levels. We focus here on staging an encounter between
writer and reader.

Writer’s Workshops

Quoting (Gabriel, 2002, pp. 2–3):
The original idea behind the writers’ workshop was to
do a close reading of a work... looking at the words on
1According to (King, 2000).
2https://twitter.com/appreciationbot
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the page rather than the intentions of the author or the
historical and aesthetic context of the work. Under this
philosophy, the workshop doesn’t care much what the
author feels about what he or she wrote, only what’s on
the page.

Framing and any other contextualisation of the work
as it is intended to be presented is permitted, and re-
ceives critical attention. We define a Workshop closely
following Gabriel’s outline, to be an activity consisting of
these steps: presentation, listening, feedback,
questions, and reflections. The first and most im-
portant feature of feedback is for the listener to say what
they heard; in other words, what, for them, is in the work.
In some settings this is augmented with suggestions.
After any questions from the author, the commentators
may make replies to offer clarification. In related recent
work, we have shown how the Workshop framework can
help foster serendipitous discovery and invention (Corneli,
Pease, Colton, Jordanous, and Guckelsberger, 2015; Corneli
and Jordanous, 2015).

Content as creative process

Giving agency to the poem rather than the poet’s intentions,
the poem illuminates its own creative process. This informs
our approach to Workshop interactions, which are focusing
on the poem observing its own construction. We’re inter-
ested in context not in the literary or historical sense but in
the micro-history of the poem’s creative evolution. The ori-
ginary and therefore unpredetermined nature of the creative
process means that the outcome represents a more accurate
and objective evidence of the process than the poet’s attempt
to explain the process. Moreover, to the extent that a cre-
ator knows what is expressed through the creative process,
even he or she learns this only in the course of doing the
work. Observers are only able to consider after the fact how
a creator may have selected and rejected various possibilit-
ies. The content of the poem is no more and no less than
how the poem was made.

“In a poem, objective material becomes the content and
the matter of the emotion and not just its evocative oc-
casion.” (Dewey, 1958 [1934], p. 69)

P. G. Whitehouse writing on Dewey’s Art as Experience
suggests that Dewey joins Collingwood in separating aes-
thetic emotion from any notion of inspiration that could be
considered to be something like raw materials. An emotion
is aesthetic when it “adheres to an object formed by an ex-
pressive act” (Whitehouse, 1978, pp. 149–156). However,
“the art object does not have emotion for its significant con-
tent”; rather, the emotion “belongs to the self that is con-
cerned in the movement of events toward an issue that is
desired or disliked” (Dewey, 1958 [1934], p. 14).

Aspects of the creative process

Doug Anderson and Carl Hausman take Collingwood’s
study further and map the creative process roughly as fol-
lows (Anderson and Hausman, 1992, pp. 299-305):

Disturbance ! aesthetic emotion ! response !
artist’s decision on components of expression ! feel-
ing of easement plus a simultaneous emerging of a
unique imaginative expression ! alleviation ! real-
ising and converting prior psychical emotion ! unique
aesthetic experience including new conscious emotion

The poem is a work of progress before it is a work in pro-
gress. The purpose of a poetry workshop that attends to the
content of the poem as process is to illuminate what the poet
is exploring through his/her creative process and through the
poem. The process of reading a poem is also a process of
poiesis – and in the Workshop, the reader joins the writer in
the process of creation. Asking questions like those listed in
in Table 1 tells us what the constituent parts of the poem are
doing.

Relevance for CC research

From a CC standpoint, asking what the work tells us about
the creative process gives an objective and critical focus on
“creative evolution” (Bergson, 1911 [1907]) and provides
an antidote to the seductions of mere generation. A po-
etry workshop gives participants the opportunity to read
the drafts and final versions of poems by other Workshop
participants, a shared culture of critique that can be ap-
plied to previously existing poems, and a structured way to
gather feedback on one’s own work in progress. These ana-
lyses, unbiased by the explanations of the (software) creator,
will allow participants to explore and extend the concep-
tual space around poetry, or in practical terms, the toolbox
the agents can access. “Extending” expresses both a refine-
ment of the tools used and the introduction of entirely new
tools. Moreover, reverse-engineering of the creative process
from artefacts will help to teach agents participating in the
workshop at which stage of their creative process these new
tools or extensions could potentially be used. Dialogue in
the workshop involves “respecting the voices of each of the
participants” (Seikkula and Arnkil, 2014), be they agents,
poems, or individual words – and suggests that we look at
the “art of boundary crossing” that is to be found inside
poems.

Bridges between ‘theory’ and ‘practice’

Our ansatz is that the Workshop could serve as a way to
develop a process-based theory of poetics. There are cer-
tain prerequisites: in particular, an underlying context is re-
quired, shared (with respect to differing points of view) by
the poet and the reader/listener (see Figure 1). Participants
are assumed to have relatively stable, enduring but evolving,
identities – either might be able to ask “Who am I?” and
“Who are you?” (Bakhtin, 1984 [1963], p. 251). Answers
would acknowledge a prepared mind with certain prior ques-
tions, abilities, involvements, and so on. However, within
the Workshop dialogues, the discussion focuses solely on the
work itself. Persistent identities allow participants to learn
from these exchanges.

Table 1 contains a list of questions that a reasonably soph-
isticated poetry reader might ask about poems. This is com-
plemented by a list of questions that could be addressed, in a
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Question Examples

What are the register(s) of the
poem?

cliched, instructive,
imperative

Who is addressed? reader, poet, friend,
rival, confidante

What position(s) are present in the
poem?

pleading, remonstrat-
ing, ephemeral

What is the poem doing with the
reader?

accuse, bewilder, ali-
enate

Who are the characters in the poem? “the falconer”, “you”,
narrator, “two men”

What is the role of image(s) in the
poem?

“the sea”, “a bicycle”;
multiple meanings

What functions, mechanics, and
paradigms are present for the reader
to engage with?

communication, sub-
verted cliche

What problems, discomforts, or dis-
easements are invoked in the poem?

horror, self-loathing,
rejection, desire

How do these evolve? E.g. an image may
start to take over from
a register

What is the world of the poem,
and how does the poem distinguish
between this and its perception of
this?

“Surely”, “must”;
sacred vs mundane;
perspectival vs sur-
real; tale vs telling

What are the overlaps, transitions,
implicit dialogues?

“twinned” lines/ideas,
juxtaposed parts of
the poem

What role does the chronology of
reading play, versus references to
chronology and chronological posi-
tions within the poem?

flagged development,
evolution, movement,
stasis

How are lexical categories used? solid nouns, tortuous
adjectives, indistinct
adverbs

Are there discernible allusive ef-
fects?

illustrating the literary
apprenticeship of the
author (or reader)

Where is the poet presented with re-
spect to the poem?

Confidence, determ-
ination, exploration

Table 1: Questions that we ask when reading a poem

straightforward programmatic manner (Table 2). Each of the
examples listed in the right-hand column of Table 1 (and a
plethora that are not listed) present a way of thinking about
the poem. We can see these as roughly analogous to the
agents in Table 2 (Minsky, 2006).

To illustrate, in response to a computer-generated poem:
Oh dog the mysterious demon
Why do you feel startle of attention?
Oh demon the lonely encounter
ghostly elusive ruler
Oh encounter the horrible glimpse
helpless introspective consciousness
A human critic might offer the following feedback:

1. The use of the word mysterious in the first line has
no resolution, real or attempted, or quest to find one.

Question Agent concerned

Word level

What is are dictionary definitions of
this word?

WordNet expert

What are its etymological roots? Etymology expert
Where did this word come from? Provenance expert
What pronouns are used in the
poem?

Pronoun expert

Phrase level

What are the components? Keywords expert
Do the components have a negative
or positive connotation?

Association expert

What are the modifiers attached to
the components?

Modifer expert

Sentence level

What is the parse tree? Grammar expert

Line level

How long is the line? Counting expert
Where does it break? Breathing expert
Where is there white space? Position expert

Poem level

How are terms that exhibit emotion
distributed within the poem?

Distribution expert

Where is there alliteration (rhyme,
consonance) in the poem?

Phonics expert

Does the poem have a metrical
structure?

Rhythm expert

How repetitive is the poem? Repetition expert
Does the poem cohere? Thematic expert
Does the poem have a progression? Narrative expert
Where are the various elements of
the poem concentrated?

Entropy expert

Table 2: Questions we imagine a computer would currently
be capable of answering when reading a poem

2. The use of the word attention is not being interrog-
ated or acknowledged for its importance. Its quali-
fying word is startle, used here as an adjective; ac-
knowledging the fact that the attention is noted, but
is not yet part of the transformative of the poem.

3. This is repeated in the next references to the aesthetic
experience as a lonely encounter, exclusive ruler,
horrible glimpse and introspective consciousness.

4. The contact made between the poem and its own
construction is qualified in negative terms attached
to the words demon, encounter and consciousness.

5. This poem does not welcome the intimacy of bring-
ing anything to aesthetic consciousness so that it
might be expressed. Why do I say that? Because
the words are generalised and horribly imprecise.

6. The poem does not move toward a better understand-
ing of the ideas it alludes to. The vocabulary seems
to associate exploration with fear and isolation and
this is (paradoxically) quite an interesting acknow-
ledgment of the poem’s refusal to go anywhere i.e. to
become a thing transformed by a creative process.
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Each of these six points is dual-voiced in the sense that
the critic is relaying the words of the poem with a new em-
phasis. Each such statement is one side of a micro-dialogue
(Bakhtin, 1984 [1963], p. 73). The challenge is, of course,
to bring the observations into the awareness of the computer
poet, across the “analogue divide.” Care should be taken not
just to blythely program the computer with more rules, but
rather to give attention to facilitating the process of learning
new rules contextually. We continue with the example from
this point of view in the following section.

First we will consider a reversal of roles, with the com-
puter in the position of critic, looking at a passage from an
historical piece of poetry. We have selected a passage from
Robert Burns that might have – but in fact did not – serve as
a model for the poem generated above.

I’m truly sorry man’s dominion
Has broken Nature’s social union,
An’ justifies that ill opinion
Which makes thee startle
At me, thy poor, earth born companion
An’ fellow mortal!

Naturally, the first problem is for the computer to read the
poem. One of the approaches that is most appealing from
our point of view is the automatic generation of a semantic
network from the input text (Harrington and Clark, 2007).
We could straightforwardly extend the methods of Harring-
ton and Clark with notions drawn from Table 2.

1. The passage begins with I/me, locating the poor,
earth born poet

2. thee/thy is another person, possibly the reader, who
becomes startled

3. Singular I contrasts with the class man
4. sorry is a sad emotion
5. truly exaggerates sorry
6. dominion is large
7. broken and union are opposites
8. sorry and justifies are opposites
9. union, companion, and fellow are positive words

about relationship and joining
10. broken, ill, poor, startle and mortal are related to

frailty
11. born and mortal are related
12. There are a lot of rhymes in the poem, at the end of

the lines, enjambed.

These comments are very different from the other reading
above, and are differently interesting.

We’ve demonstrated that the computer is capable of ask-
ing objective questions of a poem. A similar semantic net-
work approach would allow it to listen to feedback and take
it on board, even when it doesn’t understand the ways of
thinking that generate this feedback. Again, this links the
process of reading and writing poetry to a process of dia-
logue.

Moderator

Flowchart A
(F_A)

Flowchart B
(F_B)

1. Read log

2. Send message

3. Writes message

4. Modify flowchart

Workshop
Log

4. Modify flowchart

3. Writes message

2. Send message

Figure 2: Schematic diagram for a workshop built in the
FloWr system

Seeds for a FloWr Garden

Keeping in mind the current limitations of FloWr – no loop-
ing or conditionals, only running one flowchart at a time and
in one direction – a conversation between ProcessNodes or
flowcharts is not immediately feasible. Figure 2 represents
a hypothetical design in which a Workshop could take place
with a minimally-altered version of FloWr. As shown in
Figure 2, each participant in the Workshop would be repres-
ented by a single node. One of these nodes is a moderator in
charge of dictating the interaction between the participants
of the Workshop, while the rest represent flowcharts that
have the ability to modify their own connections according
to the discussions from the Workshop – this can be achieved
by exploiting the scripting mechanism of FloWr and dynam-
ically loading the new structure of the flowchart. Moreover,
a shared log would contain the history of the messages ex-
changed during the Workshop and a queue of messages wait-
ing to be delivered. We define four different types of mes-
sages that can be exchanged:

• comments about specific elements of a poem, or more
general statements about how the poem affects this reader.

• questions to facilitate comprehension of this comment-
ary; for instance, the questions can vary from simple re-
quests of sources of information (e.g. files, input from
another node, which resources a flowchart uses, etc.) to
process-specific details (e.g. current conditions, purpose,
other outstanding questions, etc.)

• answers would be associated to previous questions and
may contain simple text such as an url for the source of
information, or a piece of script representing a node used
by a flowchart.

• suggestions are changes proposed by one participant to
another. Similar to the answer, this can be as simple as
suggesting the change of an information source, or more
complex, such as suggesting the replacement of a node
for an alternative node.

A Workshop session follows this communication pro-
tocol:

5
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1. The moderator initialises an empty log and sends a mes-
sage to the flowcharts to indicate that the session has star-
ted.

2. The flowcharts start writing messages in the log.
3. The moderator checks the current state of the workshop

by reading the log.
4. The moderator selects the next message in the queue and

passes it to the target flowchart.
5. The flowchart reads the message and acts accordingly, by

either (i) modifying its connections or; (ii) sending a mes-
sage back, i.e., writing to the log.

6. Step 3 is repeated until no further message are left in the
queue.

Example. Figure 3 shows the poetry generator flowchart
that generates the poem about the “demon dog” presented
above. The flowchart uses two linguistic resources: Con-
ceptNet (Liu and Singh, 2004), a semantic network of com-
mon knowledge, and Disco (Kolb, 2008), a semantic simil-
arity words retrieval system. Let us assume the human critic
A has access to the system through a “UI flowchart” like a
Read-Eval-Print Loop (REPL), and the poetry generator B
is mainly concerned with maintaining a generative flowchart
like the one shown in the figure. The following exchange of
messages can occur:

1. Comment from participant A to participant B: The
words “lonely encounter” and “elusive ruler” in lines 2
and 3 are generalised and imprecise.

2. Question from participant B to participant A: I
identify the processes Disco3 and Disco4 as the source
of the problem. Can you suggest an alternative to Disco?

3. Suggestions from participant A to participant B: Use
WordNet or the Historical Thesaurus to find more express-
ive and specific terms for the core concepts in the poem;
try to link the core concepts together by chaining together
related concepts in ConceptNet or WordNet.

4. Action executed by participant B: Receives sugges-
tions, creates several alternative versions of the script, ex-
ecutes them and decides which one is most coherent and
which conveys a sense of narrative.

From this exchange, the computer might learn (without ever
being explicitly told) that expressive terms and narratives are
related, and it might begin to discover a way to produce co-
herent poems with a narrative structure.

Since the computer has source code instead of a brain, we
can use it to do control studies with process. However, in
general source code does not uniquely determine process:
contextual effects are what make an experiment an experi-
ment. As described in (Cook and Colton, 2013), code may
include hints about its expected operating context. This is
related to our theme of embedding process within an arte-
fact. In this connection, one extension to FloWr that would
help to facilitate dialogue between flowcharts would be to
add machine-readable commentary to ProcessNodes. Com-
mentaries would label a node’s inputs and outputs, describe

Figure 3: The flowchart that created the “demon dog” poem

its basic purpose, and provide information about proced-
ure, conditional behaviour, mappings between processes and
elements of a generated poem (like the mapping between
Disco3 and “lonely encounter”).

Altered versions of a flowchart (Charnley et al., 2014)
can be seen as parallel solutions that could be executed and
compared on a population basis with respect to some pre-
specified metrics in order to make an informed decision on
which suggestion(s) to follow, as hinted in the last step of
the example. In (Colton, Pease, Corneli, Cook, and Llano,
2014) we explored the related idea of modelling system pro-
gress over time. Learning new rules contextually would of-
fer one clear measure of progress. Caveat lector: consider-
able work would be required to realise the ideas we’ve de-
scribed in FloWr or any other platform we’re aware of.

Discussion

Potential applications. The paradigm advanced in this
paper would not remove the “generation” aspects of CC,
but would pair them more closely with reflection. The same
skills that support learning in a writers workshop may sup-
port a form of dialogue with the work itself, leading to richer
creative artefacts that show us more about how creativity
works. Focusing on social creativity does not suggest that
we should devalue works from lone creatives, but it does
suggest that we think about how we knit individuals together
in the social fabric of the CC community. The current model
at the International Conference for Computational Creativity
(ICCC) is similar to many other academic conferences: we
present our work to one another and build our sense of com-
munity in that way. But what about a track for computers
to present their work? The idea of computers interacting in
a workshop-like setting is not unprecendented. As Turing
(1951) foresaw, computational software has become highly
competent at Chess and reasonably competent at Go, partly
through continuous practice pitting programs against each

6
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other. Poetry could be approached in a similar way, reviv-
ing the floral games of the troubadours. Other creative arts
may also be amenable to the same sort of approach. Gab-
riel mentions “brainstorms, critiques, charrettes, pair pro-
gramming, open-source software projects, and even master
classes” (Gabriel, 2002, p. 11). The sort of thinking we have
developed here might be adapted to contexts like these.

Potential criticisms. It can be challenging and time-
consuming to invite and process feedback, and the Work-
shop would often be seen as unnecessary for standardised
production cycles that can already produce artefacts that are
“good enough.” Furthermore, since we often seem to get
the computer to do just what we have in mind when we’re
programming, it might not make sense to treat it as a dis-
tinct other and invite it to participate in a dialogue. (Some
REPL users may disagree, and may already think of pro-
gramming as a dialogue.) From our read/write perspective
on computational creativity, the most immediate problem is
that appreciation of works of art is rather hard. Consider
the difference between creating a video game (for example)
and playing a video game. In the first case, the designer
has full control over the rule-set, game mechanics, interac-
tion devices and so forth. At least one computational video
game designer can play its own games (Cook, Colton, Raad,
and Gow, 2013), and an experiment shows that it is pos-
sible for an artificial game player to learn how to play clas-
sic video games using reinforcement learning, starting from
raw pixels (Mnih et al., 2013) – but both are quite far from
general-purpose game playing. This is itself a topic of con-
temporary research, and it serves to illustrate that coping
with feedback is a major challenge for AI research. Finally,
we are not in a position to make strong claims about the
quality of workshopped artefacts, although our experience
with poetry has shown us that high-quality poems are often
exactly the ones which teach us about the creative process.
We hope future research will explore this connection further.

Conclusions

The ideas of social interaction, feedback, and evaluation
have frequently been discussed in CC, but implementation
and theorisation around these topics have been more lim-
ited. In the current paper, we suggest giving artefacts more
agency, designing computer programs with more autonomy,
and focusing research effort on creative evolution. We have
shown that in principle computers can engage in dialogue
about poems, which points to a theory of poetics rooted in
the making of boundary-crossing objects and processes. In
order to move from thought experiment to computational
simulation, FloWr could be helpfully extended with fur-
ther programmer facilities including loops, subroutines, and
commentaries, along with the ability to generate-and-test
in a population-based manner, and the ability to learn over
time. Workshops and related approaches are suitable for
autonomous learning and development of the creative pro-
cess, but they face technical and also some theoretical lim-
itations. Dialogue may offer a way to creatively push these
limits, empowering both programs and programmers.
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Abstract
Interaction design has been suggested as a frame-
work for evaluating computational creativity by Bown
(2014). Yet few practical accounts on using an Inter-
action Design based evaluation strategy in Computa-
tional Creativity Contexts have been reported in the lit-
erature. This study paper describes the evaluation pro-
cess and results of a human-computer co-creative poetry
writing tool intended for children in a school context.
We specifically focus on one formative evaluation case
utilizing Interaction Design evaluation methods, offer-
ing a suggestion on how to conduct Interaction Design
based evaluation in a computational creativity context,
as well as, report the results of the evaluation itself. The
evaluation process is considered from the perspective of
a computational creativity researcher and we focus on
challenges and benefits of the interaction design evalua-
tion approach within a computational creativity project
context.

Introduction
Evaluation is vital for guiding the development and mea-
suring progress in computational creativity methods (Jor-
danous 2012). Especially formative feedback is needed to
guide practical development work (Jordanous 2012). This
is also true for interactive systems based on computational
creativity methods, including human-computer co-creative
systems – systems in which both the human and the com-
puter take creative responsibility of the output of the pro-
gram. As new human-computer co-creative systems are cre-
ated we will need to address issues in their evaluation.

Bown (2014) argues for a more contextually based evalu-
ation of creative systems within their cultural environments.
We consider this to be true especially for human-computer
co-creative systems as an evaluation focusing merely on the
computational system’s creativity is not sufficient to evalu-
ate the success and progress of the system with regard to the
user’s creative process or the co-creative experience itself.
Methods incorporating the user’s perspective are needed for
incorporating these aspects. Bown (2014) suggests learning
from contextually and culturally aware evaluation methods
intended for end-user evaluation established in the field of
Interaction Design.

In this study paper, we first briefly discuss the similari-
ties and differences between human-computer co-creativity

evaluation and computational creativity evaluation. We then
proceed to view Interaction Design in the context of com-
putational creativity: We see how Interaction Design cur-
rently connects to computational creativity and view previ-
ous human-computer co-creation and creativity support sys-
tem evaluation projects in the light of the DECIDE frame-
work (Rogers, Sharp, and Preece 2011). Then, we move on
to discuss our own case study of the Poetry Machine eval-
uation and illustrate how the DECIDE framework works in
practice in the context of a human-computer co-creativity
system evaluation. Next, we present the results of our eval-
uation case study and finally discuss our findings and the
usefulness of this evaluation with regard to computational
creativity development.

Evaluating Computational Creativity and
Human-Computer Co-Creativity

Evaluation of computationally creative systems may focus
on different levels of the system: According to Colton and
Wiggins (2012), a distinction is often made between evaluat-
ing the “cultural value of the artefacts produced by systems,
and tests which evaluate the sophistication of the behaviours
exhibited by such systems”. Jordanous (2012) supports a
similar idea in her analysis of existing evaluation frame-
works. According to Yannakakis et al. (2014), this char-
acterization of evaluation also applies for the evaluation of
co-creativity. Yannakakis et al. continue that the evaluation
of the final outcomes of a co-creative process may utilize
same approaches as the evaluation of the outcomes of an in-
dependent computationally creative process but the process
itself is more difficult to evaluate because of the unknown
nature of the human creativity process itself. In this paper,
we have focused on the evaluation of the process aspects and
left out the evaluation of the artefacts. However, the evalu-
ation of artefacts can also factor into evaluating the effects
and benefits of the co-creative system to its users.

Jordanous (2012) notes that computational creativity eval-
uation has traditionally favored expert evaluation, although
the evaluation of computational creativity systems with tar-
get users has been discussed. There are still few practical
examples describing the end-user-evaluation of either au-
tonomously creative or co-creative systems. In this paper,
we hope to provide the field with a practical example of how
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end-user evaluation of computational creativity software in-
volving users can be conducted in practice at early develop-
ment stages.

One important difference between evaluating autonomous
computational creativity systems and human-computer co-
creative systems seems to be that the subjective experience
of the human user of a co-creative system becomes an inter-
esting evaluation target. Therefore, the focus of evaluating
co-creative systems can not be only on evaluating the cre-
ativity of the system, but also in part on the effects the sys-
tem has on the user. Yannakakis et al. (2014) conclude that
the interaction between the human and the computer fosters
the creativity of the tool, but the claim cannot be thoroughly
evaluated with current frameworks.

Finally, Jordanous (2012) divides the evaluation of com-
putational creativity systems to summative and formative
evaluation. The purpose of the former is to provide a sum-
mary of a system’s creativity, while the latter aims to provide
constructive feedback on the system. A similar distinction is
made by Hartson et al. (2003) for Interaction Design evalu-
ation methods, with the distinction that formative evaluation
is usually done iteratively during product design and sum-
mative evaluation is usually reserved for finished designs or
comparisons between designs. Jordanous (2014) seems to
consider formative evaluation a more important goal for cur-
rent computational creativity evaluation procedures, as she
regards the usefulness of evaluation results as an evaluation
criteria for evaluation methods themselves. This paper fo-
cuses on the formative evaluation of an on-going project,
aiming to produce results that are useful for guiding the fu-
ture development of the poetry writing tool.

Interaction Design and Evaluation in
Computational Creativity Contexts

The field of Interaction Design studies how to best design
interactive products to facilitate human interaction and com-
munication. As such, it seems ideal for designing human-
computer co-creative tools. Interaction Design covers a mul-
titude of design fields and approaches, such as user-centered
design (Rogers, Sharp, and Preece 2011). As a method-
ological framework it offers iterative processes and meth-
ods for designing and evaluating interaction in specific con-
texts. Some Interaction Design methods have already been
used in designing software based on Computational Creativ-
ity methods (Kantosalo et al. 2014).

Bown (2014) argues that the wide range of robust Inter-
action Design methods for observing and measuring user
experience could help build a thorough empirical ground-
ing for Computational Creativity evaluation. He continues
that Interaction Design would also help to establish com-
monly used evaluation concepts – ‘value’ and ‘novelty’ – as
constructs immediately related to the goals of the individual
user. This new human-centered approach would shift the na-
ture of the enquiry very slightly “by asking not how creative
a system is, or whether it is creative by some measure, but
how its creative potential is practically manifest in interac-
tions with people.”

In this section, we provide a brief review of Interaction

Design evaluation in creative contexts. We cover human-
computer co-creativity projects STANDUP (Waller et al.
2009), Scuddle (Carlson, Schiphorst, and Pasquier 2011),
Evolver (DiPaola et al. 2013), and the Sentient Sketch-
book (Yannakakis, Liapis, and Alexopoulos 2014). They all
have used evaluation methods that can be seen to fall within
the scope of Interaction Design. To learn more about how
the creative context should be considered in Interaction De-
sign evaluation, we include six creativity support systems
that have been evaluated in the literature: the IdeaManager
(Shibata and Hori 2002), a Virtual Musical Environment
(VME) (Johnston, Amitani, and Edmonds 2005), the En-
visionment and Discovery Collaboratory (EDC) (Warr and
O’Neill 2007), the Choreographer’s Notebook (Singh et al.
2011), Ugobes Pleo (Ryokai, Lee, and Breitbart 2009), and
Parallel Pies (Terry et al. 2004).

We structure the review, and our subsequent description
of how we evaluated the Poetry Machine, according to the
DECIDE framework by Rogers et al. (2011). The DECIDE
framework is a checklist with the following six items:

1. Determine the goals
2. Explore the questions
3. Choose the evaluation methods
4. Identify the practical issues
5. Decide how to deal with the ethical issues
6. Evaluate, analyze, interpret, and present the data

Each step of the framework guides the next step: Deter-
mining goals helps designers to ask relevant study questions,
and questions guide the selection of methodologies. Then
again, the selected methods predict some of the practical is-
sues, which may be related to ethical questions. Finally, all
previous factors are relevant to deciding how the data is best
evaluated, analyzed, interpreted, and presented.

Determining Evaluation Goals
Choosing what to evaluate is often a challenge in the creative
domains. Some projects attempt to measure the increase in
creativity of the user, some discuss the creativity of the sys-
tem, while some focus on user experiences and feedback.
Carroll (2011) has noted that because creativity is difficult to
define, it is often difficult to say if tests designed to measure
creativity of an interactive system actually measure creativ-
ity or some other construct. Additionally, aspects of creativ-
ity may be domain specific (Carroll 2011).

It is surprising that only two of the reviewed human-
computer co-creativity evaluation projects state their goals
explicitly: Waller et al. (2009) investigated if their tar-
get group is capable of using the STANDUP system, and
how they use it. Yannakakis et al. (2014) studied if the
Sentient Sketchbook fostered the designer’s creativity, spec-
ified as aspects of lateral thinking and diagrammatic rea-
soning. In evaluations of creativity support tools, goals
have included gathering initial feedback (Johnston, Ami-
tani, and Edmonds 2005), evaluating if the tool supports spe-
cific aspects of a creative process (Warr and O’Neill 2007;
Singh et al. 2011), or what is the role of the tool in a creative
process (Ryokai, Lee, and Breitbart 2009).
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Exploring the Questions
Exploring the questions means the redefinition and focus of
the goals to more operational questions (Rogers, Sharp, and
Preece 2011). Among the Human-Computer Co-Creativity
evaluation examples, only Yannakakis et al. (2014) further
explain their evaluation targets as the degree and quality
of use of the suggestions of a computational partner. As
a type of elaboration for their implicit goals DiPaola et al.
(2013) provide the set of actual questions used in their study.
Among the creativity support systems, Singh et al. (2011)
provide a similar list of questions asked from their users and
Johnston et al. (2005) list the specific behaviors of the sys-
tem they want to investigate.

Choosing Methods
There is a wide range of Interaction Design evaluation
methodologies, including formal vs. informal testing meth-
ods, thinking aloud vs. observation, and summative vs. for-
mative testing (Lewis 2006). It is common for designers
to combine different methods to gather rich data (Rogers,
Sharp, and Preece 2011). Mixed-methods approach com-
bining quantitative and qualitative data is also the evaluation
recommendation of the NSF Workshop on Creativity Sup-
port Tools (Carroll 2011).

The selection of Interaction Design methods is affected by
multiple factors: Firstly, the purpose of the evaluation, con-
text of use, and type of data to be gathered matter (Rogers,
Sharp, and Preece 2011). Secondly, practitioners must con-
sider the reliability, thoroughness and validity of methods
(Hartson, Andre, and Williges 2003). Finally, a number of
case based issues contribute to the selection, such as cost
efficiency and the target group.

All of the studied projects described the methods used in
the study but not necessarily the rationale behind their se-
lection. Notably three of the projects, including the Sentient
Sketchbook, the Idea manager, and Choreographer’s Note-
book, used remote methods, including the collection of us-
age logs to determine the quantity of use or usage patterns.
Shibata and Hori (2002) explained they needed longitudinal
remote data collection because creativity is dependent on the
context and environment of the users and thus impossible to
study in a laboratory setting. Nearly all laboratory studies
seem to have strived to simulate creative situations for the
users, with the exception of STANDUP and Evolver.

Methods have also been applied to creative contexts in
different ways. For example, the tasks used in the evaluation
are very differentiated, some evaluations having more explo-
rative tasks with only a general goal (e.g. Pleo and Parallel
Pies), while others used more specific tasks with scripted
roles for the participants (e.g. EDC).

Identifying Issues
Regardless of the chosen methods, all methods require rep-
resentative participants, representative tasks and representa-
tive environments in which participants are observed (Lewis
2006). These dimensions define most of the practical issues
related to any Interaction Design evaluation, and were not

absent from the example projects either. For example, find-
ing suitable users was difficult for the STANDUP project
(Waller et al. 2009).

The creative context also proposes some additional issues
to evaluation: Experiences from creativity support tool eval-
uation show that errors in the interfaces may sometimes pro-
vide additional opportunities for the users, and that spending
significant times at a task may indicate immersion, not poor
quality of interaction (Carroll 2011). Therefore, some met-
rics loaned from Interaction Design may not suit the evalua-
tion in the creative setting (Carroll 2011).

The novelty and value of artefacts produced by creative
systems become highly dependent on user and context in
creativity contexts, as suggested by Bown (2014): For in-
stance, Shibata and Hori (2002) studied a creativity support
tool intended to catalyze idea generation. They had their
users to evaluate the novelty and practicality of the ideas for
themselves, instead of trying to assign objective values to
the produced ideas.

Ethics
As with all human studies, ethical issues require specific
care with Interaction Design evaluations involving users.
Very few specific ethical issues were reported in the exam-
ple studies, and in general they were unrelated to creativity:
Waller et al. (2009) report issues related to child participants
and Warr and O’Neill (2007) note the use of consent forms
and stress to users that they are evaluating the software, not
the users.

Analysis and Presentation
The chosen methods define the type of data collected to a
great extent but researchers still have to choose how to an-
alyze and present the data, as well as account for its valid-
ity, generalizability and scope (Rogers, Sharp, and Preece
2011). Many of the sample cases focus on the creative pro-
cess and key interactions related to it in their analysis: Yan-
nakakis et al. (2014) analyzed use patterns from log files
and identified important process milestones from them with
the help of the user provided qualitative data. Singh et al.
(2011) also analyzed logs noting key changes in the cre-
ative processes by presenting rationale for the use. Warr
and O’Neill (2007) recognized different sub-activities and
key interactions in the idea generation process of their users
based on video logs. Ryokai et al. (2009) illustrated the pro-
cess through a detailed example and Carlson et al. (2011)
focused on process related user quotes. As a semi-process
oriented reporting approach Waller et al. (2009) focused on
analyzing interaction paths and Terry et al. (2004) analyzed
how well the interaction model enhanced the workflow of
their users.

Feedback plays a great part in most of the evaluation
projects; Waller et al. (2009), Johnston et al. (2005), Shi-
bata and Hori (2002), Warr and O’Neill (2007), and Terry et
al. (2004) report new ideas for improvement. Most projects
also used user quotes to illustrate key findings or feedback;
only Yannakakis et al. (2014), Warr and O’Neill (2007), and
Terry et al. (2004) do not use user quotes at all.
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Evaluation of the Poetry Machine
The Poetry Machine (Kantosalo et al. 2014) aims to solve
the problem of the empty paper for its users, school children
studying poetry or just exercising writing. The user selects
a theme (in the tested version one out of 8 options), and the
Poetry Machine provides a draft poem consisting of poetry
fragments. The editing interface simulates a set of fridge
magnets. The user can edit the draft by dragging words and
rows around, removing them, or entering new ones. The
user can also ask for further assistance from the computer,
by using a feature called the “robot”. By dragging words or
rows on the robot, the robot provides the user with similar
fragments or rhyming words.

The Poetry Machine has been developed at the University
of Helsinki, based on the poetry generation methods devel-
oped earlier in the group (Toivanen et al. 2012). However,
the version evaluated in this paper does not utilize the full
functionality of these methods. Instead we decided to use
simple fragment based approaches to provide pieces of po-
etry and rhyme candidates that can be expanded to full po-
ems by users of the system. The Finnish poetry fragments
and rhyme dictionaries are automatically extracted from a
corpus containing children’s literature from Project Guten-
berg. This simplistic setting makes it easier to assess the
effectiveness of the current interface of the system and also
provides a basic setting for further iterative testing.

Planning the Evaluation
In the next paragraphs we describe the evaluation process of
the Poetry Machine through the DECIDE framework.

Determining Evaluation Goals We selected three goals
for the evaluation of the Poetry Machine: (1) discovery
of usability problems, (2) evaluation of its usefulness, and
(3) evaluation of its enjoyability. The first goal is a typi-
cal Interaction Design evaluation goal, yielding concrete re-
marks on how to improve the interface. In this case, elim-
inating usability problems is a vital step before conducting
additional, comparative testing on the contents of the co-
creation. The second goal, usefulness, is defined here as
the system’s ability to make creative writing easier for chil-
dren. Finally the last goal, enjoyability, is related to the ISO-
9241-11 (ISO/IEC 2010) satisfaction parameter, but com-
bined with fun, which with child users correlates with us-
ability (Sim, MacFarlane, and Read 2006).

Exploring the Questions In the question exploration
phase, each goal was elaborated with a set of sub-questions,
which could be more easily approached with specific Inter-
action Design evaluation methods. Our primary study ques-
tions were:

1. Usability

(a) Are children able to use the program?
(b) Is the interface graphically pleasing to children?

2. Usefulness

(a) What features of the program are the most useful for
children?

(b) Does the program make creative writing easier for chil-
dren?

3. Enjoyability
(a) Do children exhibit negative signs, such as signs of

boredom or frustration, when using the program?
(b) Do children exhibit positive signs, such as smiling, or

willingness to continue the activity for a longer period
of time?

(c) What activities do children name when asked about the
most fun/boring features in the program?

Most of the questions can be further divided into sub-sub-
questions, such as “Do children use all of the features or
only few?”.

We intentionally excluded questions, such as “Does the
tool promote learning or creativity?”. These questions were
considered outside the scope of the first evaluation, but more
experiments are planned for evaluating the pedagogical po-
tential of the tool, and alternatives for promoting creativity.

Choosing Methods In order to gather a wide range of
feedback, we decided to use a mixed-methods approach with
two methods: Peer Tutoring and a small group session we
call Group Testing. We chose the paired Peer Tutoring com-
position proposed by Edwards and Benedyk (2007) in which
two users work as a pair – the first participant first learns the
use of the tool and then teaches it to his or her partner. In the
Group Testing we simulated a small group teaching scenario
with one teacher teaching a group of five pupils on how to
write a poem with the Poetry Machine. By using the meth-
ods in a school environment, we attempted to imitate some
culturally and contextually aware conditions.

Peer Tutoring was selected as it has been previously used
with young children in usability tests organized at school.
It offers a natural context for using the tool with a friend,
diminishing biases resulting from an unbalanced adult-child
relationship between the users and the researchers adminis-
tering the test (Höysniemi, Hämäläinen, and Turkki 2003).
It is also good for eliciting comments from children (Ed-
wards and Benedyk 2007), as well as for fostering creativ-
ity, experimentation and problem solving-skills within the
test situation (Höysniemi, Hämäläinen, and Turkki 2003).
Group Testing allowed us to observe the use of the system
in a more authentic, teacher driven learning situation.

Observation of behavioral signs is considered more trust-
worthy than self reports in the case of children (Hanna, Ris-
den, and Alexander 1997), and it is used in both methods
to provide both quantitative and qualitative data. To col-
lect more qualitative data, both methods were coupled with
an appropriate background questionnaire and a post task de-
briefing. With Peer Tutoring we used a paired interview. For
the Group Testing we developed a group-based, game-like,
feedback gathering method called Feedback Game (Kantos-
alo and Riihiaho 2014).

Each of our six Peer Tutoring sessions started with tutor
introduction: The researchers presented themselves to the
tutor pupil, and the facilitating researcher helped him or her
to fill a background questionnaire. During the next step, tu-
tor training, the tutor was encouraged to explore the tool and
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write a poem with it. Next, during tutee introduction, the
tutee was introduced to the test setting and filled the back-
ground questionnaire, while the tutor read a book. This was
followed by the actual peer tutoring phase, during which the
tutor guided the tutee in writing a poem with the tool. Fi-
nally the tutor and the tutee were interviewed in what we
call the pair interview phase.

Both Group Testing sessions started with an introduction
phase, during which the participating children filled in the
same background questionnaire as the Peer Tutoring par-
ticipants. This was followed by instruction by the teacher,
during which the teacher shortly composed a poem at the
front of the classroom explaining the use of the tool. We
then moved on to the poem writing phase, during which each
child composed a poem, the teacher instructing them when
necessary. Feedback from the children was then gathered
in the the Feedback Game phase. In the game children an-
swered questions like “Was it fun to use the poetry tool?”
on a five step Likert scale turned into a gameboard. Each
question was followed by a round of arguments. Finally a
separate teacher interview was conducted to learn how the
teacher perceived the effects of the tool on his class.

Identifying Issues As a sensitive user group children re-
quire specific care in selecting and applying test methods.
Both, the Peer Tutoring test and the Group Testing were
conducted on site, in a small classroom at a local Finnish
school. To gather enough material to make for possible test
session failures, we decided to work with a fairly large group
of children. We recruited a class of 9-10-year-old pupils.
Their teacher selected 22 participants (12 for Peer Tutoring,
10 for Group Testing) according to criteria provided by us.
The sample is large, but narrow, which is somewhat typi-
cal for Interaction Design evaluation with children (see e.g.
the sample sizes in (Sim, MacFarlane, and Read 2006) or
(Höysniemi, Hämäläinen, and Turkki 2003)). Further test-
ing with more varied users is planned.

To ensure unintrusive data collection we videotaped each
session, and the researcher acting as the main facilitator in
charge of interviewing and helping was accompanied by
one or two additional observers, who were present at all
times. Additionally we performed automatic data collection
of the artefacts produced by the children, including record-
ing which words in each poem were computer generated.

To promote creative thinking, we decided to use a very
generic test task — the general goal of ”writing a poem”.
In Peer Tutoring, this proved very difficult for some of the
tutors, who were unfamiliar with poetry and required thus
more guidance, such as suggesting a topic in one case. The
tutees seemed to respond to the task more positively, possi-
bly due to peer presence. We were also worried the tutors
might try to push tutees to a specific creative direction dur-
ing testing and discouraged this by allowing only the tutee
direct access to the mouse and keyboard during the peer tu-
toring. We were happy to see the tutors seldom did anything
to affect the creative content of their tutee’s poem. The same
open task worked well with the Group Testing participants.

Ethics As the participants of the study were all under-
aged, we requested a permission from the guardians of each

pupil with a letter sent to them through the school. Addition-
ally, we emphasized the volunteer nature of the study at the
beginning of each session, explained the secrecy of all raw
material, and noted we were there to recruit the pupils’ help,
not to evaluate them. During two of the Peer Tutoring ses-
sions we held longer pauses to allow the tutor pupils to take
a recess or have lunch before continuing with their tutee.

Analysis and Presentation All sessions were analyzed
from videotaped material. All peer tutoring session videos
were analyzed by two researchers; the facilitator and one ob-
server. Each Group Testing session video was analyzed by
the facilitator. Additionally field notes were used to note
important factors during testing. The facilitator counted
instances of use for each feature from the Peer Tutoring
videos, as well as positive and negative gestures. Both facil-
itator and observer additionally observed the tape for inter-
esting comments, actions and usability problems. The prob-
lem listings obtained were combined and duplicates were
merged into single problems. Each problem was rated by
frequency and assigned a severity rating. It was not possible
to conduct an equally robust analysis of the Group Testing
sessions, because of limitations in taping each participant
individually. More general observations were made instead.
The pair interviews and Feedback Game sessions were tran-
scribed and the transcripts analyzed for common elements
and improvement ideas.

Evaluation Results
The analysis revealed a number of interesting issues related
to the evaluation goals and user ideas for improving the tool.
Additionally we were able to find some interesting elements
related to the use patterns and creative processes of the users.

Usability We found 82 unique usability problems through
the Peer Tutoring tests. The problems ranged from prac-
tical interface problems, such as how to move words, and
aesthetic problems, such as the appearance of buttons on
screen, to more conceptual problems including for exam-
ple misunderstanding of what publishing a poem means. A
solution for each problem was suggested based on the prob-
lem’s manifestation during testing and improvements are be-
ing carried out to allow further testing.

Enjoyability The enjoyability of the tool was evaluated
based on gestures recorded from the Peer Tutoring videos
and user comments. All of the six girls, who participated in
the Peer Tutoring tests, seemed to show more negative ges-
tures than positive when composing a poem. Four of the six
boys however showed more positive signs. This could be
taken as an indication of a generally negative reception for
the prototype, however there is some ambiguity in interpret-
ing gestures of children: Hanna et al. (1997) consider frown-
ing a negative sign, but during testing this seemed rather to
be a sign of concentration, which according to Read et al.
(2002) should be considered as a positive sign. Also, as Car-
roll points out (2011), these signs may have to be interpreted
differently due to the creative context. If we interpret these
possible signs of concentration as positive, only one pupil
displayed more negative gestures during testing. Most of the
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negative comments heard during testing had to do with the
ambiguity of the task: some children were unsure of what
poems are and how to write one. Other negative comments
heard during the Peer Tutoring indicated usability problems,
and in one case disapproval of the concept itself. Less nega-
tive comments were heard during the Group Testing, where
children received more clear instructions from their teacher.

The interview and Feedback Game results support a more
positive response to the tool: All Peer Tutoring participants
gave great scores for the prototype (4 or 5 stars out of 5), 5
out of 12 stating reasons related to the perceived fun of the
tool. Additionally two pupils would recommend the tool to
their peers based on fun. All Feedback Game participants
agreed the tool was fun, and four of them specifically indi-
cated they were willing to participate in a similar test be-
cause writing poems during the test was so fun. Enjoyabil-
ity is also supported by anecdotal evidence provided by the
teacher after the testing, during a later visit to the school, and
the general reception children gave to the tool. This includes
one child mentioning after a test that she had actually stayed
after school as she was so enthusiastic to try the tool out.

Usefulness The tool was found useful by both the pupils
and their teacher: The pupils clearly responded positively
to writing poems with the tool. 12 out of 22 pupils in-
dicated that poem writing with it was fun. Six pupils out
of 22 also considered that writing poems with the tool was
easier than writing otherwise. One pupil specifically men-
tioned that existing words given by the computer helped his
writing process. The teacher highlighted motivation issues:
He considered that the pupils were faster to get to work and
more engaged with the program than in a typical lesson. He
specifically mentioned that one of the pupils, who usually
had difficulties with coming up with ideas for creative writ-
ing worked very autonomously throughout the session. The
teacher also reported later that one of his pupils had been
inspired by the tool to start poem writing as a hobby.

All pupils were able to write a poem during testing, how-
ever two of them seemed to reproduce one written before the
test session. Also, some of the tutors required some ideation
help for writing their poem and the facilitator suggested a
theme for them, helping the process along with some open
questions.

No formal evaluation of the educational value of the tool
was made and children were not asked to specifically evalu-
ate the learning potential of the tool, but many of the children
considered the tool useful for learning: Seven pupils wanted
to recommend the tool to others as they saw it as useful for
learning. Three pupils considered autonomously that they
had themselves learned to write poems with the tool. The
teacher was also able to see the tool as a useful part for fu-
ture lessons.

Use Patterns and Creative Process To gain a better un-
derstanding of the use of the tool, we recorded how many
times each feature was used by the children during testing.
While some of the users were writing with no apparent pat-
tern, the data showed two clear strategies utilized by some
of the pupils. The first strategy was to use one of the row-
boxes, originally intended to note the row structure in the

final poem, as a storage-unit. A pupil using this storage-
strategy would shift words within the interface from the op-
erational area to the storage-unit and back according to his or
her poem idea. The final poem would consist in a large part
of words suggested by the computer. Four participants in the
Peer Tutoring test were seen using this strategy. The sec-
ond strategy, robot-induced-ideation, was seen specifically
in one of the pupils. He would primarily engage with the
robot, looking always first through its suggestions and only
then added a word either invented by the robot or himself.

By looking at the usage data recorded during the use, Peer
Tutoring participants wrote shorter poems than the Group
Testing participants. The average length of Peer Tutoring
participants’ poems was 11.6 words (median 11, minimum
6 and maximum 23), while the Group Testing participants
wrote 25.4 word poems on average (median 19, minimum 12
and maximum 55). On average, 28% of the final words in the
poems written by Peer Tutoring participants were provided
by the computer (either in the initial draft, or suggested by
the robot tool), while 34% of the words used by Group Test-
ing participants originated from the computer. In both test
setups two pupils decided not to use any of the suggestions
provided by the computer, while in the Group Testing one
participant relied entirely on words suggested by the com-
puter, acting as a sort of an editor. However, the logs do
not record all of the effects of the tool to the writing of the
children – for example one child said during a Peer Tutor-
ing session that “something came to my mind from this” and
pointed to one of the robot’s suggestions.

We did not attempt to evaluate the quality of the poems
and the possible effect of Poetry Machine on them. A larger
sample would be needed, as well as a comparative set of
poems, either from the same age group or from earlier poems
written by these pupils.

User Ideas The user ideas collected during testing are
summarized in table 1. Peer Tutoring and Group Testing
produced different kinds of ideas. On average one Peer Tu-
toring session produced one idea, whereas each Group Test-
ing session managed to produce two. The ideas gathered
during Group Testing are also more immediately related to
the conceptual level of the system, while the Peer Tutoring
ideas also address more specific interaction ideas. We dis-
cuss the main ideas below.

1 Inputting multiple words together should be easy
2 Users should be able to remove all words easily
3 Proposed words should be more familiar
4 Proposed words should be more tightly linked to

words pointed out by the user
5 Proposed words could be displayed under the word to

be replaced
6 A quick way to add punctuation is needed
7 Drafts should have more familiar words
8 Proposed words should be more related to the topic
9 Proposed words should have better rhymes
10 Drafts should have more rhymes

Table 1: Ideas collected from users during testing
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Using the Results in Developing the Poetry
Machine

The usability evaluation results are already used to enhance
the interface in order to support test situations in which we
focus more on the content of the interactions instead of their
fluidity. The initial results will guide our research into the
pedagogical potential of the tool, and we will further focus
in the development of the tool as a motivating agent.

The use patterns collected show potential principles on
the base of which further interaction in the tool can be build
to support human-computer co-creativity. For example the
storage-strategy should be investigated further as an inter-
action paradigm in the system. The relationship between
the robot-induced-ideation and the quantity of computer pro-
vided words in the system should be investigated further in
the tests, and means for promoting it could include a more
active computational participant.

The feedback provides many possibilities for further de-
velopment of the computational creativity methods used in
the system. Especially the ideas give concrete suggestions
as to how the system should be developed further.

(1) Instead of just providing simple fragments without
any cohesion between them, methods for adding more co-
herence between the proposed fragments should be investi-
gated. Here the computer could propose fragments that are
well suited to the fragments already proposed and also writ-
ten by the user. Methods of textual coherence based on vec-
tor space models of words and linguistic fragments (Mikolov
et al. 2013) or corpus word statistics could be used here to
enhance the results.

(2) The quality of the rhymes have room for improvement.
Methods for improving the quality of rhymes are many, in-
cluding metrics based on word length etc. Also many dif-
ferent kinds of rhymes like syllabic rhymes, half rhymes,
assonances, consonances, and alliteration could be used to
add more variation.

(3) Words suggested by the system could be more famil-
iar to the users. However, the users were not unanimously
supporting the use of only familiar words. During group
testing, one pupil noted that “there were these words you
use more seldomly, so there were a couple I could select for
my poem”. Therefore, tying the words better to the context,
proposing synonyms and antonyms for the words pointed
out by the user, and using a mix of more and less typical
words a good balance between vocabulary enhancing and
supporting words could be attained.

In the future, the system could also be used for teaching
metrical systems prevalent in traditional poetry. The com-
puter could, for instance, propose that the user could write
a sonnet and then track the number of syllables on each line
of the poem. If the number of syllables on some line did not
fit the metrical structure of a sonnet the computer could pro-
pose changing, for instance, one word on the line to satisfy
the metrical constraints.

Conclusions
We have shown how to conduct an interaction design method
based evaluation on a human-computer co-creativity tool

called Poetry Machine. The evaluation conducted in this
case study has similarities to other evaluation cases of
human-computer co-creative tools and creativity support
tools. Especially interesting is the varied set of evalua-
tion goals that can be supported through Interaction Design
methodologies. In creative contexts however, the selection
of methodology seems to be especially important: Mixed
methods should be used to gain a varied set of data. Also
specific care has to be taken to create a test situation that
allows the flow of creativity by either using remote study
methods, methods that have been found to suit creative con-
texts, or setting up the evaluation in a creative environment.
Tuning methods for creative contexts also requires selecting
suitable tasks for the users to do within the test situation.

A very interesting aspect to Interaction Design evaluation
planning and practice within the creative context are the is-
sues faced during testing. It seems that some traditionally
used interaction design evaluation measures, such as time,
or facial gestures are not useful within a creative context, as
some negative signs, such as frowning, may actually indicate
positive aspects, such as concentration or immersion instead.
Most of the issues related to human-computer co-creativity
testing with interaction design evaluation methods still seem
to be concerned with typical interaction design evaluation
problems, such as selecting suitable users.

The analyzed sample cases revealed that typically the
analysis of human-computer co-creativity evaluation results
is similar to that of Interaction Design evaluation. For ex-
ample, quotes are frequently used to illustrate key issues.
Interestingly many projects have also focused on how the
creative process of the user is supported by the interface. A
large part of the cases also provided feedback and improve-
ment ideas.

We have illustrated here how such formative evaluation
results can be applied to practical computational creativity
development work by providing a list of gathered user ideas
and presenting concrete ideas on how to use them for further
development. However, a simple listing of the ideas is not
enough – to defend design decisions and to tune solutions to
actual user needs, we need to look at the qualitative data as
a whole.

Based on the projects studied for this paper, it seems in-
teraction design evaluation methods have already taken a
place within human-computer co-creativity evaluation and
the philosophical foundations of this work are also being
laid in the computational creativity community. Through our
case study, we have demonstrated in a formalized manner,
how to plan and conduct Interaction Design method based
evaluation for a human-computer co-creativity tool and how
the results can be applied in practice. With this we have
shown how interaction design evaluation practices offer an
interesting, complementary evaluation approach to human-
computer co-creation tools, providing results that can be put
to practical development use.
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Abstract 

Science education nowadays emphasizes authentic 
science practices mimicking the creative discovery 
processes of real scientists. How, then, can we build 
creativity support tools for student learning about 
scientific discovery processes? We summarize several 
epistemic views of ideation in scientific discovery and 
find that the ideation techniques provide few guarantees 
of correctness of scientific hypotheses, indicating the 
need for supporting hypothesis evaluation. We describe 
an interactive tool called MILA−S that enables students 
to elaborate hypotheses about ecological phenomena 
into conceptual models and evaluate conceptual models 
through agent-based simulations.  We report on a pilot  
experiment with 50 middle school students who used 
MILA−S to discover causal explanations for an 
ecological phenomenon. Preliminary results from the 
study indicate that use of MILA–S had a significant 
impact both on the creative process of model 
construction and the nature of the constructed models.  
We posit that the computational support for model 
construction, evaluation and revision embodied in 
MILA–S fosters student creativity in learning about 
scientific discovery processes.  

Introduction  
Scientific discovery in general is a creative task 

(Carruthers, Stitch & Siegal 2002; Clement 2008; Darden 
1998; Magini, Nersessian & Thagard 1999; Nersessian 
2008). Thus, computational modeling of scientific discovery 
processes has received significant attention in AI research 
on creativity (Chen et al. 2009; Davies, Nersessian & Goel 
2005; Griffith, Nersessian & Goel 2000; Langley 2000; 
Langley et al. 1987; Lindsay et al. 1980). Science education 
nowadays emphasizes authentic science practices 
mimicking the creative discovery processes of real scientists 
(Clement 2008; Edelson et al. 1999). Thus, interactive tools 
for supporting authentic science practices in science 
education have received significant attention in AI research 
on education (Bridewell et al. 2006; De Jong & van 
Joolingen 1998; Jackson, Krajcik, & Soloway 2000;  Novak 
2010; vanLehn 2013).  

The goal of supporting creative discovery processes in 
science education raises several issues for research on 
computational creativity. We briefly three questions:  
(1) What specific tasks in creative discovery processes 
should we automate in supporting science education? We 
focus on ideation in scientific discovery, and summarize 

five epistemic views of ideation in the literature. We find 
that most epistemic views provide few guarantees of the 
correctness of ideas. This indicates a need for supporting 
hypothesis evaluation in student learning about creative 
discovery processes.  
(2) What computational tools may support evaluation of 
hypotheses in science education? We focus on conceptual 
modeling in scientific discovery. We summarize an 
interactive technology called MILA−S for first elaborating 
explanatory hypotheses into conceptual models and then 
evaluating a hypothesis through simulation.   
(3) What is the impact of creativity support tools such as 
MILA−S on student learning about scientific discovery 
processes? We summarize an educational intervention in a 
middle school engaging MILA−S for modeling ecological 
phenomena. We find that the use of MILA−S had 
substantial impact on the discovery processes of middle 
school students in modeling the ecological phenomenon.  

Epistemic Views of Scientific Discovery 
Idea generation is a core element of the creative process 

in scientific discovery (Clement 2008; Nersessian 2008). 
However, the task of ideation is complex. The question for 
us is what specific subtasks of ideation should we automate 
in supporting student learning about scientific discovery 
processes? To answer this question, we examine several 
epistemic views of ideation in scientific discovery.  

Conceptual Classification 
One common view of ideation in scientific discovery is 

classification of data into known categories.. We know 
about Linneas’ classic work on classification in biology. 
Classification continues to be important in modern biology 
(e.g., Golub et al. 1999). Classification has been extensively 
studied in AI (e.g., Duda, Hart & Stork 2001) and ML (e.g., 
Bishop 2007). The classic DENDRAL system (Lindsay et 
al. 1980) classified mass spectroscopy data into chemical 
molecules. Chandrasekaran & Goel (1988) trace the 
evolution of early AI theories of classification. We have 
studied both top-down hierarchical classification in which a 
concept is incrementally refined based on data (Goel, 
Soundarajan & Chandrasekaran 1987), and bottom-up 
hierarchical classification in which features of data are 
incrementally abstracted into a concept (Bylander, Goel & 
Johnson 1991).  
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Abductive Explanation 
Abductive inference, i.e., inference to the best explanation 

for a set of data, is another common view of ideation in 
scientific discovery. AI has studied abduction from multiple 
perspectives (e.g., Charniak & McDermott 1985; Josephson 
& Josephson 1996). The classic BACON system (Langley 
et al. 1987) abduced physical laws from data. Bylander et al. 
(1991) have analyzed the computational complexity of the 
abduction task.  Goel et al. (1995) describe a computational 
technique for abductive explanation based on  the RED 
system for identifying red-cell antibodies in a patient’s 
serum (Fischer et al 1991): the technique assembles 
composite explanations that explain a set of data from 
elementary explanations that explain subsets of the data. 

Conceptual Modeling 
Conceptual modeling is ubiquitous in science (e.g., 

Clement 2008; Darden 1998; Nersessian 2008). Conceptual 
models are abstract representations of the elements, 
relationships, and processes of a complex phenomenon or 
system. AI has extensively studied conceptual models (e.g., 
Davis 1990; Lenat 1995; Stefik 1995). We have developed 
conceptual models of complex systems that specify how a 
system works, i.e., the way the system’s structure produces 
its behaviors that achieve its functions (Goel, Rugaber & 
Vattam 2009). We have used structure-behavior-function 
modeling for both engineering systems (Goel & Bhatta 
2004) and natural systems (Goel et al. 2012) for supporting 
a variety of reasoning processes in design and invention.  

Analogical Reasoning 
Scientific discovery often engages analogical reasoning 

(Clement 2008; Dunbar 1997; Nersessian 2008). We know 
about Neil Bohr’s famous analogy between the atomic 
structure and the solar system. Analogical reasoning 
engages retrieval of an analogue useful for addressing the 
scientific problem of interest and transfer of the relevant 
relational knowledge from the retrieved analogue to the 
scientific problem. AI research has developed several 
theories of analogical reasoning (e.g., Bhatta & Goel 2004; 
Falkanehainer, Forbus & Gentner 1989; Hofstader 1996; 
Thagard et al. 1990). We have studied analogical reasoning 
in scientific problem solving (Griffith, Nersessian & Goel 
2000). Starting from verbal protocols of physicists 
addressing problems with spring systems (Clement 1988), 
we developed an AI system called Torque that emulates the 
problem solving behavior of the physicists.  

Visual Reasoning 
Scientific discovery often engages visual representations 

and reasoning (Clement 2008; Magnini, Nersessian & 
Nersessian 1999; Nersessian 2008). Although some AI 
research has explored visual representations and reasoning 
(e.g., Glasgow, Narayanan & Chandrasekaran 1995), AI 
research on visual representations and reasoning is not as 
robust or mature as on, say, classification. We have 

developed a language for representing visual knowledge and 
a computational technique for reasoning about visual 
analogies (Davies, Goel & Yaner 2008), and to understand 
the use of visual analogy Maxwell’s construction of the 
unified theory of electromagnetism (Davies, Nersessian & 
Goel 2005). 

The Evaluation Task   
It is noteworthy that in general the above methods of idea 
generation in scientific discovery provide few guarantees of 
correctness of their results. Further, while these methods 
help generate hypotheses for a given situation, in general 
they do not by themselves evaluate their results. This 
indicates a need for supporting hypothesis evaluation in 
student learning about creative discovery processes. That is, 
there is a need for developing interactive tools that automate 
the evaluation task in the context of supporting creativity in 
student learning about scientific discovery processes. Thus, 
we decided to focus on automating the evaluation task in 
supporting student learning as described below.    

Model Construction and Evaluation  
In this work, we elected to automate the evaluation task in 

the context of supporting creativity in student learning about 
conceptual modeling. Cognitive science theories of 
scientific discovery describe scientific modeling as an 
iterative process entailing four related but distinct phases: 
model construction, use, evaluation, and revision (Clement 
2008; Nersessian 2008; Schwarz et al. 2009). Thus, a model 
is first constructed to explain some observations of a 
phenomenon. The model is then used to make predictions 
about other aspects of the phenomenon. The model’s 
predictions next are evaluated against actual observations of 
the system. Finally, the model is revised based on the 
evaluations to correct the errors and improve the model’s 
explanatory and predictive efficacy.  

Scientific models can be of several different types, with 
each model type having its own unique affordances and 
constraints, and fulfilling specific functional roles in 
scientific inquiry (Carruthers, Stitch & Siegal 2002; 
Magnini, Nersessian & Thagard 1999). In this work, we are 
specifically interested in two kinds of models: conceptual 
models and simulation models. Conceptual models allow 
scientists to specify and share explanations of how a system 
works, aided by the semantics and structures of the specific 
conceptual modeling framework. Conceptual models tend to 
rely heavily on directly modifiable representations, 
languages and visualizations, enabling rapid iterations of the 
model construction cycle.  

Simulation models capture relationships between the 
variables of a system such that as the values of input 
variables are specified, the simulation model predicts the 
temporal evolution of the values of other system variables. 
Thus, the simulation model of a system can be run 
repeatedly with different values for the input variables, the 
predicted values of the system variables can be compared 
with the actual observations of the system, and the 
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simulation model can be revised to account for 
discrepancies between the predictions and the observations. 
A main limitation of simulation models is the complexity of 
the setting up a simulation, which makes it difficult to 
rapidly iterate on the model construction cycle. 

AI research on science education has used both 
conceptual models (e.g., Novak 2010; vanLehn 2013) and 
simulation models (e.g., Bridewell et al. 2006; de Jong & 
van Joolingen 1998; Jackson, Krajcik, & Soloway 2000) 
very extensively and quite productively. However, AI 
research on science education typically uses the two kinds 
of models independently from each other: students use one 
set of tools for constructing, using, and revising conceptual 
models, and another tool set for constructing and using 
simulation models. However, cognitive science theories of 
scientific inquiry suggest a symbiotic relationship between 
conceptual modeling and simulation modeling (e.g., 
Clement 2008; Magnini, Nersessian & Thagard 1999; 
Nersessian 2008): scientists use conceptual models to set up 
the simulation models, and they run simulation models to 
test and revise the conceptual models. Thus, we developed 
an interactive system called MILA–S that enables science 
students to construct conceptual models of ecosystems, to 
directly and automatically generate simulation models from 
the conceptual models, and then execute the simulations.  

MILA−S: A Tool for Model Construction and 
Evaluation 

MILA (Modeling & Inquiry Learning Application)_ is a 
family of interactive tools for supporting student learning 
about scientific discovery. The core MILA tool enables 
middle school students to investigate and construct models 
of complex ecological phenomena. MILA–S also allows 
students to simulate their conceptual models (Joyner, Goel 
& Papin 2014). In this paper, we focus on the impact of 
using MILA-S on students’ creativity in conceptual 
modeling. 
    MILA builds on a line of exploratory learning 
environments including the Aquarium Construction Toolkit 
(ACT; Vattam et al. 2011) and the Ecological Modeling 
Toolkit (EMT; Joyner et al. 2011).  ACT and EMT were 
shown to facilitate significant improvement in students’ 
deep, expert-like understanding of complex ecological 
systems. For conceptual modeling, ACT used Structure-
Behavior-Functions models that were initially developed in 
AI research on system design (Goel, Rugaber & Vattam 
2009). In contrast, EMT used Component-Mechanism-
Phenomenon (or CMP) conceptual models that are variants 
of Structure-Behavior-Function models adapted for 
modeling ecological systems. Both ACT and EMT used 
NetLogo simulations as the simulation models (Wilsensky 

& Reisman 2006; Wilensky & Resnick 1999). Like most 
interactive tools for supporting modeling in science 
education (vanLehn 2013), both ACT and EMT provided 
one set of tools for constructing and revising conceptual 
models and another tool set for using simulations.  

Like EMT, MILA–S uses Component-Mechanism-
Phenomenon (or CMP) conceptual models that are variants 
of the Structure-Behavior-Function models used in ACT.. In 
CMP models, mechanisms explain phenomena such as fish 
dying in a lake. Mechanisms arise out of interactions among 
components and relations among them. Components are 
parts of the physical structure of system, and are classified 
as either biotic or abiotic; oxygen, for example, is an abiotic 
component while fish are biotic components. The 
representation of each component in CMP includes a set of 
variables such as population, age, birth rate, and energy for 
biotic components, and amount for abiotic components. The 
representation of each component is annotated by a set of 
parameters specifically for setting up a simulation, such as 
the appearance of the component and ranges for each 
variable associated with the component. 

In the CMP model of a system, representations of 
components (and their variables) are related together 
through different kinds of relations. MILA–S provides the 
modeler with a set of prototype relations. For example, 
interactions between a biotic component like 'Fish' and an 
abiotic component like 'Oxygen' could be 'consumes', 
'produces', or 'destroys'. Connections have directionality; a 
connection from 'Oxygen' to 'Fish' would have a different 
set of prototypes, including 'poisons'. Representations of 
relations are also annotated with parameters to facilitate the 
simulation, such as energy provided for 'consumes' and rate 
of production for 'produces'. 

Like ACT and EMT, MILA–S too uses the NetLogo 
simulation infrastructure. After constructing a CMP 
conceptual model, a student clicks a 'Run Sim' button to 
initialize MILA–S and pass their model for simulation 
generation. MILA–S iterates through some initial boilerplate 
settings, then gathers together all the components for 
initialization along with their individual parameters. After 
this, MILA–S writes the functions based on the relations 
specified in the CMP model. A key part of this is a set of 
assumptions that MILA–S makes about the nature of 
ecological systems. For example, MILA–S assumes that if a 
biotic component consumes a certain other component, then 
it must need that other component to survive. A model with 
'Fish' that contains 'consumes' connections to both 'Plankton' 
and 'Oxygen' would infer that fish need both Plankton and 
Oxygen to survive. MILA–S also assumes that species will 
continue to reproduce to fulfill their carrying capacity rather 
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than hitting other arbitrary limitations. These assumptions 
do limit the range of simulations that MILA–S can generate, 
but they also facilitate the higher-level rapid model revision 
process that is the learning objective of this project. Figure 1 
illustrates a simple conceptual model constructed by a 
middle school student team (on the top of the figure) and the 
results of simulating it (at the bottom). 

Educational Intervention 
The present intervention had two main parts. In the first 

part, 10 classes with 237 students in a metro Atlanta middle 
school used MILA for two weeks. During this time, students 
worked in small teams of two or three to investigate two 
phenomena: a recent massive and sudden fish death in a 
nearby lake and the record high temperatures in the local 
area over the previous decade. In the second part, two 
classes with 50 of the original 237 students used MILA-S to 
more deeply investigating the phenomenon of massive, 
sudden death of fish in the lake.  

Prior to engagement with MILA–S, the 50 students in our 
study received a two-week curriculum on modeling and 
inquiry, featuring five days of interaction with CMP 
conceptual modeling in MILA. In the first part of the study 
using MILA, students also used pre-programmed NetLogo 
simulations that did not respond to students' models, but 
nonetheless provided students experience with the NetLogo 
interface and toolkit. Thus, when given MILA–S, students 
already had significant experience with CMP conceptual 
modeling, NetLogo simulations, and the interface of 
MILA−S. The question now becomes what was the impact 
of using MILA−S on students’ creativity? 

Impact on Students’ Creativity 
An initial examination of the processes and results of 

model construction by the student teams in our study 
provides two insights. Firstly, there exists a fundamental 
difference in the conceptual models that students 
constructed with MILA–S compared to the earlier models 
they constructed with MILA: while earlier models were 

 
 

 
Figure 1: A model in MILA–S (top) showing a set of simple relationships between fish, algae, and oxygen, and the NetLogo 
simulation (bottom) generated by MILA–S to simulate the model. This model was constructed by the team described in the 
third case study below; the simulation was generated and run from their model by research staff to obtain this screenshot. 
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retrospective and explanatory, models constructed with 
MILA–S models were prospective and dynamic. Secondly, 
the model construction process when students were 
equipped with MILA–S was profoundly different from their 
earlier process using MILA: whereas previously, conceptual 
models were used to guide investigation into sources of 
information such as existing theories or data observations, 
once equipped with MILA–S the students used the 
conceptual models to spawn simulations that directly tested 
the implications of their hypotheses and models thereof. 

The Constructed Models 
During engagement with MILA, students produced 

models that can be described as retrospective and 
explanatory. Students started from an observable 
phenomenon, the aforementioned fish kill, and recounted a 
series of events that led to that result. Causal relationships 
were captured throughout the model, but only those that lay 
directly in the causal path leading to the observed 
phenomenon, and only in the specific way in which the 
chain occurred in the phenomenon. For example, one team 
modeled multiple feedback cycles to explain the 
phenomenon. In their model, a heat spike caused algae 
populations to grow out of control, then die off due to a lack 
of carbon dioxide to breathe and a lack of sunlight to 
produce energy (due to the thick algae clouding the lake). 
This led to a spike in algae-decomposing bacteria who 
suddenly had an ample food supply, as well as a drop in the 
population of oxygen-producing algae. These bacteria, then, 
consumed an enormous quantity of oxygen, causing the fish 
population to suffocate. This led to more dead matter in the 
lake, thus encouraging more bacteria reproduction, 
exacerbating the fish kill further. 

This model presented a complete explanation for why and 
how the fish kill occurred in the lake; however, the model 
only captured a retrospective view of the series of events 
applicable in this situation. Although students could use 
mental simulation to imagine the results, these models do 
not explicitly capture dynamic relationships in the system, 
and thus are of limited use describing what would have 
happened under different circumstances. For example, had 
the temperature changed more slowly and allowed the algae 
to grow steadily rather than exploding and plummeting in 
quick succession, could the lake have sustained the 
increased algae population? Would the increased algae 
population have produced sufficient oxygen to allow the 
fish population to grow and thrive as well? Thus, models 
constructed with MILA were explanatory and retrospective. 

With MILA–S, students constructed fundamentally 
different kinds of models that aimed not to capture the series 
of events that occurred, but rather to capture the dynamic 
relationships that gave rise to that series of events. Thus, the 
models constructed in MILA–S invoked a layer of 
abstraction and generalization away from the models 
constructed in MILA. For example, one team constructed an 
initial model that captured the three relationships they 
considered most pertinent in the system. These students 

already believed that the fish kill was caused by a sudden 
drop in oxygen, thus suffocating the fish. Thus, their first 
relationship was that fish consume oxygen. They similarly 
knew that oxygen is produced from sunlight, and thus 
included the relationship between sunlight and oxygen. 
These connections differed fundamentally from those 
modelled in MILA, such as accounting for trends in 
multiple directions (i.e. oxygen production varies directly, 
up or down, with sunlight presence). The model was not 
constructed to directly explain the phenomenon, but rather 
to provide the relationships necessary so that under the right 
conditions, the phenomenon may arise on its own.  

Model Construction Process 
During prior engagement with MILA, model construction 

occurred as students constructed their initial hypotheses, 
typically connecting only a cause to a phenomenon with no 
mechanism in between. This was then used to guide 
investigation into other sources of information such as 
observed data or other theories to look for corroborating 
observations or similar phenomena. The conceptual model 
was then evaluated according to how well it matched the 
findings; in some cases, the findings directly contradicted 
the model, while in other cases, the findings lent evidence or 
mechanism to the model. Finally, the conceptual models 
were revised in light of this new information (or dismissed 
in favor of stronger hypotheses, reflecting revision at a 
higher level) and the process began again. 

During engagement with MILA–S, however, we observed 
a profound variation on the model construction process. The 
four phases of model construction were still present, but the 
nature of model use and evaluation changed. Students 
started by constructing a small number of relationships they 
believe to be relevant in the system, the model construction 
phase. After some initial debugging and testing to become 
familiar with the way in which conceptual models and 
simulations fit together, students generated simulations and 
used them to test the implications of their conceptual 
models. After running the simulation a few times, students 
then evaluated how well the results of the simulation 
matched the observations from the phenomenon. This 
evaluation had two levels: first, did the simulation 
accurately predict the ultimate phenomenon (in this case, the 
fish kill)? Once this basic evaluation was met, an advanced 
evaluation followed: did other variables, trends, and 
relationships in the simulation match other observations 
from the phenomenon? For example, one team successfully 
caused a fish kill by causing the quantity of food available 
to the fish to drop, but evaluated this as a poor model 
nonetheless because nothing in the system indicated a 
disturbance to the fish's food supply. Finally, equipped with 
the results of this evaluation, students revised their models 
to more closely approximate the actual system. 

Thus, students still constructed and revised conceptual 
models, but through the simulation generation framework of 
MILA–S, the model use and evaluation stages took on the 
practical rigor, repeatable testing, and numeric analysis 
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facilitated by simulations. Rather than speculating on the 
extent to which their model could explain a phenomenon, 
students were able to directly test its predictive power. 
Then, when models were shown to lack the ability to 
explain the full spectrum of the phenomenon, students were 
able to quickly return and revise their conceptual models 
and iterate through the process again. 

Three Illustrative Case Studies 
We present three case studies from our experiment to 

illustrate the above observations about the model 
construction process. These case studies were chosen to 
demonstrate variations in the process and connections to the 
underlying model of construction and revision. 

Case 1 
The first team posited that pollution from dangerous 

chemicals played a significant role in the system. 
Specifically, this team speculated that chemicals were 
responsible for killing the algae in the lake, which then 
caused the fish population to drop. They began this 
hypothesis by constructing a model suggesting that algae 
produces oxygen, fish consume oxygen, and harmful 
chemicals destroy algae populations. They then used 
MILA–S to generate and use a simulation of this model to 
mimic the initial conditions present in the system (i.e. a fish 
population, an algae population, and an influx of chemicals). 
This simulation showed the growth of fish population 
continuing despite the dampened growth of algae population 
from the harmful chemicals. The team evaluated this to 
mean that the death of algae alone could not cause the 
massive fish kill to occur. The team then revised their model 
to suggest chemicals directly contributed to the fish kill by 
poisoning the fish directly, as well as killing the algae. 

The team then used MILA–S to generate another 
simulation. This time, when the team used the simulation 
under similar initial conditions, the fish population initially 
grew wildly, but the chemicals ate away at both the fish and 
algae. Eventually, the harmful chemicals finished eating 
away at the algae, the oxygen quantity plummeted, and the 
fish suffocated. Students evaluated that this simulation 
matched the observed phenomenon, but also evaluated that 
their model missed a relevant relation: based on a source 
present in the classroom, students posited that fish ought to 
consume algae. They revised their model to account for this 
error uncovered during evaluation, used their simulation 
again, found the same result, and evaluated that they had 
provided a model that could explain the fish kill. 

Case 2 
A second team started off by creating a simple set of 

relations that they believed was present due to their biology 
background and prior experience with MILA. First, they 
speculated that sunlight “produces” oxygen, and then that 
fish, in turn, consume the oxygen. Following these two 
initial relationships, they generated their first simulation 

through MILA–S and used it to mimic the believed initial 
conditions of the lake (i.e. a population of fish, available 
oxygen, available sunlight). Sunlight was inferred to be 
continuously available, and thus, at first, the population of 
fish expanded continuously without any limiting factor. 
However, when the population of fish hit a certain 
threshold, it began to consume oxygen faster than it was 
being produced. This led to the quantity of oxygen 
dropping, and subsequently, the population of fish dropping. 
However, rather than depleting completely, the fish and 
oxygen populations instead began to fluctuate inversely, 
with oxygen concentration rebounding sufficiently when 
fish population dropped, allowing the fish to rebound. 

The team ran this simulation multiple times to ensure that 
this trend repeated itself. In one instance, the fish population 
crashed on its own simply due to the suddenness of the fish 
population growth and subsequent crash. However, the team 
evaluated that this was not an adequate explanation of what 
had actually happened in the lake. The team posited that if 
this kind of expansion and crash could happen without 
outside forces, it would be more common. Second, the team 
observed that their model contained faulty or questionable 
claims, such as the notion that sunlight “produces” algae. 
This evaluation based on both the simulation results and 
reflection on the model led to a phase of revision. An 
‘Algae’ component was added between sunlight and 
oxygen, representing photosynthesis. Students then used 
MILA–S to generate a new simulation, and used this new 
simulation to test the model. This time, students found that 
their model posited that an oxygen crash would always 
occur in the system, and evaluated that while this 
successfully mimicked the phenomenon of interest, it failed 
to match the lake on other days. 

Case 3 
The third team began with an interesting hypothesis: algae 

serves as both the food for fish and the oxygen producer for 
fish. The team, thus, started with a simple three-component 
model with fish, algae, and oxygen: fish consume algae, fish 
consume oxygen, and algae produces oxygen. The team 
further posited that in order for algae populations to grow, 
they must have sunlight to feed their photosynthesis 
process. Sunlight, therefore, was drawn to produce algae. 
The team reasoned that if the fish population destroys the 
source of one type of ‘food’ (oxygen) in search for another 
type (actual food), it could inadvertently destroy its only 
source for a necessary nutrient. 

The team used MILA–S to generate a simulation based on 
this model and ran it several times under different initial 
conditions. Each time, algae population initially grew due to 
the influx of sunlight. As a result, fish populations grew, 
due to the abundance of both algae (as produced via 
sunlight) and oxygen (as produced by the algae). As the fish 
population spiked, the algae hit a critical point where it 
began to be eaten faster than it reproduced, and the rate of 
sunlight entering the system was insufficient to maintain 
steady, strong growth. This caused the algae population to 
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plummet, and in turn, the fish population to plummet as the 
fish suddenly lacked both food and oxygen. Sometimes, the 
algae population subsequently bounced back even after the 
fish fully died off, while in others both species died entirely. 

Unlike the second team, this third team evaluated this to 
mean their model was accurate: under the initial conditions 
observed in the lake, their model predicted an algal bloom 
every single time. Thus, the third team provided two 
interesting variations on the model construction process 
observed in other teams: first, they overloaded one 
particular component, demonstrating an advanced notion of 
how components can play multiple functional roles. Second, 
they posited that a successful model would predict that the 
same events would transpire under the same initial 
conditions every time, as opposed to the second team’s 
notion that this phenomenon ought to only occur sometimes. 

Summary, Conclusions, and Future Work 
Scientific discovery in general is a creative task. Our goal 

in this work was to enable science students to mimic the 
scientific modeling practices of real scientists and thus help 
make learning about scientific discovery as authentic as 
possible. Our analysis of several epistemic views of idea 
generation in scientific discovery indicated a need for 
automating the task of hypothesis evaluation.  Therefore, we 
developed an interactive system called MILA–S that enables 
science students to construct conceptual models of 
ecosystems, to directly evaluating the conceptual models by 
automatically generating simulation models from the 
conceptual models and then execute the simulations. Our 
hypothesis was that the computational support for model 
construction and evaluation embodied in MILA–S would 
foster student creativity in scientific modeling. 

Initial results from a pilot study with 50 students in a 
middle school provide preliminary evidence in favor of the 
hypothesis (although a controlled study is needed to 
conclusively verify these claims). Firstly, students 
approached the modeling process from a different 
perspective from the outset, striving to capture dynamic 
relationships among the components of the ecological 
system. These dynamic relationships then promoted a more 
abstract and general perspective on the system. Secondly, 
the process of model construction, use, evaluation, and 
revision presented itself naturally during this intervention, 
with the simulations playing a key role in supporting the 
cyclical process of constructing conceptual models. By 
using the simulations to test their predictions and claims, 
and by subsequently evaluating the success of their 
conceptual models by matching observations from the actual 
phenomenon, students engaged in a rapid feedback cycle 
that saw rapid model revision and repeated use for 
continued evaluation. MILA–S empowers science students 
to evaluate the conceptual models through simulation, 
allowing them to focus on idea generation, and model 
construction and revision.  

Note that in addition to conceptual modeling, this project 
entails some of the other processes of scientific discovery 

we briefly mentioned in the introduction. Thus, it engages 
abductive explanation as students explore multiple 
hypotheses for explaining an ecological phenomenon, and 
construct the best explanation for the given data about the 
phenomenon. It also engages visual representations and 
reasoning: students construct a visual representation of their 
conceptual model of the ecological phenomenon (top of 
Figure 1) and generate visualizations of simulations directly 
from the conceptual models (bottom of Figure 1).  

We are presently engaged in a full-scale investigation to 
test these theories, techniques and tools with college-level 
biology students. The objective of this investigation is to 
examine the use of creativity support tools for scientific 
modeling of ecological phenomena in college-level 
introductory biology courses.  
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Abstract

Interactive stories face a famous “authorial bottleneck.” Two
existing approaches to this problem are story management
systems, such as drama managers, and interactive narrative
generators. Existing work leverages well-understood qualities
of linear narrative such as suspense to generate content, but
interactivity brings new capacities, like the ability to make a
player experience regret. These interactive poetics arise from
the player’s ability to make choices, and depend heavily on
the structure of the choices that are presented to the player.
This system description paper presents a system that creates
choices by reasoning about their structure, and describes the
architecture that enables it to do so.

Introduction

Since the 1970’s, researchers in artificial intelligence have
been making systems that can creatively generate stories
(Klein et al. 1971). With the rise of digital games, and in
particular, interactive narratives1, this research has found a
new application: generating and managing the complexities
of interactive narratives. One approach to this problem is
to manage players’ experiences. A managed experience lets
authors create a diverse array of content while letting players
experience a coherent narrative that includes different parts
of the content depending on their choices. Another approach
is to create systems that generate content, letting authors
work at a more abstract level (perhaps writing re-combinable
actions or events) which the system can then use to generate
a wide variety of possible stories. Both approaches are pro-
posed solutions to the fact that the work necessary to create a
truly open world is overwhelming for human authors (Orland
2011). Existing systems have demonstrated the viability of
reasoning about traditional narrative qualities for both experi-
ence management and story generation. Qualities unique to
interactive narratives have not yet been widely used for rea-
soning in such systems, however. For example, the ability to
make a player regret their own actions is unique to interactive
contexts, and it depends on aspects of the narrative (such as
which actions the player intended, and which outcomes were
consequences of player actions) that go beyond traditional
narrative qualities.

1The authors are aware that interactive narratives predate digital games in several
forms, but digital games have popularized interactive narrative as a medium.

Interactive narrative systems thus stand to gain by reason-
ing about interactive as well as traditional poetics. Presented
here is a system called Dunyazad that attempts just that: It
dynamically builds choices with the goal of achieving spe-
cific poetic effects. Dunyazad focuses on choice poetics as
a subset of interactive poetics, attempting to structure the
choices that it gives the player so that they evoke feelings
like safety or confusion (Mawhorter et al. 2014). As an
operationalization of choice poetics, Dunyazad’s successes
and failures can also inform the theory that drives it.

Liapis, Yannakakis, and Togelius recently stated that
games were an ideal domain for computational creativ-
ity, and listed interactive narrative as an important part
of that domain (Liapis, Yannakakis, and Togelius 2014).
Human authors are now exploring the full potential of in-
teractive narrative: Many independent games have earned
praise for their stories, and communities that produce inno-
vative interactive narratives have formed around tools like
Inform 7 (http://inform7.com/) and Twine (http:
//twinery.org/).2 If generative narrative systems want
to leverage the potential of interactive narrative, they will
need to reason about interactive poetics, and in particular,
how the choices they present to players are perceived.

Prior Work

In computational narrative systems, there has been a recent
trend towards explicit poetics. Szilas’ 2003 IDTension first
proposed the idea of creating an interactive narrative by “sim-
ulating the laws of narrative” (Szilas 2003), much as one can
produce a wide range of gameplay by simulating the laws of
physics. This direction of work naturally proceeds by identi-
fying the mechanism of specific poetic effects and building
computational systems to produce those effects. El-Nasr’s
2007 Mirage (El-Nasr 2007) is another example of this ap-
proach; it attempts to apply a range of dramatic techniques to
increase engagement in an interactive narrative. In contrast,
systems such as Suspenser (Cheong and Young 2006) and
Prevoyant (Bae and Young 2008) have focused on specific
poetic effects (suspense and surprise respectively).

Dunyazad as described here can be viewed as continuing
this line of research because it reasons explicitly about poet-

2These are both examples of tools not explicitly designed to encourage creativity
which nonetheless support it by making authoring faster and easier.
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ics; it emphasizes interactive poetics, and in particular, the
poetics of discrete choices. Whereas IDTension and Mirage
incorporate traditional poetics into interactive experiences,
Dunyazad focuses on interactive poetics, leveraging choice
structures to create affect. In some respects Dunyazad is de-
signed as much to illuminate interactive poetics as to exploit
them: because it uses declarative code to construct poetic
choices, its successes and failures can be traced to concrete
parts of its theory, and that theory can thus be informed by
the system’s performance.

More recently, several studies have attempted to formally
investigate and model poetic effects in interactive narrative
contexts, with a focus on choices. In 2011, Thue, Bulitko,
Spetch, and Romanuik measured players’ perceptions of
agency and found that they often differed from what one
might expect based on the choices available to the player
(Thue et al. 2011). Their system did manipulate an inter-
active narrative to achieve a poetic effect (give the player a
sense of agency), but it focused on manipulating events in a
way that was invisible to the player, rather than on changing
a player’s perceived options at any particular choice. In a
study of agency which did not involve a generative system,
Fendt, Harrison, Ware, Cardona-Rivera, and Roberts were
able to create an illusion of agency, albeit in the context of
an extremely simple interactive narrative (Fendt et al. 2012).
A follow-up to the Fendt et al. study by Cardona-Rivera,
Robertson, Ware, Harrison, Roberts, and Young linked play-
ers’ perceptions of differences between outcomes to their
perceptions of agency (Cardona-Rivera et al. 2014). In an-
other paper focusing on choices in interactive narratives, Yu
and Riedl were able to predict player choices using collabo-
rative filtering (Yu and Riedl 2013).

This active research surrounding choices in interactive
narratives shows that authors are interested in the poetic
effects of choices. However, systems that actually reason
about the poetics of the choices they generate are scarce–
most existing systems reason about different options and
outcomes independently. Barber and Kudenko’s 2007 work
on dilemma-based interactive narrative is a notable exception
(Barber and Kudenko 2007). Their work focuses on a single
type of choice, generating interactive experiences where each
choice is a dilemma.

Ideally, a system that took choice poetics into account
would dynamically construct each choice that it offers the
player for maximum poetic impact. Of course, just as IDTen-
sion and Mirage reason about a range of classical poetics,
such a system could take into account a range of interactive
poetics (including aspects beyond choice poetics). But even
a system that only considers choice poetics is a step in the
right direction.

Choice Poetics

The theory of choice poetics described by Mawhorter, Mateas,
Wardrip-Fruin, and Jhala in (Mawhorter et al. 2014) pro-
vides a framework for reasoning about choices, which is
crucial for an interactive narrative system which must gener-
ate them. When analyzing the poetics of a choice, the first
consideration is the player’s mode of engagement: how is
the player approaching the game, and what do they hope

to achieve through their play? Common modes of engage-
ment include power play (playing to achieve ludic goals like
scoring points), avatar play (playing by projecting yourself
into the game and making the choices you would make in
a character’s situation) and role-play (playing to express a
particular role through the actions of one or more charac-
ters you control). There are also other less common modes
of engagement like critical play, and players can (and usu-
ally do) engage with multiple modes at once. Taking modes
of engagement into account does not require reading the
player’s mind, however: just as with any other element of a
game, designers can make decisions based on their intuitions
about how players will play, and they can refine their designs
through playtesting.

Dunyazad directly encourages avatar play, and assumes
that this will be players’ primary mode of engagement when
it constructs choices. Role play is also supported to some
extent, but because there are only minimal game mechanics,
Dunyazad’s stories do not lend themselves to power play. The
game mechanics that do exist (skills which affect outcomes)
are deployed in such a way that favorable outcomes from an
avatar play perspective (which are favorable for the diegetic
protagonist) are aligned with favorable gameplay outcomes
(those in which the action attempted is successful, generally
leading to successful endings).

Once a choice is considered in terms of a particular mode
of engagement, it may fall into one of several classes of rec-
ognizable choice idioms, such as the dilemma or the false
choice. Recognizing these idioms is based on an analysis of
the framing, options, and outcomes of a choice (for example,
a classic dilemma must have exactly two options, and the
options’ outcomes should each thwart a different player goal).
Besides classifying choices as examples of choice idioms,
(Mawhorter et al. 2014) does not say much about how to
construct choices, although it does list some aspects of player
experience that can be manipulated through the use of differ-
ent choice structures. More analysis of existing interactive
fictions within the framework of choice poetics would likely
yield more specific methods for choice construction, however,
and there is some existing advice on choice construction in
the form of authoring advice for human authors of interactive
narrators (e.g., (Choice of Games LLC 2010)). The choice
construction methods in Dunyazad are currently based on this
latter body of work, as described in the Choice Generation
section on page 5.

Dunyazad
Although not yet complete, Dunyazad is a novel story gen-
eration system that is intended to generate interactive nar-
ratives in the style of Choose Your Own Adventure books
using second-person narration and explicit choices. Dun-
yazad treats choices as first-class objects, and reasons about
their structures. In particular, it has rules for constructing
a variety of choice types based on the player’s estimated
expectations and evaluations in its choice structure module.

Dunyazad ultimately produces natural language narratives.
Each story consists of sections of text followed by choices,
where each choice leads to another section of text or to an
ending. Dunyazad is not interactive, but instead generates
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entire interactive narratives that players can interact with
separately (importantly, this allows players to re-play parts
of the narrative).

As you journey onwards, a leviathan rises majestically up

from the ocean, tentacles curling. It is threatening you.

! You try to flee from it.

– You attempt to pacify it with music.

You flee from it and escape. You travel onwards.

Figure 1: A minimal example vignette

Because Dunyazad is focused on operationalizing choice
poetics, its default domain is simple travel/adventure stories
in a fantasy setting, made up of sequences of relatively in-
dependent “vignettes” or scenes. Each vignette is made up
of a setup plus a few basic actions, some of which may be
player-initiated choices (“choice” nodes) and some of which
may be events dictated by the system (“event” nodes). Each
story node thus represents a single event or choice, including
a context, one or more actions that might happen, and any
outcomes of those actions. Although most world state is reset
at the beginning of each vignette, the state of the player’s
party is not, allowing for some overall continuity. Figure 1
shows the full text of a minimal example vignette composed
of a single choice (at which the player chose to flee), and
a single event (the default vignette-ending event “travel on-
wards”). This vignette also introduces some new context at
its choice node (an attacking monster) which is described in
the text. Of course, when presented to the player, the text
stops at the choice until the player has selected an option.

Although more complex vignettes are possible, the system
is designed to create a stream of simple, direct choices, imitat-
ing the game Spent (http://playspent.org/html/)
(McKinney 2011). By limiting the complexity of vignettes
and refreshing most of the world state between vignettes,
the user experience is directed towards shallow and playful
interaction, and at the same time, the system has fewer oppor-
tunities to accidentally create plot holes. This also creates an
environment in which the poetics of individual choices (e.g.,
was the last choice relaxing?) are important to the feel of the
story overall, as opposed to merely supporting a dramatic arc
defined by traditional narrative elements.3 The system ac-
cordingly assumes that players will mainly engage in avatar
play, and perhaps also light role play, and attempts to provide
choices that enable these modes of engagement.4

From a technology standpoint, Dunyazad combines imper-
ative Python code with declarative answer set programs to
iteratively grow a branching story. The imperative code man-
ages the iteration, at each step filling in single story node and
adding new blank child nodes for each new option created.
Filling in a node is accomplished by using the Potassco Labs
tools gringo and clingo to ground and solve an answer
set program (Gebser et al. 2011). The answer set program

3In this case, the overarching plot of a journey to an exotic destination constrains
little in terms of tension, narrative developments, etc.

4For more details about of modes of engagement, refer to (Mawhorter et al. 2014)

for each node includes predicates that represent the entire
current story state, but facts from the solution to the program
are only used to modify the currently-focused node.

After a complete story structure is created, Dunyazad’s
imperative code uses a set of text templates to render the
story into natural language. This module takes care of verb
conjugation and pronominalization where necessary, and the
text templates form a generative grammar which adds extra
variation to the story. This variation doesn’t change the
underlying sequence of events, and mostly consists of word
choice and sentence-structure variation that reduces literal
repetition when similar events are described multiple times.

While Dunyazad’s hybrid iterative/declarative approach
does limit the kinds of constraints that the system can eas-
ily place on multi-node story structures, it is necessary to
keep the answer set problems tractable: Asking the solver
to produce a complete story with hundreds of nodes in a
single step is not a task that many modern computers could
handle (if any), whereas just solving a single node can be
accomplished in seconds. At the same time, being able to use
answer set programming for the creation of individual nodes
provides two benefits. First, answer set programming reasons
simultaneously about all of its constraints, which means that
building some logic which detects a certain condition also
allows direct control over that condition (by e.g., prohibiting
it or requiring that it hold). This means that there is little
distinction between writing code which recognizes a phe-
nomenon and writing code which produces it: the answer set
solver does the hard work of figuring out what has to happen
in order for the phenomenon to occur.

The second main benefit of using answer set solving is
that it directly encodes constraints. Dunyazad as a project
aims to apply choice poetics to the generation of interac-
tive narrative, but it should also be able to push back on
choice poetics when constructing choices based on the-
ory fails to produce the expected results. Setting aside
the difficult issue of blame assignment between the sys-
tem and the theory, using answer set programming enables
the system to better inform the theory because the con-
straints responsible for producing behavior can be directly
translated into theoretical statements. For example, a rule
like regret(Choice) :- consequence(Choice,
Outcome), bad for player(Outcome) translates
directly to a theoretical statement “When the player chooses
an outcome that leads to something which is bad for them,
they will feel regret.” If testing reveals that players do not
feel regret when the system thinks they should, the rule can
be refined, and because it is a direct encoding of the theory,
such refinement can directly inform the theory.

Representation

Although the output of Dunyazad is natural language, it has
an underlying predicate representation of the stories it gener-
ates. Each story node describes either a choice or an event,
and the structure of the two is the same, the only differ-
ence being events have only one option. Story nodes have a
rich predicate representation of their initial state, which can
encode arbitrary properties of and relations between story
elements, including characters and items. Story nodes also
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1. st(root, inst(actor, monster 76)).

2. st(root, property(name, inst(actor,
monster 76), "leviathan")).

3. st(root, relation(threatening,
inst(actor, monster 76), inst(actor,
you))).

4. at(root, action(option(1), flee)).

5. at(root, outcome(option(1),
o(success, escape))).

6. at(root, outcome(option(1),
o(get injured, safe))).

7. at(root, arg(option(1), fearful,
inst(actor, you))).

8. at(root, arg(option(1), from,
inst(actor, monster 76))).

9. at(root 1, action(option(1),
travel onwards)).

Figure 2: Some example predicates describing parts of fig. 1

have some number of options, each of which has an action
associated with it, along with argument bindings for that ac-
tion. Figure 2 shows some of the predicates that describe the
example vignette in fig. 1.

Story states are sets of state predicates each of which takes
one of four forms:

1. st(root, inst(Type, ID)).
Declares the existence of a particular instance, which has
a Type of either actor or item.

2. st(root, state(State, Inst).
Assigns a unary state such as injured to an instance.

3. st(root, property(Prop, Inst, Value).
Associates a property with an instance and specifies its
value. For example, an actor can have the has skill
property with a value of music indicating that they pos-
sess the music skill. Properties can be multi-valued.

4. st(root, relation(Rel, From, To).
Asserts a relation between two instances. For example, an
actor can have the has item relation with an item. Some
constraints (like exclusivity of the has item relation) are
enforced.

Frame axioms dictate that state changes only occur when
specified by actions. Actions are defined by arguments, out-
come variables, skill links, preconditions, and post-conditions
as follows:

1. argument(Action, Arg, Type).
Specifies an argument Arg which must bind an instance
of type Type in the current state.

2. outcome val(Action, Var, Val).
Specifies that outcome variable Var can take on value
Val. Each variable has multiple possible values.

3. skill link(Skill, Type, NeedsTool,
Action, Arg, o(OutVar, OutVal)).
Skill links specify how character skills influence ac-
tion outcomes. The four link types are required,
promotes, avoids, and contest. These indicate
player expectations. For example, the healing skill is
linked to the healed value of the success outcome
variable for the treat injury action via a required
link that also specifies that a tool is needed. Thus if the
player lacks the healing skill and an option for them to
take the treat injury action is presented, the system
assumes that the player will expect the action to fail.

4. Pre- and post-conditions. These have no fixed form, but
instead are arbitrary logical constraints. For example, it is
an error for the treat injury action to be performed
on a patient who is not injured. Most depend on outcome
variables having specific values. Another example: if
the success variable of a treat injury action has
a value of healed, then the injured state is removed
from the patient, but if the success variable is either
still injured or killed this doesn’t happen.

As an example, the text “You try to flee from it,” in
fig. 1 is a rendering of an action “flee” with the player
character and the monster as arguments. The flee action
has two outcome variables: success which has values
escape and failure, and get injured, which has
values injured and safe. In fig. 2, facts 4 to 8 describe
the action, outcome, and arguments of this option (the node
that it is part of is root, and it is the first option at that
node). Of course, each option at one node leads to another
story node, and any consequences of the outcome associated
with that option are reflected in the starting world state of the
linked node. In fig. 1, the initial choice story node links to
two successor nodes, only one of which is displayed.5 In this
case, the consequence of the successful flee action is that you
have escaped the threat of the monster (which was part of
the initial world state). The “travel onward” action’s initial
world state thus does not include the threat of the monster at-
tack, which is actually a precondition for the “travel onwards”
action–it requires an absence of “problems.”

“Problems” and more generally “potentials” (which are
either “problems” or “opportunities”) are an important part of
how the system builds stories. Dunyazad represents a “setup”
as a partial world state which is added to the current world
state when a new vignette begins. In fig. 1, the “monster
attack” setup is used, which introduces a monster (in this
case a leviathan) which is threatening the player-character.

5From a developer’s perspective, all of the linked nodes are part of the same
vignette, but of course without re-play, a player will only see one of them.
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The fact that the player is being threatened (which is encoded
as a relation) is explicitly recognized by the system as a
“problem”–in fact all instances of the “threatening” relation
are considered “problems,” even when the player is not the
target. This explicit representation of both problems and
opportunities drives the basic consideration of what actions
are appropriate in a given situation, and also plays into the
rules about choice structures.

Reasoning

Dunyazad uses answer set programming to create the indi-
vidual events and choices that make up a story. It is thus
governed by a set of logical constraints which dictate what
event configurations are acceptable. As already mentioned,
solving for dozens of story nodes simultaneously is infea-
sible, because solving time is exponential in the number of
nodes considered. As a compromise, Dunyazad iteratively
solves individual story nodes.

Thus Dunyazad’s reasoning revolves around the construc-
tion of a single event or choice node. The rules governing
node construction can be divided into three categories:

• Constructive rules–rules that help create the basic structure
of facts, such as the rule that stipulates that each option
has an action associated with it.

• Sense rules–rules that disallow nonsensical story struc-
tures, such as the rule that says that no choice should have
two identical options or the rule that disallows trading
items with oneself.

• Content rules–rules that discard some valid stories as un-
interesting or otherwise undesirable, such as the rule that
requires successive vignettes to use different setups.

Without constructive rules, core facts like those that assign
values to arguments would be missing from result answer
sets, and the system would crash. Without sense rules, all of
the basic components of a story would be there, and the story
could be rendered to natural language by the text generation
system, but the result would be at best surreal and at worst
gibberish. Without content rules, the result would be an
understandable sequence of events, but it would probably not
be an interesting story.

Because of the nature of answer set programming, Dun-
yazad effectively chooses an arbitrary permutation of an
event among all possibilities that satisfy its rules (consult
(Gebser et al. 2011) for more background on how answer set
programming works). Each rule represents a constraint on
the generative space of story nodes, which makes it both easy
to prune the generative space, and easy to see how an indi-
vidual constraint effects the generative space. The following
variables determine the space of possible choice structures:

• The number of options (minimum 2 for a “choice” node;
maximum 4 for performance reasons).

• The action for each option (there are 13 actions in the
current domain model).

• The possible argument bindings for each action (most
actions have 2-4 arguments, and each argument generally
has 5-7 type-appropriate bindings at a given story state).

• The values for each outcome variable of each action (most
have 1-2 outcome variables with 2 values each).

Unsurprisingly, there are a staggering number of possibili-
ties under the constructive rules, but this space is reduced
drastically by the sense and content rules.

Choice Generation

Dunyazad’s design is in part based on concrete human ad-
vice for writing choice-based narratives offered by Choice
of Games (an interactive narrative publisher) in several on-
line articles (Choice of Games LLC 2010). In particular,
Dunyazad focuses primarily on expectations and outcomes,
which factor prominently in an article about the fundamen-
tals of choice design titled “5 Rules for Writing Interesting
Choices in Multiple-Choice Games,” (Fabulich 2010).

Dunyazad’s choice structure subsystem is devoted to esti-
mating and managing the poetics of the choices it generates.
Abstractly, this subsystem reasons about choices in terms of
expectations and outcomes, using estimates of player per-
ception. This same structure for representing and reasoning
about choices could be used by other systems that wanted to
generate choices intentionally.

The most basic structure of Dunyazad’s choice representa-
tion has already been described: a choice consists of context,
options, and outcomes. Context in this case is a world state,
options correspond to discrete, fully-specified actions that
the player-character can take, and outcomes are the changes
in world state that result from a particular action. To actually
reason about the poetics of a choice, however, the system
needs to make some assumptions about the player’s experi-
ence, which gives rise to three more entities: player goals,
player expectations and perceived outcomes.

Player goals are the basis for reasoning about how play-
ers might perceive choices. Some basic player goals can
be predicted by the author, and to the extent that players
actually pursue these goals, an author can design choice po-
etics. For example, an author might presume that players
will want to keep their character alive and healthy, and that
players will also want to maintain the health of their allies.
A choice where the player is forced to sacrifice either their
character’s health or the health of an allied character could
then be constructed with the goal of adding to the player’s
sense of tension. If players do in fact value their character’s
health and that of their allies, the choice should be a tense
one (other details of its construction notwithstanding). For
players who don’t value one of these goals, the choice will
lack the tension that the author intended, but that doesn’t
mean that the author’s strategy for creating a tense moment
was invalid. The author also has methods for encouraging
the pursuit of various goals, such as using standard narrative
techniques to try to promote empathy with the characters.

Dunyazad relies on the same strategy as this hypothetical
author to create choice poetics: through its fixed introduction
segment and according to genre conventions, it encourages
players to pursue certain goals. It then estimates the poetic
effects of the choices it creates assuming that the player will
be invested in those goals. Dunyazad assumes are that the
player will pursue the following goals:
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• Avoid injury to themselves and their allies (high priority).
• Avoid threats to themselves and other non-aggressive char-

acters (high priority).
• Have all actions they take be successful (low priority).
• Acquire and retain tools for their skills (low priority).

Given assumed player goals, a choice can be considered
in terms of its player expectations and perceived outcomes.
Both of these will vary from player to player, but just like
with player goals, human authors can often estimate them.
Like the player goal estimation, player expectation and per-
ceived outcome estimation depends on the system author.
This works via the skill link system as mentioned in the Rep-
resentation section above: the author of an action specifies
which skills are linked to which outcomes and how, and this
information is used by the system to estimate player expecta-
tions. For example, if the player has a goal to maintain their
health, but they’re missing the fighting skill, an option
allowing the player to attack an enemy will be marked
as dangerous, because the fighting skill is linked to the
injured value of the aggressor state outcome vari-
able, and that outcome would cause the player to be injured,
threatening their goal.

As an example, consider the choice in fig. 1. This choice
has two options, which correspond to the “flee” and “pacify”
actions. Unbeknownst to the player (before they’ve made a
decision at least), the outcome of the “flee” action in this case
will be a successful escape, while the outcome of the “pacify”
action (not shown) will be a failure that does not change the
world state (i.e., the monster continues to threaten the player).
While generating this choice, the system creates a player
expectation for each option for each player goal, indicating
how the player would expect that option to impact that goal.
Taking “escape from threats” as a player goal, both options
at this choice are expected to threaten that goal, because the
system knows that both options could fail to achieve it. At
the same time, both options are expected to enable that goal,
because depending on their outcomes, either option could
achieve that goal.

But is either option likely to succeed or fail? Assuming
that the player has the “wilderness lore” skill (linked by a
“contest” link to the “flee” action) but the monster does as
well, the first option is indeterminate. However, based on a
“required” skill link, if the player does not have the “music”
skill, the second option is likely to fail.

There are thus five possible non-exclusive player expecta-
tions per player goal:

• Irrelevant–this option is irrelevant to this goal.
• Threatens–this option risks failing this goal.
• Enables–this option might achieve this goal.
• Fails–this option is expected to fail this goal.
• Achieves–this option is expected to achieve this goal.

Threatens and enables expectations are assigned based on all
possible outcomes of an action, while fails and achieves are
based on outcomes that the player has reason to believe are
likely. Combinations of these expectations can describe a

variety of situations. For example, a choice which threatens,
enables, and fails a goal could be seen as a desperate gamble:
it has a possibility of success, but it is expected to fail.

Similarly, there are five perceived consequences for each
player goal:

• Irrelevant–this outcome does not affect this goal.
• Hinders–this outcome hinders progress towards achieving

this goal, but does not actually cause it to fail.
• Advances–this outcome contributes to achieving this goal,

but does not actually achieve it.
• Fails–this outcome directly fails this goal.
• Achieves–this outcome directly achieves this goal.

Unlike player expectations, perceived consequences are mu-
tually exclusive, and while expectations only reason about
the potential outcomes of an action, perceived consequences
are assigned based on actual outcomes.

Returning to our example, the player expectations for the
first option with regards to the goal “escape from threats”
will include “threatens” and “enables,” but since both the
player and the monster have the associated contest skill, no
stronger expectation is formed. For the second option, be-
cause the player lacks the relevant “music” skill6, the player
expectations will be “threatens,” “enables,” and “fails.” The
perceived outcome of the first option will be that it achieves
the “escape from threats” goal, while the perceived outcome
of the second option will be that it fails this goal.

This representation of player goals, expectations, and per-
ceived outcomes enables rich reasoning about the poetics of
a choice. To start with, it’s easy to encode simple choice
idioms (see (Mawhorter et al. 2014)). An example would be
a dilemma–traditionally a choice with exactly two options
which lead to two different negative consequences. A choice
with exactly two options, each of which is expected to fail one
of two goals and enable the other fits these criterion. The per-
ceived outcomes here determine what kind of dilemma it is,
for example a false dilemma might have identical outcomes
for both options.

You come to a tavern and decide to rest for a while. A

merchant is selling a music book and she is selling an

oboe and a noble is bored and a peasant is bored and an

innkeeper seems knowledgeable.

– You play a song for the peasant. (+music)

– You gossip with him. (+elocution)

– You offer to trade the merchant some perfume for the

music book. (no skill)

– You tell the noble a story. (+storytelling)

Figure 3: A “relaxed” choice.

To give a more concrete demonstration of choice genera-
tion, consider figs. 3 and 4. These examples were generated

6Relevant to an actual player’s expectations is whether they are aware of this lack.
For now, Dunyazad ensures this by mentioning any relevant skills (or lack thereof) in
parentheses after each option. These are omitted in fig. 1 to avoid confusion.
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As you travel onwards, a dragon slowly approaches you.

It is threatening you.

– You attack it. (-combat)

– You attempt to pacify it with music. (-music)

Figure 4: A “grim” choice.

using a single player goal based on the idea of power-gaming:
“Succeed at every action.” Evaluating expectations relative to
that goal, fig. 3 is the result of asking for a “relaxed” choice:
a choice where there are no options which the player expects
to fail. Figure 47 is the opposite: a “grim” choice where every
option is required to be expected to fail.

When generating individual choices, the system uses ev-
erything available to it (the choice of setups, the background
including the player’s starting skills, and the configuration
of options and outcomes) to create choices that satisfy the
given constrains, which can be expressed directly at the level
of player expectations. This ability to reason about player
expectations is critical in a system that wants to use choice
structures to achieve poetic effects. Of course, the system
isn’t reasoning directly about the player’s actual expecta-
tions, but merely about the system author’s guess as to what
those expectations will be. For human authors, this is of-
ten enough to achieve their goals, and for systems without
dynamic player modelling, it will have to be enough as well.

Abstract Architecture

The underlying principles behind Dunyazad’s choice struc-
ture rules suggest requirements for systems that want to build
choices intentionally. At a basic level, the ability to reason
about all parts of a choice: the context, options, and outcomes,
is required. It should be noted here that reasoning about the
options individually is not sufficient: a system that wants to
dynamically construct choices that create poetic effects needs
to be able to reason about the range of options available at
a choice and assert things like “There are no options avail-
able which the player expects will lead to positive outcomes.”
That brings up the next requirement: such a system needs
to be able to reason about player goals, expectations, and
perceptions. These things do not have to be modelled exactly
as Dunyazad models them, but they should be represented in
such a way that the system can reason about them.

In order to creatively construct a choice that gives the
player a feeling of “agency” or “regret” or “power” a system
needs to be able to define those things in terms of the player’s
view of the game. It is of course possible to give a player
these feelings in an interactive narrative without representing
them in any sort of system, but that just means that a human
author has done the reasoning required, not that it never
happened. And if a human author did that reasoning, then
the system will not be able to freely generate such choices:
it will be limited to generating them in situations that the
human author was able to foresee.

7These examples were slightly edited from their original form for brevity.

So what is the next step once you have a system that rea-
sons about all parts of a choice and the player’s perspective
besides? The next step is to identify the choice poetics that
you want your system to create, and define them in terms of
the player’s perspective. For example, if you want the player
to experience “agency,” you might define your objective as
“The system should create choices with multiple options that
the player expects will lead to significantly different world
states,” as in (Cardona-Rivera et al. 2014). Given this con-
crete definition of your goal in terms of player expectations,
the system should be able to construct such choices. If your
goal is hard to pin down in terms of player expectations, play-
ing some interactive narratives that create the feeling you
want to create and analysing their choice structures would be
the place to start.

While a computer-generated interactive narrative that suc-
cessfully evoked a particular feeling using choice structures
would be an achievement in its own right, even better would
be a system that used multiple choice structures in service
of a more complex goal. For example, if there are narrative
generation mechanisms trying to achieve a desired tension
level, making sure that choice structures are also contributing
to this goal would be a benefit. Or if the player-character is
supposed to be stumped by a mystery at some point in the
plot, perhaps generating choice structures where there are
no clear good or bad options could reinforce that point. The
ability to craft choices towards poetic ends unlocks many
new options for an interactive narrative system.

Future Work

Dunyazad is still under development, and getting it to gener-
ate full interactive narratives as opposed to individual choices
is our current focus. Once it does so, it will be critical to
evaluate the narratives it generates, both from a creative stand-
point and to determine whether players actually perceive the
effects that it is trying to create. If Dunyazad is able to cre-
ate full interactive narratives with choices that support their
stories, it will represent an important step towards narrative
generators that take full advantage of interactive as well as
traditional poetics. However, even if it only generates indi-
vidual choices, Dunyazad still enables experiments that can
contribute to knowledge of choice poetics.

Generating full stories will require significant authoring
effort. Dunyazad’s current domain model has 13 actions,
6 potentials, 6 setups, and 4 player goals. In order to gen-
erate experiences even few minutes long, it would need to
generate stories with dozens of nodes across perhaps 8-12
vignettes. The primary authoring effort to get to that point
with a satisfying level of variety lies in creating more dis-
tinct setups, as well as adding a few more actions. Although
actions, potentials, setups, and player goals are all modular
from a technical standpoint and can be authored individually,
practically they need to take each other into account in order
to create interesting output. This is mostly a consequence
of the content rules. For example, adding an action which
results in a new state probably won’t change the system’s
output by itself, because without any player goals or poten-
tials that involve that state, the system will never consider
the new action to be relevant. Actions, potentials, setups, and
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goals thus form interconnected subsystems that are linked by
certain key states. Although this makes authoring a bit tricky,
these subsystems are at least somewhat independent of each
other: the actions that involve trading items can be authored
without worrying about injury and death.

Besides further work on Dunyazad, there are several
promising research directions suggested by this work. First,
the fact that an interactive narrative system is making as-
sumptions about its players begs for a mechanism by which
the system could actually measure its players. (Thue et al.
2011) is an example of exactly that, but by increasing both
the complexity of choice manipulation and the detail of the
player model things would become even more interesting.
There is a link here to the world of intelligent tutoring sys-
tem: systems like Graesser, Chipman, Haynes, and Olney’s
AutoTutor already have components that attempt to measure
a student’s knowledge and even emotions (Graesser et al.
2005). Adapting these to work in an interactive narrative con-
text as opposed to a tutoring context would give the system a
much better means of estimating a reader’s expectations and
goals than authorial guesswork.

Expanding a choice-poetics based system to deal with
broader interactive poetics would be interesting too. Many
games offer interactions much more complicated than dis-
crete choices, and reasoning about these would be more dif-
ficult. Many of the same principles apply, however, and
creating a system that analyzed complex interactive situa-
tions in terms of player expectations, available actions, and
their consequences would allow the deliberate construction
of more complicated and open-ended narratives.

Finally, a system capable of deliberate choice creation
might enable new and more dynamic forms of narrative. This
is an eventual aim of Dunyazad: to create a branching story
with myriad paths where the freedom to explore a huge pos-
sibility space is enabled by collaboration between a human
author and a computer system. If generative tools could
enable human authors to design entire narrative possibility
spaces, the resulting fictions would be the products of both
human and machine creativity.
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Abstract

We report on the first steps towards the automatic generation
of Internet memes starring public figures. Their images are
retrieved from the Web and combined with famous quotes,
altered according to recent information on the figures. Cur-
rent implementation, in Portuguese, exploits several compu-
tational resources and aims to produce artifacts with coherent
text, image, and some humor value. A preliminary evaluation
survey confirmed a strong relation between generated memes
and present events. Results on humor were also positive.

Introduction
The term meme originally denotes an idea, behavior, or
style that spreads from person to person within a cul-
ture (Dawkins, 1976; Blackmore, 2000). On the Internet do-
main, memes became a popular and effective way of trans-
mitting an idea. They are a product of human creativity that
typically take the form of an image, often combined with a
short phrase. They tend to be funny, make people laugh, and
aim to be spread throughout the World Wide Web by sharing
and re-sharing in social media.

We present the first steps towards the development of
MemeGera, a system for the automatic generation of Inter-
net memes – or better, protomemes1 – starring public figures
(hereafter, characters). MemeGera uses famous quotes, al-
tered as follows: one word is replaced by another that is
semantically related to the character and its current infor-
mation2. These sentences, presented together with a char-
acter’s image, should convey a simple and effective idea,
make sense for the character, even if only for a short pe-
riod of time after generation, and exhibit some novelty. To
deal with the latter, the system exploits fresh information on
the character, such as that in recent news or tweets. The
produced text+image combinations have thus a transient fla-
vor which, together with their humor potential, may qualify
them as “jokes du jour”. Long-term knowledge on the char-
acter, from its Wikipedia page, is also explored, but so far
only used to favor fresh information.

1The definition of meme implies social sharing, which will only
occur if people actually spread the protomeme.

2As the title of the paper, a twist of Mahatma Gandhi’s quote:
“In reality there are as many religions as there are individuals”.

We see the generation of meme sentences as a kind of lin-
guistic creativity, a topic that covers tasks such as the gen-
eration of: poetry (Toivanen, Gross, and Toivonen, 2014;
Gonçalo Oliveira and Cardoso, 2015); metaphors (Veale and
Hao, 2008); neologisms (Smith, Hintze, and Ventura, 2014);
or verbally-expressed humor (Binsted and Ritchie, 1994;
Valitutti et al., 2013). Given the funny aspect inherent to
memes, our work is probably closer to the latter. Yet, al-
though not essential, the character and its image also play
an important role in the success of our memes.

In the remaining of this paper, we provide some back-
ground knowledge on the study of humor, together with
computational approaches to this topic. We then present the
automatic method for generating memes and list each of the
steps involved. The current implementation targeted Por-
tuguese, our native language, and is described right after. Al-
though the method may seem quite straightforward, our ef-
fort involves the combination of several knowledge sources.
Before concluding, we describe an illustrative example and
report on the results of an online survey, which suggests that
we are heading in the right direction. All the memes used in
the survey are shown in the end of the paper, together with
information about their generation and evaluation.

Background and Related Work
This section addresses the topic of humor from a theoretical
point of view, followed by an enumeration of computational
approaches for humor generation and recognition.

Theoretical Study of Humor
Humor has been studied from a variety of perspectives rang-
ing from psychology and philosophy (Morreall (2013)), to
its sociological aspects in literature (Kuipers (2010)) and,
more recently, via the computational approach (e.g. Suslov
(1992); Ritchie (2014)). Theoretical accounts of humor
encompass the superiority theory, endorsed by Descartes,
where “our laughter expresses feelings of superiority over
other people or over a former state of ourselves”; the relief
theory, a hydraulic model proposed by Shaftesbury, and later
refined by Sigmund Freud, according to which laughter acts
as a mechanism for releasing accumulated nervous energy
built up from many possible emotionally-charged situations;
and the incongruity theory, proposed by Beattie and spon-
sored by Kant, Schopenhauer, and Kierkegaard, among oth-
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ers, which claims “laughter is the perception of something
incongruous – something that violates our mental patterns
and expectations”, which is now the dominant theory.

Socioliterary studies (e.g. Kuipers (2010)) explore the
mechanisms through which humor is related to social
boundaries, and how it differs between groups; whereas
computational approaches address the building of formal
theories of humor (Ritchie (2014)), the synthesis of a sense
of humour via specific algorithms (Suslov (1992)), and the
generation of humorous text and jokes (Ritchie (2009)).

Humor expressed in Portuguese has also been studied
from a theoretical point of view. While presenting linguistic
mechanisms for achieving humor in this language, Tagnin
(2005) states that, since humor breaks conventionality in
language, understanding it is a sign of fluency.

Humor generation
The automatic generation of humor has been a research topic
for more than two decades. In early work by Binsted and
Ritchie (1994), a model, implemented under the name of
JAPE, was proposed for generating punning riddles. The
generated puns (e.g. What do you call a murderer that has
fiber? A cereal killer) took advantage of spelling or word
sense ambiguities. STANDUP (Manurung et al., 2008) fol-
lows the lines of JAPE, but is more robust, user friendly, and
was developed with the purpose of allowing young children,
especially those with linguistic disabilities, to explore lan-
guage and improve their skills.

Given a concept and an attribute, HAHAcronym (Stock
and Strapparava, 2005) rewrites existing acronyms and gen-
erates new ones with a humor intent. It relies on an incon-
gruity detector and generator that selects opposing domains
and opposing adjectives, while considering also rhythm and
rhymes. For instance, the acronym FBI may become Fantas-
tic Bureau of Intimidation. Or given the concept of ‘proces-
sor’ and the attribute ‘fast’, it generates the acronym OPEN
– Online Processor for Effervescent Net.

Valitutti et al. (2013) explored the generation of adult hu-
mor based on the replacement of a word in a short message.
The word should introduce incongruity and lead to a humor-
ous interpretation, achieved by applying three constraints. It
must: (i) be of the same form as the original word, i.e. match
the part-of-speech and either rhyme or be orthographically
similar to the original word; (ii) convey a taboo meaning,
e.g. an insult or something related to sex; (iii) take place at
the end of the message and keep the coherence of the origi-
nal sentence. An example of an output is: I’ve sent you my
fart.. I mean ‘part’ not ‘fart’....

Besides English, there were attempts for generating puns
in Japanese (e.g. Sjöbergh and Araki (2007a)). We are not
aware of any work of this kind for Portuguese.

Humor recognition
In the scope of natural understanding, there has been work
on the automatic recognition of verbally-expressed humor.
Researchers typically focus on a specific kind of jokes, such
as knock-knock (Taylor and Mazlack, 2004) and That’s what
she said (Kiddon and Brun, 2011), or on a less specific kind
of humor but transmitted in bounded kinds of text, such as

single sentences (Mihalcea and Strapparava, 2006; Sjöbergh
and Araki, 2007b), or tweets (Barbieri and Saggion, 2014).
Humor recognition is generally seen as a text classification
problem and relies on a set of humor relevant features to
train a classifier, given their presence in humorous and non-
humorous text. For instance, Barbieri and Saggion (2014)
exploit hashtags, such as #humuor or #irony, to collect posi-
tive examples. Selected features generally include the occur-
rence of antonymous or ambiguous words, alliteration, and
other words or expressions typically used in jokes, such as
slang or idiomatic expressions.

For Portuguese, the closest works to humor recogni-
tion we are aware of include the automatic detection of
irony (Carvalho et al., 2009) or proverbs (Rassi, Baptista,
and Vale, 2014) in text.

Internet Memes
Internet memes are a current trend in social media. They
are typically a reusable combination of text and graphics.
Popular memes include Boromir from the Lord of the Rings
with the template “One does not simply X”, Morpheus from
the Matrix with “What if I told you Y”, or Batman slap-
ping Robin, with a personalized text in their speech bal-
loons. There is however a subtype of Internet memes related
to current events, where new images, text, or both, can be
used – if successful enough, they might be reused. Events
that triggered several memes include the football player Luis
Suárez biting his opponent in a World Cup 2014 match (e.g.
“If you can’t beat them, eat them”), or when the pop singer
Madonna fell on stage, while wearing a cape, during a per-
formance in the BritAwards 2015 ceremony (e.g. “56 years
old, still does her own stunts”, “Has a cape, can’t fly”).
While most memes show a break of conventionality (e.g.
unexpected situation, confusing interpretation, taboo mean-
ing), we address the previous subtype, which, as suggested
by the superiority theory, makes fun of the portrayed charac-
ter. In fact, the image is sometimes enough to make people
laugh (e.g. when it displays a funny person or situation).

We are not aware of any published work on the automatic
generation of Internet memes. Existing web services for
meme generation rely on the user input of both images and
text. There is work however on the automatic combination
of images and text, such as Grafik Dynamo (2005) and Why
Some Dolls Are Bad (2008), by Kate Armstrong3. In those
projects, a narrative is dynamically generated by combining
sequences of images, retrieved from social networks, with
speech balloons. The result is often non-sense.

Method
This section provides a high-level description of our pro-
posed method for meme generation. Specific details of its
current implementation are given in the next section.

Among other parameters, our algorithm for the generation
of memes (see figure 1) uses the name of a public figure,
our character, currently provided by the user. Informally,
it starts by retrieving n recent messages (e.g. tweets) men-
tioning the character, from where the top-k frequent nouns

3
http://katearmstrong.com/
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are collected. Then, it selects a random quote from a pool
of famous quotes, pairs it with one of the top-k nouns, and
generates a sentence, more precisely, an altered quote where
the last noun of the original quote is replaced by one of the
top-k nouns – similarly to Valitutti et al. (2013), replacing
the last noun will increase surprise and humor potential. Af-
ter repeating this process for a predefined number of times,
generated sentences are ranked by a dedicated scoring func-
tion. The highest-ranked sentence is pasted on an image of
the character, automatically retrieved from the Web, and the
combination is finally returned as the generated meme.

The scoring function considers the humor value of the
sentence, the frequency of the replacement noun, and its
presence in a more stable long-term information source on
the character. Words without previous associations to the
character are considered novel and are thus favored in the
ranking. We may find some parallelism between this and
the work of Toivanen, Gross, and Toivonen (2014), where
novel associations in documents are identified by their over-
lap with known associations from a background corpus.

Require:
charName:name of character
n : # of messages to retrieve
k : # of top frequent common nouns to consider
m : # of < quote,frequent noun> pairs to generate

1: procedure MEMEGERA
2: messages {msg : msg mentions charName}

: #messages = n

3: freqNouns top-k most frequent nouns in messages

4: quotes {quote : quote is a famous quote}
5: pairs {< quote, freqNoun > randomly generated}

: #pairs = m

6: maxEval 0
7: bestQuote ;
8: for each < quote, freqNoun >2 pairs do
9: nq  replace last noun in quote with freqNoun

10: ne score(nq, freqNoun, charName)
11: if ne > maxEval then
12: maxEval ne

13: bestQuote nq

14: image get image of charName from the Web
15: resultingMeme paste bestQuote in image

16: return resultingMeme

Figure 1: Meme generation algorithm

Implementation
Although our method is language-independent, its current
implementation targets Portuguese. MemeGera was imple-
mented in Java and exploits several available resources, for
different purposes, including a classifier for Portuguese hu-
mor, currently in development. We also describe the func-
tion that currently ranks the generated sentences.

Tools and Resources
Famous quotes used in this work were acquired from the
Portuguese edition of Wikiquote4, a collaborative repository
of quotes, run by the Wikimedia Foundation. For the current

4
http://pt.wikiquote.org/

version of the system, we selected quotes from three well-
known thinkers – Mahatma Gandhi, Aristotle and Confucius
– who were the authors of many quotes, most of them time-
less and generic enough for our purpose. We soon realized
that long quotes would not produce the desired effect, so we
only used quotes with up to 15 words, totaling 90.

We use the social network Twitter5 and Twitter4J6, a Java
API, to retrieve tweets mentioning the names of the selected
characters. While we could have used a news site or aggre-
gator, the choice of Twitter relied on the fact that its mes-
sages are shorter, up-to-date, and mix different and less con-
trolled opinions. In recent years, Twitter has been widely ex-
ploited by computer programs, not only for text mining, but
also in computational creativity research (e.g. Veale (2014);
Cook, Colton, and Gow (2014) or the recent PROSECCO
Code Camp7, focused on the development of creative Twit-
terbots).

Natural language processing is made by the OpenNLP
toolkit8 and its models trained for Portuguese tokenization
and part-of-speech tagging. Since the models were not
trained with tweets, a few annotation errors are expected.
But this is not severe because we end up using only words
in a morphological lexicon, LABEL-Lex9, in which we rely
to perform inflection, so that words agree with the sentence
they are put in. Also, we count the lemmas frequency in
the tweets, and not the words frequency. Lemmatization is
performed by LemPort (Rodrigues, Gonçalo Oliveira, and
Gomes, 2014), a Portuguese lemmatizer.

Nouns long-associated to famous people were collected
from the abstracts of their articles in the Portuguese
Wikipedia, retrieved directly from the DBPedia10 entries un-
der the category of Person.

Images of the meme characters are retrieved automati-
cally from Google Images11, at runtime. The first hit for
each character is always used.

The Mallet12 toolkit was used in the development of a hu-
mor classifier for Portuguese, presented in the next section.
Given a positive and a negative dataset, Mallet automatically
converts input text to features, and learns a classifier, using
one of the algorithms available out-of-the-box.

Humor Classifier
We have recently started to work on a classifier for rec-
ognizing humorous pieces of text, in Portuguese, currently
trained with the Mallet toolkit. The first step for its devel-
opment was the collection of examples of humorous and
non-humorous Portuguese documents, labeled respectively
as positive or negative. The selected datasets were then im-
ported to Mallet, which was used to train a classifier with the

5
https://twitter.com/

6
http://twitter4j.org/

7
http://codecampcc.dei.uc.pt/

8
https://opennlp.apache.org/

9
http://label.ist.utl.pt/pt/labellex_pt.php

10
http://dbpedia.org/

11
https://images.google.com

12
http://mallet.cs.umass.edu/
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best available learning algorithm. Instead of labeling the ex-
amples manually, we collected them from selected sources
which we now present.

Positive Dataset: While it is rather easy to collect negative
examples, the same does not apply for humorous examples
in Portuguese. After searching in the Web, we were able to
find the following compilations of Portuguese jokes:
• Bı́blia de Anedotas13 (in English Bible of Jokes);
• O Sagrado Caderno das Piadas Secas14 (in English, The

Sacred Book of Dry Jokes).
To focus on shorter jokes, we discarded all with more than
25 words, and were left with 790 positive examples.

Negative Dataset: The non-humorous dataset should con-
tain text with a similar structure to the positive examples
but without a potential humor effect. We thus collected sen-
tences of similar length (25 words) from non-humorous
sources. Since many of the collected jokes have a question-
answer structure, we included this kind of text as well. The
following resources were used:

• 304,211 sentences from the Portuguese Wikipedia, each
collected randomly from a different article;

• Text from Portuguese corpora available through the
AC/DC project (Santos and Bick, 2000)15:
– 81,478 sentences from CETEMPublico, a corpus with

editions of the Portuguese newspaper Público (1991-
1998).

– 25,000 sentences from CONDIVport, a corpus of
sports newspapers, fashion and health magazines;

– 6,767 question-answer pairs from Museu Da Pessoa, a
corpus of interviews.

In the end, we had a total of 417,456 negative examples.

Validation: After importing the positive and negative
datasets, a classifier was trained with the Maximum Entropy
algorithm, selected after a 10-fold cross-validation, where it
yielded 99.8% accuracy. These numbers look promising, but
they were computed in a dataset with mostly negative exam-
ples. Although the F1 for the negative class was 99.9%, it
was just 63.7% for the positive, with a recall of 49.4%.

We should stress that the classifier is still in an early stage
of development. In the future, instead of relying only in the
black-box text classification of Mallet, additional features
should be integrated, including a subset of those used by oth-
ers (Sjöbergh and Araki, 2007b; Mihalcea and Strapparava,
2006). Moreover, we are aware that we cannot expect much
of the current classifier, at least for the kind of sentences we
are generating. While it was trained with classic and time-
less jokes, understanding the generated sentences requires
not only general world knowledge, but further information
that may be valid only on a specific moment in time.

13
http://rbep.cm-porto.pt/rbep/upload/

dnloads/BibliadeAnedotas.doc

14
https://www.facebook.com/CadernoDasPiadas

15
http://linguateca.pt/ACDC/

Figure 2: Meme generated for the pop singer Madonna. The
text translates to Keep your thoughts positive, because your
thoughts become your falls.

Ranking function
As referred earlier, MemeGera generates a set of m sen-
tences that combine a known quote with a noun f retrieved
from Twitter. Towards the selection of the most promising
generated sentences, these are currently ranked by the fol-
lowing linear combination:

Score = humorProb ⇤ ↵
+ wordFrequency ⇤ �
+ notInWikipedia ⇤ �

There, humorProb is the probability returned by the hu-
mor classifier; wordFrequency is the number of tweets
where f occurs, divided by the total number of retrieved
tweets, n; and notInWikipedia is a binary function that is 1
if the word is not in the Wikipedia abstract of the character,
or 0 otherwise.

Results
We generated several memes with different configurations.
Although not enough experiments were performed to se-
lect the best configuration, at a certain point, we started to
use fixed parameters, to have a base for comparison. In all
reported experiments, generation was based on 200 tweets
(n = 200), written in Portuguese (according to Twitter), and
using the top-5 frequent nouns (k = 5). The best sentence
was selected from a set of 20 (m = 20). The ranking func-
tion used the weights: ↵ = 0.7, � = 0.25, � = 0.05.

Example
Figure 2 illustrates the output of MemeGera with a meme
generated on the 26th February 2015, the day after Madonna
fell on stage. The original quote, attributed to Mahatma
Gandhi, was Keep your thoughts positive, because your
thoughts become your words.

Since people were talking about the fall, the most frequent
nouns in tweets were: tombo (tumble), queda (downfall),
palco (stage), vı́deo (video) and madonno. The last one re-
sults from an incorrect part-of-speech tag given to the proper
noun Madonna. There is no risk of using it though, because
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Figure 3: Overall results of the performed evaluation.

it is not in the morphological lexicon. None of the top-5
nouns were in Madonna’s Wikipedia abstract.

In the end of this paper, we present more memes, together
with information that will help understanding why they were
generated, and their scores according to the online survey
where they were used.

Evaluation survey
In order to have a first appreciation of the results produced
by MemeGera, we made an online survey, answered by 41
human subjects, all Portuguese native speakers. The survey
had the title “Imagens com texto” (Images with text) and it
never mentioned the word meme, nor automatic generation.

The survey had 5 memes, for which the name of the
character was presented together with three questions, to be
answered according to a Likert scale: strongly agree (5),
partially agree (4), neutral (3), partially disagree (2) and
strongly disagree (1). The questions were:

1. The text is syntactically and semantically coherent (Does
it follow the grammar rules and makes sense?).

2. There is coherence in the combination of text, image and
the present time (We suggest to search for breaking news
about the character).

3. The combination of the text and the image produce a hu-
morous effect (Did it make you smile?).

The used memes were generated between the 25th Febru-
ary 2015 night and 26th morning. Their characters were
manually selected for being mentioned in fresh news in on-
line media. All of these memes used the highest-ranked sen-
tence from the 20 generated. They are presented in the end
of the paper, together with information on their generation,
as well as their individual scores in the survey questions.

The survey opened just a few hours after generating the
last meme, and was opened for about 24 hours. This means
that some memes would only be interpreted appropriately by
someone following the daily news. Figure 3 presents overall
results, which combine the answers to the five memes.

The survey confirmed that it is often safe to replace one
word in a sentence by another of the same part-of-speech.
If inflection is handled properly, syntax remains coherent,
which makes it easier for semantics, especially when using
generic quotes. Answers on the coherence between text, im-
age and the present time are also positive. The meme in
figure 6 was the one with more negative answers in the first
two questions. First, possibly because it is not very easy to
find semantic connections between tumble and awake. Sec-
ond, because this meme was related to a very recent event
and, although we suggested the subjects to search for the

character in the news, most of them probably did not do it,
and were not aware of Madonna’s fall.

As for the humor aspect, while we cannot say that the gen-
erated memes are very funny and have the ability to make
everybody laugh, the overall results are encouraging, as the
majority of the answers are positive. It is always subjec-
tive to assess the presence of humor, especially in this case,
where world knowledge and following recent news was a re-
quirement. A curious fact is that the memes with clearly pos-
itive answers in this aspect are those with Portuguese politi-
cians. Given that all our subjects were Portuguese, they are
probably better informed about Portuguese characters, who
probably play a more relevant role on the subjects lives, and
make them more responsive to laugh at. This is related to
another issue: the image itself or, sometimes, just the char-
acter, might play an important role in the humor value, since
there are people for which we are more prone to laugh at
than others.

Concluding remarks
We have presented the first steps towards the development
of MemeGera, a system that generates combinations of text
and image that may be seen as Internet memes. Famous
quotes are altered according to a public figure and comple-
mented with their image, automatically retrieved from the
Web. Fresh information on the public figure, in the form of
frequent words, is currently obtained from Twitter. Several
altered quotes are generated and the best is selected after a
ranking that considers the humor value and the novelty of
retrieved words, in an attempt to positively discriminate the
most promising sentences. The humor value is given by an
automatic classifier, trained with positive and negative ex-
amples of humor expressed in Portuguese. However, this
tool is still far from what we expect from it and gave very
low scores to the generated sentences (rarely more than 1%).

On the other hand, we should stress that MemeGera has
the ability of generating a different and novel sentence each
time, based on fresh news. In fact, the results of an online
survey showed that it is not only capable of generating co-
herent sentences, with some relation to the character, but that
the generated combinations have some humor potential.

The work described in this paper lead to the develop-
ment of the @memegera Twitterbot that, from time to time:
(i) reads the list of current trends in the Portuguese Twitter;
(ii) checks if any of them is the name of a known person; if
so, (iii) generates a meme on that person and posts it. The
bot is still in a test phase, but we may soon start relying on
users feedback (e.g. retweets, favored) for evaluation and
adaptation of the weights in the ranking function.

Additional plans include both improvements to the system
and to its evaluation. In the scope of this and other projects,
the humor classifier shall be improved by: (i) enriching the
datasets with humorous text from the Twitter accounts of fa-
mous Portuguese humorists; (ii) considering additional fea-
tures (e.g. ambiguity of words and adult slang, for which
there are available Portuguese resources we could use). To
increase variation, we will devise adding more quotes to our
pool, as long as they are not too specific. Regarding evalua-
tion, in a further survey, we aim at recording the reaction of
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the subjects in the moment when the meme is first presented
to them, and draw conclusions from their facial expressions.
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5(1):247–257.

Taylor, J. M., and Mazlack, L. J. 2004. Computationally
recognizing wordplay in jokes. In Procs. of Cognitive Sci-
ence Conference (CogSci), 2166–2171.

Toivanen, J.; Gross, O.; and Toivonen, H. 2014. The officer
is taller than you, who race yourself! In Procs. of 5th Intl.
Conf. on Computational Creativity (ICCC).

Valitutti, A.; Toivonen, H.; Doucet, A.; and Toivanen, J. M.
2013. ”Let everything turn well in your wife”: Genera-
tion of adult humor using lexical constraints. In Procs.
of 51st Annual Meeting of the Association for Computa-
tional Linguistics, volume 2, 243–248. Sofia, Bulgaria:
ACL Press.

Veale, T., and Hao, Y. 2008. A fluid knowledge representa-
tion for understanding and generating creative metaphors.
In Procs. of 22nd Intl. Conf. on Computational Linguis-
tics, volume 1 of COLING ’08, 945–952. ACL Press.

Veale, T. 2014. Coming good and breaking bad: Gener-
ating transformative character arcs for use in compelling
stories. In Procs. of 5th Intl. Conf. on Computational Cre-
ativity (ICCC).

Proceedings of the Sixth International Conference on Computational Creativity June 2015 305



Character Paulo Portas (Portuguese Deputy Prime-Minister)
Wikipedia words jurista, jornalista, conservador, vice-primeiro-

ministro, arquitecto, economista, irmão, dirigente,
empresário, ...
(lawyer, journalist, conservative, deputy prime minister, architect,
economist, brother, leader, businessman, ...)

Top-5 nouns março (29), trajetória (23), alteração (22), dı́vida
(16), do (14)
(march, trajectory, change, debt, of)

Context He had been talking to the media about the downward
trend of the Portuguese public debt, which should start
on March.

Original quote Se nós não entendemos a vida, como poderemos en-
tender a morte?
(If we cannot understand life, how can we understand death?)

Generated quote Se nós não entendemos a vida, como poderemos en-
tender a dı́vida?
(If we cannot understand life, how can we understand the debt?)

Humor probability 0.00253
Frequency 0.08

In Wikipedia No
Score 0.07177

Figure 4: Meme of the Portuguese Deputy Prime-Minister, Paulo Portas.

Character Yanis Varoufakis (Greek Finance Minister)
Wikipedia words Not in the used version of Wikipedia

Top-5 nouns salário (37), governo (29), funcionário (22),
manutenção (18), ministro (17)
(salary, government, federal employee, maintenance, minister)

Context Since he became a member of the Greek government,
he has been all over the news regarding the negotia-
tions between Greece and the Eurogroup. This time,
he was negotiating the maintenance of the current
number of federal employees and their salaries.

Original quote Na busca da virtude, não temas superar teu professor.
(In the pursuit of virtue, do not fear overcoming your teacher.)

Generated quote Na busca da virtude, não temas superar teu governo.
(In the pursuit of virtue, do not fear overcoming your government.)

Humor probability 0.00102
Frequency 0.145

In Wikipedia No
Score 0.08696

Figure 5: Meme of the Greek Finance Minister, Yanis Varoufakis.

Character Madonna (pop singer)
Wikipedia words cantor, compositor, atriz, dançarino, empresário, pro-

dutor, álbum ...
(singer, songwriter, actress, dancer, businessman, producer, album ...)

Top-5 nouns tombo (46), queda (21), madonno (29), palco (21),
vı́deo (13)
(tumble, downfall, madonno, stage, video)

Context A few hours before this generation, she had fell on
stage, during a live performance.

Original quote A esperança é um sonho acordado.
(Hope is a waking dream.)

Generated quote A esperança é um tombo acordado.
(Hope is a waking tumble.)

Humor probability 0.00231
Frequency 0.23

In Wikipedia No
Score 0.10911

Figure 6: Meme of the pop singer Madonna.
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Character Vladimir Putin (Russian President)
Wikipedia words presidente, ex-agente, chefe, serviço, primeiro-

ministro, governo, paı́s, ...
(president, former agent, chief, service, prime-minister, government,
country, ...)

Top-5 nouns passo (88), risco (36), paı́s (36), intervenção (34),
vitória (33)
(step, risk, country, intervention, victory)

Context He had been on the news due to his role in the
Ukrainian crisis. While there is not an international
intervention, people try to figure out his next step.

Original quote Em todas as coisas, o sucesso depende de preparação
prévia.
(In all things, success depends on a previous preparation.)

Generated quote Em todas as coisas, o sucesso depende de intervenção
prévia.
(In all things, success depends on a previous intervention.)

Humor probability 7.8⇥ 10�4

Frequency 0.17
In Wikipedia No

Score 0.09305
Figure 7: Meme of the Russian President, Vladimir Putin.

Character José Sócrates (former Portuguese Prime Minister)
Wikipedia words polı́tico, secretário-geral, ministério, ordena-

mento, mestrado ..
(politician, secretary general, ministry, planning, masters, ...)

Top-5 nouns prisão (93), mês (54), ex-premiê (41), retour (34),
novembro (33)
(jail, month, ex-Prime Minister, comeback, november)

Context He has been detained into custody for being a sus-
pect in a corruption case. This week he had got out
for a few hours to give his testimony in a court.

Original quote Minha vida é minha mensagem.
(My life is my message.)

Generated quote Minha vida é minha prisão.
(My life is my jail.)

Humor probability 0.00975
Frequency 0.465

In Wikipedia No
Score 0.17308

Figure 8: Meme of the former Portuguese Prime-Minister, José Sócrates.
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Abstract

Several poetry generation systems that are in some way
inspired or motivated by existing articles such as news-
paper stories have recently appeared. However, most
if not all of them employ template-based generation,
which limits both the expressiveness of the system and
the ability to faithfully convey the message of the source
article. In this paper we present our work on a po-
etry generation system that uses a dependency parser
to extract the predicate argument structure of the in-
put article, and tries to maintain this structure through
deep syntactic text generation whilst complying with a
given target form. The combinatorial nature of this task
presents huge challenges, and we describe several im-
provements that have been applied in an attempt to pro-
duce poetry in a tractable fashion.

Introduction
Poetry generators are systems that are capable of automat-
ically generating poetry given certain restrictions and con-
texts. Gervás (2002) presents an overall evaluation of var-
ious poetry generators. Various generation approaches are
employed, e.g. evolutionary algorithms (Manurung, Ritchie,
and Thompson 2012), case-based reasoning (Diaz-Agudo,
Gervás, and González-Calero 2002), template-based gen-
eration (Colton, Goodwin, and Veale 2012), (Rashel and
Manurung 2014), and constraint programming (Toivanen,
Järvisalo, and Toivonen 2013).

In this paper, the task we are aiming to solve can be re-
ferred to as meaningful poetry generation, where the goal is
to generate a text that exhibits poetic aspects such as rhyme,
metre, alliteration, and other phonetic or orthographic pat-
terns, but also broadly tries to convey a given meaning rep-
resentation. This last requirement is what distinguishes this
task from other forms of poetry generation, which primarily
focus on generating texts that take the form of a poem.

The way in which an input meaning representation is pro-
vided, and the manner in which a poetry generation system
attempts to preserve the fidelity of the input meaning rep-
resentation, varies. Most systems can be said to be “loosely
inspired” by their input meaning representations, as they use
words and phrases from the input as fillers for textual tem-
plates. Although the resulting poems may include words
derived from the input, they do not necessarily take into

account aspects such as predicate-argument structure and
head-modifier relationships that are crucial towards seman-
tic interpretation. For example, it is possible that a poetry
generator that extracts keywords from an article about the
Gulf War writes a poem about Iraq invading the USA, and
not the other way around. Some notable exceptions are Po-
eTryMe (Gonçalo Oliveira 2012) and MCGONAGALL (Ma-
nurung, Ritchie, and Thompson 2012). PoeTryMe selects
content in the form of a set of words and relations between
them that are obtained from a semantic graph, and conveys
this content using templates that are known to express such
specific relations. MCGONAGALL employs a fitness func-
tion that measures the semantic similarity between a candi-
date poem and a given target semantics in such a way that
structural similarity is significantly preferred. One other in-
teresting related work is Gervás (2015), which explores var-
ious modifications and extensions to an existing poetry gen-
eration system, WASP, to consider much tighter constraints
on the content of generated poems.

This paper describes a system that uses a meaning repre-
sentation that explicitly captures predicate-argument struc-
ture and tries to maintain this structure through deep syn-
tactic text generation whilst complying with a given target
form.

We first discuss chart generation, the basic mechanism
the system employs to produce text, before discussing how
we extract meaning representations from input news articles.
Some results from experiments using this initial system are
shown. We then present a complexity analysis of the algo-
rithm and suggest four different improvements to make the
system generate meaningful metrical poems in a much more
tractable manner. Finally, some results are shown from ex-
periments using the revised system.

Chart Generation
Moreso than an author of prose, an author of poetry may
have to perform a lot of rewording, paraphrasing, and vari-
ous other alterations to the text, in order that the end result
can satisfy the various poetic constraints such as rhyme and
metre. Moreover, in literary texts, creative language use of-
ten results in more exibility of lexical choice, word-order,
and grammaticality, hence an even larger search space for
the paraphrasing.

One efficient method for constructing all valid para-
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phrases of a natural language utterance is chart genera-
tion (Kay 1996). Given an input meaning representation,
a set of grammar rules, and a lexicon, it systematically gen-
erates all syntactically well-formed texts that convey the in-
put meaning. It employs a dynamic programming technique
to overcome the inefficiency caused by backtracking due to
the pervasive non-determinism in natural language grammar
rules.

A data structure known as the chart stores all complete
constituents once they are generated, so regardless of the
number of paraphrases they may appear in, they will only
be constructed once. The chart also stores incomplete con-
stituents, which are predictions of larger constituents yet to
be generated. A chart contains entries that are labelled with
‘dotted rules’ which describe both complete constituents,
called inactive edges, and incomplete constituents, called ac-
tive edges. An active and an inactive edge can combine to
yield a new edge that represents a larger constituent.

An example of an inactive edge is np ! det noun •,
which represents a noun phrase (np) constituent that consists
of a determiner followed by a noun, whereas an example
of an active edge is np ! det • noun which represents
a partially constructed noun phrase which is still lacking a
noun. Note the position of the dot (•) that delineates the
portion of the constituent that has been constructed from that
which is still lacking.

For chart generation, it is not enough for the dotted rules
to simply state syntactic constituency. They must also state
the semantics of each constituent, and how their arguments
must unify when being combined. When two edges com-
bine, their semantics must also be unioned to obtain the se-
mantics of the new edge. Moreover, some semantic sub-
sumption checking must be performed to prevent false sen-
tences from being generated. For example, given the input
semantics loves(john,mary), an edge with the semantics
loves(john,X), where the variable X indicates an unbound
argument, can be added to the chart, because its seman-
tics still subsume the input. However, according to the in-
put grammar, a chart generator may also construct an edge
with the semantics loves(X, john), whose semantics does
not subsume the input. Therefore, it must be rejected.

The algorithm can be informally described as follows:

1. Add entries for all words whose semantics subsume the
target semantics to the chart.

2. Bottom-up prediction: for each inactive edge in the chart,
add new active edges to the chart for each grammar rule
that have it as the first constituent on the right hand side.

3. Scanning: for each active edge in the chart, look for in-
active edges whose category matches that of the first con-
stituent needed, and add a new edge that combines the
two.

4. Completion: for each inactive edge in the chart, look for
an active edge that is looking for a constituent with a
matching category.

5. The above processes are repeatedly applied to all new en-
tries to the chart until no more new entries can be added.

Let us consider a simple example. Suppose the following
target semantics are to be generated: {dog(d), definite(d),
see(s), cat(c), definite(c), arg1(s,d), arg2(s,c)}.

Assume the grammar consists of the following three rules:
s(x) ! np(y)vp(x, y)
np(x) ! det(x)noun(x)
vp(x, y) ! verb(x, y, z)np(z)

and the lexicon consists of the following four entries:
Word Category Semantics
cat noun(x) x:{cat(x)}
saw verb(x,y,z) x:{see(x),arg1(x,y),arg2(x,z)}
dog noun(x) x:{dog(x)}
the det(x) x:{definite(x)}
Following the algorithm described above, edges are en-

tered to form the chart seen in Table 1. The process is as
follows:
• Initially, edges 1,2,4,6, and 7 enter the chart. They rep-

resent the lexical items that convey a portion of the target
semantics.

• Edges 3,5, and 8 enter the chart as a result of the pre-
diction operation. Based on the grammar, the algorithm
hypothesises the existence of larger constituents.

• Edges 9 and 11 enter the chart as a result of combining
the inactive and active edges 1+3 and 6+8 respectively.

• Edges 10 and 12 enter the chart as a result of the pre-
diction operation on edges 9 and 11. Note that edge 12,
although cannot form any part of a sentence that conveys
the input semantics, still enters the chart, but will not com-
bine with any other edge due to the semantic subsumption
checking.

• Edge 13 and subsequently edge 14 enter the chart as a
result of combining edges 5+11 and 10+13 respectively.

Metre compatibility
Manurung (1999) first introduced an extension to chart gen-
eration to take into account rhythmic constraints of poetry.

In most forms of poetry, metre is the arrangement of
words such that rhythmic patterns emerge from their lexical
stress, which is the relative prominence of stress received by
syllables in a word. To simplify matters, we will assume
that syllables may receive one of either two types of lexi-
cal stress: weak stress or strong stress. Thus, the rhythm of
natural language strings can be represented as lists, which
we call stress patterns, denoting the type of stress received
by each syllable in an utterance, which can be either weak
(denoted as ’w’) or strong (denoted as ’s’). For example, the
list [w,s,w,s,w,s,w,s,w,s]would be a stress pattern
that represents a line of iambic pentameter.

These stress patterns can be used as the representation for
specifying the metrical constraints that are provided as input
for the chart generator. The starting point for constructing
stress patterns is lexical stress, which can be obtained from
pronunciation dictionaries such as the CMU Pronouncing
Dictionary1.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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No. Phrase Category Semantics Operator
1 dog noun(d) d:dog(d) Lexical
2 the det(d) d:definite(d) Lexical
3 the np(d) ! det(d) • noun(d) d:definite(d) Prediction (2)
4 saw verb(s, d, c) s:see(s), arg1(s,d), arg2(s,c) Lexical
5 saw vp(s, d) ! verb(s, d, c) • np(c) s:see(s), arg1(s,d), arg2(s,c) Prediction (4)
6 cat noun(c) c:cat(c) Lexical
7 the det(c) c:definite(c) Lexical
8 the np(c) ! det(c) • noun(c)) c:definite(c) Prediction (7)
9 the dog np(d) ! det(d) noun(d)• d:definite(d),dog(d) (1)+(3)
10 the dog s( ) ! np(d) • vp( , d) d:definite(d),dog(d) Prediction (9)
11 the cat np(c) ! det(c) noun(c)• c:definite(c),cat(c) (6)+(8)
12 the cat s( ) ! np(c) • vp( , c) c:definite(c),cat(c) Prediction (11)
13 saw the cat vp(s, d) ! verb(s, d, c) np(c)• s:see(s), arg1(s,d), arg2(s,c), definite(c),

cat(c)
(5)+(11)

14 the dog saw the cat s(s) ! np(d) vp(s, d)• s:see(s), arg1(s,d), arg2(s,c), definite(c),
cat(c), definite(d), dog(d)

(10)+(13)

Table 1: Sample entries during chart generation for “the dog saw the cat”

Stress patterns are not only used to represent input tar-
get forms, but also the metre of texts that are incrementally
constructed through chart generation. When two edges are
combined, their stress patterns are appended to obtain the
stress pattern of the new edge that arises. Therefore, when
attempting to add a new edge to the chart, the system can
first check whether or not its stress pattern can appear as
a contiguous subsequence of the target stress pattern. For
example, the verb phrase “saw the cat” has a stress pattern
[s,w,s], and can thus be said to be compatible with an
iambic pentameter metre because it can appear as a sub-
sequence of [w,s,w,s,w,s,w,s,w,s]. However, the
prepositional phrase “with the cat” has a stress pattern of
[w,w,s], and is thus not compatible, and hence should not
be added to the chart.

By applying this metre check everytime an entry is at-
tempted to be added to the chart, the search space can be
significantly reduced, as it ensures that only texts that sat-
isfy the metre constraints will be added to the chart.

Implementing topicality
As mentioned above, we aim to generate poems that ex-
plicitly convey a given meaning representation, preserving
the fidelity of the message by taking into account predicate-
argument structure, head-modifier relationships, and lexical
semantics.

To that end, we implemented a preprocessing module that
obtains meaning representations from a given text, which
in our case is a newspaper article from an online website.
An input URL is provided, and the main article content is
extracted using a popular context extraction tool2.

The article is split up into sentences, and each sentence
is parsed using the Stanford Dependency parser3 (Klein and
Manning 2003). The set of dependency relations produced
is taken to be the input meaning representation for the poem
to be generated. Strictly speaking, a dependency parse can-

2https://code.google.com/p/boilerpipe/
3http://nlp.stanford.edu/software/lex-parser.shtml

not be said to be a genuine semantic representation, as it is
still closely related to the constituent structure of the origi-
nal sentence. Although the dependency relations do include
semantic relations of an entity being the agent, subject, or
object of another entity, a genuine semantic representation
should abstract away from any syntactic decisions, whereas
the dependency parse still contains relations such as advmod
(adverb modifier) and xcomp (open clausal complement).

Nevertheless, such a representation is still a useful ab-
straction from the original text, and arguably does convey
the semantics of the original text. In fact, the Stanford
CoreNLP tool4 actually refers to the dependency parse as
a “semantic graph”. In particular, it represents predicate-
argument and head-modifier relations very well. It is pre-
cisely such relations that the keyword and phrase extraction-
based approaches of previous topical poetry generation sys-
tems fail to capture.

For example, given an input sentence “The fox jumps over
the dog.”, the dependency parse output is as follows:

{det(fox-2, The-1),
nsubj(jumps-3, fox-2),
root(ROOT-0, jumps-3),
det(dog-6, the-5),
prep_over(jumps-3, dog-6)}

Since the chart generator will populate the initial chart
with lexical entries based on the input meaning represen-
tation, whereas the relations above actually define relations
between words, we must first explicitly add clauses for each
word by introducing a lex relation and introduce a new
variable for each word. Subsequently, we replace the ar-
guments in the dependency relations to unify with these new
variables, yielding the following representation:

{lex(a, [the, det]),
lex(b, [fox, noun]),
lex(c, [jumps, verb]),
lex(d, [over, prep]),
lex(e, [the, det]),

4http://nlp.stanford.edu/software/corenlp.shtml
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Synset ID Gloss
#102118333 alert carnivorous mammal with

pointed muzzle and ears and a
bushy tail; most are predators that
do not hunt in packs

#110022759 a shifty deceptive person
#114764910 the grey or reddish-brown fur of a

fox

Table 2: WordNet entries for the noun “fox”

lex(f, [dog, n]),
det(b,a),
nsubj(c,b),
det(f,e),
prep_over(c,f)}

Mapping words to concepts
Although the meaning representation from the dependency
parse explicitly states predicate-argument and head-modifier
relations, it does so over strings of text such as “fox” and
“jumps”. To properly treat this as a semantic input, and to
maximize the paraphrasing power of the generation compo-
nent, these strings must first be transformed into semantic
concepts. To achieve this, these strings are mapped onto ap-
propriate WordNet synsets (Fellbaum 1998).

This increases the paraphrasing power of the generator,
as it enables the generator to select synonyms to convey the
concept, which may be necessary to satisfy rhythmic con-
straints.

Unfortunately, words are ambiguous symbols that may
have many meanings, and such a mapping process raises the
issue of word sense disambiguation (Agirre and Edmonds
2007). For example, given the word “fox” as a noun, Word-
Net has three different senses, which can be seen in Table 2.

In the initial version of the system that we develop, we
simply take all possible senses for the word given the ap-
propriate part of speech tag as returned by the dependency
parser. Thus, in the example of “fox” above, all three senses
of the noun are considered, but the three senses of “fox” as
a verb are not.

Lexical resources
To accommodate the input meaning representations ob-
tained from the dependency parser, the grammar, lexicon,
and semantic representations must first be suitably modified.
The lexicon is constructed by consulting WordNet and the
CMU pronouncing dictionary. Before mapping to WordNet
synsets, lemmatization is first applied to the words found in
the dependency parses. Since WordNet only contains open
class words, entries for closed class words such as determin-
ers, prepositions, etc. are added manually.

Initial Experiments
To summarize the previous two sections, given an input URL
and a target form, the poetry generation system proceeds as
follows:

Ask in french surface
Call her years, check her
Think were toy tennis
Skid in chase, land her

(a)

Game were this tuesday
Is her but basket
James were drill friday
He were this target

(b)

This baby tell me
That I can miss you?
That you should hold me
Will know I miss you

(c)

Table 3: Sample output of initial experiments

1. Given an input URL, download the page and extract the
main news content.

2. Parse each sentence of the text using the dependency
parser.

3. For each sentence, apply chart generation to produce a
text that conveys target semantics in the form of the target
stress pattern.

4. Assemble all possible poems from the successfully gen-
erated sentences.

To test this system, three input articles were provided:
two news articles from the sports section of the New York
Times: “Maria Sharapova Is Finding Her Stride On Clay
at Roland Garros”5 and “James and the Heat Coolly Even
the N.B.A. Finals”6, and the lyrics to a contemporary R&B
song, “Officially Missing You”7. From each of these input
articles poems were generated using target stress patterns of
4 lines long, each consisting of 5 syllables, with a rhyming
pattern of AB-AB. For the two news articles a stress pattern
of [s,w,s,s,w] was specified, but for the song lyrics the
generator was only constrained by the number of syllables.
Table 3 shows some randomly selected sample output for
each input article. Note that they are all perfect in terms of
rhyme and metre, and they all roughly convey some aspects
of semantics of their respective input articles.

Improving runtime complexity
Despite the fact that chart generation utilizes dynamic pro-
gramming to make the process efficient, and that metre com-
patibility checking can substantially reduce the search space,
the system as described is still very inefficient, and takes sev-

5http://www.nytimes.com/2014/06/07/sports/tennis/maria-
sharapova-is-finding-her-stride-on-clay-at-roland-garros.html

6http://www.nytimes.com/2014/06/09/sports/basketball/lebron-
james-and-miami-heat-coolly-even-the-series.html

7http://en.wikipedia.org/wiki/Officially Missing You
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eral hours on a modern desktop PC to compute the sample
output presented in the previous section.

A brief algorithm analysis will now be presented, together
with some insights on how to speed up the process.

Assume that we are trying to generate a poem consisting
of A lines based on an input article containing Z sentences.
Assume also an input target semantics of N clauses, where
for each word appearing in the semantics there are L possi-
ble WordNet synsets, with each synset having K synonyms.
The lexicon that needs to be considered contains a total of
N⇥L⇥K entries. Finally, assume a grammar that contains
M rules.

The chart generation process starts by considering all
words from the lexicon that can possibly convey a section of
the input semantics, and the bottom-up operator checks the
M rules whether they predict the appearance of a word with
the appropriate syntactic category. By taking into consid-
eration repeated application of the scanning and completion
operators discussed previously, until no more entries can be
added to the chart, the theoretical worst case complexity is
estimated to be:

O((((L⇥K)A ⇥ P (N,A)⇥M ⇥A)⇥ Z)P ) (1)

where P (N,A) is the permutation function,
N !

(N �A)!
.

Idea 1: Summarizing input text
In our initial experiment described above, the entire input
news article is parsed and processed. As an example, the
New York Times article about Maria Sharapova consisted
of 1198 words. One idea to reduce complexity would be
to try to summarize the article beforehand, and extract the
semantic representation of the summary as input for the po-
etry generator instead. Aside from issues of complexity, at-
tempting to convey the meaning of an entire news article in
a short poem without really considering issues of discourse
processing and coherence is slightly naive. Document sum-
marization systems are precisely designed to analyse a text
at the discourse level and to determine the most salient por-
tions. Thus, aside from reducing complexity, this approach
may also leverage the ability of such summarization systems
to select a subset of content from the input news article that
is more relevant to be conveyed.

Assuming that the Z sentences of the news article is sum-
marized into P sentences, where P is the number of lines in
the target form to be generated and is < Z, the complexity
becomes:

O((((L⇥K)A ⇥ P (N,A)⇥M ⇥A)⇥ P )P ) (2)

In our experiments, we use the popular document summa-
rization tool MEAD8 (Radev et al. 2003).

Idea 2: Sense disambiguation
In our initial version, the system simply considers all possi-
ble senses of a word when mapping to WordNet concepts.
Given that this is done for all words in the input text, this

8http://www.summarization.com/mead/

creates a combinatorial explosion, many of which are likely
to be incoherent combinations of senses.

To select the most appropriate word sense, the context of
the target word, in this case the sentence in the news arti-
cle to which it belongs, is compared against the context of
the various available senses, i.e. the gloss and/or example
sentences from WordNet. The modified Lesk algorithm is
a well-known instance of this approach (Banerjee and Ped-
ersen 2002). We employ a vector space model approach,
where the two contexts are represented as vectors in a high-
dimensional space and the sense that yields the highest co-
sine similarity is selected as the appropriate sense. In recent
years, so-called word embeddings that have been trained
using neural networks on very large corpora have yielded
very good results. We use pre-trained vectors that have been
made available as part of the GloVe9 (Global Vectors for
Word Representation) toolkit.

By applying word sense disambiguation, L = 1, thus the
complexity becomes:

O(((KA ⇥ P (N,A)⇥M ⇥A)⇥ P )P ) (3)

Idea 3: Positional indexing
Chart generation is actually a dynamic programming ap-
proach to text generation that is motivated by chart parsing,
which analyses a sentence and produces all parse trees based
on a given grammar. In chart parsing, bottom-up process-
ing starts with adding entries for each word appearing in the
text to be parsed. However, since the order of the words
is already known, entries in the chart are indexed based on
the position they appear in the sentence. This index speeds
up the process, since only edges that are incident to each
other can possibly combine to yield new edges that repre-
sent larger constituent structures.

However, in chart generation such positional indexing is
typically not used, as one does not know beforehand where
words will appear in the sentence, and the overriding aspect
that governs which edges can combine is that of semantic
subsumption.

When considering metre compatibility during an attempt
to add an edge to the chart, the system currently checks
whether it can appear as a contiguous substring in the tar-
get form, but does not specify where precisely this substring
is located. As a result, this substring matching process must
be repeated every time, for every edge. When considering
the interaction of this aspect with that of rhyme, it is pos-
sible that the chart generator spends a lot of time building
partial structures that appear to be valid constructions early
on, but eventually cannot fit the metre.

To overcome this, we augment the chart data structure
by also recording the start and end position of each edge in
terms of the syllable count within the poem. When adding
lexical items to the chart at the beginning of the generation
process, multiple instances are recorded for each word at
each possible position within the poem. However, the metre
compatibility check need only be computed once during the
beginning, and when the generation subsequently proceeds,

9http://nlp.stanford.edu/projects/glove/
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the system need only ensure that pairs of incident edges are
being combined, without having to perform any additional
metre substring matching.

The complexity is thus further reduced to become:

O(((KA ⇥ P (N,A)⇥M)⇥ P )P ) (4)
Note, however, that due to the additional bookkeeping

overhead and redundancy of having multiple entries for
words based on the position they appear in, the memory
complexity increases.

Idea 4: Greedy collation
In our initial version above, for each input sentence, chart
generation is applied to produce a text that conveys the tar-
get semantics in the form of the target stress pattern for one
line. Following this process, all possible combinations of
these lines are assemble to yield all possible poems. This is
a major source of inefficiency. The final modification that is
carried out in an attempt to improve the efficiency of the gen-
eration algorithm is to replace this exhaustive combinatorial
process with a greedy algorithm that selects subsequent lines
so as to maximize an objective function that considers the
aspects of rhyme, metre, and semantics.

Firstly, all possible candidates for the first line are tried in
turn. For each subsequent line l, a candidate is selected that
maximizes the following objective function:

f(l) = ↵1 ⇥ rhyme(l) + ↵2 ⇥ syll(l) + ↵3 ⇥ sem(l)

where:
• ↵1,↵2, and↵3 are weight factors in the interval [0,1] and

↵1 + ↵2 + ↵3 = 1.
• rhyme(l) is a function that returns a value of 1 if l ends

with a correct rhyme, 0 otherwise.
• syll(l) is a function that returns a normalized syllable

count, e.g. the ratio of the number of syllables found in l
to the number of syllables in the target form for that line.

• sem(l) is a function that returns a normalized semantic
content count, e.g. the ratio of the number of semantic
clauses conveyed by l to the maximum number semantic
clauses obtained for that sentence during generation.
The complexity is thus further reduced to become:

O((KA ⇥ P (N,A)⇥M)⇥ P ) (5)

Subsequent experiment
To test the various modifications that were designed and im-
plemented, the system was run with the exact same input
as during the initial experiment, and results can be seen in
Table 4. As can be seen, the overall quality of the results
suffers as a result of some of the modifications, and possibly
most notably the use of a greedy algorithm to assemble the
resulting poem. For instance, from the point of view of the
rhyme and metre the solutions are sub-optimal.

On the other hand, whereas previously the generator
would run for many hours to complete, the empirical run-
ning time measurements from the modified system show
that the modified system typically takes approximately 20-
30 seconds to generate poems given the same size of input.

Is she
Court were full even
She were take couple
She were a woman

(a)

James were a system
Are an air system
Was a james
Aver get way

(b)

Tell me are you
Wish you now call me
Fix over with you
Guess was it was I

(c)

Table 4: Sample output of subsequent experiments

Discussion & summary
In this paper we have presented work in progress on the de-
velopment of a poetry generation system that uses a depen-
dency parser to extract the predicate argument structure of
the input article, and tries to maintain this structure through
deep syntactic text generation whilst complying with a given
target form. The combinatorial nature of this task presents
huge challenges, and several improvements have been sug-
gested and applied in an attempt to produce poetry in a
tractable fashion. Whilst this does drastically improve the
complexity of the algorithm, changing the running time from
several hours to a matter of seconds, the quality of the output
seems to visibly suffer.

Deep natural language generation that is constrained by a
target semantics at one end and a target form on the other
end is a very difficult task. Whereas other poetry generation
systems try to achieve this through the means of evolution-
ary computation and template-based generation, our work
can be seen to be related to the work reported in (Toivanen,
Järvisalo, and Toivonen 2013), as the task can be cast as
a constraint satisfaction problem. Unfortunately, imposing
syntactic constraints on a constraint satisfaction problem,
where the syntactic constraints are defined as context-free
grammar rules is a very computationally expensive problem.
Our approach is to utilize chart generation, a well-known dy-
namic programming technique where the grammar rules are
a fundamental component of the algorithm. Another strategy
worth considering for future work is context-free grammar
filtering (Kadioglu and Sellmann 2008), a time and space
efficient arc-consistency algorithm that allows the formal
specification of constraints as a context-free grammar within
a constraint satisfaction problem framework.
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Poetry generation in COLIBRI. In Proceedings of the 6th
European Conference on Case Based Reasoning (ECCBR
2002).
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
Gervás, P. 2002. Exploring quantitative evaluations of the
creativity of automatic poets. In Proceedings of the 2nd.
Workshop on Creative Systems, Approaches to Creativity in
Artificial Intelligence and Cognitive Science, 15th European
Conference on Artificial Intelligence (ECAI 2002).
Gervás, P. 2015. Tightening the constraints on form and
content for an existing computer poet. In AISB 2015 Sym-
posium on Computational Creativity. University of Kent,
Canterbury, United Kingdom: Society for the Study of Arti-
ficial Intelligence and Simulation of Behaviour.
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Abstract

We present a computational model for the generation of a
Twitter bot that aspires to be considered creative by generat-
ing riddles about celebrities and well-known characters. The
riddles are created by combining information from both well-
structured and poorly-structured information sources. This
model has been implemented as an interactive Twitter bot
(@TheRiddlerBot) that presents its outputs as contests to its
followers, checks the posted answers and replies accordingly.
Lastly, we present a discussion about the main attributes of
a creative Twitter bot, and the remaining work for our bot to
qualify as such.

Introduction

On several social networks, but especially Twitter, a new va-
riety of users, the bots, are increasingly interacting not only
with human users, but even among themselves. The first
Twitter bots that appeared on the web were considered in the
best case graceful, and sometimes even useful, or helpful,
but they were far from being considered creative. To be
creative usually relates to the generation of something novel
and interesting, not only to oneself, but also to partners
sharing a common background (Mayer 1999). According to
this, a creative activity can be considered a social activity
as well, since the environment evaluates any generational
process to determine if it can be considered truly creative or
not. In this sense, the environment establishes diverse con-
straints to any creational process, and the main challenge for
an inventor resides in freeing himself from all these conven-
tions to create something novel, interesting and yet valuable.

Novel ways of interacting inside social networks have
added new and barely studied constraints to the creative pro-
cess. Contests for the generation of micro-stories (Hamid
2014) - 100 words long stories -, similar to Tweet messages,
or the generation of writing maps - writing prompts to
inspire writers - (Maps 2015) have emerged from these new
ways of interaction.

The problem that we tackle in this paper is the design
and implementation of a Twitter bot that can be considered
creative, focusing on missing features in the prevailing bots.
The use of more realistic and diverse knowledge sources

(Twitter, Facebook, Wikipedia, online news sites), evalua-
tive mechanisms for its own outputs, and the definition of a
purpose which surpasses the generation of pseudo-random
messages, are examples of such omissions. The goal of
our bot is to generate riddles about celebrities, formed
as questions to encourage readers to assert the name of a
famous character.

The rest of the paper is organized as follows. We first
give an overview of the state of the art of Twitter bots, after
which we give a general description of a model to automat-
ically generate riddles and its implementation in a Twitter
bot (@TheRiddlerBot). We present the results of a ques-
tionnaire where we asked people to evaluate a set of riddles.
We then close with a general discussion of our proposal and
our conclusions.

Related research

We now present relevant research from two different fields:
riddle generation, and automatic Tweet generation. The
existing theories related to the generation of riddles are
not yet complete mainly because their descriptions only
contemplate a subset of riddles (typically those in the
question-answer format). Nevertheless, we present several
approaches that provide relevant features that should be
present in any riddle to be considered as such. Besides,
we describe several first generation Twitter bots, Tweet-
generating systems that autonomously perform useful and
well-defined services (Veale 2014), that are using Twitter
in diverse ways. We distinguish feeder bots, which create
tons of Tweets for their followers; watcher bots, which are
constantly looking for specific texts to extract information;
and interactive bots, which ask followers for specific ways
of communication and information sharing (Cook 2015).
We describe different Twitter bots as examples of the state
of the art. We will focus on both the creative aspects and
unique features that are already present, as well as missing
features.

Pepicello (Pepicello and Green 1984), among others,
has researched riddles extensively, and described them as
text fragments that employ ordinary language restricted
by semiotic, aesthetic and grammatical artistic constraints.
They argue that ambiguity in these descriptions is a key
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aspect of a riddle, and they define three types: phonological
(use of words with the same phonetic code), morphological
(use of words with the same writing) and syntactic (phrases
with different possible interpretations). According to this
work, the goal of a riddle is to confuse the guesser by
utilizing one or more of these ambiguities.

Additionally, Weiner (Weiner and De Palma 1993)
defines a riddle as a language game, initiated by a question,
with the goal to mislead the guesser. They describe two
pragmatic mechanisms for the generation and comprehen-
sion of riddles: accessibility hierarchy and parallelism. The
former relates to categorization, the capability to relate
different concepts to accomplish specific goals. They
describe parallelism as the tendency to remain in the same
cognitive space unless a force makes us change to an
alternative representation. They state that we, as humans,
employ these two mechanisms to generate and comprehend
riddles.

According to this work, there exist two types of concepts
present in every category: context-invariant (what first
comes to our minds) and context-variant (present when a
relevant context appears). They state that a riddle must
bring to our minds the context-invariant information to
mislead the answer of the riddlee. Parallelism, in turn, helps
on to generate false expectations on the part of the guesser.

JAPE - Joke Analysis and Production Engine - (Binsted
1996) is a question-answer riddle generation system.
Herein, several strategies to generate riddles are described:
syllable substitution, word substitution and metathesis. The
first mechanism consists in confusing the syllable in a word
with a similar sounding word; the second, confuses an
entire word with a similar sounding word; the third, reverses
the sounds of two words to suggest a similarity in meaning
between two phrases.

To generate riddles, JAPE uses templates consisting of
‘canned text’ with slots where words or phrases are inserted.
To determine which words are to be incorporated to the
final riddle, the system makes use of predefined schemas,
which establish relationships between words which must
hold to build a joke. These schemas are manually built from
previously known jokes.

In an effort to delineate novel uses of Twitter, Angelina-
5 (Cook and Colton 2014) is a software for the generation
of 3D games that uses a module to evaluate its textures, i.e.
images utilized for decorating walls and ceilings inside the
scenario, in a Twitter account (@angelinasgames). Each
game has a theme, initiated by a word or phrase. Angelina-5
obtains a set of words associated to it from an English
corpus, and uses them to retrieve sound effects, textures,
3D models and fonts to create a game. The bot periodically
Tweets images and asks its followers to associate terms to
it. These terms are collected into a repository to be further
used as tags for the image.

This bot can be classified as a watcher with the goal of
obtaining tags for a tweeted image from the user. The bot
does not have any capabilities for analyzing the information
received, given its very limited function within Angelina-5.
Nevertheless, it is a functional example of how bots can
receive information from humans to enhance the capabilities
of a system, a desirable function to contemplate in our bot.

Flux Capacitor (Veale 2014) is a generator of well-
formed and interesting character arcs (conceptual starting
and ending points for a character inside a narrative). These
character descriptions are defined in terms of properties,
and a well-formed arc contemplates representative changes
by looking for templates (such as XbecomesY ) in Google
n-grams (Brants and Franz 2006). Apart from that, relation-
ships among properties to describe such states are retrieved
from WordNet (Fellbaum 1998). The output of the bot
serves the MetaphorIsMyBusiness (@MetaphorMagnet)
Twitter bot to generate metaphors related to character twists
in a story.

This bot has several aspects that differentiate it from first
generation bots, such as its capability to deal with mas-
sive, poorly-structured knowledge databases (those lacking
a well-defined format), and its purpose to create outputs sur-
passing the generation of pseudo-random messages. An-
other aspect of the bot is its high curation coefficient, the
ratio of good outputs to all outputs, since the system con-
templates mechanisms to evaluate its own outputs and filter
those considered with low quality.

General description

We present a model for a Twitter agent with creative be-
haviors such as its abilities to utilize real-world, poorly-
structured data sources, to evaluate its own outputs, and to
interact with Twitter users. We describe as well the imple-
mentation of our model in a Twitter bot (@TheRiddlerBot)
that generates creative riddles about fictional or real charac-
ters (e.g. celebrities) using cross-references from different
knowledge bases.

Model description

The model consists of five main modules each subdivided
in three layers (see Figure 1). Each module has a specific
task ranging from the selection of a relevant celebrity, to the
publication of the riddle in Twitter and tracing the answers
of the followers. Besides, a layered structure of the system
provides every module of tools for retrieving additional in-
formation from diverse sources, for processing the informa-
tion available, and for evaluating its outputs. Now we de-
scribe the main characteristics of each module and how its
tasks are distributed among the diverse layers of the model.

Character selection module This module initiates by re-
trieving a list of celebrity names from diverse knowledge
bases. Some sources may have well-structured information,
such as the Non-Official Characterization (NOC) list (Veale
2015), whereas others may lack this structure, such as
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Figure 1: Model architecture

Google News, trending topics from Twitter, or public in-
formation from Facebook. This task resides inside the first
layer of the module, the information retrieval layer. The data
obtained is then passed to the processing layer, where one of
the celebrities is selected according to diverse criteria such
as his public relevance. These criteria give clues about the
current importance of the celebrity due to the events he or
she has recently been involved in. Finally, the evaluation
layer determines if the selected character has been lately
used to generate riddles, in which case it is not suitable for
a new riddle. Once the character selection process finishes,
the name of the celebrity is passed to the next module to look
for as many facts as possible about him.

Feature Extraction Module This second module gathers
attributes about the previously selected character from
both well-structured sources, such as the NOC list, and
poorly-structured sources, such as Wikipedia. Furthermore,
common sense knowledge bases (see the Perception dataset
of the Nodebox project1) serve as repositories for hyper-
nyms (super categories) of the character’s attributes. These
tasks are performed inside the first layer of the module. All
the information obtained is then passed to the processing
layer, where a subset of features is extracted according to
their uniqueness and interestingness. A subset of features
is considered unique if they describe only one celebrity.
This evaluation is important because a riddle with unique
traits is not always desirable, since it becomes easy to
solve. A riddle is considered interesting when it describes a
character with attributes that altogether represent relevant
traits, but do not provide excessive information so that
the riddle cannot be easily guessed. A set of attributes is
considered relevant when the sum of the n-gram percentage
of its elements, according to the Google N-gram viewer.
An isolated attribute is considered to provide excessive
information when its n-gram percentage is too low, and it
can be considered unique. These values still need to be
determined and further studies must be done to evaluate its
accuracy.

Lastly, the evaluation layer determines if the subset se-
lected has not been previously used for the same character,
and that the evaluation of the attributes in previous riddles is
acceptable to keep using them. These features are finally

1
http://www.nodebox.net/perception

sent to the next module to extract additional information
from them.

Analogy Generation Module The third module initiates
by gathering information about similar characters according
to the features of the character selected for the riddle. For
this purpose, it uses information available at the NOC list
as well. Then, it retrieves descriptions of analogies for the
generation of relations between characters. We consider
two different types of relations between a character and his
attributes. Direct relations exist between a character and
his features (’Diego Rivera’ lived in ’Mexico’, ’Tequila’ is
produced in ’Mexico’); higher-order relations exist between
a character and a concept related to one of his features
(’Diego Rivera’ lived in the country where ’Tequila’ is
produced). For this last example, we substituted an attribute
by its hypernym to create the relation (’country’ is a
hypernym of ’Mexico’).

The information for the generation of analogies is passed
to the processing layer where such analogies are created ac-
cording to the attributes selected for the character. Finally,
the evaluation layer determines if the mixture of attributes
and analogies has been previously used to create riddles of
the same character, in which case the analogies are discarded
and new attributes are analyzed. With the set of features
and analogies complete, the information is now passed to
the next module to convert them into utterances.

Natural Language Generation Module This module
initiates with the retrieval of different types of phrasal
templates for each part of the riddle (initial phrase, clues,
final question). These templates are stored and retrieved
from a repository specially developed for this project.
A phrasal template is a previously-known sentence with
slots to be further filled by specific words (Becker 1975).
Each slot is commonly associated with a part-of-speech
tag which allows to preserve the syntax of the sentence.
Inside the processing layer, the module performs a process
to select one template for each type of sentence. The
selection process begins with the random selection of an
initial-phrase template. Then, several clue templates are
selected preventing than recently utilized templates are
now repeatedly chosen. Lastly, a final-question template is
picked in accordance to the first selected template.

These templates have the purpose of providing the system
with a wider variety of possible generations. Once a tem-
plate is selected, the slots are filled with either character’s
attributes, or analogy information.

User Interaction Module The last module extracts a list
of aliases for the character to be guessed. The processing
layer prepares and tweets the riddle, and starts looking for
responses in Twitter, which are compared against the pre-
viously obtained aliases. If there is a match, the riddle is
considered to be finished. Users get points for each correct
answer, which makes this system into a kind of game. When
a wrong answer is detected, the user is notified and encour-
aged to try again. The number of incorrect answers of a
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riddle can be further employed in the evaluation layer of the
module. They cast light on the difficulty level of the riddle,
and on the interestingness and uniqueness of the attributes
employed to generate it.

System description

We have been incrementally implementing the previous
model in a Twitter bot called ‘TheRiddlerBot’2. We started
out with random character selection, direct relations with
tratis, and Twitter publishing capabilities. By now, we have
incorporated several new features into the system, which
are explained below.

The character selection process retrieves a list of celebri-
ties from the NOC list, and randomly selects one of them.
If the character has not been used to generate one of the last
riddles, he is passed to the following module. The NOC
list is a matrix where every row contains information about
a famous character and every column is a trait, so every
cell contains the value of a trait for a specific character.
Several additional matrices exist where further information
about specific traits, such as clothing, fictional worlds,
vehicles, weapons..., can be found as part of the project.
Due to its simplicity, we utilize the Pattern package in
Python (De Smedt and Daelemans 2012) for a wide variety
of tasks, from the feature extraction from comma-separated-
values files, to the reception and sending of Tweets.

Direct relations between traits and the given character
are obtained from the NOC list as well, whereas common
sense knowledge is obtained from the Perception demo3

to incorporate additional traits to the available character’s
knowledge.

From the list of available traits, three of them are
randomly selected and evaluated to determine its inter-
estingness and uniqueness (in the current version this
evaluation is not fully implemented yet). The selected
traits are considered unique when we cannot find additional
celebrities inside the NOC list with the same values. To
determine the interestingness of the attributes, we look
for them on the character’s Wikipedia page, and if they
are present, we consider them relevant. If the number of
characters sharing the selected values surpasses a threshold,
they are not considered relevant, in such case a new subset
of features is randomly selected and the generation process
re-initiates. Finally, the evaluation layer looks for similar
subsets for the same character in previous riddles. If this
subset-character pair has been previously used, the feature
extraction process re-initiates until a suitable subset is
found. These features are finally sent to the next module to
determine if additional relations can be obtained.

We retrieve from the additional matrices of the NOC list
project information to generate higher-order relations about

2Source code available on github:
https://github.com/ivangro/theriddlerbot

3
http://www.nodebox.net/perception

fictional worlds and group affiliations. For this purpose, we
look for characters who share their profession with the previ-
ously depicted character. Then, we filter out those characters
who don’t have any information about their fictional worlds
or group affiliations. From the remaining characters, one is
randomly selected to create an analogy by means of a tem-
plate. We randomly depict a template from the repository
available inside the system (see table 1).

Analogy type Template
Fictional <char1>: like <char2> in <world1>
world <char1>: like someone in <world2>
Group <char1>: like <char2> in <group1>
affiliation <char1>: like someone in <group2>

Table 1: Sample analogy templates

An analogy template consist of two parts: concept, and
reinterpretation of the concept, in the form <concept>
: <reinterpretation>. In general, an analogy template
contains redescriptions of the selected character for the
riddle (<char1>), in terms of a second character (<char2>),
and the fictional world or the group affiliation of one of
the characters (<worldi> or <groupi>). For instance, we
can reinterpret the character ‘The Joker’, whose fictional
world is ‘The Dark Knight Rises’, in terms of another
character with the same profession, ‘criminal’. In this case,
we employ ‘Morpheus’, who can be considered a criminal
in ‘The Matrix’, and the first template for fictional worlds,
to state that ‘The Joker’ is like ‘Morpheus’ but in ‘The
Dark Knight Rises’. Besides, using the second template
we obtain that ‘The Joker’ is similar to ’someone’ in ‘The
Matrix’.

Finally, the evaluation layer determines if the mixture of
attributes and analogies has been previously used to create
riddles of the same character, in which case the analogies
would be discarded and new attributes are selected.

The main task of the language generation module is to
represent the attributes and analogies obtained from the
previous step as utterances. Inside the feature extraction
layer, the date of death of the character is retrieved from
his Wikipedia page to determine if he is still alive or not.
This information is further employed to conjugate the verbs
of the generated phrases (a riddle about a deceased person
is written in past tense). Some phrases require additional
information of the character to present a more elaborated
text, for this reason we obtain positive and negative adjec-
tives describing the character from the NOC list. Inside the
generation layer, we convert features and analogies to text.
For this task we employ three different types of phrasal tem-
plates: introductory templates (see table 2), clue templates
(see table 3), and final question templates (see table 4).

For the clue templates, several attributes are available for
the system to select one of them. The list includes clothing,
opponent, opponent activity, married partner, typical activ-
ity, vehicle and country.

Every template consists of three different types of
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Type Template
First person I
Third person Tell me the name of a person that

Table 2: Sample introductory templates

Feature type Template
Group affiliation -be/VB the <char2> of <group1>
analogy -could have belonged to <group2>,

but do/VB not
-be/VB like <char2> but be/VB
not part of <group2>

Fictional world -be/VB similar to someone in
analogy <world2>

-be/VB the <char2> of <world1>
Profession -be/VB <value>
attribute -be/VB <value>, <pos_adj>

yet <neg_adj>
Opponent -do/VB not like <value>
attribute -be/VB definitely not a

close friend of <value>
Hyperonym -be/VB known as <value>
attribute -be/VB <value>, <pos_adj>

yet <neg_adj>
Clothes -have/VB been seen wearing

<value>

Table 3: Sample clue templates

elements: words, verbs (marked with the tag VB), and slots
(<slotfiller>). The verbs are conjugated in accordance
with the type of template depicted for the introductory
phrase. Afterwards, the attributes and analogies selected
in the previous module are converted to text by replacing
the slot fillers of the selected template with the values
associated to the attributes and analogies. To conclude,
the final question template is selected in accordance to the
introductory-phrase template. Once the three phrases are
generated in natural language, they are chunked as a riddle.

The last module tweets the generated riddle to open a new
contest. To determine who wins a contest, we obtain a list
of aliases for the character from his Wikipedia page. Every
time a follower replies a riddle, his answer is obtained to be
compared against each of the available aliases for the char-
acter, and if one of them matches, the contest is declared
finished and a Tweet is published to point out the winner; if
none of the aliases match, a reply to the owner is sent stating
that the answer was not accurate, and the contest continues.
If, after several hours, the riddle had no correct answer, a
Tweet exposing the celebrity is sent, and a new contest be-
gins.

Example of a riddle

Now, we show how to generate a riddle about ‘The Joker’.
Once the character selection module finishes, several at-
tributes are obtained for the character from a variety of
sources (see Table 5).

Type Template
First person Who might I be?
Third person Who is this?

Table 4: Sample final question templates

Type Value
Hypernym ‘maniac’, ‘madman’, ‘criminal’
Group affiliation ‘The Dark Knight Rises’
Clothes ‘a purple topcoat’,

‘a green wig’
Pos. adjectives ‘playful’, ‘witty’, ‘flamboyant’,

‘cunning’, ‘brilliant’, ‘creative’
Neg. adjectives ‘maniacal’, ‘cruel’, ‘sadistic’,

‘inhuman’

Table 5: Sample attribute and analogy values for ‘The Joker’

From the available attributes, a subset of three traits is
selected (for this example, group, profession, and clothes),
and their corresponding values are sent to the analogy mod-
ule. If one of the attributes is suitable to generate analogies,
the process initiates. In this case, the group attribute is used
to create an analogy. We look inside the knowledge base for
characters who share a hypernym (see Table 6).

Character Group affiliation
‘Fagin’ ‘Oliver Twist’
‘John Dillinger’ ‘Public Enemies’
‘Fredo Corleone’ ‘The Godfather’
‘Snake Plissken’ ‘Escape From New York’
‘Morpheus’ ‘The Matrix’

Table 6: Characters sharing a hypernym with ‘The Joker’

With the information obtained from the previous steps,
we randomly select an analogy template (<char1>: like
<char2> in <group1>), and it is encapsulated, with the
rest of the values for the natural language generation.
Here, an introductory template is selected (‘Tell me the
name of a person that’), three clue templates are selected,
one for each of the attributes or analogies employed, and
a final question template is retrieved as well (‘Who is this?’).

The clue template for group is (be/VB the <char2> of
<group1>), for hypernym is (be/VB <value>, <pos_adj>
yet <neg_adj>), and for clothes is (have/VB been seen
wearing <value>). If several values are available for an
attribute, one of the is randomly picked to replace the empty
slot.

Finally, we create the riddle by chunking the three tem-
plates where its slots are replaced with the corresponding
values:

Tell me the name of a person that is the Morpheus of
The Dark Knight Rises, is criminal, playful yet cruel,
has been seen wearing a purple topcoat. Who is this?
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Model evaluation

As described above, we save all the posted riddles and their
metadata (number of retweets, favorites, answers, etc.) in
a database. The metadata could be used for the evaluation
of the model if we assume that a riddle with more wrong
answers is harder or that a riddle with a lot of favorites is
better. Unfortunately, our bot is not popular enough yet, so
there is very little interaction. Here are some numbers to
give you an idea. At the time of writing (April 29th 2015),
our bot has 57 followers. Since February 2nd 2015 (date of
implementation of the database) 285 riddles were posted.
Ten different users gave correct answers to 34 riddles in
total.

So we decided to perform a different evaluation. We
asked 86 people to each evaluate five riddles. We first asked
the participants to guess the answer to the riddle. Then,
we presented the correct answer and asked if they knew
the person in question. The participant indicated whether
he considered the quality of the riddle satisfactory and, if
negative, gave us the reason why it wasn’t good.

Figure 2 shows the percentage of correct answers
(15.58%), and the number of known celebrities (54.19%)
once the correct answer was presented.

Figure 2: Results for correct answers and good descriptions

Figure 3 shows the number of riddles considered to have
accurate descriptions of the characters (41.86%). When that
was not the case, the main reason chosen was that the de-
scription was too vague (36.51%). Among the additional
reasons given, the most recurrent was that the character was
already dead and the riddle was written in present (< 1%).

Finally, we present here the top 5 answered riddles,
according to the number of times they appeared and the
number of correct answers given to them.

Tell me the name of a person that can be found in UK,
enjoys robbing from the rich, likes wearing a feathered cap.
(Answer: Robin Hood).

Who is a creator, can be found in Italy, wears a paint-
stained smock? (Answer: Michelangelo).

Figure 3: Results about the accuracy of the description

Who is a creative professional, pretty yet superficial,
can be found in USA, enjoys monetizing celebrity status?
(Answer: Paris Hilton).

Who is a religious leader, loves spreading Christianity,
likes wearing sandals? (Answer: Jesus Christ).

Who is the Hermione Granger of The Simpsons, wears
an orange dress, is the Timothy McGee of The Simpsons
Family? (Answer: Lisa Simpson).

Discussion and future development

Relevant results were obtained from applying the question-
naire. The percentage of known celebrities once the answer
was presented (54.19%) indicates that the process for the
selection of celebrities should be improved. From this
result we realised that almost half of the riddles could not
be correctly answered because people did not have enough
information about the character. One reason for this result is
that owners of the NOC list (the main source for celebrities)
and the riddlees were from different countries, and they did
not have enough information in common.

The percentage of good descriptions of the celebrities
(41.86%) represents our curation coefficient (the ratio of
good outputs to all outputs), and the major cause for our
descriptions to be considered wrong was its vagueness. This
indicates that further work must be done to improve the
interestingness of our riddles (the description of a character
with relevant attributes, but without excessive information
to be easily guessed). Thereby, additional mechanisms to
determine the number of traits to incorporate to a riddle
based on its relevance, might prevent descriptions from
being too vague.

The low number of correct answers (15.58%) suggests
that the complexity of the generated riddles is high. Nev-
ertheless, by improving the character and trait selection
processes will mitigate this problem.
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In general terms, the current version of the system still
lacks selection mechanisms relying on informed decisions.
For instance, the character selection process randomly
picks a celebrity from a list; the feature selection randomly
chooses three character traits, despite of the final evaluation
which determines whether they are good enough or not
to continue with the process; most of the templates are
randomly picked as well, and the values replacing the empty
slots in such templates follow the same track. We consider
that transforming as many random selections as possible
into informed decisions will contribute in an overall incre-
ment of the final quality of the outputs generated by our
bot, and will provide our model of additional traits for it to
be considered creative. A key aspect to distinguish simple
generation from creative generation is the curation coeffi-
cient in the outputs. To increase the number of high-quality
riddles generated by our system several improvements will
take place in the next release of the system.

The work presented here is a first step in building up a
robust, Twitter bot that can be considered creative. For the
next release we still need to improve several aspects related
to intermediate output validation, and mechanisms for the
automatic expansion of the current knowledge bases utilized
by the system.

Despite the fact that several knowledge bases such as
Conceptnet (Liu and Singh 2004) or Facebook, are not part
of the project yet, the current version of the system al-
ready contains fully working mechanisms for information
retrieval, and is still pending to exploit this information to
generate more interesting, high quality riddles.

Conclusions

We have described a computational model to generate
riddles about celebrities. It consists of modules to select
a celebrity, to retrieve relevant traits to describe him, to
generate analogies between his attributes and convert such
descriptions into utterances, and to tweet the generated
riddle and interact with Twitter users by evaluating their
answers. The model presents a subdivision of each module
in layers. The first layer is responsible for all the data
extraction processes; the second, for processing of the infor-
mation retrieved; the last, for the evaluation and validation
of the generated outputs. We consider this layered approach
relevant because it provides tools to enrich the intermediate
outputs of every module. It contemplates the retrieval of
additional information, when required, and the validation
of intermediate results to achieve a higher quality in the
outputs. We present an implementation of our model in a
Twitter bot named ‘TheRiddlerBot’. Herein, we introduce
several difficulties emerging from reifying our model, such
as gathering character traits, generating analogies, and
generating natural language utterances.

We consider ‘TheRiddlerBot’ as a creative agent accord-
ing to the following considerations. If we describe a creative
bot in terms of its capability to deal with poorly-structured
knowledge to generate something interesting and novel,

we have provided our system with such capabilities. Some
authors on the field consider as essential properties for
an artifact to be considered creative, novelty, quality and
typicality of its outputs (Ritchie 2007). Although similar
riddles can be found widespread over the literature, we
consider that our system generates novel outputs since the
traits employed by our implementation, considering the
incorporation of analogies, make them rare to replicate. We
still need to implement direct and indirect evaluations for
the overall quality of the riddles, but we have sketched in
this document several validation mechanisms to ensure the
overall quality of our outputs. According to our definition
of a riddle, questions to encourage readers to assert the
name of a famous character, we argue that our outputs are
typical examples of this type of queries.

According to Pérez y Pérez (2013, 2014), any output must
be presented in a correct manner (coherence), generate new
knowledge to the reader (interesting), and be considered new
(novelty) to be creative. We verify the coherence of our
riddles particularly in two stages: the analogy and natu-
ral language generation models. The analogy and phrasal
templates provide the system with well-formed structures to
generate complex attributes of a riddle (analogies), and to
generate readable phrases written in natural language. Dur-
ing the evaluation layer at every module, we validate the
novelty of our riddles, since at every stage of the process
we ensure that the intermediate outputs have not been pre-
viously utilized. Our system considers a riddle to be inter-
esting looking for the traits to describe a character at his
Wikipedia page, and also detecting that we have not utilized
the same subset on previous riddles. The first validation
gives us clues about the relevance of the traits. If the reader
does not know all the presented information, he will be ca-
pable of learning new qualitites of a celebrity. The second
validation lets the system be certain of the uniqueness of the
employed traits.
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