
 
 

Preconceptual Creativity 

Tapio Takala 
Department  of Computer Science 

Aalto University, Finland 
tapio.takala@aalto.fi 

 
Abstract 

Creativity, whether seen in personal or historical scope, 
is always relative, subject to the contextual expectations 
of an observer. From the point of view of a creative 
agent, such expectations can be seen as soft constraints 
that must be violated in order to be deemed as creative. 
In the present work, learned conventions are modeled 
as emergent activity clusters (pre-concepts) in a self-
organizing memory. That is used as a framework to 
model such phenomena as stereotypical categorization 
and mental inertia which restrain the mind when search-
ing for new solutions. Using the kinematics of a robotic 
hand as an example, the models' dynamic behavior 
demonstrates primitive creativity without symbolic rea-
soning. The model suggests cognitive mechanisms that 
potentially explain how expectations are formed and 
under which conditions an agent is able to break out of 
them and surprise itself. 

 Creativity is in the Eye of Beholder 
Creativity is a concept that defies exact definition. The 
commonly accepted view that creativity is a process result-
ing in novel and useful products (Mumford 2003) appears 
to be loose, because in the strict sense even a slightest 
modification would make the product novel. Another often 
cited definition is by Newell et al. (1959) who generously 
view it as a problem-solving process presenting one or 
more of the following: novelty and value, unconventional 
thinking, high motivation, and ill-defined problems. They 
continue by admitting that no more specific criteria can be 
set for separating creative from non-creative thought pro-
cesses. 
 Surprise, more or less as a synonym of unconventional 
or unexpected, is often considered a necessary condition 
for creativity (e.g. Boden 1990). However, it may be diffi-
cult to distinguish unconventional from mere novelty, as it 
depends on the observers' subjective experience and con-
ventions. Moreover, novelty is a moving target: once an 
invention is made it becomes legacy – unless it is forgotten 
and may be reinvented. Like Grace and Maher (2014), we 
conclude that creativity is in the eye of beholder, and can-
not be defined objectively. 
 To get a grasp of the relative nature of creativity we 
adapt the generate-and-verify model by Newell et al. 
(1959) into variable scopes (Fig.1). The products of a gen-

erator (G) passing the evaluation (E) on one level are used 
as input to evaluation on the next level. A person using 
computer as a generator (Gp) may find designs passing her 
evaluation criteria (Ep), but while showing these to others 
she (together with her computer) acts as a generator (Gh) 
for the society where others collectively act as evaluators 
(Eh). 
 On the societal level creativity appears to be a statistical 
concept formed by opinions of the population under study. 
Czickszenmihaly (1997) studied individuals (Gh) with a 
reputation of being creative. Maher et al. (2013) studied 
the evaluation (Eh) with a temporal regression model of car 
designs, where outliers have higher potential for surprise 
and creativity. 
 In this paper we concentrate on the personal level (P-
creativity), trying to computationally model some of the 
phenomena happening in a person's mind when a creative 
moment is encountered. In this respect the generative pro-
cess is not in our focus. Although various control strategies 
(analogy, negation, metaphors, etc.) can make it more effi-
cient and interesting, it may as well be a black box. Essen-
tial for creativity is the evaluation process, which recog-
nizes value and novelty in products of the generator. It 
becomes surprised if something unexpected is produced, 
i.e. if  its expectations are violated. 

 
Figure 1. Context defines the expectations (E) against which the 
creativity of a generative process (G) is evaluated (from Takala, 
2005). 
 
 What are the expectations then? They can be understood 
as constraints on the product (or process): what it should or 
is assumed to be (or how it is assumed to be done). They 
may be hard (defining the domain), such as laws of nature 
and logic or explicit rules of a game, but they can also be 
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soft (acquired) constraints: habits, conventions, manners, 
fashion, social norms, political correctness, etc. These soft 
constraints are contextual and subject to consideration, 
applying in one situation but irrelevant in another. But they 
can be very hard in practice if based on psychological re-
pression. This may serve as an interpretation of Boden's 
expression that creativity produces "previously impossible 
ideas". An idée fixe, or design fixation (Jansson and Smith 
1991) may be the most common obstacle hindering creativ-
ity. Such soft constraints form the "box", out of which we 
are supposed to take a leap. 
 What makes creativity valuable is that it is a construc-
tive, sense-making act, not just anarchy that randomly de-
fies any rules without a purpose. The new act must in some 
(novel) way be regular and repeatable. Creativity is search 
for a constructive and consistent solution assuming some 
constraints but neglecting or modifying others. By and 
large, creativity is management of constraints for finding a 
resolution of conflicts among them. 
 Different degrees of creativity can be identified accord-
ing to the level of abstraction, or cognitive complexity: (1) 
Most trivial, though subjectively surprising, is the case 
when a solution is already known but happens not to be in 
the current scope of attention: "It just didn't come to my 
mind". (2) Some effort is required if the solution is not 
familiar as such but is potentially reachable by known 
methods or rules. Then essential is the selection of right 
starting points and methods to proceed with, while neglect-
ing the obvious ones that may distract the process. An ex-
ample of this is the need to backtrack in order to avoid an 
obstacle instead of stubbornly pushing straight towards a 
goal. (3) Yet a higher level comes if the solution is poten-
tially reachable within the hard constraints, but requires 
constructive actions on the metalevel, i.e. new rules or 
methods. (4) Finally, even if the product is actually not 
realizable, we may still act creatively by imagination, ne-
glecting the physical constraints. 
 The first two degrees, interpreting unexpectedness as 
changes in the scope of attention (relaxing soft constraints 
and that way releasing latent possibilities), are demonstrat-
ed below using a self-organizing memory as a model. The 
higher levels, requiring symbolic rules to be changed, are 
out of the scope of this paper. So is the sometimes required 
property that creativity should reflect itself, consciously 
recognizing that something novel and valuable has been 
formed. 

On Representations 
What can be done (consciously acted on) in problem solv-
ing, depends on its conceptual representation. This is an 
important research issue for cognitive science. The main 
bulk of AI research concentrates on the symbolic level, 
dealing with logic, language and inference rules. Another 
end is the subsymbolic sensory area, dealing with neural 
networks, associative memory and statistical inference. 
The well-known frame problem, or symbol grounding, 
calls for connections between the two. In the present work, 
we are not trying to fill the gap fully, but approach it from 

bottom up, demonstrating how primitive conceptual repre-
sentations possibly form from the embodied information. 
 As the enaction theory (Stewart et al 2011, Rosch et al. 
1992) assumes, regularities of the world are learned by 
receiving repeated stimuli and doing explorative actions. 
Conditioning and mimicking are two basic psychological 
principles facilitating this. Later, abstractions of experienc-
es form as subsymbolic concepts. They facilitate more ef-
ficient behavior as perceptions are immediately categorized 
into known classes that may trigger preprogrammed reac-
tions. 
 Such predefined reactions are of advantage in the world 
where things are quite predictable. A repeatedly adequate 
behavior gradually becomes the expected, a rule to be fol-
lowed. Novel reactions are necessary only if the conditions 
change – as the proverb says: "necessity is the mother of 
invention". From evolutionary perspective, however, it 
may also be of advantage to try out novelties even without 
a reason, to become prepared for changes. Such tendency 
is called curiosity, or creative personality. 
 In neural networks, the sensory information is modeled 
statistically as conditional distributions and associations. 
Connecting this to the higher cognitive processes has long 
been a challenge. Gärdenfors (2000) suggests conceptual 
spaces as a potential bridge between sensory and symbolic 
levels, a theory of concept formation on supersensory but 
subsymbolic level. The idea is to describe objects with 
their properties that act as dimensions of a geometric (met-
ric or topological) space. Individual objects are represented 
as points in this space, and their generalized conceptual 
representations as (convex) areas. Inspired by prototype 
theory (Rosch 1973) Gärdenfors suggests that natural cate-
gories may be represented as a Voronoi tessellation around 
central points representing stereotypical prototypes. This 
way the extensional (set of experienced samples) is con-
verted into a more efficient intensional (set of constraints) 
representation. 
 In this paper, a somewhat similar framework is built, 
though not relying on a geometric feature space like 
Gärdenfors (2000) and Chella et al. (2014), but letting the 
neural cells of a self-organizing network to serve as repre-
sentative samples of the sensory input. Concepts are not 
formed explicitly but just as (dynamic) clusters of similar 
cells. Thus we call it preconceptual, resembling the devel-
opment stage of mind before actual conceptual thinking, in 
which sensorimotor activity predominates. Pylyshin (2001) 
uses the term in a compatible manner to describe situated 
vision, referring to objects that are identified but not de-
fined by their properties. The idea also closely relates to 
'proto-symbols' by Brooks and Stein (1994), who use the 
term for patterns of behavior that represent generalizations 
but appear rather as signals than formal symbols. Creativi-
ty is then demonstrated in primitive form, i.e. problem 
solving and conflict management using implicit concepts 
without symbols (Brooks 1991). 
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Implementation with Self-Organizing Map 
 
The computational framework we use is based on the Self-
Organizing Map (SOM) by Kohonen (2001). It is a widely 
used clustering device in pattern recognition and data anal-
ysis. As a biologically motivated neural network it is an 
interesting model for cognitive science. It has been sug-
gested by Gärdenfors (2000) as a means of implementing 
conceptual spaces, though his approach is rather program-
matic than an actual implementation. 
 The SOM is a neural network consisting of an array of 
cells connected to a vector of input values (Fig.2). The 
connection weights wij of a cell are initially random but are 
changed as follows: Given an input vector x, the cell with 
best matching weight vector wj is selected, and its weights 
are tuned towards the input values. A similar tuning is also 
done in its neighbor cells.  
 

… 

… 
wij 

xi 

 
 

Fig. 2: The principle of SOM. Input vector X is compared with 
weight vectors Wj of the cells. The best matching unit is selected 
and its weight vector tuned towards the input in the training 
phase. As associative memory, SOM returns Wj as output in re-
sponse to partial input (an example: active elements emphasized). 
 
 With a large number of input samples, the network or-
ganizes itself by unsupervised machine learning instead of 
using explicitly given concepts. Effectively it builds a 
model of the training input's statistical distribution, such 
that each cell represents a collection (a vector) of associat-
ed input values, and the number of cells with similar values 
reflects the density of those value combinations in the in-
put. Usually SOM is implemented with low-dimensional 
topology (typically a regular 2-D array), and becomes 
folded if applied to higher dimensional input. An example 
is given in Figure 3. 
 

 
 
Fig. 3: One-dimensional SOM (chain of cells) trained with data 
from a 2-D distribution concentrated in the grey areas (cells are 
visualized in the input space in locations of their learned values). 
 
 In pattern recognition SOM is widely used as a classifi-
cation device. It tells efficiently if a given input vector be-

longs to one category or another. This helps in data com-
pression as complex input vectors can be quantized and 
represented with a smaller number of dimensions. 
 In SOM, similar cells emerge close to each other result-
ing in associations between a cell and its neighborhood. If 
there are concentrations in the input distribution, similar 
cells form clusters separated by dissimilar boundaries 
(Figs. 4a). 
 

 (a)   (b)   
 
Fig. 4: A two-dimensional SOM trained with RGB values of (a) 
discrete colors (b) flat color spectrum. Cell color shows its 
learned values, cell size indicates similarity with its neighbors. 
 
 As each cell represents a vector of correlated input val-
ues, the SOM can act as an associative memory. A partial 
input (i.e. the values given for some inputs, and the rest 
undefined) as a stimulus activates the cells according to 
their similarity with the defined inputs. As result we get for 
each cell the probability of its value vector to become the 
output. Then we select the cell best matching the partial 
input, and take its weight vector as output (see Fig.2). Ef-
fectively the associative memory would fill in the unde-
fined values by those from a cell selected by highest prob-
ability. Practical applications are found in image comple-
tion (Kohonen 2001), or information retrieval (Kohonen et 
al. 2000), for example. 
 The separable clusters (as in Fig. 4a) can be interpreted 
as primitive concept formation ("preconcepts"). When an 
input activates some cells, their similar neighbors are acti-
vated as well in the cluster. Then if the cluster were labeled 
with semantic information (such as color name), the input 
would be identified with that. The behavior resembles cat-
egorical perception in psychology (Goldstone and Hen-
drickson 2010) in the sense that the classification of any 
input within a cluster would get strong support by a group 
of cells, whereas an input falling to an area boundary 
would be in "unknown" territory where classification is 
unreliable. This coincides with the phenomenon in categor-
ical perception that stimuli near category boundaries are 
more difficult to identify than within categories. 
 It is not clear if the human perceptual categories are in-
dependent of symbolic concepts, nor if they are presented 
by stereotypical prototypes or area boundaries. We hypoth-
esize that it is possible to form concepts without higher 
level semantics, if such identifiable areas emerge. Such 
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does not happen if the input distribution is flat without 
statistical foci (Fig. 4b). 

A Case Study 
In this section, we show how an associative SOM can be 
used to solve the control problem of a kinematic hand,  and 
demonstrate preconceptual creative behavior in that con-
text. 

Setting the Scene 
An articulated kinematic hand mechanism consists of a set 
of links connected at rotational joints to make a chain. In 
our case there are two such links (Fig. 5). Using the two 
joint angles (α and β) as motoric controls, the hand can 
reach points in the (x, y) plane within an area delimited by 
its physical constraints (i.e. the allowed ranges of control 
angles, and possible other geometric obstacles). The hand 
position can easily be calculated by trigonometry from the 
angles and lengths of the joined links, whereas the inverse 
is non-trivial. This inverse kinematics (IK) problem, find-
ing control values for angles, given a target position, is 
generally a hard problem without analytical solution. A 
simple solution exists for our case with only two degrees of 
freedom, but it is still interesting due to its non-linearity 
(including singularities), physical constraints, and non-
uniqueness of the solution: the same point can be reached 
by left or right handed configuration (negative or positive 
values of β, respectively). 

x 

y 

α 

β 

(x,y) 

 
Fig. 5: Kinematics of a robotic hand 
 
 Among many other techniques, feed-forward neural 
networks have been proposed to solve the IK problem by 
training the system with random samples from the configu-
ration space (e.g. Duka 2013). In case the problem is un-
der-constrained (i.e. the robot has redundant degrees of 
freedom), sampling can be utilized to satisfy additional 
goals, such as moving in a certain style. Wiley and Hahn 
(1997) propose building from the given positions a 
resampled grid that serves as a geometric index, out of 
which the final angle-target combinations are calculated by 
interpolation. Our approach is similar to both of these in 
the sense that a neural network is trained to form a grid-
like index, from which candidate starting points are select-
ed for final approach to the target. 
 Let us assume our humanoid robot has two hands with 
their physical limits (hard constraints) similar to those of 

the human left and right hand. Each hand is trained to work 
in its most natural area (left/right in front of the base) as in 
Fig. 6a. The system is implemented in one SOM with two 
inputs for hand position (x, y), two for joint angles (α, β), 
and one (binary) input for handedness. Then clusters auto-
matically form in SOM corresponding to left and right 
handed operation (Fig 6b). Their actual shape is random, 
sometimes bifurcated or consisting of multiple foci, but the 
areas are clearly identifiable. The clusters are separated by 
a boundary where the cells are less similar with their 
neighbors (shown in yellow). 
 

(a)     
 

(b) 

α β x y L/R 

 
 
Fig. 6: Training areas of hands (L=green, R=red) in the experi-
ment. a) in robot space, b) as clusters formed in SOM. Two sam-
ple positions shown: white cells in SOM and the corresponding 
left (solid) and right (shadowed) hand positions. 
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 The IK problem is solved by association, taking the tar-
get's coordinates as partial input, finding the cell(s) that 
best matches with it, and returning its weight values for the 
missing inputs (the control angles α and β): 
 

ƒ: (x, y, ?, ?)  ⟶  (x',y', α,β) 
 
Although the result as such is not exact, it provides a good 
starting point for an iterative final approach. The move-
ment direction needed in the iteration phase can be esti-
mated from the cell's neighborhood by differentiation (ap-
proximating the Jacobian of parameters). This is a common 
strategy with actual robots and well grounded by biological 
action where proprioceptive memory and motor programs 
(Keele 1968) quickly lead to approximately right position 
and the final approach is done with the help of sensory 
feedback. In our implementation this phase is computed 

explicitly, but the Jacobian differentials could as well be 
learned by the SOM, if continuous movements instead of 
random positions were used in the training phase. 
 Targets within the trained areas are easily reached with 
the method above, and if the target is not too far out from 
the trained area, it usually can be reached from the closest 
starting point by the final iteration (Fig. 7a). 

Acting Creatively 
Now let us take a challenge where the simple approach 
does not work, by setting the target in a place not reachable 
from the closest point by direct iteration. This may be 
caused by a limitation of the mechanism itself or happen 
due to a physical obstacle (such as the box wall in Fig. 7c). 
Then the final approach gets stuck and we need to find a 
new starting point. 

 

 (a)     (c)    
 

  (b)      (d)    
 
Fig. 7: Creativity in search for IK solutions. (a) target point reachable with left hand (final iterative approach shown as a sequence of red 
dots), (b) SOM cell (white circle), found in a recently active cluster (pink), defines the starting point for approach, (c) target appears im-
possible for the left hand due to the wall obstacle at its "elbow" (shadowed), but a new starting point feasible for the right hand is found 
(solid), (d) corresponding activity in SOM, where the previous starting point is surrounded by negative feedback effect (blue) due to unsuc-
cessful trials, and the new point gets positive feedback (pink) which propagates to neighboring cells. 
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 Though in principle any starting point could be consid-
ered as a new candidate, a random search is not very effec-
tive. Even if a cell's probability to be selected is weighted 
by its correlation with the input, a random method would 
mostly suggest candidates near the one which already lead 
to a dead end. The obvious engineering solution, trying out 
all candidate points in successive order, is not suitable here 
because sorting would call for higher level conceptual 
thinking and a different memory organization. We do not 
want to give the system any ready-made domain specific 
heuristics either, but want it to rely on very generic princi-
ples. As such an approach we utilize supervised reinforce-
ment learning with a short-term memory (STM).  
 We implemented a distributed STM as an additional 
variable in each cell. It modulates the cell's probability to 
be selected as candidate for a trial. Its value would be in-
creased by positive feedback from a successful case and 
decreased if the trial fails. Following the self-organization 
principles, these changes are also propagated to the cell's 
neighborhood but only among similar cells. To keep the 
operation dynamic, both positive and negative effects are 
gradually faded, possibly with different time constants. 
 The system's behavior now depends on its short-term 
history, its sensitivity to feedback, and the relative time 
constants. Let us assume the robot has operated for a while 
with targets in the left-hand area. Then the cells in the cor-
responding cluster(s) have been activated a lot, and due to 
positive feedback their probability to be selected again is 
high (pink color in Fig. 7a-b). When the target moves to a 
near but unreachable position (Fig 7c), the same cells con-
tinue to be activated as candidates, but a failure to reach 
the goal from one starting point will make the probability 
of that cell (and its close neighborhood) low. However, 
because of recent positive activity, the search will still con-
tinue with other cells in the same cluster. Then the further 
course of action is determined by the system's history and 
parameters as follows. 
 If a cluster's temporal activity is high (due to operating 
long in that area) and fading slower than the effects of neg-
ative feedback, the system will continue search within the 
same cluster despite of being unsuccessful. This corre-
sponds to mental inertia, the tendency to keep on temporal 
preferences, i.e. the agent's expectation that a recently use-
ful concept will continue to be so, an idée fixe. 
 However, if the negative feedback is more persistent and 
eventually dominates the whole cluster (indicated by blue 
color in Fig 7d), then a cell in some other cluster (probably 
one with next best correlation with the target) gets highest 
probability and will be taken as starting point for a trial. If 
it does not succeed, negative feedback will make its neigh-
borhood less probable and the search continues somewhere 
else. Effectively this would implicitly perform an ordered 
search, though without explicit sorting. 
 Once a successful case is found (possibly requiring itera-
tive final approach as in Fig. 7c), it will get positive feed-
back which is diffused to its neighbors in the same cluster, 
too (pink color in Fig. 7d). If the agent's operation contin-
ues with further targets nearby, this neighborhood will 

provide successful candidates again, and eventually the 
cluster becomes predominant: a primitive paradigm shift 
has happened, heureka! 

Analysis of system behavior 
We can evaluate the system theoretically and get the fol-
lowing qualitative observations, also confirmed by experi-
ments with different parameters and test conditions. 
 In the above case, the creative leap was required because 
the left hand was unable to continue operation due to a 
constraint. Had the system a different history, with the 
right hand recently used before going to the new target, the 
new solution would have been obvious because of the pre-
dominant right hand: no creative moment, nothing unex-
pected, although new compared to what had been learned 
and stored in the long term memory (SOM). This is in 
alignment with the general observation that mental fluidity 
is induced by pressures (Hofstadter and Mitchell 1995) and 
may not happen otherwise. 
 Sticking with recently used behavior and building ex-
pectations is necessary for the system to act creatively, but 
it is not sufficient alone. Without negative feedback from 
an unsuccessful trial the system will keep trying the same 
over and over without getting anywhere.  
 Without any (positive or negative) feedback the system 
looses its temporal properties and reacts always the same 
way in a given situation, governed by the associative 
memory alone. 
 An interesting situation is encountered if we neglect the 
positive feedback but keep the negative. This leads to an 
"anti-sticking" behavior: once a cell has been used, neither 
it nor its close neighbors will be used for the next trial, but 
something loosely associated with the input. As the effect 
of negative feedback gradually fades away, the system may 
return to this cell if its association to the input is high, but 
only temporarily, and then jump to another cell. Overall, 
this resembles divergent thinking: variable alternatives are 
tried out, not randomly but guided by associations. 
 In our case study the robot's handedness was given as an 
explicit input feature to the SOM. This makes a clear dis-
tinction between clusters corresponding to left and right 
handed operation, respectively. However, this feature ap-
pears to be unnecessary, as similar behavior may emerge 
anyway if there only are two or more separate clusters 
formed from the distribution of input value combinations. 
 The ability to act creatively depends on the problem 
domain and its representation: if there are local optima 
where one may get stuck, there is a possibility for radical 
moves – otherwise a too simple route may lead to the solu-
tion. In this respect our system can be compared with op-
timization: Gradient search is a sticky strategy correspond-
ing to the case with positive feedback only. Parallel search 
methods, such as genetic algorithms and simulated anneal-
ing, may lead to unexpected solutions, though in their basic 
form they have no such concept as surprise. However, the 
'temperature' that makes simulated annealing process to 
look for more random options may well be compared to the 
negative feedback in our system. 
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Discussion 
Different degrees of creativity, as mentioned in the intro-
duction, can be demonstrated with our system. The case 
when a solution is already familiar (or reachable by itera-
tion) but "didn't come to my mind" is modeled if the recent 
history has built strong temporal preference for a subset of 
solutions. This manifests itself as the agent's "sticky" ten-
dency to sometimes utilize iterative approach from recently 
used starting points even if there were a better starting 
point stored in SOM, but this alternative is in a different 
cluster. 
 The more interesting case, target reachable within hard 
constraints but outside the most obvious trained area, is 
demonstrated when starting to use the other hand after try-
ing and failing with one (as in Fig. 7). This can be inter-
preted as transformational creativity on preconceptual lev-
el, a change in the predominant cluster (rule) used in the 
agent's operation. It involves relaxation of soft constraints 
(giving up accustomed solutions), an essential property of 
creativity. 
 Whether this should be called creativity, may be an ar-
guable question. Hristovski et al. (2011) have studied a 
similar situation of limb movements in the context of box-
ing. On the one hand, they state that any novel movement 
that has not been performed previously by an individual 
can be considered a P-creative act. On the other hand, they 
note that movement system bistability yields too much 
predictable behavior to account for creativity. Our case 
may be interpreted as the latter due to the binary choice of 
left or right hand in any situation, or the former because the 
exact hand movement is not predictable. A deeper analysis 
of the system's dynamics may be needed to take a stance. 
 Although our model shows qualitative changes in the 
robot's dynamical behavior, it is missing temporal anticipa-
tion, which could be utilized for creative planning of ac-
tions. The implementation as such does not support reason-
ing about an action's consequences that would be needed 
for goal-oriented behavior and higher-level expectations 
(Lorini and Falcone 2005). However, similar techniques 
might be used for learning temporal associations as well, 
thus making it a platform for further development. 
 Lorini and Falcone (2005) used formal logic to describe 
expectations and surprise in symbolic domain. At the other 
end of the scale, specific neural assemblies have been 
found that correspond to these phenomena in visual cogni-
tion (Egner et al. 2009). This suggests that a neural net-
work model may be feasible. Gabora (2010) presents a 
schematized associative memory where neural cliques are 
alternatingly recruited for analytic and associative modes 
of thought, which is supposed to be essential for creativity. 
The model does not consider expectations and surprise, nor 
computational implementation, but the activation function 
of neurons may be comparable to our feedback mecha-
nism. 
 The Copycat system (Hofstadter and Mitchell 1994) has 
a somewhat similar feedback mechanism as our STM. Its 

global 'temperature' and the 'unhappiness' of objects serve 
as measures controlling the random choices that facilitate 
unexpected behavior. The main differences are that it 
works on textual objects instead of continuous signals, and  
its architecture is based on a crowd of heterogeneous 
codelets instead of neural networks. The latter feature 
makes it more reminiscent to Brooks' robots. 
 Relaxation of hard constraints, e.g. leaving the physical 
space and thinking in another context by analogy or meta-
phor, would call for higher level conceptual models than 
neural networks, and is out of the scope of this paper. The 
same applies to reflective thinking. Our poor system itself 
does not recognize creativity, though it may be possible to 
detect it from the abrupt changes happening in the STM 
values during a creative leap. 
 Had the system a measure of cumulative effort used be-
fore a successful trial, or about the time spent without a 
goal at all, it could model the emotional frustration and 
boredom that are supposed to control creative behavior on 
a higher level. In previous work (Takala 2005) these were 
used to control the recruitment of alternative methods to 
solve given problems. Combining the mechanisms with the 
present work may result in interesting behaviors. 
 Our general approach follows much that suggested in 
robotics (Brooks 1991, Brooks and Stein 1994). Although 
the current implementation is based on a single neural net-
work, and a multilevel hierarchical organization of several 
SOMs may be possible, a more heterogeneous architecture 
may also be due.  

Conclusion 
This work emphasizes the contextual nature of creativity, 
culminating to expectations and their role as soft con-
straints that must be violated in order to find novel and 
surprising solutions to problems. Concentrating on the pre-
conceptual level of cognition, it contributes to an area rare-
ly touched in previous works. 
 A computational model is presented that implements a 
primitive form of creativity, which may serve as a basis for 
further development. Autonomous formation of conceptual 
spaces is demonstrated with the self-organizing memory, 
and a learning mechanism proposed that simulates the 
temporary preferences typical in idea fixations. Though our 
example case is about kinematics, the model is domain 
independent and may be applied in many different areas. 
 The creativity model proposed in this paper is based on 
various ideas that are not novel as such but presented in 
multiple previous works. The main contribution appears to 
be the implementation where a self-organizing neural net-
work is combined with control mechanisms usually applied 
on the symbolic level. Our system is not using predefined 
heuristics or encoded algorithms but applies generic learn-
ing principles to form (pre)concepts, on which the feed-
back mechanism operates. 
 A theoretical conclusion is that creativity cannot happen 
just anywhere, but requires certain conditions: In order to 
be surprising, the situation should involve expectations, or 
temporary preferences, that are violated in a creative act. If 
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the system acts in a continuous parametric domain, such as 
movement, the setting (or its representation) should be 
non-monotonic, such that the system may get stuck in a 
local optimum. Yet another condition, though mostly over-
looked in the present work, is motivation. If the problems 
to be solved are given from outside, the system acts in a 
slave mode, whereas a truly creative mind would be curi-
ous and willing to set problems, not just to solve them. 
 An immediate future work is to study the proposed 
mechanism in more complicated cases, such as a real ro-
bot, taking into account physical continuity of movement 
and not only static positions. Another extension is to facili-
tate explorative creativity by letting the robot move ran-
domly around and learn continuously. Long term goals 
include developing the proposed approach towards higher-
level cognition and conceptual thinking, including analogi-
cal reasoning and emotional self-control. 
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