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Abstract

Imagination is considered an important component of the cre-
ative process, and many psychologists agree that imagina-
tion is based on our perceptions, experiences, and concep-
tual knowledge, recombining them into novel ideas and im-
pressions never before experienced. As an attempt to model
this account of imagination, we introduce the Associative
Conceptual Imagination (ACI) framework that uses associa-
tive memory models in conjunction with vector space mod-
els. ACI is a framework for learning conceptual knowledge
and then learning associations between those concepts and
artifacts, which facilitates imagining and then creating new
and interesting artifacts. We discuss the implications of this
framework, its creative potential, and possible ways to imple-
ment it in practice. We then demonstrate an initial prototype
that can imagine and then generate simple images.

Introduction

The concept of imagination is not often talked about in
cognitive psychology without reference to creativity (Gaut
2003; Vygotsky 2004). In fact, the term ‘imaginative’ is
many times used as a synonym for ‘creative’. Defining
imagination, like creativity, is difficult because the word
is used broadly and depends on the audience, the level of
granularity, and the context (Stevenson 2003). In cogni-
tive psychology, imagination is commonly generalized as
thinking of something (real or not) that is not present to the
senses (Beaney 2005). In terms of creativity, it is being able
to conceive of and conceptualize novel ideas. Imagination,
thus it seems, should be an important consideration when
developing creative systems.

In the field of computational creativity, imagination is dis-
cussed explicitly only on rare occasions, such as Colton’s
creative tripod (2008). Most creative systems incorporate
imagination implicitly and do not model it directly. In this
paper, we propose a computational framework that attempts
to explicitly model imagination in order to perform cre-
ative tasks. Our framework, called the Associative Concep-
tual Imagination (ACI) framework, uses associative mem-
ory models (AMMs) combined with vector space models
(VSMs) to enable the system to imagine and then create
novel and interesting artifacts.

We begin by looking more closely at the psychology lit-
erature in order to establish a cognitive basis for imagina-

tion, which will motivate the design of our framework. We
then consider how current computational models of creativ-
ity both succeed and fail at addressing imagination. We
then outline in detail the ACI framework for imagination and
demonstrate an initial implementation (proof-of-concept) in
the domain of visual art. Finally, we discuss the possibilities
this framework can afford us in building creative systems
and talk about questions regarding its application.

Psychology of Imagination

Imagination is ubiquitous in everyday life. We can visu-
ally imagine a world described through narrative, or imagine
how to get to the grocery store, or imagine what it would be
like to be a celebrity. We can imagine what a lion crossed
with an eagle could look like, or imagine new ways to ex-
press meaning through art. Although most often thought
of as visualizing in the mind, we can imagine in conjunc-
tion with any of our senses. Indeed, we can talk about
imagination across the whole range of human experience.
Imagination is a broad term with many different taxonomies
and ways to interpret it. We restrict our view to two major
types of imagination that are commonly used by psycholo-
gists (Currie and Ravenscroft 2002).

The first type of imagination is sensory (or reproductive)
imagination. This is mentally recalling past experience,
which is directly related to our memories. For example, one
can imagine what their favorite food tastes like without ac-
tually tasting the food, or imagine their mother’s face when
she is not present, or imagine an annoying song that is stuck
in one’s head. This type of imagination can be thought of as
creative in the sense of recreating in one’s mind a previous
experience.

The second type of imagination is creative (or productive)
imagination. It is the ability to combine ideas in different
ways never before observed, or the ability to think about the
world from a different perspective than previously experi-
enced. For example, one can imagine what a hairy banana
monster could look like, or what life would be like if born
in another country, or imagine how to compose music that
is happy and uplifting. This type of imagination is more
clearly tied to creativity and some have argued that it forms
a necessary basis for creativity (Vygotsky 2004), while oth-
ers have argued that imagination is merely a tool used in the
creative process (Gaut 2003).
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Most psychologists agree that our senses, our conceptual
knowledge, and our memories form the bases of imagina-
tion (Beaney 2005; Barsalou 1999). As we perceive the
world and have experiences, we create memories by estab-
lishing and strengthening connections in our mind. These
connections form concepts, which are in turn intercon-
nected. Memories are often argued to be distributed and
content addressable across groups of neurons (Gabora and
Ranjan 2013). This means that multiple neurons respond
in varying strengths to certain experiences, different experi-
ences may activate overlapping neurons, and similar expe-
riences will have more overlapping neurons than dissimilar
experiences. This distributed memory allows the brain to
implicitly associate concepts and experiences together.

Thus we have associations between concepts (e.g., rain is
related to water) and between what we perceive and these
concepts (e.g., apples look round and are typically reddish
in color). Creative imagination cannot make something out
of nothing, nor is it random; everything we imagine is an-
chored to things we have actually experienced in the past
and on their connections (Vygotsky 2004). The novelty is
in combining these experiences in different ways. When a
chef imagines new recipes, she uses her knowledge of ex-
isting recipes, ingredients, methods, and kitchen tools. The
new recipe is essentially a recombination of this previous
information in a novel and (hopefully) delicious way.

A computational model of imagination should address the
abilities to perceive, to create memories, and to learn asso-
ciations between concepts. Such a model should then be
able to reconstruct this information (sensory imagination),
as well as recombine this information in novel ways to cre-
ate new and interesting things never before experienced (cre-
ative imagination).

Related Work

In accounting for creativity in computational systems,
Colton was one of the first to explicitly mention imagina-
tion as part of the creative process (2008). In order for a
system to have imagination, it should be able to produce ar-
tifacts that are novel. Others have mentioned imagination in
relation to a creative system that produces narratives (Zhu
and Harrell 2008).

A computational system that explicitly tries to model
imagination is SOILIE (Science Of Imagination Laboratory
Imagination Engine) (Breault et al. 2013). SOILIE main-
tains a large database of labeled images, and words are as-
sociated together when they appear as co-occurring labels.
For example, a picture of a face could be labeled with ‘face’,
‘ear’, ‘mouth’, etc. and the system learns to associate those
labels together. A word is given to the system which then
finds 5-10 associated words and creates a collage out of im-
ages that have been labeled with those associated words.
This system demonstrates a rudimentary form of sensory
imagination in which it tries to recreate an image of the in-
puted word. SOILIE is similar to one of the abilities of the
Painting Fool, which can extract key words from a text doc-
ument and create a collage by finding images of those key
words in a database (Krzeczkowska et al. 2010).

Creative imagination was partially demonstrated in a sys-
tem that used recurrent neural networks to produce melodies
according to a set of other melodies arranged on a 2D
plane (Todd 1992). Each of the melodies in the training
set were tied to a specific 2D location, and the model was
trained to reproduce each melody at their respective loca-
tions. After training, the system would be given a new lo-
cation on the 2D plane and could essentially interpolate a
new melody according to its proximity to the original set of
melodies. This is the beginnings of creative imagination in
that the system is blending melodies together according to
spacial proximity.

Imagination has been mentioned in conjunction with sys-
tems that perform conceptual blending to produce metaphors
and narratives (De Smedt 2013; Zhu and Harrell 2008;
Veale 2012). Conceptual blending is the process of taking
two input mental spaces (representing concepts) and mixing
them together to make a blended mental space that is novel,
meaningful, and has emergent structure (e.g., lightsaber is
a blend of sword and laser) (Fauconnier and Turner 1998).
Computational models of conceptual blending have been
used to produce narrative (Permar and Magerko 2013), po-
etry (Harrell 2005), and even mathematical axioms (Mar-
tinez et al. 2011).

Conceptual blending certainly has potential for imagina-
tion as it explicitly attempts to blend conceptual knowledge
into novel ideas. Although there are still many technical
challenges in autonomously blending input spaces, concep-
tual blending does seem to address creative imagination.
Unfortunately, most implementations do not consider sen-
sory information and the input spaces are typically hand en-
gineered, so the system does not learn from experience and
cannot imagine sensory type artifacts. However, one com-
putational system does try to implement conceptual blend-
ing with images (Steinbriick 2013). The system takes two
pictures that each represent a concept and blends them by
extracting commonly shaped objects in one image and past-
ing them over similarly shaped objects in the other image
(e.g., a globe in one image is pasted over a bicycle tire in
another image).

Evolutionary computation is a common method incor-
porated into creative systems because of its innate ability
to yield unpredictable yet acceptable results (Gero 1996).
Indeed, evolutionary computation seems to at least par-
tially model creative imagination in that it recombines and
modifies existing artifacts through crossover/mutation and
can, thus, diverge and discover novel artifacts. The fit-
ness function also guides the evolutionary process to con-
verge on quality results. Many systems incorporate the use
of evolutionary techniques to produce artifacts in domains
such as visual art (Machado, Romero, and Manaris 2007;
DiPaola and Gabora 2009; Norton, Heath, and Ventura
2013), music (Miranda and Biles 2007), and semantic net-
works (Baydin, de Mantaras, and Ontaiién 2014).

Evolutionary computation appears to have potential in ad-
dressing both sensory and creative imagination. However,
the creative intent seems to reside solely in the fitness func-
tion, which is separated from the actual generation of ar-
tifacts. The creation of artifacts is an independently ran-
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Figure 1: An overview of the Associative Conceptual Imag-
ination framework. The vector space model learns, from a
large corpus, how to encode semantic information into con-
cept vectors that populate conceptual space. Multiple asso-
ciative memory models can then learn associations between
these concept vectors and example artifacts from various
domains, such as art, music, or recipes. These associative
memory models are bi-directional and can not only discrim-
inate, but also generate artifacts according to a given con-
cept vector. The semantic structure encoded in the concept
vectors allows the framework to facilitate the imagining of
artifacts according to concepts for which it has never seen
examples.

dom event that is not connected to any associations learned
through experience (except for maybe the population of ar-
tifacts themselves). The act of imagination in this case is
mostly a selection/filtering process, which, although viable,
doesn’t seem to capture the complete picture. In its basic
form at least, there is no notion of associations between con-
cepts and artifacts.

Associative Conceptual Imagination

We attempt to explicitly model imagination through a com-
putational framework called the Associative Conceptual
Imagination (ACI) framework. ACI uses ideas from other
domains in a novel way that is capable of both sensory and
creative imagination. ACI is composed of two major types
of components, a vector space model and associative mem-
ory models as shown in Figure 1. We will discuss the major
components of the ACI framework, how they interact to per-
form various imaginative tasks, and the creative potential of
systems built using this framework.

Vector Space Model

Creativity is valued not just because of the novelty of things
created, but also because of their utility. For example, in
domains such as visual art, the value is in how the art con-
veys meaning to the viewers (Csikzentmihélyi and Robinson
1990). There is an element of intentionality as an artist pur-
posefully expresses meaning through art. How can an artist
intentionally express meaning without having knowledge of
the world and of what things mean? Conceptual knowledge
helps to provide a foundation for the ability to imagine and
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Figure 2: A 2D visualization (projected from high dimen-
sional space) of several word vectors color coded by top-
ics. These concept vectors were learned using the skip-gram
VSM, which was incorporated into the DeViSE model (vi-
sualization courtesy of Frome et al. 2013). Note that con-
cepts from similar topics generally cluster together because
the concept vectors encode semantic relationships.

create. Incorporating conceptual knowledge into a creative
system can potentially be achieved through Vector Space
Models (VSMs) (Turney and Pantel 2010).

It is commonly agreed that a word (or concept), at least
in part, is given meaning by how the concept is used in con-
junction with other words (i.e., its context) (Landauer and
Dumais 1997). Vector space models take advantage of this
by analyzing large corpora and learning multi-dimensional
vector representations for each concept that encode such se-
mantic information. These models are based on the idea that
similar words will occur in similar contexts and words that
are often associated together will often co-occur close to-
gether. These models reduce words to a vector representa-
tion that can be compared to other word vectors. VSMs have
been successfully used on a variety of tasks such as infor-
mation retrieval (Salton 1971), multiple choice vocabulary
tests (Denhiére and Lemaire 2004), TOEFL multiple choice
synonym questions (Rapp 2003), and multiple choice anal-
ogy questions from the SAT test (Turney 2006).

Concepts similar in meaning will have vectors that are
close to each other in “vector space”, which we will refer
to as conceptual space. Associations between concepts are
implicitly encoded by their proximity in conceptual space.
Figure 2 shows relationships between example word vec-
tors that correspond to various topics projected onto a 2D
plane. These concept vectors capture other interesting se-
mantic relationships that are consistent with arithmetic op-
erations. For example, vector(“king”) —vector(“man” )+
vector(“woman”) results in a vector that is closest to
vector(“queen”).

The potential of VSMs in creative systems has been dis-
cussed before, and we aim to make use of them in this frame-
work (McGregor, Wiggins, and Purver 2014). The semantic
information encoded in the vectors provides a form of con-
ceptual knowledge to the ACI framework, which will help
provide a basis for imagination.
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Associative Memory Models

In addition to knowing how concepts relate to each other, the
ACI framework needs to allow understanding of how con-
cepts relate to actual artifacts. In other words, ACI systems
should be able to perceive and observe the world (i.e., to be
grounded in sensory information). ACI incorporates Asso-
ciative Memory Models (AMMSs) to learn how to associate
artifacts with concept vectors. For example, models built us-
ing ACI can learn what a ‘cat’ looks like by observing pic-
tures of ‘cats’, or learn what a ‘car’ sounds like by listening
to sound files of ‘cars’.

Here we use “associative memory model” as a generic
term that refers to any computational model or algorithm
that is capable of learning bi-directional relationships be-
tween artifacts and concept vectors. Not only should the
AMM be capable of predicting the appropriate concept vec-
tor given an artifact, but it should also be capable of going
the other direction and producing an artifact given a concept
vector. Of course, the quality of learning will be dependent
on the quality and quantity of labeled training data, as well
as on the characteristics of the particular associative memory
model that is chosen.

Bidirectional associative memory models (BAMs) seem
like an obvious possible choice to implement the
AMM (Kosko 1988). A BAM is a type of recurrent neu-
ral network that learns to bidirectionally map one set of pat-
terns to another set of patterns. Given an artifact (encoded
into a pattern), a BAM could return the appropriate concept
vector. Conversely, given a concept vector, a BAM could re-
turn an appropriate artifact, which can essentially be thought
of as performing sensory imagination. Variations of BAMs
have been used in computational creativity to associate in-
put patterns to features in order to model the phenomenon
of surprise (Bhatia and Chalup 2013).

Another family of algorithms that have potential use in the
ACI framework are probabilistic generative models. These
models learn a joint distribution for observed data and their
respective labels/classes. Once trained, not only can these
models classify new data, but they can also be used gener-
atively to create new instances of data that correspond to a
particular label. For example, a Deep Belief Network (DBN)
is a generative model that can also be thought of as a deep
neural network in which several layers of nodes (or latent
variables) are connected by weights from neighboring lay-
ers, while nodes of the same layer are not connected (Hin-
ton, Osindero, and Teh 2006). Hinton et al. used DBNs
to classify images of handwritten digits (0-9) by training on
several examples and then used them generatively to “imag-
ine” what a 2 looks like by creating several images that each
uniquely looked like a handwritten two, thus demonstrating
a form of sensory imagination.

Another generative model uses a hierarchical approach to
recognize and then generate unique images of handwritten
symbols, again demonstrating sensory imagination (Lake,
Salakhutdinov, and Tenenbaum 2013). Sum Product Net-
works (SPNs) have also been used to learn bidirectional
associations between patterns (Poon and Domingos 2011).
Given a picture of half a face, SPNs were able to infer (or
imagine) the other half. These generative models can often

be applied directly to the raw inputs (i.e., directly to pixels
in an image) and thus seem to exhibit advanced perceptual
abilities and in turn can generate artifacts directly.

The associative memory model implementation is not
limited to a single model, but could be split into separate
discriminative and generative parts. A machine learning al-
gorithm could be the discriminative part and be trained to
predict a given artifact’s concept vector (e.g., given a ‘sad’
melody, the learning algorithm predicts the ‘sad’ vector).
The generative part could be implemented by a genetic algo-
rithm that uses the discriminative model as the fitness func-
tion. For example, a genetic algorithm could be given the
‘sad’ vector to imagine a ‘sad’ melody, and the discrimina-
tive model knows what characteristics a ‘sad’ melody should
have and could then guide the evolutionary process.

Other specific associative memory models could be in-
corporated depending on the domain, its representation, and
available training data. Additionally, multiple AMMs for
different domains could be incorporated into the framework
simultaneously (i.e., one model learns images while another
learns sounds for each concept), with the AMMs then indi-
rectly related through conceptual space.

Performing Imagination

Once an implementation of the ACI framework has its com-
ponents in place and properly trained, it is ready to imagine,
and even create, artifacts. To perform sensory imagination,
an ACI model can generate artifacts for a particular concept
that it has previously learned. For instance, after having seen
example images of ‘cats’, the system has learned an internal
representation for what a ‘cat’ looks like. The associative
memory model can then start with the ‘cat’ concept vector
and generate a unique image that would likely be associated
with the ‘cat’ vector, presumably an image of a ‘cat’ (see
Figure 3(a)). In the case of using probabilistic generative
models, the probabilistic nature of the model and the distri-
bution of various poses, angles, and colors learned from the
many example ‘cat’ images allow the system to generate a
unique ‘cat’ image each time.

To perform creative imagination, the framework takes in-
spiration from the DeViSE model, which uses VSMs to
aid in correctly recognizing images of objects (Frome et al.
2013). The DeViSE model first learns word vectors from a
large corpus using a VSM. The model is then trained with
raw image pixels using a deep convolutional neural network
that learns to predict the correct labels’ vector (instead of
the label directly). Cosine similarity is performed between
the predicted vector and the other word vectors to determine
what the correct label should be. Since the vectors encode
semantic relationships between concepts, the model can suc-
cessfully label an image with a word for which it has never
seen example images (called zero-shot prediction). For ex-
ample, the system may have been trained on images of ‘rats’
and ‘mice’ but not on images labeled ‘gerbil’. Given a pic-
ture of a ‘gerbil’ the model can still successfully label it as
such because a ‘gerbil’ is similar (according to the VSM) to
a ‘rat’ and a ‘mouse’.

Replacing the convolutional neural network with, say, a
probabilistic generative model could allow the system to act
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Figure 3: Different ways the Associative Conceptual Imag-
ination framework can be used to imagine artifacts. The
green rectangle with black dots represents concept vectors
in conceptual space, which are learned from a vector space
model. The Associative Memory Model (AMM) associates
concept vectors to artifacts. The framework allows the imag-
ining of artifacts for concepts it has previously observed (a).
It can facilitate the imagining of artifacts for concepts it has
not previously observed but that are similar to other concepts
that is has observed (b). The framework allows the imagin-
ing of artifacts that are combinations of two (or more) pre-
viously observed concepts (c). Models based on ACI can
imagine changes to a previously observed concept (d). Fi-
nally, the framework can facilitate imagination across differ-
ent domains by observing an artifact in one domain and then
imagining a related artifact in another domain (e).

in reverse. We could input the vector for ‘gerbil” and the sys-
tem could imagine what a ‘gerbil’ looks like without having
ever seen a picture of a ‘gerbil’, because of the semantic

knowledge encoded in the vectors (see Figure 3(b). Simi-
larly, the system could take advantage of the semantic struc-
ture of the VSM and imagine what a concept sounds like
without having heard any example sounds for that concept.
For example, the system could have been trained on sounds
for ‘horses’, ‘tractors’, ‘dogs’, and ‘trumpets’, but not have
been exposed to any sounds for ‘donkeys’. Yet, the system
could still generate a unique sound for a ‘donkey’. The re-
sult may not sound exactly like a ‘donkey’, but it will sound
closer to a ‘horse’ than to the other concepts because the sys-
tem knows that ‘donkeys’ are more similar to ‘horses’ than
to the other concepts. An ACI model can imagine its own
‘donkey’ sound in a way that is novel, yet still reasonable by
leveraging semantic information gained through the VSM
and transferring it to the task of generating sound.

In another situation, a system based on ACI can imag-
ine what a combination of concepts could look like by start-
ing with a vector that is in between concepts in conceptual
space. As shown in Figure 3(c), the system could imagine
what a ‘cold’ and ‘fiery’ image looks like by starting with a
vector part-way between the ‘cold’” and ‘fiery’ vectors. The
system should generate a novel image that is some blend-
ing of the two concepts (and perhaps other surrounding con-
cepts). The system is essentially imagining what new com-
binations of concepts look like, while being anchored in past
experience.

ACI could facilitate the imagining of distortions to exist-
ing concepts by gradually venturing away from a concept’s
vector along different dimensions (see Figure 3(d)). The sys-
tem could generate images of ‘roses’ starting with the ‘rose’
vector, but then gradually move away from the ‘rose’ vector.
The resulting images should become distorted depending on
the direction and distance from the original vector.

Finally, an ACI model could generate artifacts across dif-
ferent domains. The system could learn, using separate asso-
ciative memory models, what concepts look and sound like.
Given a picture of a ‘dog’, the system could then imagine
what the ‘dog’ sounds like. The ACI model simply uses the
AMM for images to predict the vector associated with the
‘dog’ picture and then feeds that predicted vector into the
AMM for audio and has it generate a unique sound. The
system could also be given a melody and then imagine an
image to go with it, the two domains being tied together
through the conceptual space as shown in Figure 3(e).

The ACI framework provides potential for these types of
imaginative (and creative) abilities. It has been designed to
model imagination by learning conceptual knowledge, per-
ceiving concepts (artifacts), and generating novel artifacts
never before experienced in several ways. Of course, this
is only a framework, and the actual power of it depends on
the abilities of the specific VSM and AMM implementations
chosen for each domain (and their training data). Current
state-of-the-art models are probably not yet capable of gen-
erating (or even classifying) large, detailed images of arbi-
trary concepts at the pixel level. Nor are they likely yet able
to perceive sophisticated music in the general case. How-
ever, these capabilities do seem to be on the horizon with the
advent of generative deep learning systems (such as DBNs).
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Figure 4: Example training images for each of the four
known 2D vectors shown in conceptual space.

Imagining Images

In order to show how the ACI framework could work in
practice, we created a simple toy implementation that can
imagine basic binary images. Instead of using a vector space
model, we manually specified the conceptual space as a 2D
plane in order to more easily visualize how images at var-
ious vector locations relate to one another. We then chose
four vectors in the 2D conceptual space that are spatially lo-
cated at four corners. The four vectors are #] = (0.0,0.1),
fr = (1.0,1.0), bl = (0.0,0.0), and br = (1.0,0.0), to
which we will refer as the known vectors.

We then generated four sets of training images for each
of the four known vectors that are 32 x 32 pixels in di-
mension and are binary (i.e., black and white). The train-
ing images were pictures of actual corners, and example im-
ages for each of the four known vectors can be seen in Fig-
ure 4. We implemented the associative memory model using
a sum product network (SPN) and trained the SPN using cor-
ner images paired with their associated known-vectors (per-
turbed slightly using Gaussian noise). To learn the struc-
ture and parameters of the SPN, we used a modified version
of the LEARNSPN algorithm that is able to accommodate
both categorical and continuous random variables (Gens and
Domingos 2013). The result was a model that represents a
joint probability distribution over image-vector pairs. We
used the efficient, exact-inference capabilities of the SPN
to generate novel images by sampling from the conditional
probability distribution of images, conditioned on the con-
cept vector. This was done by clamping the concept vector
to a specific value and sampling the image pixel variables.

The model can perform sensory imagination by generat-
ing images for each of the four known vectors that it has
learned. The bottom set of images in Figure 5 are exam-

ple images imagined for the br = (1.0, 0.0) vector. Notice
how each imagined image is unique yet still looks like the
training images in Figure 4.

The system can also perform creative imagination by gen-
erating images for vectors for which it has never seen exam-
ple images. These imagined images should look more sim-
ilar to nearby known vectors than to known vectors farther
away. The top set of images in Figure 5 were produced for
the vector (0.8,0.2). These images are indeed similar to the

images at vector br = (1.0,0.0) (bottom set), which is the
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Figure 5: The bottom set of images were imagined for the

vector br = (1.0,0.0), which is one of the four vectors
on which the system had been trained. The top set of im-
ages were imagined for the vector (0.8,0.2), which is a
vector on which the system was not trained. The top im-
ages are similar to the bottom images because the vector
(0.8,0.2) is close, in conceptual space, to the known vec-

tor br = (1.0,0.0).

closest known vector. Although the system was never shown
images for vector (0.8,0.2), it could still imagine what the
images could look like by leveraging the information rep-
resented by the vectors in conceptual space (in this simple
case just spatial information).

To further illustrate the imagining capabilities in this sim-
ple example, we had the system generate images at vector
locations all over the 2D plane in 0.1 increments. In order to
help visualize how the various generated images transition
along conceptual space, we generated 100 images at each
vector location and averaged them into a single image. We
then arranged each averaged image on the plane according
to their respective 2D vector (see Figure 6).

Moving from corner to corner on the 2D plane essentially
shows the known images morphing into each other. The cen-
ter image becomes a blend of all four corner shapes, while
the images in the middle of the edges are a blend of the two
corners on that edge. The model has only seen images for
the corner vectors, which provide a basis for the other vec-
tors in the 2D plane. The model cannot imagine images that
do not relate to the four known corner images, which the
results seem to confirm.

Admittedly, this toy example with a small 2D conceptual
space and simplistic binary images is not visually impres-
sive. It may be hard to ascribe imagination to a model that
just seems to be doing a form of interpolation. Keep in
mind that this example is only intended to be a proof-of-
concept that demonstrates how the framework could work
to generate actual artifacts. This example also allows us to
understand why the model is generating the images that it
does—because of the training images (perceived artifacts)
and the spacial arrangements of the vectors (conceptual re-
lationships). A full implementation of this framework would
be dealing with thousands of concepts in a conceptual space
hundreds of dimensions in size, which is a much richer rep-
resentation of conceptual knowledge. Also working with
real artifacts, such as actual visual art or music, has the po-
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Figure 6: The average of 100 rendered images for each 2D
vector in conceptual space at 0.1 increments. The system
was trained on example images only for the vectors located
at the four corners and then the system had to imagine what
images at vectors in the middle would look like based on the
images observed for each of the four corner vectors. Note
how the images start to blend together as their corresponding
vector approaches the middle of the space.

tential to yield much more impressive results.

Conclusions and Future Work

We have outlined the Associative Conceptual Imagination
framework, which models how imagination could occur
in a computational system that generates novel artifacts.
The ACI framework accounts for the cognitive processes
of learning conceptual knowledge and concept perception
(via artifacts). The framework proposes using vector space
models to learn associations between different concepts, and
using associative memory models to learn associations be-
tween concepts and artifacts. This network of associations
can be leveraged by the system to produce novel artifacts.

‘We have demonstrated a basic implementation of ACI and
applied it to simple binary images. We showed that the sys-
tem could perform both sensory and creative imagination
through the images it was able to produce.

The ACI framework poses some interesting questions.
How will this framework perform when applied to real ar-
tifacts? What implementation and corpus should be used
for the VSM? What models are appropriate to use for the
AMMs? Does the choice of the model depend on the do-
main? Does the choice of the model depend on the artifact’s
representation (e.g., an image could be represented by raw
pixels, extracted image features, or parameters to a proce-
dural algorithm)? Research needs to be done to implement
and refine this framework for various domains in order to
explore these questions, and we are confident that the ACI

framework will be useful for computationally creative sys-
tems.

In future work, we plan to apply the ACI framework to
DARCI, a system designed to generate original images that
convey meaning (Heath, Norton, and Ventura 2014). We
plan to use the skip-gram VSM (Mikolov et al. 2013) trained
on Wikipedia, which will learn vectors for 40,000 concepts
in 300 dimensional space. Initially, we intend to implement
the AMM using a discriminative model and a genetic algo-
rithm. We will use 145 descriptive concepts (e.g., ‘violent’,
‘strange’, ‘colorful’, etc) to train the discriminative model to
recognize those concepts in images. For example, the model
will learn to predict the ‘scary’ vector when given a ‘scary’
image.

Once trained, the discriminative model will act as the fit-
ness function to the genetic algorithm, which can then ren-
der images in ways that convey descriptive concepts (i.e., it
can render a ‘sad’ image). The system will also be able to
render images that convey concepts on which it has not been
trained (beyond the 145) because of the semantic relation-
ships encoded in the vectors. In other words, it will be able
to imagine what other concepts would look like based on
past experience and conceptual knowledge.

This framework could also be extended to include ideas
involving conceptual blending. As it stands, the conceptual
space does not change once the VSM learns the concept vec-
tors and blending occurs through the associations between
concepts and artifacts. It could be interesting to find ways
to blend the concepts themselves together to produce new
concepts that can then be expressed through artifacts.
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