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  Abstract—Classification problems with output class 
overlap create problems for standard neural network 
approaches.  We present a modification of a simple feed-
forward neural network that is capable of learning 
problems with output overlap, including problems 
exhibiting hierarchical class structures in the output.  
Our method of applying weakened implicit negatives to 
address overlap and ambiguity allows the algorithm to 
learn a large portion of the hierarchical structure from 
very incomplete data.  Our results show an improvement 
of approximately 58% over a standard backpropagation 
network on the hierarchical problem. 
 

I. INTRODUCTION 
 

Classification problems normally involve the 
labeling of unclassified data with a specific output class.  
Often, this is difficult due to regions in the problem space 
that contain a mixture of overlapping classes.  Class overlap 
in classification problems is traditionally thought of as noise, 
and many algorithms attempt to filter this noise, or simply 
ignore it.  Other methods attempt to improve classification 
accuracy by providing for an unsure, or soft, classification in 
the overlapping regions, thereby improving accuracy without 
implicitly correcting the noisy data [1,3,4].  Our approach 
considers the possibility that such overlap is an inherent 
characteristic of the problem space, and that a network 
classifier should represent this overlap.  Our algorithm 
continues to provide distinct answers, insofar as it is possible 
given the data.  By intelligently allowing for a mixture of 
classes, the algorithm can more accurately classify data that 
is near the classification boundaries. 

In general, classification problems are seen as 
learning a functional mapping from the input to the output 
space. 

  (1) CXf →:

This representation has one major flaw; it assumes 
that all of the output classes are mutually exclusive.  The 
principle of mutual exclusion can be violated in at least two 
ways.  The first is noise, which changes data values in such a 
way that the output classes incorrectly overlap.  Secondly, if 

the outputs naturally have some mutual overlap, then 
assuming mutual exclusion will create errors in the learning 
process.  While many problems do contain noise, rejecting 
the possibility that natural overlap can occur in real-world 
problems contradicts the complexity of such natural systems.  
While one answer may be the ‘most correct’, in complex 
systems, there can be many acceptable, or right, answers.  
Examples of such systems include hierarchy trees, decision 
making, and many natural language problems.  
Classification problems that contain multiple correct 
answers in some regions can be approximated as a relational 
mapping from the input to the output space.  Alternately, we 
can continue to approximate the problem as a functional 
mapping as long as we change the output range as shown in 
Equation 2, where 2C represents the power set of C: 

  (2) 2: cXg →

While some existing algorithms, such as 
backpropagation [6], can learn relational mappings, they 
require the data to provide the complete output vector for 
every data instance.  The current methods of hand-labeling 
data can already be unreliable and incomplete, without 
forcing them to provide complete output vectors for all data 
instances.  This restriction makes it desirable to have an 
algorithm that can learn multiple correct classifications from 
data that is labeled with only a single output class.  The 
Weakened Implicit Negatives (WIN) method learns to 
consider classification overlap as a natural part of the 
problem when it is encountered, thus fulfilling our 
requirement that it can learn multiple correct answers when 
provided data that only contains one classification for any 
given instance. 

Section II covers a brief literature search into soft 
classification techniques and learning without assuming 
mutual exclusion. Section III details the implementation of 
the WIN method, including how a standard feed-forward 
network can be modified to account for class overlap.  
Section IV explains our experimental set up and our 
empirical results are presented in Section V.  Section VI 
provides final conclusions and ideas for future research. 
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II. RELATED WORKS III. METHODS 
  

Recently, a number of papers have discussed the 
benefits of finding and analyzing regions of uncertainty, or 
overlap, in classification problems.  Support Vector 
Machines were used in [3] to identify such regions of 
classification uncertainty in the problem space.  By 
identifying such regions, the system was able to avoid some 
misclassifications, but in the uncertainty region, no answer 
could be given, and the algorithm was still treating the 
uncertainty as noise in the functional mapping. 

Neural networks that make use of weakened 
implicit negatives are able to learn relational mappings.  
While weakened implicit negatives could be used with any 
supervised learning technique, we restrict ourselves to 
implementing them on a feed-forward neural network using 
the backpropagation learning algorithm [6]. 

We make use of a sigmoid activation function at 
both the hidden and output layers given by: 
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1)(σ  (3) Other algorithms can produce more accurate 
solutions to many problems by allowing the network to defer 
classification if the instance is within an uncertainty, or class 
boundary, region [1,4].  Essentially, the benefit of indecision 
is that by doing so, the algorithm is able to avoid overfitting 
the network to the training data, and generalize better on the 
overall problem.  Baram reports an average improvement to 
classification accuracy to stock exchange information in [1].  
In [4], Ishibuchi and Nii present a soft decision network that 
can return a subset of possible classes based on interval 
regions.  Their algorithm works by rejecting classes that are 
clearly invalid given a possibility analysis.  The possibility 
analysis will unfortunately give no indication as to the 
probability of encountering a specific class in an overlap 
region. 

The algorithm uses the standard feed-forward 
method except in the calculation of the error values of the 
output nodes.  The normal sum squared error function for 
backpropagation learning is giving by: 
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Weakening the implicit negative assumption is 
done by reducing the error values for output nodes that 
aren’t given a specific target value by a data instance.  [5] 
proposes that this can be done with a hand-picked parameter 
as in Equation 5. 

In all of these cases, the problem of what to do 
inside of the uncertainty region remains.  Deferring decision 
making, or providing an accurate estimate of the uncertain 
regions, can improve classification, but fails to address the 
real problem of overlapping output classes.  Giving an 
accurate representation of output strength inside an 
uncertainty region is left to the end user.  Our algorithm, 
however, possess the ability to give a best guess inside 
uncertainty regions, as well as represent the presence of 
other likely output classifications. 
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The problem with Equation 5 is that the 
backpropagation learning technique is based on minimizing 
the error values.  If the system attempts to learn the optimal 
β value for the data, an error-based learning technique will 
attempt to minimize error by reducing β to zero.  While any 
form of direct weakening of the implicit negatives can serve 
to improve network accuracy, the system has no arbitrary 
means to choose a good value for the parameters. A separate paper [5] also addresses regions of 

uncertainty and how to correctly classify instances when 
various outputs are independent of each other.  Regier’s 
work looks at learning without the assumption of implicit 
negativity.  Implicit negativity assumes that every instance is 
labeled with all corresponding correct labels and that any 
other classification is therefore incorrect.  As long as 
classification learning is cast as the learning of functional 
mappings, the implicit negativity assumption holds.  Real-
world data, however, can contradict this assumption, and so 
[5] proposes a method of weakening the implicit negatives.  
The paper proposes a simple, hand picked constant to serve 
as a weakening tool.  The algorithm is unable to dynamically 
learn the optimal value, and is limited its scope of 
applicability. 

Our method of Weakened Implicit Negatives 
avoids directly modifying error values.  The algorithm 
instead learns to calculate new target values for any 
unknown output value.  The calculated target values are 
allowed access to all of the information provided by the 
training data.  The new target values are learned by a 
separate component of the system referred to as the Target 
Correlation Black Box (TCBB).  The TCBB can be 
represented as the function h in the following Equation: 

 ccxh vv
→),(  (6) 

where 2 and  , CcCcXx ∈∈∈
vv . 

To limit the scope of our work, we ignore the input 
vector when computing the new target values, causing h to 
represent a target correlation matrix.  The learned target 
values replace the assumed values in Equation 4 during 
training.  The following equation replaces the implicit output 

Our research expands the scope of weakened 
implicit negatives, allowing the system itself to learn better 
parameters. 
 



target from Equation 4 with an output target value learned 
by our system. 
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As mentioned before, xv  is currently ignored by h.  
Also, since c ∈ C, we can reduce Equation 7 to 
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While equation 8 makes the weakening of implicit 
negatives indirect, it introduces the added complexity of 
learning the appropriate target values for unknown output 
nodes.  To solve the problem of learning the target values, 
the system uses the current network to approximate 
appropriate target values.  The network and the unknown 
target values alternate learning in a manner reminiscent of 
the EM algorithm [7].  Figure 1 illustrates this process. 
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Since the network itself has the information 
provided by the listed outputs, the learned target values need 
only provide a rough estimate of how strongly the various 
output classes overlap.  The learned target values form a 
matrix of output class correlations.  This matrix represents 
an increase in the probability of class k being concurrently 
active when the output class l is present in the training data. 
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The algorithm starts with the basic assumption of 
implicit negativity (target values of zero), and then weakens 
this assumption over time by increasing these target values.  
The learned target values are trained on the same data as the 
network, with the target values of the matrix being given by 
the current neural network that has been learned.  Generally, 
we allow the network to train for some percentage (10-25%) 
of the total training time before beginning to learn the target 
values in an attempt to improve learning. 
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learning in the early stages of learning.  Experimentation has 

shown that resetting the target values occasionally helps 
classes that overlap slightly to avoid falsely inflating the 
unknown target values to one.  This false inflation is the 
equivalent of saying that the two classes are always 
concurrently active. 
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Our algorithm is compared on a pair of problems 
from the UCI Machine Learning Repository [3].  The first 
problem is the Iris data set.  The iris problem is chosen 
because of its simplicity and the fact that one output is 
linearly separable, and the other two outputs overlap only 
slightly.  The problem is one that can be learned almost 
perfectly with a standard network using the backpropagation 
learning technique.  We use this as a sanity check to test that 
our algorithm’s performance isn’t degraded on problems that 
exhibit mutual exclusion amongst the output classes. 
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The second problem we test on is the Glass data set.  
This data set contains instances of various kinds of glass 
which need to be identified.  The data set itself is broken up 
into seven output classes, of which one is not represented in 
the data.  This data set is much more complex than the Iris 
set and contains large amounts of overlap between output 
classes.  In addition, the data set includes a description of the 
types of glass.  Using these descriptions, we have been able 
to create an additional data set which contains hierarchical 
classifications based on information provided in the original 
set. 

The second problem we test on is the Glass data set.  
This data set contains instances of various kinds of glass 
which need to be identified.  The data set itself is broken up 
into seven output classes, of which one is not represented in 
the data.  This data set is much more complex than the Iris 
set and contains large amounts of overlap between output 
classes.  In addition, the data set includes a description of the 
types of glass.  Using these descriptions, we have been able 
to create an additional data set which contains hierarchical 
classifications based on information provided in the original 
set. 

Learn Network 
Weights 

Freeze 
Target 
Values 

Freeze Network 
Weights 

Target Correlation 
Black Box 

Target Correlation 
Black Box 

Basic Neural Network Basic Neural Network 

kj i 

0 0 0

outputhiddeninput

.

.

.

1
.
.
.

.

.

.

1 1

k j i 

.

.

.

. 

. 

. 

.

.

.

input hidden output 

1 1 1 

0 0 0 
Learn 
Target 
Values 

The modified glass set has the following outputs 
added: Building glass, Vehicle glass, Window glass, Non-
window glass, float-processed, and non-float-processed.  
The 214 instances from the original data set were duplicated 
(multiple times if necessary) and relabeled with another 
applicable label, as given in the description of the original 
data set as well as having the complete output vector for 
testing purposes.  For example, an instance that was 
originally labeled as class 1 (float-processed building 
window) is now listed four times in the modified set with 
labels 1, 8 (float-processed), 10 (window), and 12 (building).  
The new data set contains a total of 805 instances, with the 
average point having 3-4 classifications that should be 
activated concurrently.  The concurrent activation represents 
the hierarchical structure of the data given in the description 
of the Glass data set.  Training and testing accuracy results 
on both the modified and original glass data sets will be 
provided in the next section.  The modified glass data set 
allows us to illustrate the adaptability of our algorithm in 
learning in the presence of multiple correct answers. 
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accuracy measures.  Our results are presented as 
classification accuracies over the training and test sets. 

The modified glass data set is tested using an 
activation threshold of 0.5.  Output nodes are compared 
against the target values provided by the completed output 
vector, but were provided only a single correct answer 
during training.  Using a maximum likelihood estimator 
(MLE) would result in a selection of zero for all outputs 
regardless of input.  This selection method produces an 
accuracy rating of approximately 70%.  The number of 
training epochs was also increased to 100,000.  The number 
of hidden nodes and η values were kept the same as they 
were on the standard Glass problem.  Figure 2 shows a graph 
of testing accuracy over the course of training.  The points 
on the graph are the mean value taken every 100 epochs over 
the 30 trials and averaged over the 10 folds. 

For both the standard Glass and the Iris data sets, 
results are shown for a winner-take-all scheme where the 
highest output node is selected and compared to the listed 
output.  The modified Glass data set is rated on an accuracy 
measure that thresholds the individual outputs and checks 
against the output vector provided in the data set.  Reported 
results show the average accuracy over all outputs. 

Using the winner-take-all scheme allows us to 
ensure that our algorithm doesn’t negatively affect the 
performance of the backpropagation learning on simple 
problems with little or no overlap.  The Iris data set was run 
for 5,000 training epochs with an η value of 0.001 and 8 
hidden nodes.  The results shown are accuracies reported on 
a separate run after training concluded.  The standard Glass 
data set ran for 50,000 training epochs with the same η value 
and using 15 hidden nodes.  As before, the accuracies 
reported were computed from an epoch during which no 
training occurred.  Table I shows the results of both tests 
using the standard backpropagation approach, and using 
weakened implicit negatives (WIN).  The “Max” and “Min” 
rows represent the maximum and minimum accuracies 
measured over the 30 trials.  The performance of the two 
algorithms is nearly indistinguishable on the problems when 
testing using the winner-take-all scheme. 
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TABLE  I  
CLASSIFICATION ACCURACY ON IRIS AND GLASS 

Weakened 
Implicit Negatives 

Standard 
Backpropagation 

 

Train Test Train Test 
Max +0.06% +0.62% +0.07% +0.62% 
Mean 98.01% 97.38% 98.01% 97.38% Iris 
Min -0.01% -0.04% -0.01% -0.04% 
Max +1.28% +3.40% +1.46% +4.21% 
Mean 74.63% 63.75% 74.60% 63.41% Glass 
Min -1.31% -4.22% -1.34% -3.89% 

Fig. 2.  Testing accuracy results over the course of training on the 
Modified Glass data set. 

When provided only the single output, a simple 
backpropagation network struggles and improves only 
slightly over the course of training.  If provided with the full 
output vector during training (the top arc on Figure 2), the 
backpropagation network quickly learns the correct outputs, 
finally reaching a point where ambiguity and overlap in the 
original output classes makes further learning impossible.  
Using the full output vector, the simple network attains a 
testing accuracy of approximately 93%. 

The results from the modified Glass data set, 
however, provide us with a look at the true power of the 
algorithm.  The modified Glass set allowed us to train the 
two algorithms with only simple functional learning 
examples, but test them on the complete output vector.  
Because our algorithm is designed to interpret areas of the 
output space that overlap, and adjust the target values 
appropriately, it should be capable of learning to correctly 
classify multiple outputs as active (high) from the purely 
functional data.  In order to verify how closely we are able to 
correctly classify all of the appropriate outputs, we also ran a 
test using a standard backpropagation network, but provided 
it the full output vectors for training and testing. 

Using weakened implicit negatives, we greatly 
improve accuracy even though we are learning on data with 
a single output.  Our algorithm achieves a final accuracy of 
approximately 88%.  This represents approximately 77% of 
what the backpropagation network learned when allowed to 
train on data with a full output vector. 

The train and test accuracies are virtually identical 
on this problem, but are provided for completeness.  Table II 
provides a complete summary of accuracy results including 
the maximum and minimum accuracies over the 30 trials. 



TABLE  II  
CLASSIFICATION ACCURACY FOR THE MODIFIED GLASS DATA SET 

 Train Test 
Max +0.31% +0.49% 
Mean 88.00% 87.71% 

Weakened Implicit 
Negatives 

Min -0.51% -0.58% 
Max +0.03% +0.10% 
Mean 70.71% 70.77% Standard Backprop 
Min -0.01% -0.05% 
Max +0.65% +0.81% 
Mean 94.03% 92.99% 

Standard Backprop 
Trained w/ Full 
Output Vector Min -0.57% -0.64% 

 

VI. CONCLUSIONS AND FUTURE WORK 
 

Using weakened implicit negatives can 
dramatically improve network performance on problems 
with multiple correct answers and our ability to actively 
learn the appropriate parameters enables us to utilize the 
adaptive power of the WIN theory to learn complex 
classification problems. 

In addition, the WIN algorithm demonstrates little 
loss in classification accuracy on problems that exhibit 
mutual exclusion in the output classes.  We have shown that 
our algorithm provides a relative improvement of almost 
58% over the simple backpropagation network when trained 
with only a single output class.  If we compare our results to 
those of the backpropagation network trained on the full 
output vector, our algorithm shows the ability to learn 
approximately 77% of the additional information without 
being told about the hierarchical nature of the data. 

Providing sufficient data for a learning algorithm is 
difficult enough without insisting that the data provide 
completed output vectors for all instances.  Our algorithm 
provides a means of learning complex, overlapping 
classification problems without a completed output vector. 

Although our algorithm performs well on 
classification problems with multiple correct answers, there 
is still room for improvement.  We are currently looking at 
both simpler and more complex correlation structures for 
approximating the target values of a complete output vector.  
The algorithm also needs to be tested on a wider range of 
problems, although the question of analyzing results in the 
absence of accurate, and complete, output vectors is a 
difficult one.  Another of our directions for future research is 
in applying the WIN method toward problems in Natural 
Language Processing such as Part-of-Speech tagging where 
ambiguity in output classes is known to exist. 
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