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Abstract

Constraint satisfaction networks contain nodes that
receive weighted evidence from external sources and/or
other nodes.  A relaxation process allows the activation of
nodes to affect neighboring nodes, which in turn can affect
their neighbors, allowing information to travel through a
network.  When doing discrete updates (as in a software
implementation of a relaxation network), a goal net or
goal activation can be computed in response to the net
input into a node, and a relaxation rate can then be used to
determine how fast the node moves from its current value
to its goal value.  An open question was whether or not the
relaxation rate is a sensitive parameter.  This paper shows
that the relaxation rate has almost no effect on how
information flows through the network as long as it is
small enough to avoid large discrete steps and/or
oscillation.

1. Introduction

Constraint satisfaction neural networks [1, 2, 3, 4] contain
nodes that are connected by excitatory (positive) or
inhibitory (negative) weights.  Nodes are given initial
activation values, after which a relaxation process causes
nodes to change their activation value in response to the
net input of all of the weighted connections coming into
each node.  When doing discrete updates on a Hopfield
network [1], one way of computing activation for each
node y at each relaxation step, s, is as follows.  First the
current “goal” net input into node y is computed as

GoalNety(s)  =  ∑
x = 1

m
Ax(s-1) ·Wxy (1)

where s is the number of relaxation steps taken so far, m is
the number of nodes connected to node y, Ax is the
activation of node x, and Wxy is the weight from node x to
node y.  The current input net for node y is moved a

fraction dt (0 < dt ≤ 1) from its present value to the goal
net value:

Nety(s)  =  Nety(s-1) + dt·(GoalNety(s) - Nety(s-1)) (2)

Finally, the activation of y is computed by running its net
through a squashing function such as a sigmoid function:
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Where µ is an amplification parameter controlling the
steepness of the activation function.

A new relaxation procedure for Hopfield networks called
Controlled Relaxation (CR) was presented in [4] and [5].
CR uses a goal activation, GoalAy, rather than a goal net
value, and uses a relaxation rate, r, to control the speed
and smoothness of relaxation.  CR can also use a new
bipolar (i.e., -1..1) Evidence-Based Activation (EBA)
function EBA(x) that is similar in shape to a sigmoid
function except that it is flat near x = 0 so as to de-
emphasize noise and amplify real evidence.  For details on
this activation function, see [6].

The net input value, goal activation and current activation
using controlled activation and EBA are computed as
follows:

Nety(s)  =  ∑
x = 1

m
Ax(s-1) ·Wxy (4)

GoalAy(s) = EBA(Nety(s)) (5)

Ay(s)  =  Ay(s-1) + r · (GoalAy(s) - Ay(s-1)) (6)

Zeng & Martinez [4] applied CR to the 10-city traveling
salesman problem (TSP) and were able to increase the
percentage of valid tours by 195% while reducing the error
rate by 35% when compared to standard Hopfield



relaxation applied using the same architectures.  When the
CR method used the EBA activation function instead of
the standard sigmoid function, it was able to increase valid
tours by 245% and reduce the error rate by 64% compared
to corresponding Hopfield networks using sigmoid
activation functions [5].

An open question was whether or not the relaxation rate
was a sensitive parameter, i.e., whether or not it
determined how much the activation of one node can affect
the activations of other nodes during relaxation.  This
paper shows that the relaxation rate has almost no effect on
how information flows through the network as long as it is
small enough to avoid large discrete steps and/or
oscillation.  Section 2 explains why the relaxation rate is
theoretically robust, and Section 3 presents empirical
results on a simple network illustrating the robustness of
sufficiently small relaxation rates as well as the potential
dangers of large ones.  Section 4 then concludes and
provides future research directions.

2. Relaxation Rates

In Equation 2, the parameter dt is used to determine how
fast the current net value of a node moves towards a new
net value.  In Equation 6, the parameter r is used to
determine how fast the current activation value of a node
moves towards a new activation value.  Though applied at
different points in the process, both parameters do
essentially the same thing, i.e., they control the speed and
smoothness of relaxation.  For simplicity, this section
discusses only the effect of r on the relaxation process in
the CR relaxation approach, but the discussion applies to
dt in Hopfield relaxation as well.

During each relaxation step s, the activation of node y,
Ay(s), moves a fraction r from its old activation Ay(s-1) to
its goal activation at s, GoalAy(s).  For example, if
Ay(0) = 0, GoalAy(1) = 1.0, and r = 0.2, then Ay(1) = 0.2.  If
GoalAy(s) remains fixed at 1.0, Ay(s) will asymptotically
approach GoalAy(s) with values of 0, 0.2, 0.36, 0.48, ...,
reaching 0.99 after about 20 relaxation steps.  If instead we
use r = 0.02, then Ay(s) approaches GoalAy(s) more slowly
with values of 0, 0.02, 0.0396, 0.0588, ..., and reaches 0.99
after about 200 relaxation steps.  In other words, it takes
approximately 10 times as many relaxation steps to reach
the same value when using a relaxation rate that is 10
times as small.

The speed of relaxation can be normalized by taking both
the number of steps and relaxation rate into account.  Let
the variable t indicate the elapsed relaxation time during
relaxation.  The relaxation rate can then be viewed as the
change in relaxation time per relaxation step, i.e.,
r = ∆ t / ∆ s, and thus we can define the relaxation time

as t = r · s.  In the above example the activation reached
0.99 at about t = r · s = 0.2 · 20 = 4.0 when r = 0.2, and at
t = 0.02 · 200 = 4.0 when r = 0.02.  While the smaller
relaxation rate requires more relaxation steps, they both
require approximately the same amount of relaxation time.

Figure 1 shows the activation with respect to t using
r = 0.2 and r = 0.02 as t goes from 0 to 5.  The smaller
relaxation rate does cause a slightly slower change in Ay(t)
with respect to t, but the difference is fairly small.  Larger
relaxation rates cause the difference to be larger, while
smaller relaxation rates cause the difference to be much
smaller.  For example, Figure 2 shows the relaxation
behavior when relaxation rates of r = 0.8 and r = 0.08 are
used.  Note that these relaxation rates differ by a factor of
10 just like in Figure 1, but the difference in relaxation
behavior is much more exaggerated.  In the limit, using
r = 1 reaches the goal activation at t = 1, i.e., in one step,

Figure 1.  Simple relaxation with r = .2 and r = .02.
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Figure 2.  Simple relaxation with r = .8 and r = .08.
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while any value of r < 1 will never quite reach the goal
activation but will only asymptotically approach it.  Using
a smaller relaxation rate not only smooths the relaxation
path, but also reduces sensitivity to the size of the
relaxation rate itself.  Thus, the smaller the relaxation rate
is, the less it matters exactly what value is used.  However,
since using a smaller relaxation rate requires more
iterations through the relaxation process, using too small of
a relaxation rate is inefficient.

3. Relaxation Experiments

In the above examples, the goal activation remained fixed
at 1.0.  When the goal activation for each node depends on
the current activations of other nodes, the situation is more
complicated.  An open question was whether the relaxation
rate influences to what degree information can flow
through a network.  Section 3 addresses this question.

If the relaxation rate influences the degree to which one
node can affect other nodes in the network (including
nodes to which it is not directly connected), then it can
alter the outcome of the network and thus affect accuracy.
To see what effect the relaxation rate has on direct and
indirect interactions between nodes, several architectures
were used with various weight settings between nodes and
different initial activation values. Relaxation rates from
0.00001 to 2.0 were used to see what effect the relaxation
rate has on the relaxation process and the final state of the
network in each case.

One of the architectures used in these experiments is
illustrated in Figure 3.  The five nodes in the network
receive initial activation values of 0.5, 0.6, 0.8, 1.0, and
-1.0, respectively, as shown in the figure 3.  For simplicity,
all weights are set to 10.0.  Relaxation proceeds as
described in Equations 4-6 until convergence.  In these
experiments the network is considered to have converged
if the maximum difference between any node’s activation
and its goal activation is less than 0.001.

Figures 4-8 show the results for relaxation rates of 0.0001,
0.1, 0.5, 0.8, and 1.0, respectively.  The activations of the
five nodes are plotted with respect to the relaxation time

t = r · s, where r is the relaxation rate, and s is the number
of relaxation steps.
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Figure 3.  Relaxation network with 5 nodes.
Numbers indicate initial activation values,

and all weights are equal.

Figure 5.  Relaxation with r = 0.1.
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Figure 4.  Relaxation with r = 0.0001.
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Figure 6.  Relaxation with r = 0.5.
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Figures 4 and 5 appear identical even though the relaxation
rate in Figure 4 is 1,000 times smaller than the one in
Figure 5.  This supports the hypothesis that the relaxation
rate is a robust parameter and does not affect how far
information travels through a relaxation network (when it
is fairly small). Convergence occurred after 149,609 steps
for r = 0.0001, and after 145 steps for r = 0.1,
corresponding to t = 14.9 and t = 14.5, respectively,
indicating that the relaxation time is not affected much by
smaller relaxation rates.

Figure 6 uses r = 0.5, and some discrete steps in the
relaxation process are visible.  These large steps do have a
small effect on the relaxation process, causing it to move
towards convergence somewhat more quickly, though less
smoothly, similar to the effect shown in Figures 1 and 2
when the relaxation rate was increased.

Figure 7 uses r = 0.8, and with this large of a relaxation
rate, oscillations occur.  At each step, every node y moves
more than halfway between its current activation and its
goal activation.  The fifth node, for example, begins at
Ay = -1.0, and at the very next step its activation is
increased to Ay = 0.6.  Meanwhile, node 5 has caused node
4 to go negative, which in turn causes node 5 to go
negative again on the third relaxation step, and so on, until
convergence is reached.  When the relaxation rate grows
too large, such oscillations can become infinite, as shown
in Figure 8 using r = 1.0.  After a few relaxation steps, the
activations of the nodes in this case flip-flop between 1.0
and 0 indefinitely.

These results illustrate that using a smaller relaxation rate
does not appreciably change the final activations of the
nodes in the network nor the path taken to get to the final
state.  For reasonably small values of r, this simple
network always converged at approximately t = r · s = 14.
If the relaxation rate is too large, e.g., over r = 0.3 in this
network, the large discrete steps taken can produce slight
variations, as shown in Figure 6 when r = 0.5; or minor
oscillations can occur in the path taken to the final state, as
shown for r = 0.8 in Figure 7.  If a sufficiently large value
of r is used, infinite oscillations can occur, as illustrated in
Figure 8.

In the simple five-node network illustrated in this example,
the relaxation rate did not have much effect on the final
activations of the nodes in the network.  In more complex
networks [7, 4, 5], however, using too large a relaxation
rate can have a significant effect on the outcome of
relaxation due to lack of smoothness and/or oscillation.  In
[4], for example, CR networks were used for the 10-city
TSP problem, and the percentage of valid tours dropped
quickly as r rose above 0.14.  However, the performance
was quite stable with r < 0.14, indicating that even on

complex problems, values of r < 0.1 appear to be
reasonably robust.  It should be noted that [4] reports a
reduction in valid tours for very small values of r, e.g.,
r < 0.06, but this occurred because they limited their
networks to 500 relaxation steps (iterations) instead of
allowing the network to relax until convergence.

4. Conclusions

The relaxation rate in constraint satisfaction networks of
the type discussed in this paper does not significantly
affect how much information propagates through the
network, as long as it is reasonably small.  Very small
values of r do not substantially affect the relaxation
process and are thus not worth the extra computation they
require.

While the results presented in Section 3 use the Controlled
Relaxation method [4] and the Evidence-Based Activation
function [5], experiments run using sigmoidal activation

Figure 7.  Relaxation with r = 0.8.
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Figure 8.  Relaxation with r = 1.0.
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functions yielded the same conclusions.  Furthermore, the
same conclusions appear to apply to standard Hopfield
networks [1], namely, that the parameter dt is a robust
parameter as long as it is sufficiently small to allow
relaxation to be fairly smooth.  In our experiments as well
as those of Zeng & Martinez [4], values less than 0.1 have
typically been sufficiently small, though this value should
not be trusted as more than a rule of thumb until more
experience on a broad range of applications is tested.

Future research will address the question of whether
analytical proofs can be derived to show more precisely
what effect the relaxation rate has on activation values, as
well as applying CR networks to complex tasks such as
speech recognition [8].
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