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Abstract
A relaxation network model that includes higher order
weight connections is introduced.  To demonstrate its
utility, the model is applied to the speech recognition
domain.  Traditional speech recognition systems typically
consider only that context preceding the word to be
recognized.  However, intuition suggests that considering
both preceding context as well as following context should
improve recognition accuracy.  The work described here
tests this hypothesis by applying the higher order
relaxation network to consider both precedes and follows
context in speech recognition.  The results demonstrate
both the general utility of the higher order relaxation
network as well as its improvement over traditional
methods on a speech recognition task.

Introduction
The use of relaxation networks for optimization was
introduced in the mid-eighties by Hopfield and Tank [3].
The original model considered only first-order correlations
(represented in the network by pairwise interconnection
weights); however, later work has been done in extending
the idea to include higher-order connections [1].  This paper
continues in that vein by introducing a relaxation network
model that includes higher-order weight connections.  To
demonstrate its utility, the model is applied to the speech
recognition domain, considering the problem of word
recognition as an optimization task.  The neural relaxation
model developed here is then used to compare traditional
statistics-based speech recognition techniques with more
intuitively appealing models.

Traditional speech recognition systems (see for example
[5]) are usually based upon a Hidden Markov Model
(HMM) that is in turn based upon a left-to-right factoring
of the conditional probabilities of the observations:

  

P(w0w1Lwn ) =

P w0( )P w1 w0( )P w2 w0w1( )LP wn w0w1Lwn−1( )
where P (x) is the probability of x and P (y|x) is the
conditional probability of y given x.  In practice, of
course, computing the entire series of conditional
probabilities is not feasible.  This leads to n-gram
language models that truncate the series after the first few
terms.  Most commonly, the truncation is effected after the
second or third term of the series, giving rise to bi-gram
and tri-gram models, respectively.  The interesting point,
however, is not the fact that an approximation is used but
rather that the approximation considers only context
preceding the word in question.  In contrast, most practical
systems process speech a phrase at a time or at least buffer
several words at a time, allowing the possibility of
considering both preceding as well as following context
when attempting to recognize a word.  Further, intuition
leads us to believe that considering both preceding context
as well as following context should improve recognition
accuracy.  The work described in this paper tests this
intuitive hypothesis and demonstrates both the general
utility of the higher order relaxation network as well as its
improvement over traditional methods on a speech
recognition task.

The rest of the paper introduces in some detail the neural
model and discusses how it may be a applied to a concrete
application, that of speech recognition.  Empirical results
of applying the network to a specific speech recognition
task of medium size are reported, and these results
demonstrate both the general utility of the neural model as
well as an improvement in word recognition over
traditional n-gram based methods.

Network Equations
The network presented here differs in three important ways
from traditional Hopfield-style networks.  First, the
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network may contain weights between three or more nodes
(higher order weights), and here we will limit ourselves to
ternary weights (as well as traditional binary ones).
Second, weights between nodes are anti-symmetric so that
in general

  

Wij ≠ W ji

Wijk ≠ W jki ≠K

Third, the node update equations incorporate the sigmoid at
a different point and include a tunable relaxation parameter.
The net input (incorporating only binary and ternary
weights) into a node i at time t is computed as follows:

Ui
(t ) = V j

(t −1)W ji
j ≠ i
∑

       +
V j

(t −1) + V j
(t −1)
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(t −1) + Vk
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 W jki

k ≠ j ≠ i
∑

j ≠ i
∑

The first summation term represents the standard binary
weights -- for a node i, the activations of every other node
are multiplied by the weight between that node and node i,
and the sum over all nodes represents the net input to node
i.  The double summation term represents the additional
ternary weight connections and the basic idea is the same
as for the binary weights.  The only modification is the
way in which we treat the activations of the two
impinging nodes.  The product of ratios guarantees that the
input through a ternary weight into node i is only
significant if both the impinging nodes’ activations are
high.

The activation of node i at time t is computed as

Vi
(t ) = Vi

(t −1) + ρ σ Ui
t( ) − Vi

(t −1)( )
where ρ is the relaxation rate parameter, and σ is any
appropriate sigmoid-type function.  We prefer a sigmoidal
function with range [-1,1] such as

σ Ui
t( ) = tanh

Ui
t

υ






so that a value of 0, which is often problematic in neural
networks, can represent a “don’t know” state.  For further
discussion of this kind of relaxation network see [6][7][8].

Implementing Speech Recognition
The relaxation network can be used to implement a speech
recognition engine as follows.  A word sequence may be
modeled as a sequence of network nodes.  Excitatory
weight connections between neighboring words (in the
temporal sense) can be based upon n-gram statistics

calculated from a training corpus.  Additionally, words
competing for the same temporal position do so through
inhibitory connections.  Initially, word node activations are
set by an acoustic model.  Here we use a Viterbi-based [2]
dynamic programming method coupled with an HMM
scoring mechanism.

Different network configurations representing various
methods of speech modeling can easily be constructed, for
example (a) networks implementing a traditional bi-gram
language model, (b) networks implementing an improved
bi-gram model that employs both preceding and following
contextual information, (c) networks implementing a
traditional tri-gram language model (using higher order
weights) and (d) networks implementing a centered tri-gram
language model (using higher order weights) that again
considers both preceding and following contextual
information.  Figure 1 illustrates a small part of each of
these four networks.  In the figure, the darkened node is the
node of interest and only those weights impinging on that
node are shown.

(a)

(b) (d)

(c)

Figure 1. Networks based on (a) traditional bi-
grams, (b) improved bi-grams, (c) traditional tri-

grams and (d) centered tri-grams

As a more concrete example, and to illustrate the
differences between traditional and centered language
models, consider the phrase, “I love tasty ribs”.  Figure 2
illustrates a network representing this phrase using weights
based on traditional bi- and tri-gram statistics.

w1 w2 w3

w4 w5

I love tasty ribs

Figure 2. Network implementing traditional bi-gram
and tri-gram model for the phrase “I love tasty

r i b s ”
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In Figure 2,

w1 = f P love I( ), P love( )( )
w2 = f P tasty love( ), P tasty( )( )
w3 = f P ribs tasty( ), P ribs( )( )
w4 = f P tasty I love( ), P tasty( )( )
w5 = f P ribs love tasty( ), P ribs( )( )

where f is a mapping function designed to closely relate the
network weights to the training corpus statistics, and
several different functions have been used in the
experiments.  One example of a typical weight function is

f P y x( ), P y( )( ) = min 1.0,
N xy( )

τ






⋅ max µ , log
P y x( )
P y( )

















where N (xy) signifies the number of times the word
sequence xy  was seen in the corpus, τ  is an integer
threshold for the minimum number of times a sequence
should be seen in the corpus to be statistically significant,
and µ is a minimum base value for the weights.  The key
term is the log of the probability ratio.  Taking the max()
of this value and µ guarantees that the weight value will
not get too small.  Multiplying by the min() term scales
the weight according to how often the corresponding word
sequence was seen in the corpus.  If it has been seen fewer
than τ times, the weight is scaled back accordingly.

In contrast, Figure 3 shows a network representing the
same phrase using improved bi-gram and tri-gram models.
Notice that from a purely probabilistic standpoint, this
model does not represent a proper decomposition as there
are cycles in the network graph.

w1

w4 w5

w3

w6

w2

w7 w8

I love tasty ribs

Figure 3. Network implementing centered bi-gram
and tri-gram model for the phrase “I love tasty

r i b s ”

The weights in Figure 3 are computed in a similar manner
as those in Figure 2, with the notable exception that we
must introduce the subscript notation on the conditional
statements.  Here the subscript p indicates a preceding word
while a subscript f indicates a following word.

w1 = f P love Ip( ), P love( )( )
w2 = f P tasty lovep( ), P tasty( )( )
w3 = f P ribs tastyp( ), P ribs( )( )
w4 = f P I lovef( ), P I( )( )
w5 = f P love tastyf( ), P love( )( )
w6 = f P tasty ribsf( ), P tasty( )( )
w7 = f P love Ip ,  tastyf( ), P love( )( )
w8 = f P tasty lovep ,  ribsf( ), P tasty( )( )

In addition to the inputs shown to the nodes in Figures 2
and 3, inhibitory connections between competing
candidates may be incorporated.  This may be done at the
word level, the phrase level, or both.  When the network
has relaxed, the candidate with the highest activation is the
result of the recognition.  Again, this recognition may be
done at the word or at the phrase level.

Results
Table 1 summarizes the results of applying the various
neural models to the DARPA Resource Management
task [4].  This application consists of a set of 7200 queries
about naval resources over a 1000 word vocabulary.  Using
weights based on traditional precedes-only bi-gram
probabilities, a baseline error rate of 11.68% in word
recognition accuracy is achieved.  Using weights based on
the improved bi-gram model that includes following
contextual information, the error rate is reduced by
11.82%.  As expected, adding higher order weights further
improves the accuracy.  Weights based upon traditional tri-
grams result in an improvement of 28.76% over the
baseline error.  Finally, using weights based upon centered
tri-grams reduces the baseline error rate by 37.76%.

Table 1. Word Recognition Error Rates
                                                                                                              
                                                                                                              

weights based on traditional bi-grams: 11.68%
weights based on improved bi-grams: 10.30%
weights based on traditional tri-grams: 8.32%
weights based on centered tri-grams: 7.27%

                                                                                                              

Conclusions
A method of incorporating higher order connections into
relaxation networks is introduced.  Using this method a
neural model has been developed for processing temporal
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patterns, in particular spoken phrases.  In contrast to
traditional speech processing based upon HMM
technologies, which considers only context prior to a given
word, the neural model presented here considers context
both preceding and following a word.  The model
represents word correlations as weights based upon
preceding bi-gram, following bi-gram and centered tri-gram
statistics.  Empirical results demonstrate that this neural
alternative to n-gram language models improves over the
traditional method in terms of reducing word recognition
error on a real-world speech recognition task.

Ongoing work includes improving the initial acoustic
information provided to the word nodes, incorporation of
higher-level language information (such as grammar) into
the network, modification of the word nodes squashing
function, improving the weight function, and developing
learning algorithms for dynamically optimizing network
performance.
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