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Quantum computation uses microscopic quantum level
effects to perform computational tasks and has produced
results that in some cases are exponentially faster than
their classical counterparts by taking advantage of quantum
parallelism.  The unique characteristics of quantum theory
may also be used to create a quantum associative memory
with a capacity exponential in the number of neurons.
This paper covers necessary high-level quantum
mechanical ideas and introduces a simple quantum
associative memory.  Further, it provides discussion,
empirical results  and directions for future work.

1. Introduction

We consider the problem of associative pattern
completion -- given a set of patterns of the form 

r
xi →

r
oi ,

learn to produce the vector 
r
oi  given the vector 

r
xi .  The

trivial solution is simply to store the set of patterns as a
lookup table.  The problem becomes interesting with the
added constraint of finding as small a representation as
possible.  This paper proposes a quantum associative
memory (QuAM) with a storage capacity of O(2n), while
using only n neurons.

The field of quantum computation, which applies ideas
from quantum mechanics to the study of computation, was
introduced in the mid 1980's [6].  For a readable
introduction to quantum computation see [3]; for a more
rigorous treatment see for example [1].  The field is still
in its infancy and very theoretical but offers exciting
possibilities for the field of computer science -- the most
notable to date being the discovery of quantum
computational algorithms for computing discrete
logarithms and prime factorization in polynomial time,
two problems for which no known classical polynomial
time solutions exist [11].  These algorithms provide
theoretical proof not only that interesting computation can
be performed at the quantum level but also that it may in
some cases have distinct advantages over its classical
cousin.  The quantum computing approach to solving
these two problems takes advantage of the unique features
of quantum systems to process an exponential number of

possibilities simultaneously, thus providing exponential
speedup over classical approaches.

This paper presents a unique reformulation of the
pattern classification problem into the language of wave
functions and operators.  This reformulation may be
generalized to a very large class of computational learning
problems, opening up the possibility of employing the
capabilities of quantum computational systems for the
solution of computational learning problems.  Here we
examine one such problem, that of pattern completion,
and show how it may be handled in the new formalism.
Further, it is shown that the possibility of utilizing
quantum effects such as coherence and interference (see
section 2) may have great advantage over classical
computational learning methods.

Artificial neural networks (ANN) seek to provide ways
for classical computers to learn rather than to be
programmed.  If quantum computers become a reality,
then artificial neural network methods that are amenable to
and take advantage of quantum mechanical properties will
become possible.  Further, the possibility of processing
an exponential space in polynomial time is very
appealing.  In particular, can quantum mechanical
properties be applied to ANNs for problems such as
associative memory?  Recently, some work has been done
in the area of combining classical artificial neural
networks with ideas from the field of quantum mechanics
[2], [8], [10], [12].  This paper introduces some important
ideas from quantum mechanics, proposes a quantum
associative memory, presents analytical discussion, and
produces empirical results that support the analysis.

2. Quantum mechanics

Quantum mechanics is a theory that in many ways is
counterintuitive. Yet it has provided us with perhaps the
most accurate physical theory (in terms of predicting
experimental results) ever devised by science.  The theory
is well-established and is covered in its basic form by
many textbooks (see for example [7]).  Several necessary
ideas from this theory are briefly reviewed here.
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Linear superposition is closely related to the familiar
mathematical principle of linear combination of vectors.
Quantum systems are described by a wave function ψ  that
exists in a Hilbert space.  In the Hilbert space there exists
a set of states, φi , that form a basis, and the system is
described by a quantum state ψ ,

ψ = ci
i

∑ φi . (1)

ψ  is said to be in a linear superposition of the basis
states φi , and in the general case, the coefficients ci may
be complex.  We use here the Dirac bracket notation where
the ket ⋅  is analogous to a column vector, and the bra ⋅
is analogous to the complex conjugate transpose of the
ket.  In quantum mechanics the Hilbert space and its basis
have a physical interpretation, and this leads directly to
perhaps the most counterintuitive aspect of the theory.
The counter intuition is this -- at the microscopic or
quantum level, the state of the system is described by the
wave function ψ , that is, as a linear superposition of all
basis states.  However, at the macroscopic or classical
level the system can be in only a single basis state.  For
example, at the quantum level an electron can be in a
superposition of many energy levels; however, in the
classical realm this obviously cannot be.

Coherence and decoherence are closely related to the idea
of linear superposition.  A quantum system is said to be
coherent if it is in a linear superposition of its basis
states.  A strange result of quantum mechanics is that if a
system that is in a linear superposition of states interacts
in any way with its environment, the superposition is
destroyed.  This loss of coherence is called decoherence and
is governed by the wave function ψ .  The coefficients ci

are called probability amplitudes, and ci
2
 gives the

probability of ψ  collapsing into state φi  if it
decoheres.  In the Dirac notation, the probability that a
quantum state ψ  will collapse into an eigenstate φi  is
written φi ψ

2
 and is analogous to the dot product

(projection) of two vectors.  Consider, for example, a
discrete physical variable called spin.  The simplest spin
system is a two-state system, called a spin-1/2 system,
whose basis states are usually represented as ↑  (spin up)
and ↓  (spin down).  In this simple system the wave
function ψ  is a distribution over two values (up and
down) and a coherent state ψ  is a linear superposition of
↑  and ↓ .  One such state might be

ψ = 2

5
↑ + 1

5
↓ . (2)

As long as the system maintains its quantum coherence it
cannot be said to be either spin up or spin down.  It is in
some sense both at once.  Classically, of course, it must
be one or the other, and when this system decoheres the
result is, for example, the ↑  state with probability

↑ ψ
2

= 2

5







2

=.8 . (3)

Operators on a Hilbert space describe how one wave
function is changed into another.  Here they will be
denoted by a capital letter with a hat, such as Â , and they
may be represented as matrices acting on vectors.  Using
operators, an eigenvalue equation can be written

Â φi = ai φi , (4)

where ai is the eigenvalue.  The solutions φi  to such an
equation are called eigenstates and can be used to construct
the basis of a Hilbert space as discussed above.  In the
quantum formalism, all properties are represented as
operators whose eigenstates are the basis for the Hilbert
space associated with that property and whose eigenvalues
are the quantum allowed values for that property.  It is
important to note that operators in quantum mechanics
must be linear operators.

Interference is a familiar wave phenomenon.  Wave
peaks that are in phase interfere constructively (magnify
each other’s amplitude) while those that are out of phase
interfere destructively (decrease or eliminate each other’s
amplitude).  This is a phenomenon common to all kinds
of wave mechanics from common water waves to optics.
The well-known double slit experiment demonstrates
empirically that at the quantum level interference also
applies to the probability waves of quantum mechanics.
Herein lies a truly non-classical property that gives
computation by quantum means a unique advantage over
classical approaches, including any stochastic methods [5].

Entanglement is the potential for quantum states to
exhibit correlations that cannot be accounted for
classically.  Mathematically, states that cannot be
factorized (as a tensor product) are said to be entangled,
while those that can be factorized are not.  There are
different degrees of entanglement, and it is interesting to
note from a computational standpoint that quantum states
that are superpositions of only those basis states that are
maximally far apart in terms of Hamming distance are
those states with the greatest entanglement.  For example,
a superposition of only the states 00  and 11  is
maximally entangled; on the other hand, a superposition
of 00 , 01  and 11  still exhibits entanglement, but to
a lesser degree.  Finally, it should be mentioned that while
interference is a quantum property that has a classical
cousin, entanglement is a completely quantum
phenomenon for which there is no classical analog.

3. Quantum associative memory (QuAM)

The quantum associative memory proposed here
consists of a set of spin systems, each of which may be
thought of as the quantum analog of a simple 2 or 3 state
artificial neuron.  The patterns to be learned are viewed as
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operators that act on the spin systems.  The following
definitions are necessary for describing the QuAM:

  
r
x  as a binary input vector of length n, whose elements

can have the values 0 or 1,
  
r
z  as a ternary feature vector of length n , whose

elements can have the values 0,1, or ∗, with ∗
representing a “don't care” state,

  
r
o  as a binary output class vector of length s associated

with an input vector   
r
x ,

  
r
p  as a binary output class vector of length s associated

with a feature vector   
r
z , and

T as a set of patterns   
r
xi →

r
oi , 1 ≤ i ≤ q to be learned.

A feature vector   
r
z  is said to match an input vector   

r
x  if

and only if ∀j, z j = x j  or z j =  ∗ .  Further, if the
number of elements z j ≠  ∗  is r, then the feature vector
r
z  is of order r, or 

r
z  is said to be an rth order feature.  For

example, given the input vector (101), the 1st order
features that match it are (1 ∗ ∗), ( ∗0 ∗), and ( ∗ ∗1).
Additional necessary definitions include the matching
functions m  and w .  Together these two functions
compute a weighted hamming score for how closely a
feature vector matches an input vector.

m x, z( ) =
1 if z =  ∗
ρ if x = z

0 otherwise.







  

w
r
x,

r
z( ) =

0 if ∃j, m x j , z j( ) = 0

m x j , z j( )j∏ otherwise.







For computational purposes, the most commonly used
quantum system is the spin-1/2 system introduced in
Section 2, which is referred to as a quantum bit or qubit.
Relabeling the eigenstates as 0  and 1 , it is easy to see
why this is so.  One useful feature of quantum
computation is that as long as a set of n qubits maintains
its quantum coherence, it can be considered to be all 2n

possible binary patterns at once. Thus any operation
performed on the qubits is performed on all 2n patterns in
parallel.  This is termed quantum parallelism.

We propose the use of a slightly more complex spin-1
system (3 states) whose eigenstates are labeled 0 , 1
and ∗ .  This system may be thought of as a classical
ternary variable --- when it decohers it will have a value of
either 0 or 1 or ∗.  However, while coherence is
maintained, it will exist as a superposition of all three.
Thus, a coherent set of n such quantum systems would be
represented as a superposition of all 3n eigenstates.  We
now define the quantum system for learning associative
pattern completion:

  ψ = cr
z
r
p

r
z
r
pr

z
r
p∑  as the quantum state of a set of n

spin-1 systems and s spin-1/2 systems, with the
former designated to represent the input vector and
the latter designated to represent the output class
vector.

Each spin-1 system can be thought of as a neuron.
Notice that the eigenstates are labeled as a feature vector
(  
r
z ) paired with an output vector (  

r
p ), corresponding to the

different states in which the quantum system can be found.
Each basis state corresponds to a possible pattern or partial
pattern, and a superposition of states corresponds to a
superposition of different patterns and partial patterns.
Therefore, ψ  represents a QuAM with the ability to
represent 3n×2s different patterns.  In this sense it is no
different than a classical pattern associator.  As we shall
see, however, its storage capacity will be exponential in n.
The patterns to be learned are considered as operators that
operate on ψ , with each pattern producing two operators
defined as follows.  Consider the operators as matrices that
are indexed by column and row as 

r
z1

r
p1,

r
z2

r
p2 .  Then the

definition for the first set of operators, Âr
xi

r
oi

, is

ar
z1

r
p1,

r
z2

r
p2

= 0 if 
r
z1 does not match 

r
xi

w(
r
xi ,

r
z1) if 

r
z1 =

r
z2 and 

r
oi =

r
p1 =

r
p2 .



The Â  operators are designed to increase the
probability amplitudes of those eigenstates in ψ
associated with features that match the input vectors in the
training set.  An Â  operator increases the probability
amplitude for only those eigenstates whose features match
its associated input training vector and whose output class
matches the output training class.  The second set of
operators, B̂r

xi
r
oi

, is defined as

  

br
z1

r
p1,

r
z2

r
p2

=
0 if 

r
z1 does not match 

r
xi

−w(
r
xi ,

r
z1) if 

r
z1 =

r
z2 and 

r
oi ≠

r
pi

w(
r
xi ,

r
z1) if 

r
z1 =

r
z2 and 

r
oi =

r
pi .







The B̂ operators, on the other hand, are constructed to
cause interference (constructive or destructive depending
upon the output class) between the amplitudes of
competing eigenstates.  They increase the probability
amplitudes (positively or negatively) of those eigenstates
that correspond to features that match their associated
input training vector regardless of output class.  Finally,
the pattern operators are combined as follows:

Â  as the operator   Âr
xi

r
oii=1

q∑ ,

B̂ as the operator B̂r
xi

r
oii=1

q∑ , and

T̂  as the operator ÂB̂ .
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T̂  combines the information in Â  and B̂ to represent
an exponential number of patterns in linear superposition
for the purpose of pattern association.  The learning of the
patterns in T  by the QuAM may be summarized as
follows.

1. Prepare ψ = cr
z
r
p

r
z
r
pr

z
r
p∑  such that the   c

r
z
r
p

represent a uniform distribution.
2. Calculate the operator T̂ .
3. Apply the operator T̂  to ψ .

In essence, the information learned from the training set
is encoded in the coefficients   c

r
z
r
p .  For the execution or

pattern completion phase two more definitions are
required.

  
r
y  as a binary input vector to be classified, and
Ŷ  as an operator defined as the matrix

  
yr

z1

r
p1 ,

r
z2

r
p2

=
0 if 

r
z1 does not match 

r
yi

w(
r
yi ,

r
z1) if 

r
z1 =

r
z2





Ŷ  acts similarly to B̂ in that it makes non-zero the
probability amplitudes for those eigenstates whose features
match the input vector to be classified; obviously output
class cannot be considered.  Given the input vector 

r
y ,

pattern completion proceeds as follows.

4. Apply the operator Ŷ  to ψ .
5. Observe the quantum spin-1/2 systems associated

with the output vector.

Concisely, to complete the partial pattern described by
an input vector 

r
y  given a training set T, the quantum

state ψ  is prepared to be in a superposition of all its
eigenstates,  and then

ŶT̂ ψ (5)

is calculated.  Finally, the system ψ  is observed causing
it to choose a single eigenstate, and the values observed
for the spin-1/2 systems associated with the output pattern
are the completion of 

r
y .

4. Discussion and empirical results

Three datasets from the UCI repository [9] were selected
for empirical testing.  Due to the exponential nature of
simulating quantum systems on a classical computer, only
small data sets (in the number of inputs) can be
considered.  These data sets were converted to binary
representation before simulation.  The Lenses data set
represents patients and what kind of contact lense they
should be prescribed (hard, soft, none).  The Hayes data set
is an abstract measure of concept formation used to test
human psychological function.  The LED data set is an

artificially generated representation of the 10 digits of an
LED display with 25% noise.  Ten fold cross validation
was used to obtain results, and since quantum mechanics
is a probabilistic theory, ten trials for each data split were
run to get a more accurate picture of the results.

Table 1. Pattern completion accuracy
                                                                                               

ρ = 2 ρ = 4 ρ = 8 ρ = 16 Â
                                                                                               

Lenses 0.77 0.98 1.00 1.00 1.00
Hayes - - 0.90 0.91 0.91
LED - - 0.63 0.66 0.73

                                                                                               

For the Lenses data set, the QuAM uses 5 neurons (3-
state qubits) to represent 23 patterns; for the Hayes data
set, the QuAM uses 8 neurons to represent 83 patterns;
and for the LED data set, the QuAM uses 7 neurons to
represent 200 (noisy) patterns.  Table 1 shows the pattern
completion rate on the data sets for different values of ρ
(from the m function).  The first four columns, labeled
with their respective values for ρ, show that as ρ increases
in value, pattern recall accuracy improves.  This is due to
the nature of the m function and the length of the input
vector x.  This improvement is most marked for the
Lenses data set which achieves perfect recall of all 23
patterns using only 5 qubits.  The results for the Hayes
data set are equally encouraging -- 90% recall of 83
patterns using only 8 qubits.  Finally notice that for the
LED data set the results are not as good.  This is due to
the noise in the data set producing harmful interference
patterns through operator B̂.  The fifth column shows
recall accuracy using the Â  operator instead of the T̂
operator.  In this case, results for LED  are also near
optimum (note that due to noise the maximum accuracy
for LED is 75%).

The ability to memorize and correctly recall this many
patterns with so few neurons is classically not possible.
It is the quantum effects of coherence, interference and
entanglement that make the exponential storage capacity
possible.

4.1. Generalization

Although the QuAM's primary purpose is to memorize
a set of patterns for completion, it does have the ability to
generalize over patterns not seen during learning.
However, since this is not its main purpose and since the
QuAM's bias is towards the highest order matching
feature, its generalization ability is expected to be limited.
The definition of T̂  includes the B̂ operator for the
purpose of utilizing interference between contradictory
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features in order to improve generalization.  This is
accomplished by having features that are good predictors of
the output vector reinforced and by having features that are
bad predictors eliminated.  However, the interference in B̂
sometimes overcompensates and becomes detrimental to
generalization by actually reinforcing bad features.  Thus,
while the B̂ operator provides some generalization
accuracy, a new operator that better describes the proper
constructive and destructive interference between patterns
will improve this accuracy significantly.  Table 2 supports
this by giving generalization results using the operator Â
alone (no interference) and the full operator T̂ .  Note that
on the Lenses and Hayes data sets, the addition of the
interference inherent in B̂ does improve generalization as
expected.  However, due to the noise in the LED data set,
B̂ actually hurts generalization accuracy, just as it did
recall accuracy (table 1).  For reference, the third column,
labeled “Other”, provides average generalization accuracy
on these data sets for several well known learning
algorithms [13].  As expected, the generalization accuracy
of the QuAM may still be improved significantly.

Table 2. Generalization accuracy
                                                                      

Â T̂ Other
                                                                      

Lenses 0.43 0.68 0.73
Hayes 0.45 0.48 0.66
LED 0.59 0.56 0.68

                                                                      

5. Concluding remarks

A unique view of the pattern completion problem is
presented that allows the proposal of a quantum
associative memory with exponential storage capacity.  It
employs simple spin-1/2 and spin-1 quantum systems and
represents training and input vectors as quantum operators.
This approach demonstrates that learning techniques can be
developed making use of the unique characteristics of
quantum mechanics.  Discussion on the physical
realization of this system is beyond the scope of this
paper.  We acknowledge that the implementation is far
from a trivial issue as investigation into the field of
quantum computation will attest.  By far the most difficult
issue is the maintenance of quantum coherence throughout
the computation.  However, recently some excitement has
been generated over the possible use of nuclear magnetic
resonance (NMR) techniques to overcome many of these
difficulties [4].  Finally, it may be noted that we have
made use of only the very simplest of quantum systems
and one of the very simplest of learning algorithms.
Current research is focused on improving generalization

capability for patterns not memorized during learning.
Future work will include application of quantum theory to
more complex learning systems, application of more
complex quantum systems to the artificial neural network
paradigm, and extension to continuously valued domains.
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