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Abstract

There exists on-going debate between Connectionism and
Symbolism as to the nature of and approaches to cognition.  Many
viewpoints exist and various  issues seen as important have been
raised.  This paper suggests that a combination of these
methodologies will lead to a better overall model.  The paper
reviews and assimilates the opinions and viewpoints of these
diverse fields and provides a cohesive list of issues thought to be
critical to the modeling of intelligence.  Further, this list results in a
framework for the development of a general, unified theory of
cognition.

1. Introduction

Developing artificial models of cognition is a challenging
field that has roots in such diverse fields as cognitive psychology,
computer science, linguistics, neurophysiology, and mathematics.
Due at least in part to this fact, vastly differing theories for
explaining and/or imitating cognitive capabilities have been
developed including Connectionism [1] [2], Symbolic Artificial
Intelligence [3], Fuzzy Logic [4], Machine Learning [5] and
Genetic Algorithms [6], to name a few.  Each of these approaches
to modeling cognition (or, more accurately, some aspect thereof)
has various strengths and weaknesses that are becoming better
understood, and each claims some fairly impressive successes as
well as some disheartening failures.

For the most part, relations among the various paradigms have
been indifferent at best and often have been almost hostile.
Though this is true of all the approaches mentioned above to some
extent, the majority of the contrasts, comparisons, and conflicts are
embodied in the Symbolism vs. Connectionism debate that has
raged continuously over the last ten years.

However, some researchers have begun to recognize the
apparent complimentary nature of these two paradigms.  They
believe that neither approach alone can produce adequate models
of cognition but that in combination richer models with greater
functionality can be realized.  Efforts in this direction have
variously been referred to as Hybrid Systems, High-Level
Connectionism, Symbolic Connectionism, Symbol Processing
Connectionist Systems and the like.  Though work in this area has
been on-going since the resurgence of Connectionism in the late
eighties [7] [8], a proliferation of new books on the subject ([9]
[10] [11] [12], for example) indicates its increasing importance.

To date, the field of Hybrid Systems has produced some
interesting applications [9] [10] [11] [12] [13], and some ground
work has been laid concerning the proper integration of various
approaches to modeling cognition; however, the critical next step
must be the development of a formal theory for the integration of
Connectionism with Symbolism and thus for a general theory of
(artificial) intelligence.  A promising approach, in our opinion, is to
view Connectionism and Symbolism as complimentary approaches
and to attempt to extract from each the primitives that embody
them.  Another way of looking at this is to realize that both
Connectionism and Symbolism can be modeled by a Turing
machine, and therefore our job is to identify a simple subset of
Turing-computable functions that embody the primitives necessary
for a model of intelligence.

This paper is an attempt to outline a framework for the
development of such a general theory.  The approach we take is to

first review the differences and similarities, and the strengths and
weaknesses of Connectionism and Symbolism.   Second, a list of
critical issues pertaining to intelligence is discussed.  Since
everyone has a differing opinion of what the critical issues are, we
are attempting to distill the many ideas that could be considered
into the essence of what must be considered.  Third, a brief
discussion of how these issues can guide in the development of a
general theory of intelligence is presented.

2. Connectionism and Symbolism

Whatever their differences may be, Connectionism and
Symbolism both share the assumption that at some level cognition
can be functionally modeled as a computational process.  Other
than this extremely basic commonality, there is little else involving
the issue of Connectionism and Symbolism that enjoys any kind of
majority consent.  Some researchers argue that Connectionism is
fatally flawed as a model of cognition [14] or that while
Connectionism may play a minor though important role,
Symbolism represents the heart of any realistic model [15].  On the
other hand, cases are presented for the desirability of
Connectionism over Symbolism [16] and that the eventual
dominance of Connectionism is only a matter of time [17].  Some
see the two as complimentary or dualistic in nature and are
optimistic that their combination will bear productive fruit [18]
[19] [20] [21] [22], while others argue for their equivalence and
cite performance issues as the main concern [23] [10].  Still others
are more pessimistic as how intelligent a Connectionist-Symbolic
hybrid will ever be [24], and some claim that the entire idea of
modeling cognition as computation is hopeless [25].

Many people agree that cognition can and should be described
at different levels and that care should be taken to compare and
contrast only those explanations/models/theories that exist on the
same level [23] [14] [16].  However, others feel that an explanation
of cognition should not or can not be completely differentiated
from the biological implementation of cognition that we know as
the brain [22][24] [17].

Tables 1 and 2 attempt to assimilate these views from two
different angles.  One common thread that runs through any
discussion of Connectionism vs. Symbolism, either implicitly or
explicitly is the dual nature of the two.  People refer to this duality
in different ways, and table 1 presents the computational
dichotomy that these two approaches represent.  For example,
Connectionist networks are characterized by being spatially
distributed while Symbolic approaches can be thought of as being
temporally distributed.  In related fashion, Connectionist networks
perform processing in parallel over distributed representations but
Symbolic models process serially over local ones.  Connectionist
models perform statistical approximations over continuous
numerical data, and Symbolic models apply concrete logical
operations to discrete symbolic data.  Finally, on one hand,
Connectionism is associated with cognitive tasks that are referred
to as low-level, subconceptual, unconscious, or subdeliberative; on
the other, Symbolism is associated with tasks that may be
described as high-level, conceptual, conscious, or deliberative.

These are all prototypical generalizations, of course, and as is
pointed out in, for example [21], the boundary dividing
Connectionist models and Symbolic models is ill-defined at best.
In fact Oden suggests that models that should be taken seriously
will almost always exist in this fuzzy boundary region.



Connectionism vs. Symbolism

Space Time
Parallel Serial
Distributed Localist
Statistical Logical
Continuous Discrete
Numerical Symbolic
Low-level High-level
Subconceptual Conceptual
Unconscious Conscious
Subdeliberativc Deliberative

Table 1.  The Connectionist-Symbolic Dichotomy

The second approach to looking at this is to examine the
relative strengths and weaknesses of the two approaches.  People
see this particular debate in many different lights.  There is
somewhat of a consensus as to what the respective strengths and
weaknesses are.  However much disagreement exists over their
relative importance. Table 2 is a compilation of general strengths
and weaknesses for Connectionism and Symbolism.  Again, this is
an attempt to assimilate as many viewpoints as possible, though
doubtless some will be excluded or treated unsatisfactorily.

Attributes of Connectionist networks usually cited as strong
points include robustness, the ability to fine tune knowledge
through experience, automatic acquisition of knowledge, fault
tolerance, and adaptivity.  Robustness is the ability to respond
appropriately to inputs that are noisy, novel, or unanticipated.  Fine
tuning of knowledge expresses the idea that the system can slightly
alter its representations to account for new inputs without
drastically affecting the representations gained from past
experiences.  Automatic knowledge acquisition is the ability to
extract knowledge from the environment.  Fault tolerance allows
for graceful degradation of performance as the system fails.
Finally, adaptivity deals both with a wide range of applicability of
the model as well as with the ability of a given instantiation of the
model to change with its environment.

Connectionism Symbolism

Strengths
robustness handle complex structures
fine tuning domain
knowledge acquisition explanation
fault tolerant serial computation
adaptive
inherent parallelism

Weaknesses
difficult to interpret brittleness
slow learning symbol grounding
homogeneous stucture knowledge acquisition
not naturally serial narrow domain
scaling scaling

Table 2.  Strengths and Weaknesses of Connectionism and
Symbolism

Symbolism, on the other hand, is usually considered to have
as strengths the ability to represent and manipulate complex
structures, rapid learning of concepts, explanation, and the ability
to naturally perform serial computation.  Complex structures are
defined recursively as a set of atomic symbols together with those
molecular symbols that can be created by combining atomic
symbols according to a set of syntactic rules.  These structures
possess a semantic structure that is closely related to their syntactic
one.  Rapid learning refers to the ability to quickly and drastically
change representations.  Explanation refers to the ability of a
system to explain its decision in understandable terms.  Some
people hold that the explanation of a system’s behavior (not the
behavior itself) is the real object of interest.  Serial computation is
argued to be necessary for some kinds of cognition including
ordered problem solving, logical reasoning, generalized thinking
involving variable binding, and certain types of structural aspects
of language  [20].

Not surprisingly, the weaknesses of the respective approaches
often seem to be the negation of a strength of the opposing method.
For example, the difficulty in interpretation of Connectionist
networks is in direct opposition to the strong explanation abilities
of Symbolism.  Likewise, Connectionism’s slow learning rate,
homogeneity of structure and lack of natural serial computation
ability starkly contrast with Symbolism’s strengths of use of
domain knowledge, complex structure, and natural serial
computation respectively.  Similarly, Symbolism has its own
weaknesses: brittleness, symbol grounding (or lack thereof),
difficulty in acquiring knowledge, and narrow application domain
(each system must be tailored to a specific domain).  Brittleness
results from a lack of robustness and fault tolerance, difficulty in
acquiring knowledge contrasts with automatic knowledge
acquisition, and a narrowness of domain results from lack of
adaptivity.  But robustness, fault tolerance, automatic knowledge
acquisition, and adaptivity are exactly the strengths of
Connectionism.  The symbol grounding problem is interesting in
that it does not directly oppose a strength of Connectionism, per se,
(though Connectionism does not suffer from it and this may be
thought of as a strength) and is treated in [15].  There are those, of
course, who will point to one or another of one of the methods’
weaknesses and argue that it is insurmountable and thus that the
method is untenable.  A good example of this is Fodor and
Pylyshyn’s denunciation of Connectionism on the basis that it
lacks compositionality and systematicity (basically, the ability to
represent complex structures and the existence of structure
sensitive operations, respectively) [14].

3. Issues of Intelligence

Accepting the premise of Artificial Intelligence that cognition,
at some level, can be modeled as computation and also taking the
viewpoint that Connectionism and Symbolism represent a
complementary dichotomy of computation, both poles of which
explain certain aspects of intelligence, we would like to employ
these assumptions to develop a framework for the development of
a general theory of (artificial) intelligence.  This framework will
explicitly describe what such a theory must do in order to be a
candidate for the explanation of cognition.

3.1 Formal primitives
A minimal set of formal primitives (a subset of the Turing

computable functions) that are necessary and sufficient for
modeling the building blocks of intelligence must be developed.
Minimality is important for reasons of parsimony and elegance.
Formality is a necessity for clarity, for testing hypotheses, and for
implementation issues, among other things.  Further, these
primitives must adequately address the following issues:
knowledge, complex symbol structure, symbol grounding,
learning, robustness, fault tolerance, adaptivity, duality of
intelligence, multiple levels of explanation, and scaling.

3.2 Knowledge
Possessing knowledge and rationally making use of it is a

major component of intelligence and there are at least three facets
to the knowledge problem: acquisition, representation, and
explanation.  Any cognitive system must be able to obtain
information from its environment, internalize and manipulate that
information, and respond appropriately to its environment.
3.2.1 Acquisition.  A model of intelligence must provide a method
for actively extracting pertinent information from the environment
as well as allow for passive assimilation of information provided
explicitly by an authority.
3.2.2 Representation.  The model must internally represent
knowledge in a way that is both useful to it and in a way that
exhibits some kind of relationship with the external environment
from which it was derived.  This obviously relates to the issue of
compositionality and to the issue of grounding.
3.2.3 Explanation.  If for no other reason than for the practical one
of trust, it is necessary that any intelligent system be capable of
providing an explanation of its decisions.  This is especially true of
an artificial intelligence acting in any type of critical system (such
as air traffic control or medicine).  Some would claim that the
explanation of a system’s behavior is more important and more
valuable (especially in the context of understanding intelligent
behavior) than the behavior itself.



3.3 Complex symbols
For the staunch Classicists, the ability (or lack thereof) to

represent and manipulate complex symbols is the crux of the
matter.  They believe that humans use symbol representations and
manipulations in so many high-level cognitive tasks that this an
absolute necessity.  Connectionists are not convinced of this.  It
may certainly be argued that language syntax and semantics are
based on this ability, and in fact, this ability is derived, for the most
part, from a linguistic theory of mind.  This concept of a complex
symbolic representational system is so pervasive that any general
model must either include provision for it (or a functional
equivalent) or convincingly demonstrate it to be unnecessary.
3.3.1 Compositionality.  This principle demands the ability to
represent a theoretically infinite number of symbols (this is known
as productivity) using a finite set of atomic symbols and a set of
syntactic rules for their combination.  This theoretical infinitude is
limited in practice by finite resource constraints such as memory,
time, etc.  The important thing about these symbols is that their
semantic interpretation is a semantic interpretation of their
constituent parts along with the relationship that exists among
these parts.
3.3.2 Systematicity.  Systematicity complements compositionality
in that it requires the existence of operations that are sensitive to
syntactic structure.  For example, in deductive logic a rule exists
for transforming any structure of the form A ∧ B to the form A.
Because semantic structure is closely related to syntactic structure
(by compositionality), this reflects the truism that if A and B exist
(are true), then certainly A exists (is true).

3.4 Grounding
This consideration is due to Harnad [15] and addresses the

problem in pure symbol systems of the lack of intrinsic meaning in
the system.  Though such a system possesses a rich symbol
structure, that structure is purely internal and completely arbitrary.
It is not grounded to anything in reality.  Harnad likens this
problem to that of trying to learn Chinese as a first language  with
only Chinese literature as an instruction source.  All the Chinese
symbols are related to one another in complex ways, but without so
much as a notion of language (remember we are learning this as a
first language), there is no way to connect any of those symbols to
anything real.  Symbolic representation is practically worthless to a
system trying to function in an environment in which none of its
symbols are grounded.  Harnad suggests that the solution to this
quandary is to begin with an elementary set of nonsymbolic
representations such as various input patterns that can be both
discriminated and identified (classified) correctly.  The
classifications of these patterns will then be abstract symbols, but
they will be grounded to the input patterns from the environment
that produced them.  These can then be further combined into more
complex symbols as discussed above, and the grounded meanings
of the atomic symbols will be inherited by any higher level
symbols of which they are constituents (by the principle of
compositionality).

3.5 Learning
Knowledge acquisition is one method for providing a system

with its initial knowledge; other approaches such as inductive
methods also may be employed.  The ability to alter that
knowledge and accordingly to alter behavior due to changes in the
environment is what allows a system to intelligently function in a
dynamic, realistic environment.  This is the ability to learn.  Any
intelligent system should, over time, become more adept at
performing tasks (not just in the sense of speed-up learning) and
interacting with its environment through this process.  Both the
rapid assimilation of concepts necessary for immediately critical
behavioral changes and the gradual refining of representations
involved in capturing exceptional behaviors and concept drift must
be supported.

3.6 Robustness, fault tolerance, and adaptivity
The arguments for these capabilities are almost platitudes.

Independent of method it is obvious that the abilities to perform in
noisy, novel or adverse conditions, to maintain reasonable levels of
performance despite failures in the system (graceful degradation),
and to adapt to a changing environment and/or unique types of

problems are clearly desirable properties that any intelligence or
model of intelligence will possess.

3.7 Duality
As discussed in section 2, there appears to be a dual nature to

intelligence.  It is multi-faceted and each of these has diametrically
opposed poles that are both present (or at least seem to be) in
intelligence.  The most important of these dualities is briefly
discussed below.
3.7.1 Continuous and discrete.  Most of the real world is a
continuum.  Therefore it is critical that any model of intelligent
behavior account for handling continuous data.  On the other hand,
we often process in discrete quantities as well, content to know that
it is a cool day rather than that it is 63.7° F.  Discretization, though
far from satisfactory, is one approach to reconciling the two [26].
3.7.2 Numerical and symbolic.  The argument here is related to the
previous one.  Clearly, we explicitly and consciously perform
symbolic computation at least in language.  Perhaps we perform
some numerical computation in mathematical endeavors, though
mathematics is by its very nature symbolic.  More probably any
numerical processing we perform occurs at an unconscious level,
and there are numerous unconscious tasks that we perform
(particularly of the pattern recognition sort) that can, so far,  only
be explained numerically.
3.7.3 Distributed and localist.  A distributed system represents
concepts as patterns over its units.  A localist system represents a
single concept with a single unit.  Therefore a distributed system
will be able to represent many more patterns than a localist one
with similar resources.  However, a fully distributed system
typically can represent only a single concept at a time because all
the units of the system are involved in the representation.  On the
other hand, a localist system can simultaneously represent as many
concepts as it has units.  The requirement here is to achieve the
simultaneity of a localist system and the capacity of a distributed
system.  Other issues that could be addressed include those
involving fault tolerance, performance issues, etc.
3.7.4 Parallel and Serial.  Many processing tasks such as pattern
matching, image recognition, memory recall, and natural language
understanding require huge amounts of processing and yet they are
performed by biological systems in a few hundred milliseconds.
This suggests massive amounts of parallel computation.  However,
other tasks such as logic inference, problem solving, and the like
have a very serial nature to them in which one computation cannot
be accomplished until after another is complete.  How do we
reconcile two such computational approaches in the same model?
3.7.5 Statistics and logic.  In a related vein, it is often necessary to
perform a nearest match or a closest approximation or a degree of
membership type operation.  Certainly any completely novel
experience will require such improvisation for the production of
behavior.  At other times, strict all or nothing matching or yes/no
reasoning is required.  Both the “soft” constraints of statistics
derived from the environment (as per Connectionism) and the
“hard” constraints of logic (as per Symbolism) are required.

3.8 Multiple levels
The duality issues of section 3.7 all suggest that an

explanation of multiple levels of cognition is required.  In every
case one half of the dual was associated with high-level or
conscious tasks such as reasoning while the other half was
associated with low-level or unconscious tasks such as perception.
It is well accepted that there exist multiple levels of explanation for
cognitive phenomena and that there are at least the two levels
(high-level and low-level processes) of extant cognitive
phenomena.  Therefore, any model of intelligence may exist at or
take into account multiple levels of description; however, a model
of intelligence must account for at least the high and low levels
implicated in the computational dichotomy of intelligence.

3.9 Scaling
Neither Connectionism nor Symbolism have really succeeded

in scaling their proposed explanations of cognition to real-world
levels.  Not only is a theory that only works on toy problems of no
practical use, it is soon of very little use intellectually as well, for
no theory that cannot account for the handling of real-world
problems can come close to modeling intelligence.  We must
eventually succeed in scaling solutions up to realistic problems or
finally abandon our efforts to explain cognition.



3.10 What and how
Are the brain and the mind inextricably associated one with

another or is the functionality of mind completely separable from
the implementation of the brain?  There are those that will argue
both ways.  Among those that hold to the separability view, some
will argue for a top-down approach in which we must understand
what is happening before we can understand how it is happening,
while others will argue the opposite way.  We are of the opinion
that mind and brain cannot be wholly separated and thus some
attempt must be made to understand both at once.  However,
whatever the viewpoint, both the how and the what must eventually
be addressed.  The difference comes in the order they are tackled.

4. Toward a General Theory

As the issues above are confronted and resolved, a general,
unified theory of (artificial) intelligence will emerge, and some
good preliminary efforts have been made.  For example, both
Arbib’s Schema Theory [27] [28] and Michalski’s Multistrategy
Task-adaptive Learning [29] give good accounts of many of the
aspects of knowledge, complex symbols and learning.  Though it is
possible that the emergence of a theory will come as a
revolutionary breakthrough, it is more likely that it will evolve
much more slowly as an eclectic result of such research performed
in many different disciplines.  For this to have a chance to succeed,
not only must argumentation and hostility between various camps
be avoided, but also interdisciplinary cooperation should be
fostered to a greater extent.  For this to succeed, as McKenna
points out, “we must resist the temptation to critique one discipline
by the specialized criteria of another” [17].  It should be reiterated
that although the theory may evolve in an eclectic manner, the final
product cannot be a hodge-podge of techniques, partial models and
explanations.  It must be cohesive, formalized, and elegant and it
must address the issues discussed here whether by subsumption or
refutation.  Though the issues presented may not be sufficient for a
general theory of cognition they are surely necessary.
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