
Proceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms, pp. 468-71, 1995

USING EVOLUTIONARY COMPUTATION TO GENERATE TRAINING
SET DATA FOR NEURAL NETWORKS†

Dan Ventura
Tim Andersen

Tony R. Martinez

Provo, Utah 84602Computer Science Department, Brigham Young University
e-mail: dan@axon.cs.byu.edu, tim@axon.cs.byu, martinez@cs.byu.edu

Most neural networks require a set
of training examples in order to
attempt to approximate a problem
function. For many real-world
problems, however, such a set of
examples is unavailable. Such a
problem involving feedback
optimization of a computer network
routing system has motivated a
general method of generating
artificial training sets using
evolutionary computation. This
paper describes the method and
demonstrates its utility by presenting
promising results from applying it to
an artificial problem similar to a real-
world network routing optimization
problem.

Introduction

Many inductive learning
algorithms based on neural
networks, machine learning, and
other approaches have been
developed and have been shown to
perform reasonably well on a variety
of problems [2][4]. Typically, neural
networks (NN) perform inductive
learning through the presentation of
preclassified examples; however,

one of the largest obstacles faced in
applying these algorithms to real-
world problems is the lack of such a
set of training examples. Many
times collecting data for a training
set is the most difficult facet of a
problem.

This paper presents such a
real-world problem -- one for which
no training data exists and for which
gathering such data is at best
extremely expensive both in time
and in resources. To remedy the
lack of training set data, a method
using evolutionary computation (EC)
[3][8] is described in which the
survivors of the evolution become
the training examples for a neural
network. The synthesis of EC with
NN provides both in i t ia l
unsupervised random exploration of
the solution space as well as
supervised generalization on those
initial solutions. Work involving a
combination of EC and NN is
becoming more prevalent; the reader
is referred to [1][5][6][7] for
examples.

† This research was funded in part by a
grant from Novell, Inc.

Problem Description

Although we describe here a
specific problem, the approach
described in the next section is
general enough to apply to a large
class of optimization/feedback
problems. We are specifically
concerned, however, with a
computer networking application and
the constant setting/adjusting of
certain control variables depending
on the values of certain status
variables. More formally, given a
network, Θ , the state of Θ may be
described at time t by a vector of
status variables, st. Control of the
network is effected by the setting of
variables in a control vector, c. That
is, given a network Θ at time t
described by vector st, the setting of
the values of the vector c will result
in a different network Θ' at time t+δ
described by the vector st+δ. The
problem is, given a status vector, st,
what modifications should be made
to the control vector c such that st+δ
describes a better network, if
possible, than s t? Here, the best
network is defined as the network
that maximizes some function of its
status variables, f(s). The operation
of Θ is continuous and feedback
from Θ in the form of s is continuous
as well. A neural network is
expected to monitor the values of s
either continuously or periodically
and to update the values of c , the
goal being to maximize the
performance of Θ over time. In this
particular problem 21 status
variables (e.g. AvgRndTripTime,
TotalPacketsSent,

TotalPacketsRcvd, etc.) and 11
control variables (e.g. SendWinSize,
RetransTimeInt, MaxRetransCnt,
etc.) have been identified.

Generating the Training Set

Assuming that the status
variables are defined over even a
modest range, it is obvious that Θ
may be described by any of an
extremely large number of unique
state vectors. In other words, the
search space defined by the number
of unique networks is enormous.
Even if we limit ourselves for a
moment to considering a single
network by "freezing" the values of
s, we are still faced with a similar
problem in choosing values for c.
With the intractable search spaces
involved, evolutionary computation
suggests itself for the exploration of
those spaces. Actually, we limit
ourselves to exploring, via
evolutionary computation, the
solution space for c only.

From the space defined by s
that describes Θ we choose a
representative set of network states
by choosing n initial status vectors.
We denote these si, 0<i≤n and refer
to the network state described by si
as Θ i, 0<i≤n. These choices could
of course be biased by any a priori
heuristics as to what constitutes a
realistic network. In choosing this
set of status vectors, si, 0<i≤n, we
have chosen the left hand sides of
our training instances. We now use
evolutionary computation to discover
“good” right hand sides yielding

training instances of the form i
t=0s

→ ck.
Assume a fitness function f

that takes as input a status vector s
and returns a real-valued fitness

measure. Now for each i
t=0s ,

randomly initialize a population of m
control vectors, denoted ck, 0<k≤m.
Evaluate the initial population by
simulating the workings of i

t=0Θ for
each ck for δ time steps, where δ
time steps are sufficient for Θ i to
stabilize, and then applying fitness

function f to i
t=δs . Next choose

parents and use genetic operators to
produce m offspring. Now evaluate
the children and select m survivors
from amongst the parents and
children. The algorithm is sketched
in figure 1.

evolve()
generate si

for each i
t=0s

initialize population ck, 0<k≤m.
evaluate(ck,Θi)
until(done)

select parents from ck
apply genetic operators to

parents
evaluate(children,Θi)
ck

 ← choose m survivors from
ck and children

evaluate(c,Θi)
run i

t=0Θ for δ time steps with
control vector c

return f(i
t=δs)

Figure 1. Sketch of algorithm for
evolving training set

Finally, choose j individuals from
each of the n populations and build a
set of jn training examples of the

form i
t=0s → ck. (To avoid ambiguity

in the training set we could set j=1.)
We now return to the infinite

space defined by s. Since we have
only chosen a finite number of seed
points from this space, our
evolutionary computation has found
approximate solutions for only these
n points in the space and can say
nothing about any other points, many
of which we are likely to encounter
during normal execution of Θ .
Therefore it becomes necessary to
generalize on this relatively small set
of approximate solutions. Using this
set of approximate solutions as
training examples, an NN model can
be trained to develop a general
hypothesis over the entire space
defined by s.

Simulation

In order to establish proof of
concept, simulations using artificially
generated problems were run. The
simulation process includes the
following steps:

1. Generate a problem definition
2. Create a training set using the

algorithm
3. Train an NN with the training

set
4. Create a test set
5. Test the NN network on the

training set
An artificial problem generation/
simulation program was used for two
reasons. First, it is much easier to
work with in terms of analysis,
reproduction of results, etc. Second,
it is possible to create a test set
which can be used to show how well
the NN is performing in relation to
optimum, and thus to establish (to
some extent) the quality of the EC-
generated training set.

Generating a problem definition
In the networking problem, s is

a vector of p status variables and c is
a vector of q control variables. At

any time t, st = g(st-δ, ct-δ), where g
represents the operation of the
network for time δ. Unfortunately,
because of the network’s
asynchronous nature, it is impossible
to determine the length of δ
necessary for the network to
stabilize or to accurately define g.

Therefore, we develop an
artificial problem that is a simple
analog of the network routing
problem that preserves the
relationship among st, st-1, and ct-1

but that operates in definite time
steps and employs a simpler function
H. Given a vector s of p integer
variables (this vector is the analog of

the status vector so we abuse
notation and call it s) and a vector c
of q integer variables (the analog of
the control vector), define the
relationship st = H(st-1, ct-1) where
H is in turn defined as a vector of
functions h1 , h2 , ..., hp . Now, to
generate a problem, generate a p×q
matrix G whose elements are
randomly selected from {+,-}. The

function hi calculates the value of i
ts

from i
t−1s and ct-1 as follows

i
ts = ih i

t−1s , t−1c() = ikG i
t−1s − k

t−1c()
k=1

q
∑ .

Thus, a problem is completely
defined by H and G, which together
represent a simple analog for the
operation of a network. Once H and
G have been defined, the
combination of EC (to create a
training set) and NN (to generalize
on that training set) can attempt to
learn the problem. To generate a
new and different problem, randomly
regenerate the matrix G; this allows

for the generation of
q2
p

 unique

problems. Note that i
ts (i

tc) has
been used to indicate the ith vector

at time t, while i
ts (i

tc) is now used
to indicate the ith element of a
vector s (c) at time t, a slight abuse
of notation.

As an example, suppose p= 3
and q=3, that is, there are 3 “status”
variables and 3 “control” variables.
In order to generate a problem,

randomly generate a 3×3 matrix G.
One possibility is

G =
+ − −
+ + +
− + −

The system of equations that define
the problem is then:

1
ts = + 1

t−1s − 1
t−1c() − 1

t−1s − 2
t−1c() − 1

t−1s − 3
t−1c()

2
ts = + 2

t−1s − 1
t−1c() + 2

t−1s − 2
t−1c() + 2

t−1s − 3
t−1c()

3
ts = − 3

t−1s − 1
t−1c() + 3

t−1s − 2
t−1c() − 3

t−1s − 3
t−1c().

Creating a training set
Once the problem has been

defined, the evolutionary algorithm is
employed to generate a training set.
The function H and matrix G are
substituted for the step “run i

t=0Θ for
δ time steps with control vector c” in
the evaluate procedure. The fitness
function may be arbitrary, and the
one used in these simulations was
simply:

f s() = is
i=0

p
∑

All simulations used training sets of
size 1000.

Training the NN
The PDP group’s software

i m p l e m e n t a t i o n o f t h e
backpropagation algorithm[4] was
used for all simulation results. For
the simulations we defined 5 integer
“control” variables and 10 integer
“status” variables on the range [0,
100). Note that even though we
limit the problem to integer values,

the search spaces are extremely
large: 1005 for “control” vectors and
10010 for “status” vectors. The
inputs to the backprop (the “status”
variables) were binary encoded,
while the outputs were simple
localist nodes, one for each control
variable. Fifteen hidden units were
used so that the entire network
consisted of 70 input nodes, 15
hidden units, and 5 output nodes.
The output nodes produce values in
the range [0, 1) and these are
simply multiplied by 100 to produce a
“control” vector in the desired
range. All simulations were run with
the default settings and training was
only allowed to proceed for 500
epochs.

Creating a test set
The main advantage of having

an explicitly defined function H
representing our problem is that
given a status vector st, the optimal
control vector c (the one that
optimizes st+1) can be calculated.
The simplest method is by brute
force, though this can be significantly
improved in the case of this
particular function H . To create a
test set, randomly generate a vector
s and then determine the optimal
vector c. Add the instance s → c to
the training set and repeat for as
many instances as desired. All
simulations used a test set of size 50.

Testing the NN network
Typically, when evaluating

how well the NN performs on a
given training set we determine the
number of correctly classified

instances from the test set.
However, because this is an
optimization problem and because
the output nodes are localist and
expected to produce outputs in the
range [0, 1) (rather that just being
active or not), the NN is not
expected to produce the optimum
vector c o p t but rather a good
approximation of it, capprox. Thus,
given a status vector s the NN
generates capprox, while copt and
cworst (needed for normalization)
may be found by brute force (or
some more efficient method). A
measure of the correctness
(normalized % of optimum) of
capprox is

f (approxs) − f worsts()
f (opts) − f worsts()

where
sapprox=H(s,capprox),
sworst=H(s,cworst), and
sopt=H(s,copt).

Empirical Results

The simulation process as
described in the previous section
was performed for genetic
population sizes (the upper bound m
in the evolve algorithm) of 20, 100,
and 200. Ten different simulations
were run for each value of m and the
results are reported in table 1 The
% of optimum is the correctness
measure discussed above where
capprox is produced by either the GA

(training set) or the NN (test set).
The average pss is the average sum-
squared error per pattern.

Table 1. Simulation results for
different population sizes

% opt. (train)
% opt. (test)
avg pss (train)
avg pss (test)

Population Size (m)
20 100 200

73.8
mean sd

8.1
70.8 10.3
.237 .037
.667 .145

87.6 5.5
80.9 6.8
.128 .023
.364 .102

89.9
85.1

.327

4.6
8.6

.023

.102

mean sd mean sd

.103

A number of interesting
observations may be made from the
table. First, the values for percent of
optimum for the training set indicate
that the GA is finding artificial
instances that seem reasonable in
the sense that they are a significant
percentage of optimum. Second, the
values for percent of optimum for the
test set indicate that the training set
produced by the GA enabled the
NN to learn the problem fairly well,
since it performs almost as well as
the GA. Even more significant is
the fact that as we increase the
population size, both the GA and the
NN perform closer to optimum with
smaller standard deviations. Also, as
the population size is increased, the
sum-squared error on both the
training set and test set decreases
indicating that the training set more
closely represents the true function.

Conclusion

Empirical simulation results
suggest that at least for some
problems, evolutionary computation
is indeed capable of generating a
training set that closely represents
the actual underlying function. The
key to this process is the assumption
that an appropriate fitness function f
can be defined. We conjecture that
in many cases this will indeed be the
case (e.g. in the networking problem
f would attempt to maximize
throughput while minimizing
resource usage). This paper has
developed proof-of-concept on a
relatively simple problem. Current
research involves application of this
method to the real network
optimization problem and other
difficult real-world applications.
Unfortunately, ascertaining what
percentage of optimum the
approximate solutions achieve will
not be possible (since the function g
will be unknown). A measure of
performance will have to be
obtained by comparing this approach
with current methods for solving
these problems. As a final note,
although generating the training set
and training the NN is potentially
time consuming, this need be done
only once (or very infrequently), and
it is conceivable that further training
could be ongoing in the background
using results obtained during
execution. The actual execution
would be extremely fast.

References

[1] Caudell, T. P. and Dolan, C. P.,
“Parametric Connectivity: Training
of Constrained Networks using
Genetic Algorithms”, Proceedings
of the Third International
Conference on Genetic Algorithms,
1989.

[2] Falhman, S. E. and Lebiere, F.,
“The Cascade-Correlation Learning
Architecture”, Advances in Neural
Information Processing 2, D. S.
Touretzky (ed.), Morgan Kaufman,
1990.

[3] Goldberg, D. E., G e n e t i c
Algorithms in Search, Optimization,
and Machine Learning, Addison-
Wesley Publishing, 1989.

[4] McClelland, James L. and
Rumelhart, David E., Explorations in
Parallel Distributed Processing, MIT
Press, Cambridge, Massachusetts,
1988.

[5] Harp, S. A., Samad, T., and
Guha, A., “Designing Application-
Specific Neural Networks Using the
Genetic Algorithm”, N I P S - 8 9
Proceedings, 1990.

[6] Montana, D. J. and Davis, L.,
“Training Feedforward Neural
N e t w o r k s U s i n g G e n e t i c
Algorithms”, Proceedings of the
Third International Conference on
Genetic Algorithms, 1989.

[7] Romaniuk, S teve G. ,
“Evolutionary Growth Perceptrons”,
G e n e t i c A l g o r i t h m s : 5 t h
International Conference (ICGA-
9 3) , S. Forrest (ed.), Morgan
Kaufman, 1993.

[8] Spears, W. M., Dejong, K. A.,
Baeck, T., Fogel, D., de Garis, H.,
“An Overview of Evolutionary
Computation”, European Conference
on Machine Learning (ECML-93),
1993.

