
Rational Irrationality

Dan Ventura
Computer Science Department

Brigham Young University
ventura@cs.byu.edu

Abstract

We present a game-theoretic account of irrational agent be-
havior and define conditions under which irrational behav-
ior may be considered quasi-rational. To do so, we use a
2-player, zero-sum strategic game, parameterize the reward
structure and study how the value of the game changes with
this parameter. We argue that for any “underdog” agent,
there is a point at which the asymmetry of the game will pro-
voke the agent to act irrationally. This implies that the non-
“underdog” player must therefore also act irrationally even
though he has no incentive (in the reward structure) for doing
so, which implies, in turn, a meta-level game.

Introduction
Game theory offers an often compelling account of agent be-
havior under various forms of cooperation and conflict. One
of the basic tenets of game theory is that agents will behave
rationally, that is, that agents will act to maximize their re-
ward in the game. However, it is well-known that humans
do not always act in this way. One natural reason for irra-
tional behavior might be that the agent does not understand
the game, and is, in fact, acting rationally given their (incor-
rect) understanding of the game. But, what if an agent fully
understands the game and still acts irrationally? An interest-
ing array of security questions can be asked in this context,
particularly in cases of asymmetric conflict such as those
seen in recent cases of terrorism and military conflicts. As
an extreme example, why would someone detonate a bomb
strapped to their own body, or fly a plane into a building?
Can we offer an explanation for an agent that chooses to
play irrationally, knowing that that is what they are choos-
ing? Is there a kind of rationality to this kind of choice? Can
we determine the best response to such behavior?

A second, day-to-day scenario that exhibits this kind of ir-
rational behavior might be the purchase of lottery tickets. A
tongue-in-cheek acknowledgement of this is the humorous
aphorism that explains that “the lottery is a tax on people
who can’t do math”. When people buy lottery tickets, they
are (apparently) happy to risk a small amount of money for
a chance at a huge reward, even though an expected value
analysis will tell them that this is a bad idea (in other words,
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not rational). Most people, of course, don’t know how to
or don’t want to compute the expected value of the decision
to buy a lottery ticket. But even people that do the analysis
sometimes will buy lottery tickets. So, the question is, is the
lottery really a tax on people that can’t do math, or are they
just doing a different kind of math?

In this paper we consider a game theoretic setting involv-
ing asymmetric reward structure that suggests the latter and
as a result suggests that in asymmetric games of conflict
it can be quasi-rational for an agent to behave irrationally.
And, if this is the case, such an agent’s opponent must also
then behave (or at least be perceived to be capable of behav-
ing) irrationally as well.

The Domination Game
Consider the following payoff matrix for a 2-player, zero-
sum strategic game, which we will call Domination:

D =
(

1 −1
−1 r

)
Player A has two actions (a1, a2) corresponding to a

choice of rows in the matrix and player B has two actions
(b1, b2) corresponding to a choice of columns. Solving for
an equilibrium point yields a value for the game (in terms
of r) of v = r−1

r+3 which is obtained by player A playing a
mixed strategy with probability p = r+1

r+3 of playing action
a1 and by playerB playing a mixed strategy with probability
q = r+1

r+3 of playing action b1 (see Appendix A for details).
This game can be understood intuitively as follows. As

the value of r increases, B is less and less likely to choose
action b2 as such a choice could result in a catastrophic pay-
off. At the same time, A is less and less likely to choose ac-
tion a2 as this would likely result in a loss (since the chance
of getting payoff r is increasingly remote). And, in the limit,
the equilibrium strategy is the pure (joint) strategy that re-
sults in the joint action (a1, b1) being chosen with probabil-
ity 1. If both players are rational, their strategies will ap-
proach this pure strategy as r approaches∞.

For this discussion, a useful way to look at the equilibrium
value v is as the sum of a reward π and a risk ρ. Figure 1
shows a decomposition of v into π and ρ as a function of r,
where π = p(2q − 1) and ρ = (1 − p)(−q − qr + r) (or,
alternatively, π = q(2p − 1) and ρ = (1 − q)(−p − pr +



r)—see Appendix B for details). The reward component
is the result of the opponent playing action 1, while the risk
component is the result of the opponent playing action 2. For
the joint rational strategy, almost all of the (expected) payoff
comes from the reward component, and, as r increases, this
contribution continues to increase. In the limit, π = v, and
ρ = 0. In other words, in the limit, there is no chance that
the opponent will play action 2.

The Case for Irrationality
For the following, without loss of generality, assume r > 1,
so that p > 0.5 and q > 0.5. Let p∗ = [p, 1−p], q∗ = [q, 1−
q] with the equilibrium (joint) solution being (p∗, q∗). For
strategy s = [s, 1 − s], let xs

s be the (row or column) vector
of the payoff matrix selected using strategy s and choosing
the action associated with probability s.
Definition 1. Given strategies s and t, let Es[t|s] = t · xs

s
represent the expectation over the possible actions associ-
ated with t, given the action associated with probability s for
strategy s.
Definition 2. For strategies s = (s, 1 − s) and t, and as-
suming without loss of generality that s > 0.5 we say
πs

t = sEs[t|s] is the t-reward against s. It is the expecta-
tion over the possible choices of t, given the choice of the
higher probability action associated with s.
Definition 3. For strategies s = (s, 1 − s) and t, and as-
suming without loss of generality that s > 0.5, we say
ρs

t = (1− s)Es[t|1− s] is the t-risk against s. It is the expec-
tation over the possible choices of t, given the choice of the
lower probability action associated with s.

In particular, for the Domination game we have (see Ap-
pendix B for details):

πq∗
p∗ = πp∗

q∗ =
r2 − 1

r2 + 6r + 9

ρq∗
p∗ = ρp∗

q∗ =
2r − 2

r2 + 6r + 9
Notice that these quantities can be combined in two natu-

ral ways, both of which express the value v of the game, just
as in Figure 1:

Figure 1: Decomposing v into reward π and risk ρ, as a
function of r

Figure 2: Irrational reward and risk for A (B) as a func-
tion of r

πq∗
p∗ + ρq∗

p∗ = πp∗
q∗ + ρp∗

q∗

=
r2 − 1

r2 + 6r + 9
+

2r − 2
r2 + 6r + 9

=
r2 + 2r − 3
r2 + 6r + 9

=
r − 1
r + 3

= v

In other words, v can be understood as the sum of the
equilibrium reward and equilibrium risk. We might alterna-
tively say that v is the sum of the rational reward and ratio-
nal risk, and this is the classical solution approach in game
theory. However, there are alternative solution approaches
that may be considered.

Definition 4. Given a player’s equilibrium strategy s∗ =
[s, 1− s], s@ = [1− s, s] is that player’s irrational strategy.

Player A’s (B’s) irrational strategy for the Domination
game is p@ = [1 − p, p] (q@ = [1 − q, q]), and when this
strategy is played against B’s (A’s) rational strategy,

πq∗

p@ = πp∗

q@ =
1− r2

r2 + 6r + 9

ρq∗

p@ = ρp∗

q@ =
2r2 + 2r − 4
r2 + 6r + 9

We will sometimes refer to these quantities as A’s (B’s)
irrational payoff or A’s (B’s) irrational risk. Figure 2
shows irrational reward and risk for A against B’s (and B
against A’s) rational strategy. Note that the result of play-
ing irrationally is that the reward is now inverted – if the
opponent plays rationally, its higher probability action will
result in a loss for A, while the risk results in a (possibly
very large) win. However, the probability of the risk goes to
zero as quickly as the risk grows, resulting in a bounded risk
whose expectation is only twice v.

However, since the value πp∗

q@ is less than v (recall that B
prefers smaller payoffs), this is the first scenario we’ve seen



that allows B to actually win (as opposed to just limiting its
losses), and it therefore appears to be in B’s best interest to
act irrationally. How can this be reconciled with the fact that
v represents the equilibrium (best for both) value? The an-
swer is because v can now be thought of as also representing
an expectation over B’s choices given that A chooses ratio-
nally (because πq∗

p@ = πp∗

q@ and ρq∗

p@ = ρp∗

q@ , πp∗

q@ + ρp∗

q@ = v).
As r increases, the expectation is skewed more and more
by the large value while at the same time, the probability of
A actually choosing action a2 approaches 0. The larger the
value of r, the farther away the [irrational] risk (ρp∗

q@ ) gets
from the worst case (r), while the closer the expected [ir-
rational] reward (πp∗

q@ ) gets to the best case (−1). So, as r
increases, B has (relatively) greater and greater incentive to
act irrationally. In other words, the greater A’s advantage
becomes, the greater incentive B has to act irrationally.

Note that if either one of the players plays irrationally
(while the other plays rationally), the value of the game does
not change and is still the sum of a reward and a risk,

πq∗

p@ + ρq∗

p@ = πp∗

q@ + ρp∗

q@ =
1− r2

r2 + 6r + 9
+

2r2 + 2r − 4
r2 + 6r + 9

=
r2 + 2r − 3
r2 + 6r + 9

=
r − 1
r + 3

= v

As a result, unilateral irrationality does not affect the
value v of the game, and these quantities can again be com-
bined to yield two more expressions for v. In other words, v
can also be understood as the sum of an irrational expected
payoff and an irrational expected risk, given that one of the
players is acting rationally.

To summarize, v can be interpreted in any of three ways:
as the expected result for the joint strategy (p∗, q∗) (both
players acting rationally), or as the expected result for the
joint strategy (p∗, q@) (player 1 acting rationally and player
2 acting irrationally) or as the expected result for the joint
strategy (p@, q∗) (player 1 acting irrationally and player 2
acting rationally).

The additional joint strategy (p@, q@) may also be ex-
panded as above; however, the result cannot be used to ex-
press v (see Appendix B for details.)

Definition 5. π#
s is the maximal reward for strategy s. Here

maximal refers to the amplitude of the payoff, with the sign
determined by the goal of the player using s.

Definition 6. ρ#
s is the maximal risk for strategy s. Here

maximal refers to the amplitude of the payoff, with the sign
determined by the goal of the player using s.
In a zero-sum game with players using strategies s and t,
ρ#

s = π#
t and ρ#

t = π#
s , and, in the Domination game,

π#
p∗ = π#

p@ = r, π#
q∗ = π#

q@ = −1, ρ#
p∗ = ρ#

p@ = −1 and

ρ#
q∗ = ρ#

q@ = r.

Definition 7. φt
s = πt

s

π#
s

is the reward coefficient of strategy
s against t.

Definition 8. ψt
s = ρt

s

ρ#s
is the risk coefficient of strategy s

against t.
For the Domination game, if both players are playing ra-

tionally (joint strategy (p∗, q∗)),

φq∗
p∗ =

πq∗
p∗

π#
p∗

=
r2−1

r2+6r+9

r
=

r2 − 1
r3 + 6r2 + 9r

ψq∗
p∗ =

ρq∗
p∗

ρ#
p∗

=
2r−2

r2+6r+9

−1
=

2− 2r
r2 + 4r + 4

φp∗
q∗ =

πp∗
q∗

π#
q∗

=
r2−1

r2+6r+9

−1
=

1− r2

r2 + 6r + 9

ψp∗
q∗ =

ρp∗
q∗

ρ#
q∗

=
2r−2

r2+6r+9

r
=

2r − 2
r3 + 6r2 + 9r

For the Domination game, if player A is playing irrationally
while playerB is playing rationally (joint strategy (p@, q∗)),

φq∗

p@ =
πq∗

p@

π#
p@

=
1−r2

r2+6r+9

r
=

1− r2

r3 + 6r2 + 9r

ψq∗

p@ =
ρq∗

p@

ρ#
p@

=
2r2+2r−4
r2+6r+9

−1
=
−2r2 − 2r + 4
r2 + 4r + 4

On the other hand, if player A is playing rationally while
player B is playing irrationally (joint strategy (p∗, q@)),

φp∗

q@ =
πp∗

q@

π#
q@

=
1−r2

r2+6r+9

−1
=

r2 − 1
r2 + 6r + 9

ψp∗

q@ =
ρp∗

q@

ρ#
q@

=
2r2+2r−4
r2+6r+9

r
=

2r2 + 2r − 4
r3 + 6r2 + 9r

Definition 9. Given a rational (equilibrium) joint strategy
(s∗, t∗) for players A and B, where s∗ = [s, 1 − s], say it
is quasi-rational for A to play the irrational strategy s@ =
[1− s, s] against t∗ if the following conditions hold:

1. πt∗
s@ > πt∗

s∗ (for player B, who wants to minimize pay-
off, the inequality is reversed)
2. φt∗

s@ > θφA

3. ψt∗
s@ < θψA

The first condition ensures that the irrational reward is
better than the rational reward. The second condition en-
sures that the irrational reward is sufficiently close to the
maximal reward, where “sufficiently close” is defined by θφA.
The third condition ensures that the irrational risk is signifi-
cantly less than the maximal risk, where “significantly less”
is defined by θψA. We will refer to θφA asA’s reward threshold
and to θψA as A’s risk threshold. A reckless player will have



a low reward threshold and a high risk threshold. A cautious
player will be opposite. Both thresholds low would charac-
terize a nickel-and-dime player, while both high would char-
acterize a player that pursues high-risk/high-reward scenar-
ios. Note that because ∀s,t − 1 ≤ πt

s, ρ
t
s ≤ 1, it is sufficient

that −1 ≤ θφA, θ
ψ
A ≤ 1.

Definition 10. A rational game is one for which the quasi-
rationality conditions do not hold for either player.

Definition 11. A quasi-rational game is one for which the
quasi-rationality conditions hold for exactly one player.

Definition 12. An irrational game is one for which the
quasi-rationality conditions hold for both players.

Proposition 1. Lots of games are rational, including any
whose reward structures are not asymmetric.

Theorem 1. For any two players A and B, with thresholds
0 < θφA, θ

ψ
A, θ

φ
B , θ

ψ
B < 1, there is a game G that is quasi-

rational.

Proof. Let G be the Domination game with r >

max{−3θφB−
√

8θφB+1

θφB−1
, 2

θψB
}. We must show that the condi-

tions of quasi-rationality hold for exactly one player. With-
out loss of generality, let that player be B. By Lemma 1, we
have that the quasi-rationality conditions hold for B, and by
Lemma 2, we have that they do not hold for A.

Lemma 1. Let (p∗, q∗) be the equilibrium strategy for A
and B for the Domination game. Given thresholds 0 <

θφB , θ
ψ
B < 1, it is quasi-rational for B to play q@ against

A for r > max{−3θφB−
√

8θφB+1

θφB−1
, 2

θψB
}.

Proof. For the first condition we must show πp∗

q@ < πp∗
q∗ .

(note that since B wants to minimize payoff, we have re-
versed the inequality.

πp∗

q@ =
1− r2

r2 + 6r + 9

<
r2 − 1

r2 + 6r + 9
= πp∗

q∗

Note that the inequality holds because θφB > 0 implies r2 >
1.

For the second condition we must show φp∗

q@ > θφB .

φp∗

q@ =
r2 − 1

r2 + 6r + 9

>

(
−3θφB−

√
8θφB+1

θφB−1

)2

− 1(
−3θφB−

√
8θφB+1

θφB−1

)2

+ 6
(
−3θφB−

√
8θφB+1

θφB−1

)
+ 9

=

9(θφB)2+6θφB

√
8θφB+1+8θφB+1

(θφB−1)2
− 1

9(θφB)2+6θφB

√
8θφB+1+8θφB+1

(θφB−1)2
+ −18θφB−6

√
8θφB+1

(θφB−1)
+ 9

=
8(θφB)2 + 6θφB

√
8θφB + 1 + 10θφB

8θφB + 6
√

8θφB + 1 + 10

=
θφB(8θφB + 6

√
8θφB + 1 + 10)

8θφB + 6
√

8θφB + 1 + 10

= θφB

For the third condition we must show ψp∗

q@ < θψB .

ψp∗

q@ =
2r2 + 2r − 4
r3 + 6r2 + 9r

<
2
(

2

θψB

)2

+ 2
(

2

θψB

)
− 4(

2

θψB

)3

+ 6
(

2

θψB

)2

+ 9
(

2

θψB

)

=
2
(
θψB
2

)
+ 2

(
θψB
2

)2

− 4
(
θψB
2

)3

1 + 6
(
θψB
2

)
+ 9

(
θψB
2

)2

=

θψB
2

(
2− θψB

)(
1 + θψB

)
(
1 + 3

2θ
ψ
B

)(
1 + 3

2θ
ψ
B

)
=

θψB
2

(
2− θψB

)
(
1 + 3

2θ
ψ
B

)
(
1 + θψB

)
(
1 + 3

2θ
ψ
B

)
<

θψB
2
· 2 · 1

= θψB

Lemma 2. Let (p∗, q∗) be the equilibrium strategy for A
and B for the Domination game. It is not quasi-rational for
A to play p@ against B for r > 1.

Proof. Since A wants to maximize payoff, it suffices to



show that πq∗

p@ ≤ πq∗
p∗ .

πq∗

p@ =
1− r2

r2 + 6r + 9

<
r2 − 1

r2 + 6r + 9
= πq∗

p∗

Proposition 2. No irrational one-shot, zero-sum strategic
game exists.

The Meta-game Insanity
Theorem 1 says that for even the most conservative “un-
derdog” and the most reckless “bully”, there exists a game
for which the “underdog” should play irrationally, but the
“bully” should not. Of course, if the “underdog” does play
irrationally, then the “bully” would benefit by playing ir-
rationally, and if the “bully” chooses to play irrationally
then the “underdog” could not afford to. This, in turn, sug-
gests a meta-game, which we will call Insanity, in which the
choice of row and column determine the players’ choices
of whether to play rationally or irrationally for the Domi-
nation game. The payoff matrix can be represented as the
(expected) value of the game given both player’s choice of
strategy:

I =
(

v −v
−v rv

)
= vD

The upper left represents the expected value of the game for
both players acting rationally and the bottom right for both
acting irrationally. The bottom left is player A acting irra-
tionally and B acting rationally and the upper right is A act-
ing rationally and B acting irrationally. Note that the form
of the matrix is exactly the same as that of the Domination
game, and, indeed, the equilibrium strategies, p̃∗ = [p̃, 1−p̃]
and q̃∗ = [q̃, 1− q̃] are the same as those for the Domination
game (see Appendix C): p̃ = p, q̃ = q, and given these,
we can compute the equilibrium value of the Insanity game
(Appendix C): ṽ = v2, which is obtained by player A play-
ing (meta-)strategy p̃∗ and player B playing (meta-)strategy
q̃∗. What this means is that player A plays a mixed (meta-
)strategy with probability p̃ of playing rationally (that is, em-
ploying strategy p∗) for the Domination game and probabil-
ity 1 − p̃ of playing irrationally (strategy p@ for the Dom-
ination game) while player B plays a similar mixed (meta-
)strategy over the strategies q∗ and q@.

We can now ask, given the meta-strategies, how this af-
fects the probabilities of the players choosing between their
two (base) action choices. If p is the probability that A will
choose action a1 in the base game, we will call p1 the proba-
bility thatA will choose a1 after first playing the meta-game
(and thus selecting whether or not to play the base game
rationally). If A chooses to play rationally (probability p̃),
then A will play a1 with probability p. If A chooses to play
irrationally (probability 1−p̃), thenAwill play a1 with prob-
ability 1 − p. So, p1 = p̃p + (1 − p̃)(1 − p). Likewise, q1
will represent the probability that B will choose action b1,

Figure 3: Value of the Domination game as a function of
r for various levels of meta-gamesmanship

and q1 = q̃q + (1− q̃)(1− q). With these, we can derive an
alternative form of the value of the meta-game Insanity, that
we will call v1 (see Appendix D for details):

v1 = p1q1(1) + (1− p1)q1(−1)
+ p1(1− q1)(−1)
+(1− p1)(1− q1)(r)

= v2

It should be obvious that this meta-gamesmanship can be
carried on ad infinitum, and we can identify the meta-level
with the subscript k (we have been discussing the first meta-
level with k = 1). A little thought should verify that the
value of the kth level game is

vk = vk+1

Figure 3 shows how the value of the game changes for vari-
ous levels of meta-gamesmanship. While the ultimate value
of the game is always the same in the limit (1), the threat
of irrationality can have a significant effect on the value for
r <<∞.

Further, the probability that A will eventually play a1

given his choice of strategy at the kth level can be defined
recursively as

p0 = p

pk = ppk−1 + (1− p)(1− pk−1), k > 0

with qk defined similarly. Figure 4 shows how the proba-
bility p of A playing a1 changes for various levels of meta-
gamemanship. As expected, as k increases, p grows more
slowly. Again, while the asymptotic results remain un-
changed, the threat of irrationality by B affects the behavior
of player A.

Final Comments
The ideas suggested here are underdeveloped and much
work remains to be done. Most obviously, experiments
must be designed to place people in situations similar to the
Domination game to see if, in fact, they do behave as pre-
dicted (that is, they behave quasi-rationally when the game



Figure 4: Probability p of A playing a1 as a function of r
for various levels of meta-gamesmanship

is significantly asymmetric). We might also be able to make
some empirical estimation of general values for reward and
risk thresholds. In addition, other work on irrationality in
game theory has been proposed, though much of it appears
to treat the case of extensive games (Krepps et al. 1982;
Neyman 1985; Pettit and Sugden 1989; Aumann 1992). Can
any of this be applied to the strategic case? Or, can (and
should) this work be extended to extensive games so that a
comparison with these theories can be attempted?
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Appendices
A Equilibrium of Domination game

To find A’s equilibrium strategy, we compute

E[p|q = 1] = p(1) + (1− p)(−1) = 2p− 1
E[p|q = 0] = p(−1) + (1− p)(r) = −p− pr + r

Settting these equal and solving for p gives A’s equilibrium
strategy p∗ = (p, 1− p):

2p− 1 = −p− pr + r

3p+ pr = r + 1
p(r + 3) = r + 1

p =
r + 1
r + 3

To find B’s equilibrium strategy, we compute

E[q|p = 1] = q(1) + (1− q)(−1) = 2q − 1
E[q|p = 0] = q(−1) + (1− q)(r) = −q − qr + r

and repeat the process to find q∗ = (q, 1− q):

2q − 1 = −q − qr + r

3q + qr = r + 1
q(r + 3) = r + 1

q =
r + 1
r + 3

The (equilibrium) value v of the game can then be expressed
as the expected payoff, E[(p, 1 − p), (q, 1 − q)], when both
players play their equilibrium strategies:

v = E[(p, 1− p), (q, 1− q)]
= pq(1) + (1− p)q(−1) + p(1− q)(−1)

+ (1− p)(1− q)(r)
= pq − (1− p)q − p(1− q) + (1− p)(1− q)r

=
r2 + 2r + 1
r2 + 6r + 9

− 2r + 2
r2 + 6r + 9

− 2r + 2
r2 + 6r + 9

+
4

r2 + 6r + 9
r

=
r2 + 2r − 3
r2 + 6r + 9

=
r − 1
r + 3

B Decomposing value of Domination game
into risk and reward

For convenience, we note the following equalities, which
are easily verified. The first group is expectations based on
bipartisan rationality:

Eq∗ [p∗|q] = p∗ · xq∗
q = [p, (1− p)][1,−1]T

= 2p− 1 =
r − 1
r + 3

Eq∗ [p∗|1− q] = p∗ · xq∗
1−q = [p, (1− p)][−1, r]T

= −p+ (1− p)r =
r − 1
r + 3

Ep∗ [q∗|p] = q∗ · xp∗
p = [q, (1− q)][1,−1]T

= 2q − 1 =
r − 1
r + 3

Ep∗ [q∗|1− p] = q∗ · xp∗
1−p = [q, (1− q)][−1, r]T

= −q + (1− q)r =
r − 1
r + 3



The second group is expectations based on unilateral irra-
tionality:

Eq∗ [p@|q] = p@ · xq∗
q = [(1− p), p][1,−1]T

= 1− 2p =
1− r
r + 3

Eq∗ [p@|1− q] = p@ · xq∗
1−q = [(1− p), p][−1, r]T

= p+ pr − 1 =
r2 + r − 2
r + 3

Ep∗ [q@|p] = q@ · xp∗
p = [(1− q), q][1,−1]T

= 1− 2q =
1− r
r + 3

Ep∗ [q@|1− p] = q@ · xp∗
1−p = [(1− q), q][−1, r]T

= q + qr − 1 =
r2 + r − 2
r + 3

And the last group is expectations based on bipartisan irra-
tionality:

Eq@
[p@|q] = p@ · xq@

q = [(1− p), p][−1, r]T

= p+ pr − 1 =
r2 + r − 2
r + 3

Eq@
[p@|1− q] = p@ · xq@

1−q = [(1− p), p][1,−1]T

= 1− 2p =
1− r
r + 3

Ep@
[q@|p] = q@ · xp@

p = [(1− q), q][−1, r]T

= q + qr − 1 =
r2 + r − 2
r + 3

Ep@
[q@|1− p] = q@ · xp@

1−p = [(1− q), q][1,−1]T

= 1− 2q =
1− r
r + 3

Given the first group, we can now compute rewards and
risks for bipartisan rationality:

πq∗
p∗ = qEq∗ [p∗|q] =

(
r + 1
r + 3

)(
r − 1
r + 3

)
=

r2 − 1
r2 + 6r + 9

ρq∗
p∗ = (1− q)Eq∗ [p∗|1− q] =

(
2

r + 3

)(
r − 1
r + 3

)
=

2r − 2
r2 + 6r + 9

πp∗
q∗ = pEp∗ [q∗|p] =

(
r + 1
r + 3

)(
r − 1
r + 3

)
=

r2 − 1
r2 + 6r + 9

ρp∗
q∗ = (1− p)Ep∗ [q∗|1− p] =

(
2

r + 3

)(
r − 1
r + 3

)
=

2r − 2
r2 + 6r + 9

and with the second, for unilateral irrationality:

πq∗

p@ = qEq∗ [p@|q] =
(
r + 1
r + 3

)(
1− r
r + 3

)
=

1− r2

r2 + 6r + 9

ρq∗

p@ = (1− q)Eq∗ [p@|1− q] =
(

2
r + 3

)(
r2 + r − 2
r + 3

)
=

2r2 + 2r − 4
r2 + 6r + 9

πp∗

q@ = pEp∗ [q@|p] =
(
r + 1
r + 3

)(
1− r
r + 3

)
=

1− r2

r2 + 6r + 9

ρp∗

q@ = (1− p)Ep∗ [q@|1− p] =
(

2
r + 3

)(
r2 + r − 2
r + 3

)
=

2r2 + 2r − 4
r2 + 6r + 9

and with the third, the case for bipartisan irrationality:

πq@

p@ = qEq@
[p@|q] =

(
r + 1
r + 3

)(
r2 + r − 2
r + 3

)
=

r3 + 2r2 − r − 2
r2 + 6r + 9

ρq@

p@ = (1− q)Eq@
[p@|1− q] =

(
2

r + 3

)(
1− r
r + 3

)
=

2− 2r
r2 + 6r + 9

πp@

q@ = pEp@
[q@|p] =

(
r + 1
r + 3

)(
r2 + r − 2
r + 3

)
=

r3 + 2r2 − r − 2
r2 + 6r + 9

ρp@

q@ = (1− p)Ep@
[q@|1− p] =

(
2

r + 3

)(
1− r
r + 3

)
=

2− 2r
r2 + 6r + 9

Finally, we can see that for bipartisan rationality, the value
v of the game is the sum of the rational reward and the ratio-
nal risk (from either player’s perspective):

πq∗
p∗ + ρq∗

p∗ = πp∗
q∗ + ρp∗

q∗ =
r2 − 1

r2 + 6r + 9
+

2r − 2
r2 + 6r + 9

=
r2 + 2r − 3
r2 + 6r + 9

=
r − 1
r + 3

= v

and that, in fact, the same thing may be said for either case
of unilateral irrationality:

πq∗

p@ + ρq∗

p@ = πp∗

q@ + ρp∗

q@ =
1− r2

r2 + 6r + 9
+

2r2 + 2r − 4
r2 + 6r + 9

=
r2 + 2r − 3
r2 + 6r + 9

=
r − 1
r + 3

= v



However, bipartisan irrationality does not conserve the
game’s value, instead scaling it by r:

πq@

p@ + ρq@

p@ = πp@

q@ + ρp@

q@

=
r3 + 2r2 − r − 2
r2 + 6r + 9

+
2− 2r

r2 + 6r + 9

=
r3 + 2r2 − 3r
r2 + 6r + 9

=
r2 − r
r + 3

=
r(r − 1)
r + 3

= rv

C Equilibrium of Insanity game

To find A’s equilibrium strategy, we compute

E[p̃|q̃ = 1] = p̃v − (1− p̃)v

E[p̃|q̃ = 0] = −p̃v + (1− p̃)rv

Setting these equal and solving for p̃ gives A’s equilibrium
strategy p̃∗ = (p̃, 1− p̃):

p̃v − (1− p̃)v = −p̃v + (1− p̃)rv
p̃v − v + p̃v = −p̃v + rv − p̃rv

3p̃v + p̃rv = v + rv

p̃(rv + 3v) = rv + v

p̃ =
rv + v

rv + 3v

p̃ =
r + 1
r + 3

Since the game is symmetric, we have again that q̃ = p̃
and B’s equilibrium strategy q∗1 = (q̃, 1 − q̃) is again the
same as A’s: q̃ = r+1

r+3 = q. The (equilibrium) value ṽ
of the game can then be expressed as the expected payoff,
E[(p̃, 1 − p̃), (q̃, 1 − q̃)], when both players play their equi-
librium strategies:

ṽ = E[(p̃, 1− p̃), (q̃, 1− q̃)]
= p̃q̃(v) + (1− p̃)q̃(−v) + p̃(1− q̃)(−v)

+ (1− p̃)(1− q̃)(rv)
= v(p̃q̃ − (1− p̃)q̃ − p̃(1− q̃) + (1− p̃)(1− q̃)r)
= v2

with the last step possible because p̃ = p and q̃ = q and us-
ing the third equality from the derivation of v in Appendix A.

D Revisiting value of Insanity game

v1 = p1q1(1) + (1− p1)q1(−1) + p1(1− q1)(−1)
+ (1− p1)(1− q1)(r)

= [(p̃p+ (1− p̃)(1− p))(q̃q + (1− q̃)(1− q))](1)
+ [(1− (p̃p+ (1− p̃)(1− p)))
(q̃q + (1− q̃)(1− q))](−1)
+ [(p̃p+ (1− p̃)(1− p))
(1− (q̃q + (1− q̃)(1− q)))](−1)
+ [(1− (p̃p+ (1− p̃)(1− p)))
(1− (q̃q + (1− q̃)(1− q)))](r)

= [(p̃p+ (1− p̃)(1− p))(q̃q + (1− q̃)(1− q))](1)
+[(p̃(1− p) + (1− p̃)p)(q̃q + (1− q̃)(1− q))](−1)
+[(p̃p+ (1− p̃)(1− p))(q̃(1− q) + (1− q̃)q)](−1)
+[(p̃(1− p) + (1− p̃)p)(q̃(1− q) + (1− q̃)q)](r)

= p̃pq̃q + p̃p(1− q̃)(1− q) + (1− p̃)(1− p)q̃q
+(1− p̃)(1− p)(1− q̃)(1− q)− p̃(1− p)q̃q
−p̃(1− p)(1− q̃)(1− q)− (1− p̃)pq̃q
−(1− p̃)p(1− q̃)(1− q)− p̃pq̃(1− q) + p̃p(1− q̃)q
−(1− p̃)(1− p)q̃(1− q)− (1− p̃)(1− p)(1− q̃)q
p̃(1− p)q̃(1− q)r + p̃(1− p)(1− q̃)qr
+(1− p̃)pq̃(1− q)r + (1− p̃)p(1− q̃)qr

= p̃q̃(pq − (1− p)q − p(1− q) + (1− p)(1− q)r)
p̃(1− q̃)(p(1− q)− (1− p)(1− q)− pq + (1− p)qr)
(1− p̃)q̃((1− p)q − pq − (1− p)(1− q) + p(1− q)r)
(1− p̃)(1− q̃)((1− p)(1− q)− p(1− q)− (1− p)q + pqr)

= p̃q̃(πq∗
p∗ + ρq∗

p∗)− p̃(1− q̃)(π
p∗

q@ + ρp∗

q@)

−(1− p̃)q̃(πq∗

p@ + ρq∗

p@) + (1− p̃)(1− q̃)(πq@

p@ + ρq@

p@)

= p̃q̃v − p̃(1− q̃)v − (1− p̃)q̃v + (1− p̃)(1− q̃)rv
= v(p̃q̃ − p̃(1− q̃)− (1− p̃)q̃ + (1− p̃)(1− q̃)r)
= v(pq − p(1− q)− (1− p)q + (1− p)(1− q)r)
= v2

where in the third step we used the identity

1−(p̃p+(1−p̃)(1−p)) = 1−p̃p−1+p̃+p−p̃p = p̃(1−p)+(1−p̃)p

the substitutions used in the sixth step come from Ap-
pendix B and can be verified with some additional algebra
and in the ninth step we used the identities

p̃ = p and q̃ = q


