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Abstract

We consider the issue of knowledge (re-)representation
in the context of learning transfer and present a sub-
symbolic approach for effecting such transfer. Given a
set of data, manifold learning is used to automatically
organize the data into one or more representational
transformations, which are then learned with a set of
neural networks. The result is a set of neural filters
that can be applied to new data as re-representation
operators. Encouraging preliminary empirical results
elucidate the approach and demonstrate its feasibility,
suggesting possible implications for the broader field of
creativity.

Introduction

Learning transfer is the ability of a system to learn one
problem and then to transfer a significant amount of
the learned knowledge to a different problem. While
the learning transfer itself is often considered a creative
act, creativity is additionally required in deciding which
prior knowledge to use and how to use it. Symbolic sys-
tems employing some form of analogy have been some-
what successful here, including approaches to analogy
(Spellman & Holyoak 1996)(Gentner 1983)(Hofstadter
1995), skill transfer (Detterman & Sternberg 1993),
similarity (Vosniadou & Ortony 1989) and metaphor
(Ortony 1993); however, these approaches require a
significant amount of specialized domain knowledge
and do not generalize. We propose the use of sub-
symbolic approaches to learning transfer, trading the
interpretability of symbolic approaches for representa-
tional power and generality.

The idea of sub-symbolic systems that exhibit learn-
ing transfer is not new (Pratt 1996) and interesting
work has been done on various aspects of the prob-
lem, including inducing a “natural” measure of dis-
tance between points in input space (Baxter 1998), de-
veloping a measure of task relatedness based on close-
ness of example generating distributions (Ben-David &
Schuller 2003), an approach to task clustering (Thrun &
O’Sullivan 1998), and kernel-based methods (Evgeniou,
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Micchelli, & Pontil 2005) (Micchelli & Pontil 2005).
However, systems that exhibit robust and substantive
learning transfer have yet to be developed.

One particularly striking example of learning transfer
for problem solving is often termed re-representation.
In essence, this consists of re-encoding the problem at
hand in a (usually quite) different way so that it (better)
resembles something familiar. For example, most peo-
ple would have difficulty identifying the subject of the
image in Figure 1(a). However, using a simple transfor-
mation, the image can be re-represented as the image
in Figure 1(b), and the identification problem becomes
much easier.

Previous sub-symbolic work related to the idea of re-
representation includes developing a low-dimensional
inter-lingua-type representation (Intrator & Edelman
1996), and modifying a new problem instance via some
type of transformation (Thrun & Mitchell 1995) (Miller,
Matsakis, & Viola 2000). Re-representation can be the
key to learning transfer because it is often necessary in
situations in which the problem solver has hit a dead
end — the problem may not have a solution for a give
representation and therefore, unless a new one is dis-
covered, no progress will be made. Indeed, this process
of discovering a useful re-representation has been iden-
tified in some theories as the essence of insight (Ohlsson

(a) (b)

Figure 1: Re-representation can aid in (for example)
identification tasks. Through a simple transformation,
the image on the left can be re-represented as the image
on the right. Without the transformation, identifying
the subject of the image is difficult.



Figure 2: Logical overview of an intelligent system ca-
pable of learning to develop insight for aiding substan-
tive learning transfer. (a) The system receives percepts
and possibly training signals from the environment (b)
These data are used by a learning component to con-
struct a representation (c) These data are also used by
a similarity component to discover related (and inter-
esting) previously mastered tasks (d) Representations
useful for tasks that are related can be transfered to
the learning module to provide insight in the form of
re-representation, and as new tasks and representations
are learned, they are stored in the library of mastered
tasks.

1992).
Our long-term goal is to build a system capable of

substantive learning transfer, incorporating a method
for measuring the “transferability” of a pair of tasks
and a general (sub-symbolic) mechanism for knowl-
edge representation and transfer (see Figure 2 for a
high-level abstraction of such a system.) This work
will explore proof-of-concept for several of these ideas,
including knowledge representation and task similar-
ity measures, focusing on learning transfer by develop-
ing sub-symbolic mechanisms for learning useful repre-
sentations and examining the correlation between task
similarity and the efficacy of learning transfer via re-
representation using those mechanisms.

Methodology
We will employ an “image”-based approach to discover
a (re-)representation mechanism that is invariant to
various transforms. We consider the general case where
closed form analytical expressions for such transforms
will not be derivable, and propose learning interesting
transforms inherent in the data by employing a neural
approach as a (hopefully compact) representation. For
example, a system exposed to images of people taken
from various viewpoints might discover the concept of
occlusion.

In many cases, these transformations may occur on
a lower-dimensional manifold (that is, lower than the
intrinsic representational dimension), and we will have
to discover that surface in order to produce an accu-
rate (re-)representation (in the form of a neural filter).

Combining (nonlinear) manifold learning with a sub-
symbolic transform representation will allow us to dis-
cover interesting transforms that can be used to (re-
)represent data in a way that facilitates learning trans-
fer.

Figure 3 demonstrates the idea. In the process of
learning to recognize the letter A, we collect data in
the form of examples. The explicit representation of
this data (as pixels) may not be an informative repre-
sentation or it may contain problem specific informa-
tion that we would like to generalize away. Learning
the implicit manifold on which the data live will of-
ten reveal important information about the data. For
example, these data live on a 2-dimensional manifold
(Figure 3(a)) whose axes naturally correspond to the
two important invariant transforms implicitly encoded
in our examples: rotation and scaling. Building neural
models of these transforms provides a convenient and
powerful way to learn these representations and nat-
urally facilitates transfer. The solution to the puzzle
shown in Figure 3(b) requires transferring both types of
learning. To summarize, this implementation of knowl-
edge (re-)representation is accomplished in two steps:

1. The discovery of the relevant manifold to re-
veal the transformation(s) to be learned, and

2. Learning the transformations.
More formally, given a set T of learning task in-

stances that are related through some transformation
ξ, we require a clustering process, p that (at least) in-
duces an ordering on T , p : T → N, such that

p(t) < p(u) ⇒ t
∗=⇒
ξ

u, ∀t, u ∈ T

where ∗=⇒
ξ

represents the (iterative) application of ξ.

Given such an ordering, we can construct a training
set S for learning ξ as follows. Choose t0 ∈ T such that

p(t0) ≤ p(t),∀t ∈ T

(a) (b)

Figure 3: Transformations that live on the manifold
can be discovered and encoded as useful knowledge rep-
resentations. On the left, a 2-D manifold reveals two
high-level concept transforms: rotation and scaling. On
the right, the puzzle problem requires the application
of both transformations for its solution.



Figure 5: A (sub-sampled) one-dimensional manifold of figures reduced from 2500 dimensions. The manifold clearly
shows two disparate tasks and neighboring points on the manifold correctly encode the transform.

and choose ti ∈ T such that

p(ti−1) < p(ti)
p(tk) < p(ti) ⇒ p(tk) < p(ti−1),∀i, k > 0

Then:

S =


t0 → t1
t1 → t2

...
tn−1 → tn


where n = |T |. The quality of S may be significantly
improved if the range of p is < rather than N with p
inducing not only an ordering on T but also a distance
measure, so that p(t) represents the distance of t from
some (arbitrary) origin.

For our implementation of p, we apply an iterative
manifold learning algorithm (Gashler, Ventura, & Mar-
tinez 2007) to reduce our data to a single dimension
whose ordering of the data (hopefully) faithfully rep-
resents the transform ξ to be learned. (For example,
from Figure 3, the A’s should be ordered from largest
to smallest or from smallest to largest in the scaling
dimension.) Then, neighbors on the manifold act as in-
put/output training patterns in S. For learning S, we
employ a standard multi-layer perceptron trained with
backpropagation.

The result is a neural filter ζ that (hopefully) closely
approximates the transform ξ and can be applied to
new tasks to facilitate their solution. In the puzzle ex-
ample, the task of recognizing A’s is represented with
multiple instantiations. The manifold learner orders
the A’s from largest to smallest and produces a set of
training pairs that encode this scaling transform. These
data are used to train a neural network that learns to
scale its input. Similarly, the rotational transform can

Figure 4: A small set of examples that exhibit a counter-
clockwise rotation in 90◦ increments.

also be learned as a neural filter. When the puzzle is
encountered, the scaling and rotational transforms can
be used to (re-)represent the large square as a small
diamond, facilitating the puzzle’s solution.

Empirical Results

As a proof-of-concept, we consider a simple data set
consisting of grayscale images of the block letters A,
B, C, D and E and collect samples of the first four
letters in various attitudes of rotation (some of which
are shown in Figure 4). Given these data, we must first
discover the (1-dimensional) manifold on which they
live, and then learn the relationship that exists between
neighbors on that manifold.

Figure 5 shows the (sub-sampled) results of mani-
fold learning on a set of 50x50 images of A’s and B’s,
rotated in 1-degree increments from 0◦ to 180◦. No-
tice that the A’s and B’s are well-seperated on the
manifold (in reality, they were much more separated,
but for visualization purposes the line was scaled in a
non-linear manner to bring the two clusters closer to-
gether), giving an indication that these are two sepa-
rate tasks. Notice also that the A’s (B’s) are ordered in
descending (ascending) order of rotation, nicely reveal-
ing the transformation to be learned. A training set
for learning the transform can now be constructed as
{a1 → a2, a2 → a3, . . . , an−1 → an, b1 → b2, . . . }, with
ai+1 being the ordinal neighbor of ai on the manifold,
and the large gap between A’s and B’s making it clear
that they are different examples of the transform (and
thus an → b1 is not included in the training set).

It should be noted that in general discovering the
“correct” dimensionality of the manifold is non-trivial
and for comparison Figure 6 shows the same data rep-
resented on a 2-dimensional manifold. While the neigh-
bors still correctly encode the transformation, the extra
dimension introduces an obfuscating degree of freedom
that makes the construction a training set much more
difficult.

Given the ability to discover useful transforms via
manifold learning, the next step is to learn those trans-
forms, encoding them in a such a way that they can be
used for re-representation. Using the small set of exam-
ples shown in Figure 4 as a training set, a multi-layer
perceptron was trained with backpropagation to act as
a neural encoding of the transformation. Figure 7 shows
the results of applying the learned transform to E’s of
various rotations — the system has not only learned to
represent the rotational transform encoded in the data
of Figure 4 —given a single example of an E, it can
employ that transform to (re-)represent that E in var-



ious poses, facilitating recognition (transferring learn-
ing from related recognition tasks rather than learning
from seeing example E’s). This is particularly inter-
esting considering the extremely gross subsampling of
the transform examples (90◦ increments) and the small
number of related tasks (4) used for training.

Typically, the greater the number of related tasks to
which a learner has been exposed, the more likely it is
that the learner will have generalized sufficiently to al-
low for useful learning transfer. Figure 8 demonstrates
this nicely. Each line in the graph corresponds to a
letter recognition task (for example, the black line with
black triangles indicates performance on recognizing the
letter C). Each point on the line represents the average
performance on the task given learning transfer from
some number of related tasks (indicated on the x-axis).
As expected, for most recognition tasks, the greater the
number of related tasks, the better the system does at
transferring useful knowledge. The obvious exception
is the A recognition task.

The key, of course, is that the task(s) from which
transfer is attempted must be suitably related to the
target task; otherwise, transfer may not only not be
beneficial, it could, in fact, be detrimental. To illus-
trate, consider a simple measure of similarity for the
letter recognitions tasks. Given a set of (oriented) can-
didate tasks R and an (oriented) new task t, define the
similarity between R and t as σ(R, t) = 1−d(R, t) with

d(R, t) =
1

N |R|
∑
r∈R

Hamming(r, t)

Figure 6: A two-dimensional manifold of figures re-
duced from 2500 dimensions. Although the neighboring
points on the manifold do reveal the transformation,
the extra degree of freedom makes it less obvious. It
is also not clear that, in fact, two distinct tasks are
represented.

Figure 7: Transferring rotation to E (from A,B,C,D).
The system is trained with the A, B, C and D examples
from Fig. 4. It is then given the stimuli shown on the
top row. The second row shows the response activation
of the neural field with 256 levels of gray. The third
row is the result of applying a hard binary threshold to
these activation levels.

where N is the number of pixels in the image and
Hamming(r, t) is the number of pixels that differ be-
tween r and t. The function d calculates a normalized
average Hamming distance between t and the members
of R. The normalization constant ensures that the sim-
ilarity function σ has a range of [0...1]. Interestingly,

σ({B,C,D,E}, A) = 0.51
σ({A,C, D, E}, B) = 0.75
σ({A,B, D, E}, C) = 0.70
σ({A,B, C, E}, D) = 0.67
σ({A,B, C, D}, E) = 0.73

Notice the marked difference between A’s similarity to
its candidate set and each of the other tasks’ similarities
to theirs.

Figure 9 further confirms this phenomenon of “trans-
ferability”. Each point represents an instance of learn-
ing transfer in the case of |R| = 1, and there is a point
for each such unique transfer scenario: from B to A,
from C to A, . . . , from D to E. The y-value of each
point is the transfer accuracy (how well the transfered
learning applied — in this case, how accurately a ro-
tation was performed). The x-value of each point is
the similarity σ between the two tasks. Clearly, in this
case, tasks with greater similarity enjoy more efficacious
learning transfer.

Of course, if the transformation learned was really a
rotation, the re-representation would work perfectly for
any of the letters. If an E is rotated correctly, why isn’t
an A? In fact, the transformation that is learned is not a
pure rotation, but a rough approximation of one, as en-
coded by the few task examples used for training. This
can be seen in Figure 10, which visualizes a partial anal-



Figure 8: Transfer improves with the acquisition of ad-
ditional (related) tasks. Each line on the graph shows
the efficacy of learning transfer for a given letter. Each
point on the line represents an average accuracy for
that task given a number of previously learned tasks.
In four of the five cases (B, C, D and E), accuracy im-
proves with the number of previously learned tasks. In
the exceptional case (A), the similarity between the tar-
get and previously learned tasks was significantly lower
than in the other cases.

ysis of the learned transform. Figures 10(a) and 10(c)
show a localized stimulus applied to the neural receptor
field, and Figures 10(b) and 10(d) show the correspond-
ing activation response. If the learned transformation
was truly a rotation, these activation responses should
be as localized as the input and centered around the ‘*’
in each figure. Instead, both stimuli produce a rather
distributed response. However, interestingly, in both
cases the largest contiguous area of output activity does
occur in the target locality, suggesting that even given
the paucity of training data, some notion of rotation
has been acquired by the system. And, to the extent
that that approximation applies to new tasks, transfer
will be beneficial.

Finally, we consider a much more difficult transform:
a non-affine warping of the image that “pinches” the
four sides towards the middle. A few examples of As,
Bs, Cs and Ds warped to varying degrees were used
to train a neural filter for implementing the transform.
The trained network was then applied to the letter E,
and the result is shown in Figure 11. The transform is
effective, though transfer is not completely beneficial,
as the middle horizontal stroke is overly compressed.

Discussion
We have demonstrated the feasibility of a sub-symbolic
approach to the re-representation problem, showing
that we can discover and learn useful transforms in
a sub-symbolic form that will facilitate creativity in

Figure 9: Task similarity is strongly correlated with
success of the transfer. The scatter plot compares 1-
to-1 letter recognition task similarities (x-axis) against
learning transfer accuracy (y-axis), indicating a strong
correlation.

a complete system. The full development of creative
problem solving in sub-symbolic systems will require
significant additional research in task similarity metrics,
knowledge representation, meta-learning and knowl-
edge transfer mechanisms. A successful prosecution
of such research will result in a well-grounded (sub-
symbolic) computational explanation for several as-
pects of creativity: analogy, re-representation and in-
sight.

Though this work does not directly address insight,
it does suggest a computational explanation for insight
as the solution to the problem of deciding, given a set
of learned transforms, which will be useful. Given a set
Ξ of such transforms, we can approach the question of
which to use as a meta-learning problem, the solution to
which will result in the system becoming better at hav-
ing useful insights with experience. One possible meta-
learning approach that makes sense in this context is
that of landmarking (Pfahinger, Bensusan, & Giraud-
Carrier 2000): first build a small set of landmark trans-
forms, Λ ⊂ Ξ; second, given a set of learning tasks T ,
quantify how useful each landmark transform is as a
re-representation for each learning task, and discover
(perhaps by brute-force initially) which of the known
transforms is the most useful for each learning task;
third, with this information construct a (meta-)training
set of the form {υi, ξi}, where i runs over all the learn-
ing tasks, υi is a vector of landmark utilities for task i
and ξi ∈ Ξ is the most appropriate re-representation for
task i; fourth, train a (meta-)learner to predict ξi given
υi; finally, given a new task r to solve, try each land-
mark transform λj ∈ Λ explicitly to discover the utility
of doing so, constructing the utility vector υr to use
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Figure 10: Sampling the neural map of the “rotation”
transformation. On the left are two different, localized
stimuli and on the right, the activation response of the
neural field. A canonical rotation would preserve the
localized nature of the stimulus and center it on the
marked regions of the output field. The pathologically
distributed activations indicate that the neural filter is
computing a gross approximation of rotation.

as input to the meta-learner, which returns it’s predic-
tion for the best re-representation for the new task. As
more tasks and more representations are experienced,
the system’s insight into which (re-)representation will
be most useful will improve.

It is interesting to note that this thesis admits both
discriminative and generative models. For example, we
might construct a (discriminative) model that learns
to recognize disguised voices by transferring learning
about music transposition. Given various examples of
transposed music, the system can learn a manifold that
represents transposition, and then learn a sub-symbolic
transform that implements it. Later, when asked to rec-
ognize a disguised voice, the system can discover that
the two tasks are related and apply the (inverse of the)
transposition transform to the disguised voice, produc-
ing something similar to a known voice.

We also might construct a (generative) model that
creates unique aircraft designs by transferring learning
about avian anatomy. Given various examples of birds,
the system learns a manifold with dimensions represent-
ing concepts like wing size, center of mass relative to

Figure 11: Transferring warping to E (from A, B, C,
D). The system is trained with A, B, C and D exam-
ples of a non-affine transformation that pinches the four
sides of the image toward its center. The image on the
left is the “canonical” E and the image on the right is
the result of applying several iterations of the learned
transform.

head, length of tail, feather type, etc., and each of these
may be learned as a sub-symbolic transform. Later,
when faced with the task of aircraft design, the system
discovers that planes and birds are similar and, given a
basic prototype design, can generate novel variations to
it by applying the various learned transforms. Indeed,
given this approach the generative/discriminative di-
chotomy may be elucidated by whether we are applying
learned transforms or their inverses.

Summarizing, we hypothesize that knowledge discov-
ery can be accomplished via manifold learning, knowl-
edge representation can be accomplished via learning
transforms implicit in the manifold dimensions, in-
sight can be facilitated by meta-learning that matches
transforms to new tasks, and re-representation occurs
through applying learned transforms to the new task,
resulting in learning transfer (and a system that cre-
atively solves problems using insight and analogy).
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