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Abstract

ADtrees, a data structure useful for caching sufficient
statistics, have been successfully adapted to grow lazily
when memory is limited and to update sequentially with
an incrementally updated dataset. For low arity sym-
bolic features, ADtrees trade a slight increase in query
time for a reduction in overall tree size. Unfortunately,
for high arity features, the same technique can often re-
sult in a very large increase in query time and a nearly
negligible tree size reduction. In the dynamic (lazy)
version of the tree, both query time and tree size can
increase for some applications. Here we present two
modifications to the ADtree which can be used sepa-
rately or in combination to achieve the originally in-
tended space-time tradeoff in the ADtree when applied
to datasets containing very high arity features.

Introduction
The All-Dimensions tree (ADtree) was introduced as a gen-
eralization of the kd-tree designed to store sufficient statis-
tics for symbolic datasets (Moore & Lee 1998). It was later
adapted to grow lazily to meet the needs of a client’s queries
(Komarek & Moore 2000). More recently, the ADtree was
modified to sequentially update for incremental environ-
ments (Roure & Moore 2006). This paper will focus on
improving the static and dynamic versions of the tree but
the results presented should be applicable to a sequentially
updated tree as well.

The design of the ADtree permits it to scale efficiently
to very large datasets (in terms of number of rows in the
dataset). Previous results have been reported for datasets
with as many as 3 million rows (Moore & Lee 1998;
Komarek & Moore 2000). However, the size of the ADtree
is determined by the number of feature-value combinations
(and therefore the number of features and their arity). The
number of rows in the dataset only influences the tree by
limiting the number of possible combinations (most real
world datasets have far fewer rows than possible feature-
value combinations).

The full ADtree (see Figure 1) contains two types of
nodes which alternate along every path in the tree. ADnodes
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Figure 1: Top levels of a generic ADtree

(squares) store the count of one conjunctive query. The chil-
dren of ADnodes are known as Vary nodes (circles). Vary
nodes do not store counts but instead group ADnodes ac-
cording to a single feature. The Vary node child of an
ADnode for feature ai has one child for each value vj . These
grandchildren ADnodes specialize the grandparent’s query
Q by storing the counts of Q ∧ ai = vj .

This full ADtree contains every combination of feature-
value pairs and is not yet efficient in its memory usage.
The original ADtree included three approaches which can
be combined to reduce its overall size. The tree can be
made sparse by removing all zero counts. Additionally, the
ADnodes near the bottom of the tree are not expanded. In-
stead they are replaced with “leaf lists” of indices into the
dataset whenever the number of relevant rows (the count)
drops below a pre-determined threshold.

These two modifications only afford minimal (if any)
space savings. The last space-saving technique originally
introduced reduces the tree size dramatically by removing
counts which can be recovered from other counts already
stored in the tree. Since the ADnode grandchildren of an
ADnode for query Q represent all non-zero specializations
of Q, the count of Q is equal to the sum of their counts.
Therefore, the count of one of these ADnodes can be recov-
ered by subtracting the sum of its siblings from the count of
the grandparent (Moore & Lee 1998).

If k is chosen such that vk is the Most Common Value
(MCV) or the largest among its siblings, then its removal
provides the largest expected space-savings without sacri-
ficing the ability to recover any counts. For a tree built for



a1a2a3 Count
0 0 0 1
0 0 1 2
0 2 1 4
1 0 1 8
1 1 1 16
1 2 0 32

Table 1: Sample dataset for the ADtree in Figure 2
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Figure 2: An example of a simple ADtree

M binary features, the worst case size of the tree is reduced
from 3M to 2M upon removal of the MCV ADnodes. This
technique assumes that the trade-off of increasing average
query time is reasonable in comparison to the expected space
savings.

The tree shown in Figure 2 illustrates what an ADtree gen-
erated according to the dataset in Table 1 would look like.
The nodes shown in gray are those nodes which would have
existed in a full tree but are left out according to the MCV
based space savings rule. As can be seen in this tree, leav-
ing out an MCV node can reduce the overall size of the tree
by much more than just a single node. At the same time,
the count corresponding to every one of the “missing” nodes
can still be reconstructed from the remaining nodes.

The dynamic tree follows the same basic structure as de-
scribed above. However, since it is built lazily, at any given
point only a portion of the tree will have been expanded.
The dynamic tree also contains some additional support info
used to temporarily cache information needed for later ex-
pansion. Fully expanded portions of the tree no longer re-
quire these extra support nodes.

Modifications
It is noteworthy that the majority of previously published re-
sults have used datasets with relatively low arity features.
Although there is no technical limit to the arity of features
used in an ADtree, there are practical limitations. In par-
ticular, the space-saving technique of removing all MCV
ADnodes makes the assumption of a reasonable space-time
trade-off that is more easily violated with high arity features.
Dynamic trees can suffer additional problems when remov-
ing MCV nodes even for low arity features. Below we will
present two modifications to the ADtree which decrease the
overall space usage when using high arity features while still
mainintaing reasonable built/query times.

MCV n1 n2 n3 n4 n5 n6 n7 n8 n9 . . . n999

Figure 3: Vary node for a high arity feature

the worst-case query time when using high arity features
while still maintaining reasonable space bounds.

The key problem is that removing the MCV ADnode for
high arity features can dramatically increase query time and
only slightly decreases space usage. If a query involves the
MCV of feature ai, it is necessary to sum at least ni − 1
values (where ni is the arity of ai). Given a query Q of
size q, the worst case scenario could require summing over∏q

i=1 ni values due to recursive MCV “collisions”. Al-
though this worst case is rare (since data sparsity and/or cor-
relation tend to cause Vary nodes lower in the tree to have
fewer ADnodes), it helps to illustrate the potential for longer
query times when the ni are large. For instance, a query in-
volving 3 features with 10 values each has a worst case of
summing over 93 values. If the 3 features had 1, 000 values,
this becomes 9993.

Figure 3 illustrates the “best” case for a feature of 1, 000
values in which every sibling node is a leaf node (or at least
a leaf list). If a query that encounters that MCV ADnode
involves further features in the missing subtree then it will
need to traverse the subtrees (if they exist) of all 999 sib-
lings. This increases the potential for further MCV “colli-
sions”, eventually leading to the worst case scenario where
every path involves one MCV ADnode for every feature in
the query.

Although there are many more queries that don’t require
summing, higher arity increases the possibility for very slow
queries. Additionally, since the more common values have
a higher prior probability of being queried (at least for some
client algorithms), the most expensive queries are the most
likely to occur (or more likely to occur often).

The original justification for excluding MCV ADnodes
was that it provided significant space savings in exchange
for a minor increase in query time. For binary features, there
is no significant increase in query time and each Vary node’s
subtree is cut at least in half. For a feature with 10 values, the
Vary node’s subtree is reduced by at least 10% in exchange
for summing over at least 9 values. With 10, 000 values, the
subtree is reduced by at least 0.01% in exchange for sum-
ming over at least 9999 values. The space savings becomes
insignificant and the increased query time becomes signifi-
cant with higher arity features.

There is a further complication when using a dynamic
tree. If a query is made that involves at least one MCV then
all ni−1 of its siblings must be expanded. If those nodes are
never directly queried then they are simply wasted space. In
the previous example of 3 features with 10, 000 values there
are 99993 unique paths consisting of nearly 1012 nodes1.

1There are 99993 + 2 · 99992 + 2 · 9999 = 999, 900, 009, 999
total nodes (AD and Vary) needed.
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Figure 4: Vary node for a feature with skewed MCV

Since this is true for any arity above 22, if the algorithm
does not query all combinations exhaustively then exclud-
ing all MCV ADnodes can actually create a larger tree than
if they had been included.

Solution 1: Complete Vary Nodes and RatioMCVs
The first solution is to establish a threshold for high ari-
ties, above which the MCV ADnode is included. Note that
this does not entail making a list of features for which the
MCV will always be included. The “arity” used to deter-
mine whether or not to include the MCV is the number of
children of the parent Vary node. This means that the exclu-
sion of MCVs becomes context sensitive and a given feature
may have its MCV included in one part of the tree and ex-
cluded in another (just as the actual MCV is context depen-
dent). The threshold, however, is kept constant throughout
the tree. A Vary node that has an intact MCV ADnode child
will be referred to as a Complete Vary Node.

Although an arity threshold should help provide an im-
proved balance of space and time, there are still some cases
where using a simple threshold might incorrectly indicate
the need to include the MCV. In particular, if a feature is
highly skewed (given the context in the tree) then the MCV
may represent a significant portion of a Vary node’s sub-
tree. In such a case, the subtree of the MCV may be so
large that including it would be too expensive, even if it has
a large number of siblings. For instance, including the MCV
ADnode shown in Figure 4 based solely on arity while ig-
noring its disproportionately large size could be worse than
leaving it out (as it would have been by default).

Indeed, a strong skew towards the MCV implies smaller
counts for its sibling nodes and therefore shorter subtrees.
This eliminates the possibility of the worst case scenarios
noted above and removes the need to include the MCV
ADnode. We therefore introduce the concept of a Ra-
tioMCV which is an MCV that has a count above a pa-
rameterized threshold ratio of the total of the grandparent
ADnode. Then, any MCV which is also a RatioMCV will
be removed, regardless of the number of sibling values. The
combination of arity threshold and RatioMCV should appro-
priately handle all possible situations.

Solution 2: Clump nodes
As was noted, excluding MCV ADnodes can interact
negatively with dynamic expansion of the tree, counter-
intuitively increasing its size. Although the consequences
of this interaction are worse for higher arity features, the

2With binary features, it is always redundant to include both
nodes so we keep the smaller (non-MCV) one.

MCV
⋃

i
ni n1 n2 n3 n4 n5 n6 n7 n8 n9 . . . ni

Figure 5: Vary node with a Clump node

problem can occur with any number of values above 2.
Since the usefulness of excluding the MCV ADnodes is well
documented (except as noted here), some other solution is
needed.

One feasible solution stems from the fact that this prob-
lem does not occur with binary features. A query involving
the MCV of a binary feature follows the same path as a sim-
ilar query switching only the MCV value to its complement.
If all of the sibling values of the MCV were “clumped” to-
gether as a single “other” value, then any query involving the
MCV could be found using this Clump node and performing
the appropriate subtraction. This eliminates the need to cal-
culate a sum and does not expand any nodes not explicitly
queried (see Figure 5). Furthermore, Clump nodes can be
built on demand just like any other node in the tree.

There is a slight catch when using the Clump node, how-
ever. A Clump node cannot be used to answer queries in-
volving any of the “clumped” values. Therefore, a query
involving such a value will require the expansion of the cor-
responding node, resulting in some redundancy in the tree.
One expensive way to deal with this would be to delete the
Clump node and create a new one without the newly ex-
panded value. Using this method, the time needed to query
the MCV will slowly increase until the Clump node is com-
pletely removed. The approach used in this paper takes the
alternative approach of temporarily permitting the redun-
dancy until some percentage of the “other” values are ex-
panded. At that point, the Clump node is deleted.

Empirical Methods
The dataset used for the experiments in this paper was built
from the Wall Street Journal (WSJ) corpus from the Penn
Treebank. Four additional features were derived from the
POS tags: category (simplified POS class), subcategory,
tense, and number. Seven additional features were derived
solely from the word itself: whether or not the word was
“rare” in the dataset, capitalization style, orthographic rep-
resentation (e.g. contractions), has-hyphen, and has-digit,
the last 3 characters of the word, and if it contained one
of a short list of derivational suffixes. Several of these
features have been used in previous part-of-speech taggers
(Toutanova & Manning 2000). Each of these features breaks
what would be a single tagging decision into a set of smaller,
related decisions, a task more befitting the constraint pro-
gramming framework. In addition, three more features were
added to the new dataset related to morphology. Those fea-
tures were a base word form (stem) and the corresponding
inflectional morphological rule (pattern) as well as whether
the base stem was also “rare”.

Although many datasets exist with more rows, this dataset
is so large in terms of dimensionality and the arity of its fea-



Code Feature Values MCV Skew
w Original Word 42136 5%
b Word Stem 35698 5%
3 Last 3 Characters 4591 5%
p Inflectional Suffix 255 94%
c Part of Speech 45 14%
0 Simplified POS 22 32%
1 POS subcategory 15 38%
s Derivational Suffix 10 81%
t Tense 5 86%

C Capitalization Style 5 86%
n Number 3 53%
z Orthographic Style 3 98%
h Has Hyphen 2 99%
8 Has Digit 2 97%
o Rare Word 2 95%
a Rare Stem 2 94%

Table 2: All available features, their arity (number of values)
and how skewed is the Most Common Value (MCV)

tures that building a static ADtree is not feasible. Table 2
shows the number of unique values in the dataset for each
feature. This corresponds to slightly less than 1023 possi-
ble events (or conjunctive queries). The “code” character
for each feature is used as shorthand to represent different
groupings of features (see Table 3).

In order to test the proposed modifications, we used a
client algorithm that performs part-of-speech tagging on the
modified WSJ data. The tagger was built in the Mozart/Oz
constraint programming language. In general, the tagger
takes as input a sequence of words making up a single sen-
tence. For each word in the sentence, it then outputs a value
for each of the features in the (trimmed) dataset. In order
to isolate the timing and memory usage of just the ADtree
building code, the tagger was used only to generate query
logs for each used feature set. All of the experiments re-
ported here were performed using only the query logs to
generate the ADtrees.

In addition to the features in Table 2, the tagger can be
parameterized to incorporate the context of a given word
into its probabilistic model. In some of the following ex-
periments, we used the words directly to the left and right
of the word currently being tagged. Although there is gen-
erally a strong correlation among neighboring words, most
words occur in such varied contexts that many paths in the
tree involving a word and its neighbor will be above most
reasonable values for the arity threshold. Even considering
only the two neighboring words and their respective parts-
of-speech (and ignoring their other corresponding features),
this increases the event space to close to 2× 1029 events.

Several different groupings of features were chosen, in
part because they represent natural feature groupings for the
tagger client application but also as a mechanism for distin-
guishing how the proposed modifications interact with fea-
tures of different arities. Table 3 lists nine different feature
sets by a shorthand “name”. The name corresponds to one
character for each feature in the set using the single charac-

Feature Sets Event Space
wc 1.90× 106

wcCh8 3.79× 107

wc01tn 9.39× 109

wc01tns3 4.31× 1014

wbcp 1.73× 1013

wbcpCh8 3.45× 1014

wbcps3 7.92× 1017

wbc01tnps3 3.92× 1021

wbc01tnzps3Ch8ao 9.41× 1023

wc+ 6.82× 1018

wcCh8+ 1.36× 1020

wc01tn+ 6.75× 1021

wc01tns3+ 3.10× 1026

wbcp+ 6.21× 1025

wbc01tnps3+ 3.07× 1029

wbc01tnzps3Ch8ao+ 7.37× 1031

Table 3: Each code represents a subset of features (+ means
that neighboring words were included)

Figure 6: Results of varying the arity threshold from 5 to
50000 on tree size (number of nodes) for each of the 16 fea-
ture sets. Notice the x axis uses a logarithmic scale.

ter “codes” in Table 2. Seven of the nine feature sets were
also combined with the word and POS tag for both the left
and right words (adding four extra features to each group).
Those feature sets are distinguished in the results using a ‘+’
at the end of the name.

The first set of experiments was designed to determine
how the tree size varied with respect to the arity threshold.
Eleven threshold values were chosen between 5 and 50000.
Figure 6 shows the tree size (number of nodes) for each
feature set as the arity threshold is varied. Additionally, it
is important to note that since the highest arity feature has
only slightly more than 40,000 values, an arity threshold of
50,000 is actually equivalent to an unmodified ADtree. One
detail obscured by the scale of the graph is that several of
the feature sets exhibit a slight upturn at the low end of ar-



Figure 7: Percent tree size reduction relative to the baseline
(higher is better). Bars with hash marks did not finish con-
structing the tree due to memory complications.

ity threshold. In fact, the lowest point is usually between
20 - 50. This is of course a function of this dataset and the
correlations among features and could vary greatly from one
dataset to another. Additionally, the optimal tree size for a
feature set does not always correspond to the lowest average
query time. The remaining experiments use a threshold of
100 (when applicable) since most of the feature sets are still
close to their optimal size at that threshold. It is however
readily apparent from the graph that almost any choice of
threshold will generally be an improvement over the base-
line.

Once a reasonable value for the arity threshold was estab-
lished, both the MCV ratio threshold and the Clump node
deletion threshold were investigated. Each of these two
thresholds correspond to a ratio that can vary between 50-
99%. The MCV ratio threshold establishes how skewed the
MCV of a high arity feature has to be before it will be in-
cluded despite the feature’s arity. The Clump node deletion
threshold establishes how much (partial) redundancy is per-
mitted before the Clump node is removed. Interestingly, it
was not possible to establish a correlation between the exact
value for either of these thresholds and their effectiveness.
Both the size of the tree and average query time were found
to be very robust with respect to these two ratio thresholds.

For this reason, it was decided to arbitrarily use a ratio
threshold of 50%, meaning that the MCV is at least as large
as the sum of all the other possible values. Similarly, the
Clump node deletion threshold was also set at 50%. Three
variations of the ADtree were built: using just the Com-
plete Vary Node + RatioMCV modification, using just the
Clump node modification, and using both modifications to-
gether. Then ADtrees were built for each combination of
parameters (including the feature set) and the tree size (node
count), elapsed runtime and cumulative memory usage were
all measured. Elapsed runtime is a fairly reasonable estimate
for average query time because each experiment represents

Figure 8: Relative difference in runtime (in hours) from the
baseline (lower is better). Bars with hash marks did not fin-
ish constructing the tree due to memory complications.

only the time required to build the tree using the query logs
recorded from the POS tagger. Cumulative memory usage is
primarily dominated by the amount of memory used in tem-
porary data structures needed to perform calculations while
dynamically generating the tree. The results of these exper-
iments are summarized in Figures 7-9.

Discussion
In general, it is clear that both modifications achieve the de-
sired results of reducing tree size without substantially in-
creasing build/query time. In particular, the smaller fea-
ture sets (those not including neighboring words) obtained
on average better reduction in tree size but take a few hours
longer to construct the tree and use more cumulative mem-
ory. The feature sets that included the neighboring words
on the other hand generally performed faster while still ob-
taining reasonable tree size reductions. Although there is
some variation among feature sets, it is not unreasonable to
conclude that either modification successfully mitigates the
unintended consequences of using MCVs in an ADtree with
high arity features.

Even though each modification reduces the tree size, the
use of Complete Vary Nodes (and RatioMCVs) appears to
achieve equal or better results in terms of tree size but takes
on average slightly longer to do so. This is most evident
in Figures 10 and 11 as the performance corresponding to
Complete Vary Node and RatioMCV with respect to the
number of sentences completed slowly separates from that
of the Clump node. However, there is a potential advantage
to be gained by this difference in tree size versus elapsed
time. Even though the original motivation for using both of
these modifications was to improve performance on a dy-
namically generated ADtree, the RatioMCV modification
can be applied just as easily to a statically built ADtree, re-
sulting in the same tree size reduction. In that case, the cost
of building the tree is a onetime cost that can be amortized



Figure 9: Difference in cumulative memory usage (in GB)
from the baseline (lower is better). Bars with hash marks
did not finish constructing the tree due to memory compli-
cations.

over all future uses of that tree. Furthermore, generating a
static tree can be optimized in ways that can’t be applied to
a dynamic tree, potentially eliminating the extra time cost of
using Complete Vary Nodes with RatioMCVs. Because the
Clump node always represents 100% redundant information
in a static tree, it is of no use for static trees.

It is also apparent from the results that combining both
modifications together in the same ADtree only rarely gives
any advantage over using whichever modification proved
most effective for the given feature set. However, since it
is not necessarily obvious before hand which modification
will provide the best performance, using both seems to be
an effective way to “hedge your bet” as to which modifica-
tion will perform best (assuming that a dynamic tree will be
used).

From the cumulative memory usage metric, it is clear that
the implementation of ADtrees used here is not optimal in
memory utilization, particularly with respect to the tempo-
rary data structures which are built and then discarded very
frequently in the course of dynamically building the tree. It
may be possible to achieve nearly universal build/query time
improvements (rather than the mixed results achieved here)
by minimizing the amount of temporary memory used and
therefore the amount of time spent doing garbage collection.
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