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ABSTRACT

This paper shows that the basic Hough transform is implicitly a
Bayesian process—that it computes an unnormalized posterior dis-
tribution over the parameters of a single shape given feature points.
The proof motivates a purely Bayesian approach to the problem of
finding parameterized shapes in digital images. A proof-of-concept
implementation that finds multiple shapes of four parameters is pre-
sented. Extensions to the basic model that are made more obvious
by the presented reformulation are discussed.

Index Terms— Image processing, Machine vision, Hough trans-
forms, Bayes procedures

1. INTRODUCTION

The Hough transform is a standard industry workhorse for finding
parameterized shapes in digital images [1, 2]. (See [3] for a com-
prehensive survey.) It is image-global and robust to noise and oc-
clusion. However, discretizing the parameter space results in two
fundamental problems. First, it creates a trade-off between precision
and sensitivity to noise, making selection of discretization level crit-
ical to correct convergence [4]. Second, the time and space required
scales exponentially with additional parameters, limiting it to very
simple parameterizations. Much of the research in the Hough trans-
form concentrates on sidestepping this second problem for specific
shapes or applications.

A continuous-parameter formulation overcomes both of these
problems but leaves the problem of searching the parameter space.
A continuous-parameter Bayesian formulation immediately suggests
a search algorithm (Markov chain Monte Carlo sampling), suggests
useful extensions to the basic algorithm, and provides a good frame-
work for analyzing some of the Hough transform’s properties. In
this paper, we present a simple continuous-parameter Bayesian for-
mulation and prove that it is equivalent to the Hough transform. We
then build a model of multiple circle detection with deformations (a
four-parameter problem) and use it to find blood platelets to demon-
strate the viability of the Bayesian approach. We conclude with a
discussion of extensions that the new formulation makes obvious.

2. RELATED WORK

Since the introduction of the Hough transform into computer vi-
sion [2], most research into the Hough transform has focused on
algorithms and implementation [3]. Some new algorithms that re-
sult from injecting Bayesian methods into the Hough transform have
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been quite successful [5, 6, 7, 8]. Our work differs from these pri-
marily in that we prove that the Hough transform is already a Bayes-
ian method.

Very little Hough transform research has focused on understand-
ing its behavior [9, 10, 11]. Most that have done so consider only
the straight line fitting case and note similarities to well-known M -
estimators.

Our work is closely related to Bayesian deformable models [12]
and Bayesian dynamic contours [13]. The addition of the Hough
transform to the ever-growing suite of Bayesian techniques allows
it to be combined with many of them in well-grounded, principled
ways.

3. PROOF OF EQUIVALENCE

3.1. Definitions

The objective is to find a parameterizable shape in an m × n digital
image.

A parameterization of a shape is an assignment of variables that
defines the shape. A parameterization is always defined in the con-
text of a function that produces the shape or an equation that defines
the shape. (Note that this is general enough to include the general-
ized Hough transform [14].)

A feature set F is the input to the Hough transform. We will
assume that features are found by running an edge detector over the
image and placing the x, y coordinates of the detected edges into
F . In this paper, k = |F |. Without loss of generality, this proof
can be extended to deal with any kind of features rather than just the
coordinates of detected edges—for example, most Hough transforms
incorporate some notion of edge orientation.

Generally, the Hough transform proceeds as follows:

1. Collect image features into F ,

2. Create an accumulator of discrete parameterizations,

3. For each feature, increment the accumulator cell of every pa-
rameterization that could have produced it,

4. Low-pass filter the accumulator to help mitigate discretization
issues, and

5. Find local maxima in the accumulator.

The local maxima found in the last step are regarded as candidates
for parameterizations of shapes likely to have produced the feature
set F .

The accumulator includes only parameterizations that are judged
to be feasible—for example, for circles of radius r = 12, the accu-
mulator’s domain might be xc ∈ [−12, m+12], yc ∈ [−12, n+12].
This will be referred to as the parameterization’s feasible domain.



A rather more mathematical formulation of the Hough transform
is approximately equivalent. Let s be a parameterization. Construct
a discrete implicit voting function v:

v(s, xi, yi) =

(
1 if (xi, yi) lies on shape s

0 otherwise

The Hough transform H of the image is

H(s) =

"
kX

i=1

v(s, xi, yi)

#
∗K

where · · · ∗K represents the low-pass filter: convolution with some
blurring kernel K. Note that this formulation does not restrict pa-
rameterizations to a discrete set of values: any parameterization that
can be plotted is allowed.

The above definition of H(s) amounts to feature points casting
“fuzzy” votes for parameterizations. A more general form allows
these fuzzy votes to be cast directly:

H(s) =

kX
i=1

vd(s, xi, yi) (1)

where vd is a voting distribution with range [0, 1].

3.2. The Bayesian Network

The Bayesian network used in this proof is shown in Fig. 1. It is
easiest to understand as a generative model of single shapes: a shape
s (which is the same s as in H(s)) with a uniform distribution P (s)
over its parameters in their feasible domain generates k edge features
xi, yi, each with the same probability density P (xi, yi|s).

Even though it is extremely simple, we use a Bayesian network
at this point because extensions to the basic model can become quite
complex.

Fig. 1. A Bayesian network for finding a single parameterized shape.

3.3. Theorem

For all types of parameterizeable shapes, and for all voting distribu-
tions vd(s, xi, yi), there exists a probability distribution P (xi, yi|s)
and a constant c such that, in the feasible domain of s, H(s) =
c + log P (s|x1, y1, ..., xk, yk).

In other words, the Hough transform computes an unnormalized
log probability distribution over shape parameters given edge fea-
tures. In particular, the global maximum of the Hough transform is
the most probable single shape given the edge features.

Proof. We first derive P (s|x1, y1, ..., xk, yk). Starting from the
network’s joint distribution,

P (s, x1, y1, ..., xk, yk) = P (s)

kY
i=1

P (xi, yi|s)

P (s|x1, y1, ..., xk, yk) =

P (s)
kQ

i=1

P (xi, yi|s)

P (x1, y1, ..., xk, yk)

Because P (x1, y1, ..., xk, yk) is constant and P (s) is uniform over
the feasible domain, they may be represented by a single constant.
Let α = P (s)/P (x1, y1, ..., xk, yk). Then

P (s|x1, y1, ..., xk, yk) = α

kY
i=1

P (xi, yi|s) (2)

and

log P (s|x1, y1, ..., xk, yk) = log α +
kX

i=1

log P (xi, yi|s) (3)

Let
P (xi, yi|s) =

1

β
exp(vd(s, xi, yi)) (4)

where

β =

mZ
x=0

nZ
y=0

exp(vd(s, x, y)) dy dx (5)

The constant β normalizes vd so that P (xi, yi|s) is a valid probabil-
ity distribution. Then

vd(s, xi, yi)− log β = log P (xi, yi|s) (6)

thus,
vd(s, xi, yi) = log P (xi, yi|s) + log β (7)

Substituting vd as given by Equation (7) into Equation (1):

H(s) =
kP

i=1

[log P (xi, yi|s) + log β]

= k log β +
kP

i=1

log P (xi, yi|s)

Let c = k log β − log α, so that k log β = c + log α. Substituting
into the above and from Equation (3) yields

H(s) = c + log α +

kX
i=1

log P (xi, yi|s)

= c + log P (s|x1, y1, ..., xk, yk)

which completes the proof.

4. A SHORT ANALYSIS

A full analysis of the implications of this proof is beyond the scope
of this paper; however, some aspects deserve mention.

The Hough transform assumes that each feature is generated
by either a single shape or by noise. This is generally false. The
Bayesian network makes it clear how to deal with multiple shapes:
add more shape nodes (Fig. 2).



Fig. 2. A network for finding multiple shapes.

It follows from Equation (4) that the lowest possible value of
P (xi, yi|s) is 1/β. Because of this, P (xi, yi|s) can account for
(equivalently, ignore) edges not produced by s. While this explains
why the Hough transform tends to be robust to noise and the pres-
ence of other shapes, notice that the proportion of allowable noise
cannot be easily controlled in the Hough transform because β can-
not generally be expressed in closed form. An explicit representation
is in order.

More importantly, 1/β provides a statistical explanation for the
Hough accumulator’s complexity. A direct comparison can be drawn
between the Hough transform’s fat-tailed inference and estimating
the center of a Cauchy density with known spread. (In the Hough
transform’s case, the spread of P (xi, yi|s)—or fuzziness of the vot-
ing function—is fixed by the convolution kernel.) The Cauchy’s gen-
eral insensitivity to outliers makes the likelihood very complex under
fixed spread, so that in the worst case a mode exists near every sam-
ple [15]. The Hough transform’s posterior density is complex and
multimodal for the same reason, though it also may include ridges.

Some of this complexity is mitigated by making strong assump-
tions about the nature of the data. One popular method is including
orientation in the feature points and accounting for it in the like-
lihood. (The proof of concept that follows does this and also in-
cludes level-set curvature.) More complexity is often mitigated us-
ing various techniques to post-process the accumulator. With global
shape detection and parameterization expressed as a Bayesian pro-
cess, much of this may be replaceable by better modeling.

5. PROOF OF CONCEPT

To demonstrate the viability of the Hough transform-based Bayesian
approach, we develop a model based on the causal relationships
shown in Fig. 2. The model is used to find blood platelets on a
slide, which can be thought of as a four-parameter problem: find
each platelet’s center, radius, and amount of border deformation. A
straightforward Hough transform would be unable to complete this
with good accuracy in any reasonable amount of time.

Each sj is a vector of independent random variables
σ2

j , xj , yj , rj . Let

σ2
j ∼ InvGamma(α, β) xj ∼ Gaussian(m/2, m)

rj ∼ Gaussian(13, 1) yj ∼ Gaussian(n/2, n)

Recall that m and n are the width and height of the image. The new
circle parameter σ2 models slight deformations in the cell borders.

(We also let it handle edge displacement due to discretization.) The
inverse Gamma parameters α and β are chosen so that the mean and
variance are 22 and 1, respectively.

For this test the number of circles, r, is 15. We chose a constant
number to keep the proof of concept simple. (More robust ways to
deal with an unknown number of shapes is discussed briefly later.)
We chose 15 circles to demonstrate that the formulation allows cir-
cles with centers outside the image—anywhere the prior probability
of xj and yj is nonzero.

Let fi represent a feature. In addition to edge position, it con-
tains gradient direction and level-set curvature. Its distribution is

P (fi|s1, s2, ..., sr) ∝

max(ω, cd(s1, fi), cd(s2, fi), ..., cd(sr, fi))

where ω is a small noise constant.
In the interest of conserving space, we only describe the func-

tion cd(sj, fi), which yields the probability density of feature fi

given a single shape sj . It is the product of three probability den-
sities: of the location of fi given sj , of the orientation (gradient
direction) of fi given sj , and of the level-set curvature of fi given
sj . (The last is computed using the expected value of r from the
curvature. Figs. 3(c) and 3(d) show that this reduces the ridges in
P (s|f1, ..., fk) considerably.)

We use max to combine these probability densities because it
represents the intuitive notion that a feature can be generated from at
most one shape. It also tends to maximize the effect of “explaining
away,” which prevents multiple shape nodes from converging to the
same parameters.

This model poses difficulties to correct inference, the greatest
being that each of the 15 groups of 4 parameters is non-identifiable.
(There are at least 15! modes.) Given that the purpose of this exer-
cise is only to prove that a Bayesian formulation can work, we are
satisfied by only reporting one of the posterior modes. We found that
Markov chain Monte Carlo (MCMC) sampling tends to find these
quickly and accurately. Further, assuming the circles infrequently
intersect allows searching for one circle at a time, which is very good
for efficiency. Fig. 3 shows a typical result after only 200 MCMC it-
erations per circle. Our Python code took just over two minutes, and
a specialized algorithm in C would likely take single-digit seconds.

General time requirements are difficult to estimate, as they de-
pend on the complexity of P (s1, ..., sr|f1, ..., fk). Space require-
ments are linear in the number of feature points.

6. EXTENSIONS

Many of the extensions that the Bayesian formulation makes obvious
are due to:

1. Prior belief about shape parameters can be formally expressed
and integrated into the model, and

2. The model is capable of outputting a posterior distribution.

For example, it would be fairly easy to add a dynamic layer
(attach a Kalman or particle filter) to the network to track shapes
across video frames: the previous frame’s posterior distribution over
a shape would generate priors for the current frame. Geometric rela-
tionships can be modeled between components of compound shapes
using priors as well.

Shape priors may come from other sources. For example, a face
detection algorithm may output a distribution over the position (and
possibly orientation) of a face, which the Bayesian model may use as



(a) The original image. (b) The detected platelets.

(c) A cross section of
log P (s|f1, ..., fk) with r = 13,
σ2 = 1.

(d) The same cross section with
level-set curvature incorporated.

Fig. 3. A four-parameter problem: finding blood platelets.

prior information in finding exact facial features. If the face detector
is accurate enough, this would certainly increase speed and accuracy.

In general, this model of shape detection can be integrated into
almost any other Bayesian system.

The multiple-shapes model as depicted in Fig. 2 bears a strong
resemblance to mixture models. In fact, shape detection can easily
be regarded as a clustering problem: assigning features to generating
distributions. This suggests that, for an unknown number of shapes,
an infinite mixture model [16]—which allows a prior distribution on
the number of shapes—may be appropriate.

Finally, if both presence and lack of edges is modeled, occlu-
sions can also be modeled—and in fact, not only could the absence
of an edge not reduce the probability of a parameterization, it could
increase the probability if occluded by another shape.

7. CONCLUSION

We started with a proof that the Hough transform has an implicit
Bayesian foundation. The short analysis that followed showed that

1. The Hough transform implicitly assumes that all features are
produced by a single shape or noise.

2. The proportion of noise the Hough transform accepts cannot
be controlled in general.

3. Fat-tailed shape densities explain the Hough accumulator’s
complexity.

We found that 1 and 2 can be overcome with a more explicit Bayes-
ian reformulation.

We followed with a proof of concept, which was able to find
four-parameter shapes very quickly and using much less space than
the traditional Hough transform. We concluded with a discussion

of possible extensions made obvious by the Bayesian reformulation:
using a dynamic layer for shape tracking, using priors to express ge-
ometric relationships between shapes, using the output from other al-
gorithms to generate priors, using an infinite mixture model to model
an unknown number of shapes, and using lack of edge features in
modeling occlusions.
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