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ABSTRACT
Motivation: Quantification of lipids is a primary goal in lipidomics. In
direct infusion/injection (or shotgun) lipidomics, accurate downstream
identification and quantitation requires accurate summarization of
repetitive peak measurements. Imprecise peak summarization
multiplies downstream error by propagating into species identification
and intensity estimation. To our knowledge, this is the first analysis of
direct infusion peak isolation in the literature.
Results: We present two novel peak summarization algorithms for
direct infusion samples and compare them with an off-machine ad-
hoc summarization algorithm as well as with the propriety Xcalibur
algorithm. Our statistical agglomeration algorithm reduces peakwise
error by 38% (m/z) and 44% (intensity) compared to the ad-hoc
method over 3 data sets. Pointwise error is reduced by 23%
(m/z). Compared to Xcalibur, our statistical agglomeration algorithm
produces 68% less m/z error and 51% less intensity error on average
on two comparable data sets.
Availability: The source code for Statistical Agglomeration is
freely available for non-commercial purposes at https://github.
com/optimusmoose/statistical_agglomeration. Modified
Bin Aggolmeration is freely available in MSpire, an open source mass
spectrometry package at https://github.com/princelab/

mspire/.
Contact: 2robsmith@gmail.com, jtprince@chem.byu.edu

1 INTRODUCTION
Direct infusion (injection) lipidomics, sometimes called “shotgun”
lipidomics for it’s similarity to shotgun genomics, is an emerging
but well studied field (Watson, 2006; Ekroos et al., 2002; Ejsing
et al., 2006). Here, a liquid sample is injected into a mass
spectrometer, yielding a set of (mass/charge (m/z), intensity,
retention time (RT)) 3-tuples (Han and Gross, 2005). Since there is
no chromatographic separation in direct infusion lipidomics, each
RT scan represents an independent measurement of the sample.
Ideally, the species in the sample would be uniformly distributed
across RT and measured in near identical intensities across RT,
making reduction to a single two-dimensional vector of unique
peaks trivial. Unfortunately, there are several noise factors that
appear in real world direct infusion samples. Sample distribution
heterogeneity results in inter-scan variance in both m/z and intensity.

∗to whom correspondence should be addressed

What’s more, technical and mechanical limitations in the mass
spectrometer inculcate even more error into the output. Accurately
estimating the true peak values from the resulting output file is a
nontrivial challenge (see Figure 1).

In order to identify and quantify each lipid, it’s component peaks
must somehow be isolated one from another, and the additive noise
peaks removed. We will call this process peak summarization. Only
after peak summarization can the isotopic envelopes be compared
with theoretical databases in order to identify and quantify the
individual lipids in the sample.

The necessity of a solution for the peak summarization problem
in every direct infusion lipidomics application and the presumed
effect of the results of such a solution on downstream quantitation
would suggest that a description of peak summarization be found in
every shotgun lipidomics study (Samuelsson et al., 2004). However,
it is frequently left unmentioned (e.g. (Orešič, 2009), (Song
et al., 2007), and (Ejsing et al., 2006)). Although direct infusion
methods have been around since the mid-1990s, we are only aware
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Fig. 1: A typical direct infusion lipidomics sample. The lack of
consistent repetition in data points in the RT dimension and the
abundance of noise in each of the three dimensions make accurate
peak summarization difficult. The colors delineate true peaks.
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(a) (b)

Fig. 2: Scan Combination. Here (a) multiple scans are combined
into (b) one list of (m/z, intensity) pairs by removing the retention
time (RT) dimension. The colors delineate peaks.

of two published solutions to this segment of the quantitation
pipeline. The first is that of treating a survey scan as a true peak
measurement (Schwudke et al., 2006). From a glance at a typical
shotgun lipidomics plot, it should be clear that treating any single
RT scan of data as a representative set of true peaks would be less
than ideal, as the scan would include many peaks with incorrect
m/z and intensity and exclude many other true peaks (see Figure 1).
The second, a more robust approach, applies to shotgun lipidomics
a technique that has been used in several proteomics studies (Liu
et al., 2007; Frank et al., 2008). This approach, which we label
the fixed width algorithm, averages scans across the retention
time dimension to yield an estimation of the true contents of the
sample (Herzog et al., 2011). Though this approach is simple to
code and runs in linear time, it is non-statistical and does not take
into account the data densities along the m/z axis.

Here we present two statistical approaches to solving the peak
summarization problem and evaluate them against both synthetic
and real-world peak summarization problems. We also provide the
first comparative performance analysis of Xcalibur and the fixed
width algorithm on the peak summarization problem.

2 SYSTEM AND METHODS
We use a representative sample of three labeled data sets to test the
capabilities of the methods we present as well as the baseline results
from the widely used Xcalibur software shipped with Thermo mass
spectrometers.

2.1 Data
The methods presented in this paper were evaluated on one synthetic
data set and two real world, hand labeled data sets.

The Noyce data set is a synthetic data set constructed as described
in (Noyce et al., view) with sampling rate 1, noise density factor
500, and one dimension mode.

Sample 3 750-800 and Sample 3 1000-1050 are two m/z
intervals of a rat soleus lipid extract (see supplement for
experimental protocol). Each peak in these data sets were isolated
and labeled by hand using TOPPView (Sturm and Kohlbacher,
2009) and an exhaustive list of all (m/z, intensity, RT) triplets in
the file.

Each of the data sets used in lipidomics can be represented as a
list of points where each point is an (m/z, intensity, RT) triplet. For
the purposes of the algorithms detailed here, the RT dimension is
ignored, reducing the problem to two dimensions (see Figure 2).

2.2 Metrics
Each of the following metrics measures a different quality of peak
assignment. Since each algorithm has different strengths, these
metrics allow a ranking of algorithms based on what is important
for the practitioner. Since we cast the peak selection problem as
a clustering problem, all of the following metrics are established
clustering metrics, with the exception of normalized true point
distance, which is a metric devised specifically for measuring the
quality of summarized peaks.

In what follows, we define Ω as the set of predicted peaks, C as
the set of true peaks, I as the set of data points, ωk as the set of
points in the kth predicted peak in Ω, and cj as the set of points in
the jth true peak in C. We define the intensity, ωint, of a predicted
peak ω as the total of the intensities of the peak’s assigned points:

ωint =
∑
i∈ω

iint (1)

and the m/z value, ωm/z , of ω as weighted mean m/z values of the
peak’s assigned points is defined as:

ωm/z =
∑
i∈ω

im/z
iint

ωint
(2)

Let ωi
m/z denote the m/z of the predicted peak containing point i

and cim/z the m/z of the true peak containing point i.
NORMALIZED TRUE PEAK DISTANCE (NTPD). NTPD is a

metric we developed for this task which indicates the normalized
m/z or intensity difference between the predicted peaks and the
nearest true peaks. For m/z NTPD the equation is,

NTPD(Ω,C) =
1

min(|Ω|, |C|)
∑
k∈Ω

min
j∈C

(|ωk
m/z − cjm/z|) (3)

Intensity NTPD is calculated using the same equation with ωk
m/z

and cjm/z replaced with ωk
int and cjint.

The normalizing term controls score inflation whether the error is
in predicting too many or too few peaks. The significance of this
metric is reflected in its clinical relevancy. This per-peak metric
basically measures how easy it would be to correctly assign the true
species label using a standard lipid species library. Such is not the
case for a per-point error measure such as sum squared error (SSE)
or an intrinsic cluster metric like normalized mutual information
(NMI) or purity.

∆ NUMBER OF PEAKS. In downstream algorithms, each
estimated peak will be treated as an actual isotope. It is clear that
any identification or quantitation algorithms will be highly sensitive
to the number of predicted peaks versus the number of actual peaks.

PURITY. Purity measures the averaged homogeneity of each
estimated peak over all data points. It is defined as:

purity(Ω,C) =
1

|I|
∑
k∈Ω

max
j∈C
|ωk ∩ cj | (4)

A purity of 1 is perfect, and zero is the lowest possible score.
One way to achieve high purity is to reduce the size of the predicted
peaks. In fact, a naı̈ve algorithm that simply assigns each data point
into its own peak will achieve a perfect score for purity.
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NORMALIZED MUTUAL INFORMATION (NMI). NMI
allows the quantitation of the trade off between number of predicted
peaks and the quality of predicted peaks.

NMI(Ω,C) =
I(Ω,C)

[H(Ω) + H(C)]/2
(5)

where I is mutual information, given by

I(Ω,C) =
∑
k∈Ω

∑
j∈C

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

(6)

and H is entropy, given by

H(Ω) = −
∑
k∈Ω

|ωk|
|I| log

|ωk|
|I| (7)

NMI indicates the dependence of sets Ω and C. If they are
completely independent the peak predictions provide no information
about the true peak assignments (indicated by an NMI of 0). A
perfect score of 1 indicates that the true peak assignments provide no
additional information beyond that provided by the predicted peak
assignments.

SUM SQUARED ERROR (SSE). SSE is a common measurement
of error. It is computed by summing the squared error of each
assignment.
For the SSE of the m/z dimension, we use:

SSE(Ω,C) =
∑
i∈I

(ωi
m/z − cim/z)2 (8)

Intensity SSE is calculated in the same fashion, with intensity
replacing m/z in Equation 8.

These metrics had to be modified to deal with the notion of noise
points, which are not inherent in clustering problems (discussed in
supplemental information).

3 ALGORITHMS
While both methods proposed as well as the fixed width method
follow the peak summarization paradigm by combining multiple
scans (see Figure 2), each of the three methods diverges in the way
the peaks are segmented once combined into one spectra.

3.1 Fixed Peak Width Method
Many practitioners use some variant of this method (e.g.,
(Samuelsson et al., 2004)). Defining the peak width in terms of the
mass of the given point models the variation of resolution along the
m/z scale (Herzog et al., 2011) (see Figure 3). The combined spectra
(see Figure 2) are sliced into adjacent bins of width m/z

r
, where

m/z is the m/z at the current point, and r is the resolution of the
machine. Each bin is then treated as a peak.

3.2 Modified Bin Agglomeration
Modified Bin Agglomeration (MBA) uses a series of decisions
based on the shape of intensity histogram bins to partition the data
into peaks. First, the data is binned according to the Fixed Width
algorithm, except with a user-defined bin width whose default is
5ppm for the Orbitrap XL (see Figure 4). After this initial binning,

Fig. 3: Fixed Width Segmentation. The combined spectra (see
Figure 2) are sliced into bins of width m/z

r
, where r is the resolution

of the instrument. Note how fixed width has no means of detecting
data density, nor comparing the intensity of points. The shadow peak
(gray) is indistinguishable from the geen peak next to it, despite the
intensity difference. Also, note how the hard bin limits segment true
peaks that happen to fall on both sides of a bin interval. The colors
delineate true peaks. The red segments along the x-axis indicate bin
boundaries.

the contiguous bins demarcated by empty bins are considered peaks.
Note the difference between this and the Fixed Width algorithm,
which considers hard contiguous bin intervals as peaks irrespective
of the content of each bin. At this point, if the user has selected the
zero option, the algorithm is complete.

There are two other options available: share and greedy y.
Both options split all peaks where the sum of the intensities of
each bin form a local minima within a series of contigous bins. The
difference between the share and greedy y options consists of
how these local minima are treated (see Figure 5).

Fig. 4: Modified Bin Agglomeration Segmentation. The combined
spectra (see Figure 2) is sliced into bins of user-defined width
(default 5ppm). MBA then segments existing bins into disparate
peaks at local minima (black arrow). The colors delineate true peaks.
See Figure 5 for more detail on MBA bin splitting.

3.3 Statistical Agglomeration
Statistical Agglomeration (SA) bases bin agglomeration decisions
on statistical analysis of the data. The approach here is to treat peaks
as distributions and bins of data as samples from those distributions.
Although there is no guarantee that the samples being tested are
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(a) Share Split (b) Greedy y Split

Fig. 5: MBA Bin Splitting. After segmenting all points into fixed
interval bins and creating initial peaks of each contiguous segment
bounded by empty bins, the MBA algorithm further divides peaks
by considering local minima. With the share method (a), the
local minimum is split among adjoining peaks proportional to the
neighboring peaks’ intensities. The greedy y method (b) awards
the entire disputed bin to the adjoining peak of greatest total
intensity. Note that the bars in this figure represent histograms of
the intensity of the points in the assigned bins, not the component
points themselves.

normally distributed, we make this assumption in order to use the t-
test. Peaks (distributions) whose means are not statistically different
according to this test are combined iteratively until all remaining
peaks are statistically different with high confidence.

As with the previous methods, the data is first sorted by ascending
m/z and split into bins of size m/zwindow (see Figure 6):

m/zwindow = resolution× 10−7 (9)

This formula was empirically derived from observation of several
lipid samples to yield a good balance between minimal window
size and sufficient size to estimate peak statistics, and it should be
applicable across many mass spectrometers.

After the initial bin assignment, starting at the lowest m/z value,
adjacent bins are subjected to a Welch t-test (Welch, 1947) (we
use the Welch t-test because the samples (bins) have potentially
different sizes and variances) to test the hypothesis that the two
sample distributions have the same mean:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

(10)

where X̄i, s2i and Ni are the ith sample mean, sample variance and
sample size, respectively. The degrees of freedom are approximated
using the Welch-Satterthwaite equation (Satterthwaite, 1946):

v =
(
s21
N1

+
s22
N2

)2

s41
N2

1 ·(N1−1)
+

s42
N2

2 ·(N2−1)

(11)

For each potential bin agglomeration, the p value is obtained
from a t-distribution for a two-tailed test for the computed t and v
values (see Eq. 10, 11) to validate the null hypothesis that the peak

means are equal. If the p value is greater than 0.01, meaning the
confidence that they are different is less than 99%, we accept the null
hypothesis and combine the bins being tested. Note that, in order
to accommodate a test of both the m/z and intensity differences
of the considered bins, each tested bin pair is subjected to two t-
tests, one using the m/z data and one using the intensity data. As
an overall measure of confidence, we use the maximum p value
for the two t-tests. The approach here is to be no more confident
than our least confident t-test dimension (intensity or m/z). This
design decision provides an implicit awareness of situations which
would be deceptive if the minimum p value were used as an overall
measure of confidence, such as when two bins have a very similar
m/z values but very different intensities. This situation, which we
call shadow peaks, occurs surprisingly often when a low intensity
peak appears directly adjacent to a very high intensity peak. This
approach also helps discriminate in cases when two bins that should
not be combined are similar in average intensity. This is a common
occurrence at low intensities. In this case, the lack of confidence in
the m/z dimension will prevent combination of the two peaks.

Fig. 6: Statistcal Agglomeration Segmentation. The combined
spectra (see Figure 2) is sliced into bins of width r× 10−7, where r
is the resolution of the instrument. The colors delineate true peaks.
The red segments along the x-axis indicate bin boundaries.

(a) (b) (c)

Fig. 7: SA Bin Agglomeration. After sorting the data by m/z value,
and assigning data points to bins of fixed width, a t-test is conducted
on the intensity and m/z means of the first two bins (a). If either
of the t-tests fail to show a high confidence that the means are
different, the bins are not combined and the algorithm considers
the next two bins for agglomeration (b). Otherwise, the two bins
are agglomerated, and the algorithm considers the agglomerated bin
and the next bin for agglomeration (c). Dotted lines indicate peak
boundaries.
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In the event that the two bins under consideration are combined,
the resulting agglomerated bin is considered as a single bin in the
next iteration’s comparison to the next bin in ascending m/z order. If
they are not combined, the first bin in m/z order remains unchanged,
and with the next iteration the second bin is compared with the next
subsequent bin in ascending m/z order (see Figure 7). The entire
algorithm runs in just one pass, resulting in O(n) performance,
where n is the number of bins.

For post-processing noise removal, we use an established
noise filtering method where all points with intensities below the
estimated noise level (signal to noise ratio (s/n) = 1) are labeled
as noise and removed. This method is borrowed from Samuelsson,
et al., but we modify the quantitation of noise from an intensity
level to a frequency count, which is more robust to lower intensity
signals (Samuelsson et al., 2004). This approach rests on the
assumption that noise points are distributed uniformly, and thus
should be equally distributed across the initial bins. The expected
noise level is one noise point per bin.

3.4 Xcalibur
Xcalibur is a propriety mass spectrometry software platform from
Thermo Scientific. Since Xcalibur will not accept data in the
community standard mzML format, we were unable to use it on the
Noyce synthetic data set (Deutsch, 2008). However, the raw data of
the Sample 3 data sets were analyzed using Xcalibur 2.1.

4 RESULTS
SA and MBA outperform all other methods on NTPD m/z (see
Figure 8). MBA had a slightly lower NTPD rate on Sample 3 750-
800, while SA outperformed all other methods on the other two data
sets. The relative performance was identical for NTPD intensity,
with the exception being more disparity between the SA and MBA
scores and Fixed Width on the Noyce data set (see Figure 9(a)). Note
that Xcalbur’s NTPD is dramatically higher for both NTPD intensity
and NTPD m/z than all other methods on the two data sets that were
comparable given Xcalibur’s proprietary data limitations.

SA predicted the number of peaks far more accurately than any
other method tested, including Xcalibur, which was furthest from
the actual number of peaks (see Figure 10). MBA was second-best
on average at predicting the correct number of peaks.

On average, each of the three methods performs rather similarly
on purity. The scores averaged across all three data sets are 0.73,
0.7, and 0.74 for SA, MBA, and Fixed Width respectively (see
supplementary information). Because we are ignoring all noise
points (real or assigned), and because Fixed Width produces the
narrowest peaks, it is not surprising that Fixed Width performed so
well on purity.

The NMI scores averaged across all three data sets are 0.95,
0.96, and 0.93 for SA, MBA, and Fixed Width respectively (see
supplementary information). It is surprising that they are so close,
but this is likely a result of the modifications to this metric to handle
noise.

Each of the three methods performs inconsistently on SSE. SA
outperforms the other methods on both Sample 3 datasets for m/z
SSE, but MBA has a dramatically lower SSE for the Noyce dataset
then either of the other methods (see Figure 11). Fixed Width has a
dramatically lower intensity SSE than either of the other methods

on the Noyce data set, but only slightly less SSE than SA on
the Sample 3 750-800 data set (see supplemental material). MBA
noticably outperforms other methods on the Sample 3 1000-1050
data set.

While the above reported metrics should give an overall
quantitative measure of the performance of each method, the
segments of the spectra in Figures 12, 13, and 14 provide a
qualitative assessment of each method. The pattern that emerges
across data sets is that, at least on these random segments, SA
consistly summarizes peaks exactly or very close to the hand
annotation. MBA also performs well. Fixed Width is not consistent
in performance but usually adds extra peaks and/or shifts m/z values
of peaks substantially. Across both Sample 3 datasets, Xcalibur
drastically increases the number of peaks in the segment. Xcalibur’s
predicted peaks are also notably less intense than the hand annotated
data set.

5 DISCUSSION
Fixed Width, to our knowledge the only extant algorithmic solution
to this problem, is simple to code, yet has some obvious limitations.
In mass spectrometry, the intra-sample resolution is inherently
variable (Schwudke et al., 2011). At least for the Orbitrap, low
intensity signal groups are more dispersed while high intensity
signal groups have less m/z variance. Any fixed width solution will
either chop low intensity peaks into incorrect component peaks,
incorrectly agglomerate high intensity peaks, or both. As shown
in the results, fixed width methods significantly overestimate the
number of peaks, cascading error downstream into identification and
quantitation.

MBA attempts to provide robust means for dealing with peaks
that overlap, and builds on the idea of Fixed Width binning by
agglomerating any adjacent non-empty bins. Although the initial
fixed width and the choice of which bin splitting options to use

(a) (b) (c)

Fig. 8: Normalized True Peak Distance (NTPD) - m/z. NTPD is a
difference metric that compares the predicted peak to the nearest
true peak. Here we compare the peaks’ m/z values. On average, SA
provides a 38% reduction in error from Fixed Width and provides
a 68% improvement over Xcalibur for the two data sets for which
Xcalibur’s propriety data restrictions did not preclude measurement.
Note the different scales.
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(a) (b) (c)

Fig. 9: Normalized True Peak Distance (NTPD) - Intensity. Here
we compare predicted peak intensities to the nearest true peak.
SA outperforms the other methods on average, providing a 51%
error reduction from Xcalibur for the two measurable data sets
given Xcalibur’s proprietary data restrictions. SA provides a 44%
reduction on average over Fixed Width. Note the different scales.
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Fig. 10: ∆ Number of Peaks Predicted by Method. Each bar
represents the difference from the actual number of peaks. SA’s
number of predicted peaks is much closer to the true number than
any other method. Xcalibur predicted far more peaks than any
other method. Because Xcalibur only accepts data in its proprietary
format, the results are not available for the Noyce data set. Note the
different scales.

are parameters that must be determined and set by the operator,
the information in manufacturer specifications, such as resolution,
should assist in deciding the MBA parameters. In practice, the
machine calibration to which the specifications are tied is not always
the setup desired for the practitioner due to time requirements,
desire to use MS/MS, etc. Also, the true machine resolution can
vary widely outside of the m/z value the specification is provided
for. However, practical experience may assist in knowing when the
manufacturer specs are sufficient and what changes need to be made
when they are not.

Since each peak can be a different width, SA addresses the
problem of bin size in a flexible, data-driven manner. The peak
agglomeration procedure is statistically driven using the data itself,
handling problems like overlapping peaks and avoiding the need for
users to set parameters or for apriori knowledge about the data
set. Noise filtering allows for the avoidance of boundary conditions
found in fixed width methods such as peaks with just one data point.
We consider s/n=1 to be a useful apriori setting, as it was the ideal

(a) (b) (c)

Fig. 11: Sum Squared Error (SSE) - m/z. SA outperforms the other
methods on Sample 3 750-800 and Sample 3 1000-1050, but MBA
outperforms the other methods on the Noyce data set. SA’s average
error is 23% lower than Fixed Width. This metric could not be
measured for Xcalibur’s peak assignments. Note the different scales.

Fig. 12: Peak Summarization of Sample 3: 784-785. Note: all
intensities have been log-transformed for fit.

setting across all three of our data sets. SA’s ability to predict a
far more accurate number of peaks than the other methods suggests
it will increase accuracy in downstream processes over the current
methods used, including Xcalibur (see Figure 10).

One troubling observation from this study is the difficulty
in accurately assessing intensity of discovered peaks. Both
species identification and quantitation require an accurate intensity
measurement. Yet, even SA’s performance is simply the best of
several inaccurate methods. Given the amount of lipid quantitation
performed currently, and also the state of the art, better methods of
estimating intensity are needed.

We have described the need for accurate peak summarization
in direct injection lipidomics samples. Interestingly, despite the
importance of accuracy in this first step of the analysis pipeline,
there has been no study of solutions to this version of the peak
summarization problem to our knowledge. We present our estimate
of what is currently done in the community, and also propose two
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Fig. 13: Peak Summarization of Sample 3: 1040-1041. Note: all
intensities have been log-transformed for fit.

Fig. 14: Peak Summarization of the Noyce Data Set. Note: all
intensities have been log-transformed for fit. Xcalibur could not be
compared due to proprietary data restrictions.

novel algorithms, MBA and SA, for resolving peaks in shotgun
lipidomics samples. We show that SA outperforms open source and
proprietary methods on average in a measure of peakwise error,
NTPD, on three data sets. We also show that SA significantly
outperforms the proprietary program Xcalibur on the two data sets
for which we could use Xcalibur.

Incorporation of SA into existing analysis pipelines could
drastically improve downstream quantitation and identification
results in a variety of lipidomics experiments. Future work should
continue improving our capacity to produce summarized peaks
that more accurately estimate intensity. In light of the recent calls
for greater reproducibility in mass spectrometry (Wilkins et al.,
2006), and to foster development of improved algorithms, these
data sets and the SA algorithm (with ample documentation) are
available freely for non-commercial use at http://github.
com/optimusmoose/statistical_agglomeration.
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