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Abstract

Most performance metrics for learning algorithms do not provide information
about the misclassified instances. Knowing which instancesare misclassified and
understanding why they are misclassified could guide futurealgorithm develop-
ment. In this paper, we analyze the classification of over 190,000 instances from
64 data sets and create heuristics to analyze and predict an instance’s expected dif-
ficulty to classify correctly (instance hardness). We find that 5% of the instances
are misclassified by all 9 considered learning algorithms and that 17% are mis-
classified by at least half. The principal contributor to misclassification is class
overlap. We demonstrate the utility of instance hardness byusing it to filter hard
instances from the data sets which increases the classification accuracy on test
data (including the hard instances).

1 Introduction

Algorithmic development for classification problems has been measured by classification accuracy,
precision, or a similar metric on benchmark data sets. Thesemetrics, however, only provide ag-
gregate information about the learning algorithm and the task upon which it operates. They do not
provide information about which instances are misclassified and why they are misclassified. Under-
standing why instances are misclassified can shed light on the field of machine learning and could
further lead to the development of learning algorithms thataddress the causes of misclassification.

Previous work has studied hard instances at the instance level from the premise that outliers [1],
boundary points [2], or instances belonging to a minority class [3] are hard to classify. These ex-
periments have generally been carefully designed around one of these issues. For example, outlier
detection often uses artificial data sets or systematicallyinjects noise into well-known data sets [4].
At the data set level, meta-learning has examined the complexity of the data sets and which learn-
ing algorithm to use. Ho and Basu [5] focused on the geometrical complexity of the data on 2-class
problems. Prior work have also mostly considered only a limited number of data sets and algorithms.

To understand why instances are misclassified, we empirically analyze over 190000 instances from
57 UCI data sets and 7 non-UCI data sets classified by 9 learning algorithms. We focus explicitly
on instances that are misclassified by most of the consideredlearning algorithms, and seek to shed
light on the reasons for such misclassifications. The diversity of learning algorithms and unaltered
data sets allows us to offer insight into why instances are misclassified independent of the learning
algorithm and task. We also propose a set of heuristics to identify instances that can reasonably
be expected to be misclassified and compare them to the instances that are misclassified by all or
most of the learning algorithms1. The combination of the heuristics can be used to predict instance

1By “reasonably expected to be misclassified”, we mean that inthe absence of additional information be-
yond what the data set provides, the label assigned by the learning algorithm to the instance is the most appro-
priate one, even if it happens to be different from the instance’s target value.
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hardness on novel instances. We find that class overlap most directly affects classification accuracy.
Class overlap refers to how similar an instance is to instances of a different class. Also, class skew
alone does not affect classification accuracy but exacerbates the effects of class overlap.

As an application of instance hardness, we removed the instances with a high degree of class overlap
from the data sets during training and observe an increase inclassification accuracy on test data
(including the removed hard instances) for all of the learning algorithms. The accuracy on the hard
instances decreases (as expected), yet it increases sufficiently on the other instances to provide an
increase in overall accuracy. Thus, the learning algorithms are less prone to overfit and define a
classification boundary that is more representative of the data.

The remainder of the paper is organized as follows. Section 2reviews previous work. Section 3
presents the methodology and heuristics. Sections 4 and 5 provide an analysis of hardness at the
instance-level and at the data set-level respectively. Section 6 examines the impact on accuracy of
removing hard instances for noise reduction. The paper concludes in Section 7.

2 Related Work

We are not the first to examine instances that are hard to classify correctly. Prior work has examined
hard instances from the premise that they are outliers, border points, or belong to a minority class.

Outlier detection has received growing attention from the data mining community where outliers
may represent anomalies or points of focus [6].There are many outlier detection algorithms from
a variety of fields using different approaches. For example,Local Outlier Factor (LOF) [7] is an
approach loosely related to density-based clustering thatassigns each instance a value representing
its potential of being an outlier with respect to the instances in its neighborhood. A thorough survey
of outlier detection methodologies is provided by Hodge andAustin [8].

Most of the attention for border instances has come from instance reduction techniques to avoid
storing more instances than are necessary to generalize well on the data [2]. Wilson and Martinez
[9] present a survey of instance-based reduction techniques as well as propose their own. These
and similar algorithms attempt to smooth the decision boundary by removing outliers and by only
keeping enough boundary instances to maintain good classification accuracy. On the other hand,
some instance-based reduction techniques only keep a central representation of the instances and
discard the outliers and some border points [10].

Class skew refers to a data set consisting of one or more classes heavily outnumbering the other
class(es) and has been observed to make instances harder to classify correctly [11]. Many learning
algorithms have difficulties learning the concepts of the minority class(es). Most previous work
has used undersampling, oversampling, and cost-sensitivetechniques and has been limited to binary
classification tasks. Class skew can also affect outliers and boundary instances. Akbani et al [12] use
SMOTE [13] (an oversampling technique) in conjunction withSVMs to address the class imbalance
problem. The resultant support vectors provide information about the class boundaries.

Our work also relates to meta-learning. Meta-learning usesdata sets features to predict which learn-
ing algorithm to use and/or the learning algorithms performance on the data set [14, 15]. While in
meta-learning the prediction is driven by accuracy and thusperformance at the data set level, we fo-
cus on the instance level. Using heuristics in conjunction with the classification of various learning
algorithms we characterize instances which are commonly misclassified rather than suggesting the
proper learning algorithm to use, although future work could include this direction.

Previous work has focused on a single issue at a time whereas we do not focus on a single issue as
a cause for an instance being misclassified. We focus our analysis on discovering the underlying
causes for instances being misclassified from a broad perspective. Our analysis is extensive in the
number of learning algorithms and the number of data sets. Also, we do not alter the data sets.

3 Experimental Methodology

We investigate instances that are hard to classify by analyzing the instances from 57 UCI data sets
[17]. The data sets are classified using a collection of nine learning algorithms drawn from various
model classes shown in Table 1. The learning algorithms are used as implemented in Weka with their
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Table 1: List of learning algorithms.

Learning Algorithms

Decision Tree (C4.5 [16]) Naı̈ve Bayes
Multi-layer Perceptron trained with Back Propagation Perceptron
Support Vector Machine 1-NN (1-nearest neighbor)
5-NN (5-nearest neighbors) RIPPER
Radial Basis Function Network

default parameters [18]. By adjusting the parameters, someinstances may be correctly classified
more consistently. However, parameter optimization is an expensive and non-trivial process, beyond
the skills of most users. Hence, using default parameters gives insight into which instances are
misclassified in most practical scenarios.

We emphasize the extensiveness of our analysis. We examine 178,109 instances individually. A
total of 5130 models are produced from 9 learning algorithmstrained with 57 data sets using 10-
fold cross-validation. With this volume and diversity, ourresults provide useful information about
the extent to which hard instances exist and what contributes to instance hardness.

We first identify which instances are misclassified. Next, weuse a set of heuristics to analyze
both the extent and the nature of misclassifications in typical machine learning tasks. We also
examine 12,233 instances from a test set of seven non-UCI data sets not used to generate the hardness
heuristics to ensure that the heuristics generalize well [19, 20, 21, 22].

To identify which instances are hard to classify we defineinstance hardnessas the average number
of learning algorithms which incorrectly classify an instance.

instance hardness(x) =

∑N

i=1 incorrect(LAi, x)

N

wherex is the data instance,N is the number of learning algorithms, andincorrect(LAi, x) returns
1 if an instancex is misclassified by learning algorithmLAi, and 0 otherwise. The hardest instances
are those which no learning algorithm correctly classifies.Their hardness value is 1. To obtain
an aggregate value of hardness for a complete data set we define data set hardnessby averaging
instance hardness over the instances in a data set. The definition of hardness depends on the set of
selected learning algorithms. This is an appropriate basis, however, as it focuses on instances that
current machine learning approaches misclassify. As it is not possible to know an instance’s actual
hardness value, our definition provides a good approximation.

To characterize and analyze the instances that are hard to classify empirically designed a set of seven
heuristics (hardness heuristics). These heuristics use the bias from various learning algorithms (sim-
ilar to landmarking [23]) to analyze and identify instancesthat may be misclassified more frequently.

The first heuristic,k-Disagreeing Neighbors(kDN), measures the local overlap of an instance in the
original task space. ThekDN of an instance is the percentage of that instance’sk nearest neighbors
(using Euclidean distance) that do not share its target class value.

kDN(x) =
| {y : y ∈ kNN(x) ∧ t(y) 6= t(x)} |

k

wherekNN(x) is the set ofk nearest neighbors ofx andt(x) is the target class forx.

The next heuristic measures how tightly a learning algorithm has to divide the task space to correctly
classify an instance and the complexity of the decision boundary. Some learning algorithms, such as
decision trees and rule-based learning algorithms, can express the learned concept as a disjunctive
description. Thus, theDisjunct Size(DS) of an instance is the number of instances in a disjunct
divided by the number of instances covered by the largest disjunct in a data set.

DS(x) =
| disjunct(x) | −1

maxy∈D | disjunct(y) | −1
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where the functiondisjunct(x) returns the disjunct that covers instancex, andD is the data set
that contains instancex. The disjuncts are formed using a C4.5 [16] decision tree, created without
pruning and setting the minimum number of instances per leafnode to 12.

The third heuristic measures an instance’s overlap on a subset of the features. Using a pruned C4.5
tree, theDisjunct Class Percentage(DCP) of an instance is the number of instances in a disjunct
belonging to its class divided by the total number of instances in the disjunct.

DCP (x) =
| {z : z ∈ disjunct(x) ∧ t(z) = t(x)} |

| disjunct(x) |

The fourth heuristic provides a global measure of overlap and the likelihood of an instance belonging
to a class. TheClass Likelihood(CL) of an instance belonging to a certain class is defined as

CL(x, t(x)) =

|x|∏

i

P (xi|t(x))

wherexi is the value of instancex on itsith attribute3. The prior term is excluded in order to avoid
bias against instances that belong to a minority classes.

The fifth heuristic captures the difference in likelihoods and global overlap. TheClass Likelihood
Difference(CLD) is the difference between the class likelihood of an instance and the maximum
likelihood for all of the other classes.

CLD(x, t(x)) = CL(x, t(x)) − argmax
y∈Y−t(x)

CL(x, y)

The sixth heuristic captures the skewness of the class an instance belongs to. For each instance,
its Minority Value(MV) is the ratio of the number of instances sharing its target class value to the
number of instances in the majority class.

MV (x) =
| {z : z ∈ D ∧ t(z) = t(x)} |

maxy∈Y | {z : z ∈ D ∧ t(z) = y} |

The final heuristic offers an alternative to MV. If there is noclass skew, then there is an equal number
of instances for all classes. Hence, theClass Balance(CB) of an instance is:

CB(x) =
| {z : z ∈ D ∧ t(z) = t(x)} |

| D |
−

1

| Y |
.

If the data set is completely balanced the class balance value will be 0.

4 Instance-level Analysis

Figure 1 shows the percentage of instances per instance hardness value for the UCI and non-UCI data
sets. Given 9 learning algorithms, there are 10 possible levels of instance hardness, ranging from 0
(classified correctly by all algorithms) to 1 (misclassifiedby all algorithms). The first column shows
the percentage of instances averaged per data set and the second column shows the percentage over
all instances. We use the values averaged over all data sets so as not to be biased towards larger data
sets. Also, there are considerably more hard instances in the non-UCI data sets. This is due to the
high number of UCI data sets that are easy to classify.

These results show that a significant amount of instances arehard: 5% of the instances from the
UCI data sets are misclassified by all of the learning algorithms and 17% are misclassified by at
least half. For the instances from the non-UCI data sets, 7% are misclassified by all of the learning
algorithms and 25% are misclassified by at least half. Seeking to improve our understanding of why
these instances are misclassified becomes a justifiable quest.

2Note that C4.5 will create fractional instances in a disjunct for instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases are treated as though the disjunct covered a single
instance.

3Continuous variables are assigned a probability using a kernel density estimation [24].
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Figure 1: Overall instance hardness

Table 2: The correlation coefficients for the hardness heuristics relating to instance hardness.

Heuristics: DN DS DCP CL CLD MV CB

UCI 0.8487 0.4034 0.6757 0.7726 0.7342 0.4702 0.3138
non-UCI 0.6363 0.3829 0.2055 0.6101 0.5953 0.0954 0.2078

We consider the relationships between instance hardness and the hardness heuristics and present an
additional set of heuristics for identifying instances as having high, low, or no overlap and belonging
to a minority class. Table 2 provides the correlation coefficients from a linear regression model for
each hardness heuristic on the UCI and non-UCI data sets. Thedata from the UCI data sets was
used to generate the model. The heuristics that measure class overlap (DN, DCP, CL, and CLD) have
significantly larger correlation coefficients than those that measure the decision boundary complexity
and class skew (DS, MV and CB). We also examined the relationships of all the heuristics together.
The instance hardness and heuristic values from the UCI datasets for each instance were compiled
and linear regression was used to predict instance hardness. The resulting model is as follows.

instance hardness =0.5569 ∗DN − 0.1984 ∗DCP − 0.124 ∗ CL + 0.0752 ∗ CB

−0.072 ∗CLD + 0.0365 ∗DS + 0.0339 ∗MV + 0.9088

with a correlation coefficient of 0.8856 on the UCI data sets using 10-fold cross-validation and
0.7302 on the non-UCI data sets. DN, DCP, and CL have the largest coefficients (only DN is
statistically significant using thet-test with ap value of 0.05) suggesting that overlap is the most
informative for predicting instance hardness. There is no heuristic for class skew in the equation,
which coincides with Batista’s conclusion that class skew alone does not hinder learning algorithm
performance [25].

We observe that combining DCP and DS provides more information about instance hardness than
they do individually. 99% of the instances with instance hardness value 1 and DS value 1 have
a DCP value less than 0.5. Using these observations we identify instances with high, low, or no
overlap using the following heuristic.

high if (CLD(x, t(x)) < 0 &&((DS(x) == 0 &&DCP (x) < 0.5) || DN(x) > 0.8))
low else if((DS(x) == 0 &&DCP (x) < 1) || DN(x) > 0.2)
none otherwise.

The high overlap instances are those that have a higher classlikelihood for the wrong class and do
not agree with 80% of their nearest neighbors4 or the learning algorithm had to overfit the data to
correctly classify it. An instance has low overlap if it doesnot have high overlap and it does not
agree with at least 80% of its neighbors or the disjunct it belongs to is not pure. Otherwise, the
instance is identified as having no overlap.

An instance is identified as belonging to a minority class if the number of instances in the class is
less than or equal to half the number of instances belonging to the majority class (MV (x) ≤ 0.5),

4To factor out the effect of neighborhood size, we useDN(x) rather thankDN(x), whereDN(x) is the
average ofkDN(x) over all values ofk between 1 and 17. SettingDN above 0.8 implies that on average, for
every 5 instances in the neighborhood, at least 4 disagree with the instance under consideration.
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Table 3: Percentage of instances that were misclassified according to instance type.

Instance Type High Low None Min MinHigh MinLow MinNone

% Misclassified (UCI) 83.0 35.0 3.4 41.9 88.2 41.8 3.8
% Misclassified (non-UCI) 78.6 44.3 16.1 48.9 86.0 51.1 1.1

and the number of instances in the class is less than the number of instances if all classes were
balanced (CB(x) < 0).

An analysis of the instances and their hardness heuristics shows that class overlap is a principal
contributor to instance hardness. As instance hardness increases, there is an increase in high overlap
instances and a decrease in no overlap instances. This is shown in Figure 2 which gives the percent-
age of instances with high overlap, low overlap, no overlap,and class skew according to instance
hardness. The non-UCI data sets have considerably less no overlap instances and more low overlap
instances giving insight into why the non-UCI data sets are more difficult to classify.
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Figure 2: Instances with high, low, and no overlap and minority class according to instance hardness.

Table 3 gives the percentage of instances that were misclassified according to the amount of overlap
and class skew. For the UCI and non-UCI data sets, about 80% ofthe instances with high overlap
were misclassified whereas only about 40% of the low overlap instances were misclassified. Hence,
class overlap is a contributing factor to misclassification. The percentage of the no overlap instances
is significantly higher on the non-UCI data sets since the non-UCI data sets are generally more
difficult than the UCI data sets.

Class skew alone does not cause misclassifications. However, of all the misclassified instances that
belong to a minority class, about 65% also have high or low overlap. The percentage misclassified
for the high and low overlap increases when the instance alsobelongs to a minority class (Min and
High, Min and Low). This suggests that class overlap is exacerbated by class skew.

5 Data Set-level Analysis

We also examine hardness at the data set level using our heuristics. We compare against a set of
complexity measures by Ho and Basu [5] (implemented with DCoL [26]) and a set of meta-learning
features from Brazdil et al [27]. The complexity measures and meta-features are shown in Table 4.

We examined each heuristic and complexity measure individually to determine how well it predicts
data set hardness. The measures that account for overlap arethe best at indicating data set hardness.
The average data set hardness for the data sets with the top 10average DN values is 0.473 (the
average for all data sets is 0.202). N1 was the most indicative of data set hardness from the set by
Ho and Basu with an average data set hardness value of 0.423 for the 10 data sets with highest N1
value. From Brazdil’s meta-features, the entropy of classes had the highest average data set hardness
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Table 4: List of complexity measures.

C
o

m
p

le
xi

ty L2: Error rate of linear classifier by LP L3: Nonlinearity of linear classifier by LP
N1: Fraction of points on class boundary N2: Ratio of ave intra/inter class NN dist
N3: Error rate of 1NN classifier N4: Nonlinearity of 1NN classifier
T1: Fraction of maximum covering spheres T2: Ave number of points per dimension
F3: Max individual feature efficiency

M
et

a Number of instances Number of attributes
Proportion of nominal/real attributes Proportion of attributes with outliers
Entropy of classes

values for the meta-features. The average data set hardnessvalues for the heuristics that measure
class skew are lower than the average of all the data sets and thus are not good indicators of data set
hardness. In general the meta-features are not a good indicator of data sets hardness which is not
surprising as their goal is to predict which learning algorithm to use.

Applying linear regression to estimate data set hardness based on data set features also shows what
contributes to data set hardness. The result is as follows.

data set Hardness =0.4539 ∗DN − 0.4314 ∗ CL− 0.2111 ∗DCP + 0.088 ∗ CLD

+0.0763 ∗N3− 0.047 ∗N4− 0.034 ∗ F3 + 0.0239 ∗ F4 + 0.4815

with a correlation coefficient of 0.9562 using 10-fold cross-validation on the UCI data sets and
0.7939 on the non-UCI data sets. Using just the complexity measures resulted in a correlation
coefficient of 0.4361. The addition of the complexity measures slightly decreased the correlation
coefficient of a linear regression model using just the hardness heuristics from 0.9586. This shows
that the hardness heuristics are better suited for determining data set hardness than the complexity
measures from Ho and Basu. The most highly weighted features, and the only features with coeffi-
cients that are statistically significant using thet-test with ap value of 0.05, are DN, and CL which
further supports the claim that class overlap is a principalcause for instance and data set hardness.
As with instance hardness, class skew is not significant in the linear regression equation.

6 Noise Reduction

In this section we briefly demonstrate an example application of instance hardness. The instances
that have a high degree of class overlap are possibly mislabeled or noisy instances. Class noise
reduction methods have shown that removing mislabeled and noisy instances for training increases
the classification accuracy [28, 29, 30, 31]. Here, we removethe instances identified as having high
overlap for training, but include them for evaluation. We identify high overlap instances using the
hardness heuristics (NoHOL) and instances that have a predicted instance hardness value greater
than or equal to a threshold value using the linear regression equation in Section 4. We use threshold
values of 0.5 and 1 for the linear regression equation (LR 0.5and LR 1). All 53 of the 57 UCI data
sets that contain instances with high overlap and all of the non-UCI data sets are evaluated using 10-
fold cross-validation. We compare the results with the Repeated Edited Nearest Neighbor (RENN)
algorithm for noise reduction [28] and majority and consensus ensemble filters [29] using the nine
learning algorithms in this study. Statistical significance is tested using the Wilcoxon signed-ranked
test [32].

Filtering the instances for training increases the classification accuracy for all of the considered
learning algorithms. Examining the increase in accuracy according to the percentage of high overlap
instances present in the data sets shows that removing instances with high overlap is more beneficial
for data sets that have more than 10% high overlap instances (HI). This is shown in Table 5 which
gives the average accuracy for the nine considered learningalgorithms on all instances and broken
down according to the high, low, or no overlap. The benefit of using instance hardness is most
clearly seen on the high overlap instances where their average accuracy is the lowest. This is desired
because the instances with high overlap are likely noisy instances and should be misclassified based
on the instance labels. The instance hardness methods are competitive with RENN and the ensemble
methods despite decreasing on the high overlap instances. The changes in accuracy are statistically
significant (α = 0.05) for all cases with respect to the original dataset.

7



Table 5: Average accuracy on the filtered and original data sets.

UCI non UCI non
OL Train HI Low All All Train Hi Low All All

A
ll

Original 0.571 0.847 0.785 0.723
NoHOL 0.599 0.856 0.798 0.745 RENN 0.598 0.859 0.800 0.753
LR 1 0.627 0.849 0.799 0.733 Con 0.600 0.857 0.798 0.743
LR 0.5 0.605 0.857 0.799 0.759 Maj 0.621 0.864 0.809 0.750

H
ig

h

Original 0.121 0.174 0.162 0.130
NoHOL 0.083 0.148 0.134 0.117 RENN 0.124 0.141 0.137 0.099
LR 1 0.120 0.167 0.156 0.132 Con 0.122 0.162 0.153 0.117
LR 0.5 0.087 0.141 0.129 0.072 Maj 0.162 0.159 0.159 0.092

L
ow

Original 0.636 0.706 0.690 0.641
NoHOL 0.690 0.723 0.716 0.690 RENN 0.674 0.720 0.709 0.714
LR 1 0.630 0.703 0.687 0.641 Con 0.678 0.720 0.711 0.661
LR 0.5 0.680 0.713 0.706 0.704 Maj 0.703 0.723 0.722 0.712

N
o

n
e Original 0.924 0.967 0.958 0.946

NoHOL 0.968 0.972 0.971 0.952 RENN 0.971 0.973 0.973 0.960
LR 1 0.928 0.968 0.960 0.947 Con 0.985 0.971 0.974 0.954
LR 0.5 0.980 0.978 0.979 0.970 Maj 0.989 0.977 0.980 0.961

7 Conclusion and Future Work

We empirically analyzed to what extent instances are hard tocorrectly classify. Our analysis was
extensive, examining 64 data sets, over 190,000 instances,and 9 learning algorithms. We generated
over 5200 models. We found that there is a set of instances that all learning algorithm misclassify.

We presented a set of hardness heuristics to identify instances that are hard to classify correctly.
These heuristics indicate that class overlap most directlyaffects instance hardness. Class skew alone
does not make an instance hard to classify correctly unless it is an issue of data underrepresentation.
However, in the presence of class overlap, class skew exacerbates the difficulties of class overlap.

We showed that our heuristics can also be used to preprocess data sets by removing instances with
high overlap for training. This improved classification accuracy for all of the considered learning
algorithms, most notably on data sets with a high percentageof high overlap instances. By remov-
ing these instances, the learning algorithms could better determine the classification boundary and
improve their classification accuracies.

Future work could include weighting the instances for training based on the hardness heuristics and
developing learning algorithms designed to be more robust to overlap. By knowing which instances
should be misclassified, new evaluation methods could be used to assess the performance of learning
algorithms based on which instances where correctly classified as well as misclassified.
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