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Abstract

Most performance metrics for learning algorithms do notvjate information
about the misclassified instances. Knowing which instaacesnisclassified and
understanding why they are misclassified could guide fullgerithm develop-
ment. In this paper, we analyze the classification of overA@Dinstances from
64 data sets and create heuristics to analyze and preditst@mce’s expected dif-
ficulty to classify correctlyifstance hardne$sWe find that 5% of the instances
are misclassified by all 9 considered learning algorithnts that 17% are mis-
classified by at least half. The principal contributor to crassification is class
overlap. We demonstrate the utility of instance hardnesassing it to filter hard
instances from the data sets which increases the classificatcuracy on test
data (including the hard instances).

1 Introduction

Algorithmic development for classification problems hasmeneasured by classification accuracy,
precision, or a similar metric on benchmark data sets. Theseics, however, only provide ag-
gregate information about the learning algorithm and tk& tgpon which it operates. They do not
provide information about which instances are misclagbdied why they are misclassified. Under-
standing why instances are misclassified can shed lightefidld of machine learning and could
further lead to the development of learning algorithms #tairess the causes of misclassification.

Previous work has studied hard instances at the instaneéftevn the premise that outliers [1],
boundary points [2], or instances belonging to a minorigssl[3] are hard to classify. These ex-
periments have generally been carefully designed arouadbthese issues. For example, outlier
detection often uses artificial data sets or systematigglygts noise into well-known data sets [4].
At the data set level, meta-learning has examined the codityplef the data sets and which learn-
ing algorithm to use. Ho and Basu [5] focused on the geonattmmplexity of the data on 2-class
problems. Prior work have also mostly considered only aéichhumber of data sets and algorithms.

To understand why instances are misclassified, we emgyrigahlyze over 190000 instances from
57 UCI data sets and 7 non-UCI data sets classified by 9 lepatdgorithms. We focus explicitly
on instances that are misclassified by most of the consideasding algorithms, and seek to shed
light on the reasons for such misclassifications. The dityeo$ learning algorithms and unaltered
data sets allows us to offer insight into why instances aselassified independent of the learning
algorithm and task. We also propose a set of heuristics tatifganstances that can reasonably
be expected to be misclassified and compare them to the gestdinat are misclassified by all or
most of the learning algorithrhsThe combination of the heuristics can be used to preditams

By “reasonably expected to be misclassified”, we mean thttérabsence of additional information be-
yond what the data set provides, the label assigned by thangealgorithm to the instance is the most appro-
priate one, even if it happens to be different from the inst&ntarget value.



hardness on novel instances. We find that class overlap rinestlyg affects classification accuracy.
Class overlap refers to how similar an instance is to ingaind a different class. Also, class skew
alone does not affect classification accuracy but exacesliagé effects of class overlap.

As an application of instance hardness, we removed theniossawith a high degree of class overlap
from the data sets during training and observe an increasigsification accuracy on test data
(including the removed hard instances) for all of the leagralgorithms. The accuracy on the hard
instances decreases (as expected), yet it increasesentffiadn the other instances to provide an
increase in overall accuracy. Thus, the learning algomstiame less prone to overfit and define a
classification boundary that is more representative of #te.d

The remainder of the paper is organized as follows. Secticevigws previous work. Section 3
presents the methodology and heuristics. Sections 4 andvderan analysis of hardness at the
instance-level and at the data set-level respectivelyti®@e6 examines the impact on accuracy of
removing hard instances for noise reduction. The paperadas in Section 7.

2 Reated Work

We are not the first to examine instances that are hard tafgiassrectly. Prior work has examined
hard instances from the premise that they are outliers gvquaints, or belong to a minority class.

Outlier detection has received growing attention from taéadmining community where outliers
may represent anomalies or points of focus [6].There areymatlier detection algorithms from

a variety of fields using different approaches. For examipbéeal Outlier Factor (LOF) [7] is an
approach loosely related to density-based clusteringaggns each instance a value representing
its potential of being an outlier with respect to the insemin its neighborhood. A thorough survey
of outlier detection methodologies is provided by Hodge Andtin [8].

Most of the attention for border instances has come fromais reduction techniques to avoid
storing more instances than are necessary to generalizenviie data [2]. Wilson and Martinez
[9] present a survey of instance-based reduction techaigaavell as propose their own. These
and similar algorithms attempt to smooth the decision bamnty removing outliers and by only
keeping enough boundary instances to maintain good clze#ifin accuracy. On the other hand,
some instance-based reduction techniques only keep aategpresentation of the instances and
discard the outliers and some border points [10].

Class skew refers to a data set consisting of one or moreeslds=savily outnumbering the other
class(es) and has been observed to make instances harthssifyacorrectly [11]. Many learning
algorithms have difficulties learning the concepts of thaanity class(es). Most previous work
has used undersampling, oversampling, and cost-sertsitkiaiques and has been limited to binary
classification tasks. Class skew can also affect outlieddanndary instances. Akbani et al [12] use
SMOTE [13] (an oversampling technique) in conjunction v8¥Ms to address the class imbalance
problem. The resultant support vectors provide informmaéibout the class boundaries.

Our work also relates to meta-learning. Meta-learning dses sets features to predict which learn-
ing algorithm to use and/or the learning algorithms perfamoe on the data set [14, 15]. While in
meta-learning the prediction is driven by accuracy and frmiformance at the data set level, we fo-
cus on the instance level. Using heuristics in conjunctigth the classification of various learning
algorithms we characterize instances which are commordglassified rather than suggesting the
proper learning algorithm to use, although future work dantlude this direction.

Previous work has focused on a single issue at a time wherea®wot focus on a single issue as
a cause for an instance being misclassified. We focus ouysisan discovering the underlying

causes for instances being misclassified from a broad peingpeOur analysis is extensive in the
number of learning algorithms and the number of data set0,Ave do not alter the data sets.

3 Experimental Methodology

We investigate instances that are hard to classify by aimgythe instances from 57 UCI data sets
[17]. The data sets are classified using a collection of reaenling algorithms drawn from various
model classes shown in Table 1. The learning algorithmsseé as implemented in Weka with their



Table 1: List of learning algorithms.
Learning Algorithms

Decision Tree (C4.5[16]) Naive Bayes

Multi-layer Perceptron trained with Back Propagation Betoon

Support Vector Machine 1-NN (1-nearest neighbor)
5-NN (5-nearest neighbors) RIPPER

Radial Basis Function Network

default parameters [18]. By adjusting the parameters, sostances may be correctly classified
more consistently. However, parameter optimization isqueasive and non-trivial process, beyond
the skills of most users. Hence, using default parameteesgnsight into which instances are
misclassified in most practical scenarios.

We emphasize the extensiveness of our analysis. We exafi$i@@P instances individually. A
total of 5130 models are produced from 9 learning algorittraisied with 57 data sets using 10-
fold cross-validation. With this volume and diversity, aesults provide useful information about
the extent to which hard instances exist and what contritotenstance hardness.

We first identify which instances are misclassified. Next, wge a set of heuristics to analyze
both the extent and the nature of misclassifications in gtpicachine learning tasks. We also
examine 12,233 instances from a test set of seven non-U&&dts not used to generate the hardness
heuristics to ensure that the heuristics generalize w8|120, 21, 22].

To identify which instances are hard to classify we defitstance hardnesss the average number
of learning algorithms which incorrectly classify an insta.

SV incorrect(LA;, x)
N

wherez is the data instancéy is the number of learning algorithms, angtorrect(LA;, ) returns
1if aninstance: is misclassified by learning algorithimA;, and 0 otherwise. The hardest instances
are those which no learning algorithm correctly classifigbeir hardness value is 1. To obtain
an aggregate value of hardness for a complete data set we dafa set hardnesby averaging
instance hardness over the instances in a data set. Theidafwfihardness depends on the set of
selected learning algorithms. This is an appropriate basisever, as it focuses on instances that
current machine learning approaches misclassify. As ibtgpnssible to know an instance’s actual
hardness value, our definition provides a good approximatio

instance hardness(xz) =

To characterize and analyze the instances that are harassifylempirically designed a set of seven
heuristics fardness heuristigs These heuristics use the bias from various learning dlgos (sim-
ilar to landmarking [23]) to analyze and identify instantest may be misclassified more frequently.

The first heuristick-Disagreeing NeighborfkDN), measures the local overlap of an instance in the
original task space. THeDN of an instance is the percentage of that instanc@&sarest neighbors
(using Euclidean distance) that do not share its targes calsie.

_ [y -y € kNN(z) A t(y) # i)} |
k

wherekNN(z) is the set of nearest neighbors afandt(z) is the target class for.

kDN (z)

The next heuristic measures how tightly a learning algoriltas to divide the task space to correctly
classify an instance and the complexity of the decision damn Some learning algorithms, such as
decision trees and rule-based learning algorithms, caresegjhe learned concept as a disjunctive
description. Thus, th®isjunct Size(DS) of an instance is the number of instances in a disjunct
divided by the number of instances covered by the largegtriisin a data set.

| disjunct(z) | —1

DS(z) =
(@) maxyep | disjunct(y) | —1
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where the functionlisjunct(z) returns the disjunct that covers instangeand D is the data set
that contains instance. The disjuncts are formed using a C4.5 [16] decision trezgated without
pruning and setting the minimum number of instances perledé to 2.

The third heuristic measures an instance’s overlap on aesobshe features. Using a pruned C4.5
tree, theDisjunct Class PercentagéCP) of an instance is the number of instances in a disjunct
belonging to its class divided by the total number of inséanio the disjunct.

| {z: 2z € disjunct(z) Nt(z) = t(x)} |

DCP(x) =
CP(z) | disjunct(z) |

The fourth heuristic provides a global measure of overlaitha likelihood of an instance belonging
to a class. Th€lass LikelihoodCL) of an instance belonging to a certain class is defined as

||
CL(x,t(x)) = HP(ML‘(?C))

wherez; is the value of instance on itsith attributé. The prior term is excluded in order to avoid
bias against instances that belong to a minority classes.

The fifth heuristic captures the difference in likelihoodsl aylobal overlap. Th€lass Likelihood
Difference(CLD) is the difference between the class likelihood of astance and the maximum
likelihood for all of the other classes.

CLD(z,t(x)) = CL(z,t(x)) — argmax CL(x,y)
yeY —t(x)

The sixth heuristic captures the skewness of the class &mites belongs to. For each instance,
its Minority Value(MV) is the ratio of the number of instances sharing its tagj@ss value to the
number of instances in the majority class.

|[{z:z€ DAtz)=1t(x)}|
maxycy | {z:2€ DAt(z) =y} |

MV (z) =

The final heuristic offers an alternative to MV. If there isclass skew, then there is an equal number
of instances for all classes. Hence, €lass Balanc€CB) of an instance is:

[{z:2€DALz)=tx)}]| 1
| D| Y[
If the data set is completely balanced the class balance véllbe 0.

CB(z) =

4 Instance-level Analysis

Figure 1 shows the percentage of instances per instancedssdalue for the UCI and non-UCI data
sets. Given 9 learning algorithms, there are 10 possibkddeyf instance hardness, ranging from 0
(classified correctly by all algorithms) to 1 (misclassifigdall algorithms). The first column shows
the percentage of instances averaged per data set and tmel sstumn shows the percentage over
all instances. We use the values averaged over all datacsatsr®t to be biased towards larger data
sets. Also, there are considerably more hard instance®indh-UCI data sets. This is due to the
high number of UCI data sets that are easy to classify.

These results show that a significant amount of instancebark 5% of the instances from the
UCI data sets are misclassified by all of the learning algoré and 17% are misclassified by at
least half. For the instances from the non-UCI data sets, re&%mésclassified by all of the learning

algorithms and 25% are misclassified by at least half. Sgakirmprove our understanding of why

these instances are misclassified becomes a justifiablé ques

2Note that C4.5 will create fractional instances in a disfuioc instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases atedraa though the disjunct covered a single
instance.

3Continuous variables are assigned a probability using mekelensity estimation [24].
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Figure 1: Overall instance hardness

Table 2: The correlation coefficients for the hardness k&asirelating to instance hardness.
Heuristics:| DN DS DCP CL CLD MV CB

ucCl 0.8487 0.4034 0.6757 0.7726 0.7342 0.4702 0.3138
non-UCI 0.6363 0.3829 0.2055 0.6101 0.5953 0.0954 0.2078

We consider the relationships between instance hardndgb@mardness heuristics and present an
additional set of heuristics for identifying instances asgihg high, low, or no overlap and belonging
to a minority class. Table 2 provides the correlation cokffits from a linear regression model for
each hardness heuristic on the UCI and non-UCI data sets.ddtaefrom the UCI data sets was
used to generate the model. The heuristics that measussosledap (DN, DCP, CL, and CLD) have
significantly larger correlation coefficients than thosa theasure the decision boundary complexity
and class skew (DS, MV and CB). We also examined the reldtipa®f all the heuristics together.
The instance hardness and heuristic values from the UClsg#gefor each instance were compiled
and linear regression was used to predict instance hardhlessesulting model is as follows.

instance hardness =0.5569 x DN — 0.1984 « DCP — 0.124 « CL + 0.0752« CB
—0.072« CLD 4+ 0.0365 « DS + 0.0339 * MV + 0.9088

with a correlation coefficient of 0.8856 on the UCI data sedg 10-fold cross-validation and
0.7302 on the non-UCI data sets. DN, DCP, and CL have the dageefficients (only DN is
statistically significant using thietest with ap value of 0.05) suggesting that overlap is the most
informative for predicting instance hardness. There is @oristic for class skew in the equation,
which coincides with Batista’s conclusion that class skéna does not hinder learning algorithm
performance [25].

We observe that combining DCP and DS provides more infoomatbout instance hardness than
they do individually. 99% of the instances with instancedmass value 1 and DS value 1 have
a DCP value less than 0.5. Using these observations we figémtances with high, low, or no
overlap using the following heuristic.

high if (CLD(z,t(z)) < 0&&((DS(z) == 0&& DCP(zx) <
low elseif((DS(x) ==0&& DCP(z) < 1) || DN(z) > 0.2)
none otherwise

The high overlap instances are those that have a higherlidabisood for the wrong class and do

not agree with 80% of their nearest neighars the learning algorithm had to overfit the data to
correctly classify it. An instance has low overlap if it dogst have high overlap and it does not
agree with at least 80% of its neighbors or the disjunct ibbgé to is not pure. Otherwise, the
instance is identified as having no overlap.

0.5) || DN (z) > 0.8))

An instance is identified as belonging to a minority clashi@ humber of instances in the class is
less than or equal to half the number of instances belongitiget majority class{/V (z) < 0.5),

“To factor out the effect of neighborhood size, we 3¥ (z) rather thark DN (z), where DN (z) is the
average ok DN (z) over all values of between 1 and 17. Settifg/N above 0.8 implies that on average, for
every 5 instances in the neighborhood, at least 4 disagtbetlvd instance under consideration.



Table 3: Percentage of instances that were misclassifiext@ing to instance type.

Instance Type High Low None Min MinHigh MinLow MinNone
% Misclassified (UCI) 83.0 350 34 419 88.2 41.8 3.8
% Misclassified (non-UCI) 78.6 44.3 16.1 48.9 86.0 51.1 1.1

and the number of instances in the class is less than the murhirestances if all classes were
balanced¢'B(z) < 0).

An analysis of the instances and their hardness heurigtiossthat class overlap is a principal
contributor to instance hardness. As instance hardnessaises, there is an increase in high overlap
instances and a decrease in no overlap instances. Thisigmshdé-igure 2 which gives the percent-
age of instances with high overlap, low overlap, no overéam class skew according to instance
hardness. The non-UCI data sets have considerably lessenapinstances and more low overlap
instances giving insight into why the non-UCI data sets aneendifficult to classify.
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Figure 2: Instances with high, low, and no overlap and miyatass according to instance hardness.

Table 3 gives the percentage of instances that were mig@dssccording to the amount of overlap
and class skew. For the UCI and non-UCI data sets, about 8@k afistances with high overlap
were misclassified whereas only about 40% of the low overlsfances were misclassified. Hence,
class overlap is a contributing factor to misclassificatibine percentage of the no overlap instances
is significantly higher on the non-UCI data sets since the-d@h data sets are generally more
difficult than the UCI data sets.

Class skew alone does not cause misclassifications. Howehadl the misclassified instances that
belong to a minority class, about 65% also have high or lowlape The percentage misclassified
for the high and low overlap increases when the instancetakmgs to a minority class (Min and
High, Min and Low). This suggests that class overlap is estzated by class skew.

5 Data Set-level Analysis

We also examine hardness at the data set level using ourstiesiriWe compare against a set of
complexity measures by Ho and Basu [5] (implemented with D26]) and a set of meta-learning
features from Brazdil et al [27]. The complexity measures meta-features are shown in Table 4.

We examined each heuristic and complexity measure indiiglto determine how well it predicts
data set hardness. The measures that account for overldedrest at indicating data set hardness.
The average data set hardness for the data sets with the tapetfge DN values is 0.473 (the
average for all data sets is 0.202). N1 was the most indeaftidata set hardness from the set by
Ho and Basu with an average data set hardness value of 0.42&ft0 data sets with highest N1
value. From Brazdil’'s meta-features, the entropy of classel the highest average data set hardness



Table 4: List of complexity measures.

2 | L2: Error rate of linear classifier by LP L3: Nonlinearity afi¢ar classifier by LP

ii N1: Fraction of points on class boundary N2: Ratio of avesifititer class NN dist

g N3: Error rate of 1NN classifier N4: Nonlinearity of 1NN cléss

o | T1: Fraction of maximum covering spheres  T2: Ave number a@fifgper dimension

O | F3: Max individual feature efficiency

@ | Number of instances Number of attributes

% Proportion of nominal/real attributes Proportion of dtfities with outliers
Entropy of classes

values for the meta-features. The average data set hardmless for the heuristics that measure
class skew are lower than the average of all the data sethias@ite not good indicators of data set
hardness. In general the meta-features are not a good todafadata sets hardness which is not
surprising as their goal is to predict which learning altfori to use.

Applying linear regression to estimate data set hardnessthan data set features also shows what
contributes to data set hardness. The result is as follows.

data set Hardness =0.4539 « DN — 0.4314x CL — 0.2111 « DCP + 0.088 x CLD
+0.0763 * N3 — 0.047 * N4 — 0.034 « F'3 + 0.0239 * F'4 + 0.4815

with a correlation coefficient of 0.9562 using 10-fold cresdidation on the UCI data sets and
0.7939 on the non-UCI data sets. Using just the complexitpsuees resulted in a correlation
coefficient of 0.4361. The addition of the complexity measuslightly decreased the correlation
coefficient of a linear regression model using just the hasdriheuristics from 0.9586. This shows
that the hardness heuristics are better suited for detargndata set hardness than the complexity
measures from Ho and Basu. The most highly weighted feataneksthe only features with coeffi-
cients that are statistically significant using titest with ap value of 0.05, are DN, and CL which
further supports the claim that class overlap is a prinaipalse for instance and data set hardness.
As with instance hardness, class skew is not significantdnitiear regression equation.

6 Noise Reduction

In this section we briefly demonstrate an example applinatiiinstance hardness. The instances
that have a high degree of class overlap are possibly miskdtze noisy instances. Class noise
reduction methods have shown that removing mislabeled aisy mstances for training increases
the classification accuracy [28, 29, 30, 31]. Here, we rentlogénstances identified as having high
overlap for training, but include them for evaluation. Weritify high overlap instances using the
hardness heuristics (NoHOL) and instances that have agbeedinstance hardness value greater
than or equal to a threshold value using the linear regressjaation in Section 4. We use threshold
values of 0.5 and 1 for the linear regression equation (LRM8&GLR 1). All 53 of the 57 UCI data
sets that contain instances with high overlap and all of tredCl data sets are evaluated using 10-
fold cross-validation. We compare the results with the Régk Edited Nearest Neighbor (RENN)
algorithm for noise reduction [28] and majority and consensnsemble filters [29] using the nine
learning algorithms in this study. Statistical significanstested using the Wilcoxon signed-ranked
test [32].

Filtering the instances for training increases the clasgifin accuracy for all of the considered
learning algorithms. Examining the increase in accuracgating to the percentage of high overlap
instances present in the data sets shows that removingaestavith high overlap is more beneficial
for data sets that have more than 10% high overlap instaitigsThis is shown in Table 5 which
gives the average accuracy for the nine considered leaatgagithms on all instances and broken
down according to the high, low, or no overlap. The benefit ©ihg instance hardness is most
clearly seen on the high overlap instances where their geerecuracy is the lowest. This is desired
because the instances with high overlap are likely noigairtes and should be misclassified based
on the instance labels. The instance hardness methodsmapetitive with RENN and the ensemble
methods despite decreasing on the high overlap instanbesciianges in accuracy are statistically
significant ¢« = 0.05) for all cases with respect to the original dataset.



Table 5: Average accuracy on the filtered and original data se

UCl non UCl non
OL Train HI Low All All Train Hi Low All All
Original 0.571 0.847 0.78% 0.723
— NoHOL 0.599 0.856 0.798 0.745|| RENN 0.598 0.859 0.800 0.753
< LR1 0.627 0.849 0.799| 0.733|| Con 0.600 0.857 0.7980.743
LRO.5 0.605 0.857 0.799 0.759 || Maj 0.621 0.864 0.809 | 0.750
Original 0.121 0.174 0.162 0.130
S NoHOL 0083 0.148 0.134 | 0.117|| RENN 0.124 0.141 0.137| 0.099
T LR1 0.120 0.167 0.156 0.132|| Con 0.122 0.162 0.1530.117
LR0O.5 0.087 0.141 0.129 | 0.072 || Maj 0.162 0.159 0.159 0.092
Original 0.636 0.706 0.690 0.641
g NoHOL 0.690 0.723 0.716| 0.690|| RENN 0.674 0.720 0.709| 0.714
4 LR1 0.630 0.703 0.687 0.641|| Con 0.678 0.720 0.711]| 0.661
LR 0.5 0.680 0.713 0.706 0.704 || Maj 0.703 0.723 0.722 | 0.712
° Original 0.924 0.967 0.958 0.946
S NoHOL 0.968 0.972 0.971 0.952|| RENN 0.971 0.973 0.973 0.960
Zz LR1 0.928 0.968 0.960 0.947 || Con 0.985 0.971 0.974| 0.954
LR 0.5 0.980 0.978 0.979 | 0.970 || Maj 0.989 0.977 0.980 | 0.961

7 Conclusion and Future Work

We empirically analyzed to what extent instances are hambteectly classify. Our analysis was
extensive, examining 64 data sets, over 190,000 instaaocds) learning algorithms. We generated
over 5200 models. We found that there is a set of instancéaliiaarning algorithm misclassify.

We presented a set of hardness heuristics to identify instathat are hard to classify correctly.
These heuristics indicate that class overlap most diraffiécts instance hardness. Class skew alone
does not make an instance hard to classify correctly uniésam issue of data underrepresentation.
However, in the presence of class overlap, class skew exatesrthe difficulties of class overlap.

We showed that our heuristics can also be used to preproatssa&ts by removing instances with
high overlap for training. This improved classification acy for all of the considered learning
algorithms, most notably on data sets with a high percendéfegh overlap instances. By remov-
ing these instances, the learning algorithms could be#tsrohine the classification boundary and
improve their classification accuracies.

Future work could include weighting the instances for tirggrbased on the hardness heuristics and
developing learning algorithms designed to be more rolustérlap. By knowing which instances
should be misclassified, new evaluation methods could lettosessess the performance of learning
algorithms based on which instances where correctly ¢iedsis well as misclassified.
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