
Improving the Separability of a Reservoir Facilitates Learning
Transfer

David Norton and Dan Ventura

Abstract—We use a type of reservoir computing called the
liquid state machine (LSM) to explore learning transfer. The
Liquid State Machine (LSM) is a neural network model that
uses a reservoir of recurrent spiking neurons as a filter for a
readout function. We develop a method of training the reservoir,
or liquid, that is not driven by residual error. Instead, the liquid
is evaluated based on its ability to separate different classes of
input into different spatial patterns of neural activity. Using this
method, we train liquids on two qualitatively different types of
artificial problems. Resulting liquids are shown to substantially
improve performance on either problem regardless of which
problem was used to train the liquid, thus demonstrating a
significant level of learning transfer.

I. INTRODUCTION

LEARNING transfer refers to the idea of transferring
acquired knowledge from one domain to another similar

but distinctly different domain. In machine learning it often
refers to the approach of using a model already trained for
success on one problem to realize instantaneous performance
gains on another related problem [1], [2]. Since the topic
of interest in this paper focuses on transferring knowledge
rather than learning it, we refer to the process as learning
transfer rather than transfer learning. Instead of following
the usual route of directly training a model to accurately
classify instances of a problem and then applying that model
to a new problem, we take a more indirect approach. We train
a filter with an objective function different from performance
accuracy. We then use the output of that filter as input for
another model that is trained for accuracy. The goal is to
produce a single filter that will be useful for a broad range
of problems with minimal or no modification. Having such
a filter is the basis for an area of machine learning called
reservoir computing, in which the filter is referred to as a
reservoir [3]. When applying reservoir computing to learning
transfer, rather than employing a whole trained model to a
new problem, we utilize only the generally trained reservoir.

As an analogy, the concept of reservoir computing can
be compared to support vector machines (SVMs) where the
reservoir is analogous to the kernel. Taking this analogy
further, what we are doing with the reservoir is essentially
like building a custom kernel before training a SVM, and
then successfully applying that kernel to other problems with
no modification.

The specific model of reservoir computing that we use
is called the liquid state machine, or LSM [4], [5]. LSMs
are composed of two parts: the reservoir featuring a highly

David Norton and Dan Ventura are with the Computer Sci-
ence Department, Brigham Young University, Provo, Utah (email:
ghotikun@hotmail.com, ventura@cs.byu.edu).

Fig. 1. Diagram of a liquid state machine. (a, b) The input signal is
transformed into a series of spikes via some function. (c) The spike train is
introduced into the recurrent SNN, or “liquid”. (d) Snapshots of the state of
the “liquid” are recorded in state vectors. (e) The state vectors are used as
input to train a (usually simple) learning algorithm, the readout function.

recurrent spiking neural network, and a readout function
characterized by a simple learning function. Input is fed
into the reservoir, or liquid, which acts as a filter. Then the
state of the liquid, called the state vector, is used as input
for the readout function. In essence, the readout function
trains on the output of the liquid. With traditional LSMs,
no training occurs within the reservoir itself. This process
has been analogized with dropping objects into a container
of liquid and subsequently reading the ripples created to
classify the objects—hence the name liquid state machine.
See Figure 1.

Because no training occurs in the reservoir, the quality of
the LSM is dependent upon the ability of the liquid to ef-
fectively separate classes of input. Here the term “effectively
separate” is defined as the ability of a liquid to yield unique
state vectors for different classes of input, which will allow
the readout function to attain acceptable accuracy. Typically,
the liquid is created randomly according to some carefully
selected parameters specific to the problem at hand. This
parameter selection has been the topic of much research [6],
[3] although the research has not yet led to a consistent
and general method of generating liquids for all problems
[7]. Even when adequate parameters for a given problem
have been implemented, the creation of a useful liquid is
not guaranteed. Typically hundreds or even thousands of
liquids will be created to find a suitable filter. Fortunately,
once such a liquid is discovered, the results of the LSM
are comparable with the state-of-the-art [8], [3], [9]. Also,
once a suitable liquid is found, it can typically be presented
with other problems to good effect—the essence of learning
transfer.

Since traditionally the liquids are randomly generated, the

process of creating an effective liquid has not incorporated
learning. However, we have developed a method for creating
effective liquids in an LSM without having to rely on the
generation of many random liquids. We do so by randomly
creating a liquid in the traditional fashion and then adjusting
the liquid’s architecture until it can “effectively separate” as
defined above. We present the liquid with sample data, ob-
serve the resulting behavior, and then use these observations
to make the necessary changes to the liquid. Although this
approach uses training data to modify the liquid, the objective
function is based on separation rather than error. The goal
is to create a liquid that will effectively separate classes of
input into different patterns of state vectors. Afterwards, the
readout function will learn to extract information from the
state vectors via traditional error-driven learning.

In this paper we show that using this indirect approach to
training a recurrent spiking neural network facilitates learn-
ing transfer. We will begin by defining a metric, called sep-
aration, that will be used to evaluate the quality of a liquid.
Next we will outline our method of creating effective liquids,
called Separation Driven Synaptic Modification (SDSM).
Then we will provide the specific parameter settings of our
experiments and describe two artificial problems we use to
evaluate our algorithms. Finally we will show the results of
our experiments and draw conclusions.

For duplication purposes, we note that all of the LSMs
used in this paper are created using CSIM [4].

II. SEPARATION

Separation is a metric used to determine the effectiveness
of a liquid. It essentially measures how well the liquid sepa-
rates different classes of input into different reservoir states,
or state vectors, and is analogous to supervised clustering.
In this paper, a state vector is specifically the binary state
of each neuron in the liquid at the time of the input signal’s
termination. Separation is calculated by dividing a set of state
vectors, O(t), into N subsets, Om(t), one for each class,
where N is the total number of classes and t is the current
iteration of the liquid: defined as either a completely new
random generation, or a new iteration of SDSM (explained
in the next section). Individual state vectors are represented
by o, and the more state vectors available for the metric, the
more accurate the calculation of separation.

Separation is divided into two parts, the inter-class dis-
tance, Cd(t), and the intra-class variance, Cv(t). Cd(t) is
defined by Equation 1 and is the mean distance between
the center of mass for every pair of classes. The center of
mass for each class, µ(Om(t)), is calculated with Equation 2.
For clarity, we use | · | notation for set cardinality, and ‖·‖k
notation for the Lk-norm.

Cd(t) =
N∑
m=1

N∑
n=1

‖µ(Om(t))− µ(On(t))‖2
N2

(1)

µ(Om(t)) =

∑
on∈Om(t) on

|Om(t)|
(2)

Fig. 2. Correlation between accuracy and separation in 1000 different
liquids run on an artificial problem. The correlation coefficient is 0.6876.

Cv(t) is defined by Equation 3 and is the mean variance
of every cluster, or class, of state vectors. ρ(Om(t)) is the
average amount of variance for each state vector within class
m from the center of mass for that class. It is shown in
Equation 4.

Cv(t) =
1
N

N∑
m=1

ρ(Om(t)) (3)

ρ(Om(t)) =

∑
on∈Om(t) ‖µ(Om(t))− on‖2

|Om(t)|
(4)

Separation can now be defined by Equation 5. Cv(t) is in-
cremented by one to ensure that separation never approaches
∞.

SepΨ(O(t)) =
Cd(t)

Cv(t) + 1
(5)

Here Ψ is the liquid that produced the set of state vectors,
O(t). Separation essentially measures the mean distance
between classes of state vectors divided by the average
variance found within those classes.

In Figure 2 we show that separation does correlate with
the effectiveness of a liquid. Here, effectiveness is measured
as the accuracy of the LSM at classifying inputs in an
artificial problem. One thousand liquids were generated with
varying parameter settings to create a large variety of sepa-
ration values. The artificial problem consisted of five input
classes expressed as spiking patterns for four input neurons.
Separation was calculated with only three examples from
each class. Since we were not applying a synapse modifying
algorithm to the liquids, only one iteration, t, was observed.
The correlation coefficient between accuracy and separation
is a convincing 0.6876.

III. SEPARATION DRIVEN SYNAPTIC MODIFICATION

Separation Driven Synaptic Modification or SDSM is an
approach used to modify the synapses of the liquid by using

the separation metric defined previously and is most basically
defined by the following weight update equation:

wij(t+ ∆t) = sgn(wij(t))(|wij(t)|+ E(t)λF (t)) (6)

Here wij(t) is the weight of the synapse from neuron j to
neuron i at time t, λ is the learning rate, sgn(wij(t)) is the
sign of wij(t), E(t) is a function of the effect of separation
on the weight at time t, and F (t) is a function of the firing
behavior of all neurons in the liquid at time t.

First we will look at the function E(t). To explain this
function and its derivation it is first important to understand
what we mean by relative synaptic strength, Rs, defined by
Equation 7.

Rs =
|wij(t)| − µw

Mw
(7)

Here µw estimates the expected value of the magnitude
of synaptic weights in the initial liquid. Mw estimates the
maximum value of random variables drawn from the same
distribution used to generate synaptic weights in the initial
liquid. (These approximations were obtained via simulation
with 10,000 samples). Mw essentially normalizes the synap-
tic strength while µw is used to differentiate weak synapses
and strong synapses. A negative Rs is considered weak while
a positive Rs is considered strong.

Recall that Cd(t) is the mean distance between the center
of mass for every pair of classes and is referred to as the inter-
class distance. Cv(t) is the mean variance of each class and
is referred to as the intra-class variance. Too little distance
between centers of mass, Cd(t) (Equation 1), or too much
variance within classes, Cv(t) (Equation 3), can decrease
separation and thus the overall effectiveness of the liquid.
Generally speaking, if there is too little distance between
centers of mass, it is because strong synapses are driving the
liquid to behave a particular way regardless of input class.
To rectify this, we want to strengthen weak synapses and
weaken strong synapses. This will drive the liquid towards a
more chaotic structure that will yield results more dependent
on the input. On the other hand, if there is too much variance
within classes, it is because the liquid is too chaotic to
allow inputs of the same class to behave similarly. To relieve
this problem, it is necessary to strengthen strong synapses
and weaken weak synapses even more. This will polarize
the liquid, requiring greater differences in input to cause a
change in the liquid’s behavior (in other words, the liquid
will be less chaotic).

The motivation behind the function E(t) is balancing these
two solutions at the level of an individual synapse. The first
solution, solving the problem of differentiating classes of
input, di, is implemented with Equation 8.

di = αi

(
1− Cd

Sep∗Ψ

)
(8)

αi =
∑N
k=1 µi(Ok(t))

N
(9)

Here αi is the activity of a specific neuron i (the post-
synaptic neuron of synapse wij) and is defined by Equation 9.
αi contains µ(Ok(t)) which is the mean of the state vectors
in class k. Specifically, µi(Ok(t)) is the value of the ith

element of the mean state vector. This is also the fraction
of state vectors belonging to class k in which neuron i
fires. Sep∗Ψ is the optimal separation value for the given
problem and liquid. We evaluate Sep∗Ψ by approximating the
maximum separation for an artificial set of N state vectors
that have the same cardinality as state vectors from the given
liquid. The artificial set of state vectors is constructed such
that for all vectors the average Hamming distance to all other
vectors is (approximately) maximized.

In Equation 8, the normalized value of Cd(t) is subtracted
from one so that di will provide greater correction for smaller
values of Cd(t). Essentially what Equation 8 does is to
multiply the activity of a particular neuron by the amount
of correction necessary for too little distance between class
centers of mass. We assume that neuron activity is to blame
for this problem. This may or may not be the case; however,
consistently assuming correlation between Cd(t) and neuron
activity should eventually impose this correlation on the
liquid and ultimately yield the desired results.

The solution to the second problem (too much variance
within classes), is implemented with Equation 10.

vi =
∑N
k=1 µi(Ok(t))ρ(Ok(t))

N
(10)

vi is calculated similarly to αi except that each instance
of µi(Ok(t)) is multiplied by the mean variance for class
k, because mean variance is determined class by class. The
end result is that Equation 10 provides greater correction for
larger values of Cv(t) which is desirable since we are trying
to reduce intra-class variance. Like the equation for di, the
equation for vi assumes a correlation between the neuron’s
activity and Cv(t).

The function E(t) is derived from the Equations 7-10 as
follows:

E(t) = Rs (vi − di) (11)

Here di is subtracted from vi because, as mentioned pre-
viously, we want the distance correction, di, to strengthen
weak synapses and weaken strong synapses while we want
the variance correction, vi to strengthen strong synapses
and weaken weak synapses. In other words, we want di to
increase the chaotic nature of the liquid and vi to decrease
the chaotic nature of the liquid. Ultimately the goal of
Equation 11 is to find a balance between a liquid that is
too chaotic and one that is too stable [10].

We now turn our attention to F (t), the function of the
firing behavior of all neurons in the liquid at time t. The
function is expressed in three parts as follows:

F (t) =
{ 1

φ(t) , if wij(t)E(t) ≥ 0
φ(t), if wij(t)E(t) < 0

(12)

Neurons 64
Connection Probability 0.3
Synaptic Weight Mean 2 · 10−8

Synaptic Weight SD 4 · 10−8

Samples per Class 3
Training Iterations 500
λ 5 · 10−10

Inoise 5 · 10−8

τ 0.003
Synaptic Delay Mean 0.01
Synaptic Delay SD 0.1

TABLE I
PARAMETERS USED BY SDSM FOR ARTIFICIAL AND PHONETIC

PROBLEMS.

φ(t) = 2kA(t)−b (13)

A(t) =

∑
o∈O(t)

1
η ‖o‖1

|O|
(14)

Here A(t) is the activity of the entire liquid at time t and is
calculated by finding the average fraction of neurons that fire
in each state vector in O(t) with η being the total number of
neurons in the liquid. φ(t) is a transformation of A(t) that
reduces it to a function that will allow F (t) to work as a
simple multiplication of E(t) in Equation 6. φ(t) contains
two variables, k and b, that represent, respectively, the scale
and offset of the transformation. For our experiments, k =
6 and b = 3 were found, through preliminary tuning, to
yield the highest separation values. F (t) uses the state of the
synapse and the results of E(t) to determine how the global
activity of the liquid at time t will effect the change in weight.
The effect of F (t) is to promote the overall strengthening of
excitatory synapses while promoting the overall weakening
of inhibitory synapses if less than half of the neurons in the
liquid fire. If more than half of the neurons fire, the effect
of F (t) is reversed. The goal of F (t) is to direct the liquid
to a “useful” amount of activity. This assumes that half of
the neurons firing for all state vectors is the desired fraction
of activity to achieve the maximum separation possible.

IV. PARAMETER SETTINGS

We determined the best setting for each of the many
parameters in the liquid by performing extensive preliminary
tuning. The different parameters we looked at in these
prelimnary efforts were the number of neurons, connection
probability, the mean synaptic weight and delay, the standard
deviation of the synaptic weight and delay, the number
of samples per class used to determine separation at each
instance, the number of iterations to run, the learning rate,
the decay time constant, and the amount of noise present in
each neuron. Table I shows the parameters we use for all of
the results presented in this paper.

Some of the parameters presented in Table I require
further explanation to more easily replicate the results. The
connection probability is the probability that any given
neuron (including input neurons) is connected to any other

Input 1 Input 2 Input 3 Input 4
Class 1 1 0 0 0
Class 2 0 1 0 0
Class 3 1 1 0 0
Class 4 0 0 1 0
Class 5 1 0 1 0

TABLE II
FREQUENCY PATTERNS FOR EACH CLASS IN THE FREQUENCY

RECOGNITION PROBLEM. EACH INPUT REPRESENTS ONE OF FOUR INPUT
NEURONS. A 1 INDICATES A FAST SPIKING FREQUENCY WHILE A 0

REPRESENTS A SLOWER SPIKING FREQUENCY.

liquid neuron (liquid neurons cannot connect back to input
neurons). The value for the connection probability indicated
in Table I means that each neuron is connected to roughly one
third of the other neurons. The “samples per class” parameter
refers to the number of training samples used from each class
when calculating separation. This in turn is what drives the
SDSM algorithm. The more samples used, the more accurate
the separation calculation will be, but at the cost of speed.
The number of iterations is simply how long to run the
SDSM algorithm. In our experiments, by 500 iterations, most
liquids had reached a plateau in separation improvement.
λ is the learning rate first shown in Section III. τ is the
decay time constant which refers to the rate at which the
membrane potential of each synapse decays. Inoise is the
amount of noise produced by each neuron and is necessary
for an efficient liquid [11].

V. ARTIFICIAL PROBLEMS

Two artificial problems were developed to explore learning
transfer in liquids trained with Separation Driven Synaptic
Modification (SDSM). The first problem is the simpler of the
two, and we call it the frequency recognition problem. This
problem has four input neurons and five classes. Each input
neuron fires at a slow or fast frequency, where slow neurons
fire with a mean frequency of 10 Hz and fast neurons fire
with a mean frequency of 100 Hz. The five classes are defined
by specific combinations of fast and slow input neurons as
shown in Table II, where 1 represents a fast input neuron
and 0 a slow one. These particular patterns were chosen to
challenge the liquid with a variety of combinations as well as
the task of ignoring one channel (input neuron 4). Individual
samples from each class are generated by following this
template and then jittering the frequencies.

The second problem is more general and complex. We
call it the pattern recognition problem. This problem has
eight input neurons and a variable number of classes. Each
class is based on a template spike pattern randomly created
for each input neuron. The random pattern is generated by
plotting individual spikes with a random distance between
one another. This distance is drawn from the absolute value
of a normal distribution with a mean of 10ms and a standard
deviation of 20ms. Once the template pattern for each input
neuron in a class is created, individual instances from the
class are created by jittering each spike in the template. The
spikes are jittered by an amount drawn from a zero-mean

(a) Template for Class A (b) Template for Class B

(c) Instance 1 for Class A (d) Instance 1 for Class B

(e) Instance 2 for Class A (f) Instance 2 for Class B

Fig. 3. The templates for two classes, A and B, are shown in (a) and (b)
respectively. Each class has three input neurons designated by the y-axis.
The x-axis is time spanning 100ms. (c) and (e) show examples of instances
from class A created from jittered versions of the template. (d) and (f) show
examples of instances from class B.

normal distribution with a standard deviation of 5ms mak-
ing the problem particularly difficult. A simplified example
with only two classes and three input neurons is shown in
Figure 3.

VI. LEARNING TRANSFER WITH SDSM

In order to explore learning transfer, we created liquids
with SDSM for both the pattern and the frequency recog-
nition problems. For the pattern recognition problem we
generated liquids for 4-, 8-, and 12-class problems. For
the frequency recognition problem, we created liquids for
the specifically defined 5-class scenario. We produced fifty
liquids for each of these four cases via SDSM over a span
of five hundred iterations. Each of the resulting two hundred
liquids was then used as the reservoir for all four of the
problems—three of which it was not trained on. In order to
observe the effect of learning, the two hundred (untrained)
randomly generated liquids used to initialize SDSM were
also used as the reservoir for all four problems. This allowed
us to compare traditional LSMs with LSMs generated using
SDSM.

To complete the LSM and to test for accuracy, state vectors
obtained from these experiments were used as input to the
readout function, in this case multiple perceptrons. Each
perceptron was trained to classify members of one particular
class, so there were N binary classifiers. The output of each
perceptron was then compared, assigning the class of the
perceptron with the greatest confidence to the state vector in
question. This readout function was used because it is very
simple, thus allowing us to focus on the quality of the liquid.
For all of our experiments, the test size was one hundred
samples per class.

The results of these experiments are shown in Figure 4.
We refer to the problem used to create a specific liquid as
the liquid source.

Fig. 4. The mean accuracy of LSMs using SDSM with four different liquid
sources, across four different problems. The figure shows the mean accuracy
of fifty unique LSMs per data point.

Fig. 5. The mean accuracy of LSMs using traditional (randomly generated)
liquids created for the four different problems (referred to as the liquid
source for convenience). The figure shows the mean accuracy of fifty unique
LSMs per data point.

Input neurons are considered part of the liquid, thus their
synapses are modified as part of SDSM. When a liquid is
created from a source, it has I input neurons, where I is the
number of spike trains present in the source’s input. Because
different problems or sources have varying numbers of spike
trains, discrepancies between the number of spike trains and
number of input neurons must be resolved.

When introducing a new problem to a liquid trained with
a different source problem, we use the following approach.
If the new problem’s input is encoded in fewer spike trains
than the source problem’s, then the spike trains are mapped
arbitrarily to a subset of the input neurons. The excess
input neurons receive a null signal as input. If the new
problem’s input is encoded in more spike trains than the
source problem’s, then multiple spike trains get mapped
arbitrarily to individual input neurons. The spiking patterns
are combined, increasing the total number of spikes firing in
each input neuron.

The results shown in Figure 4 were obtained using two
types of problems. All of the pattern recognition problems
use eight spike trains for each instance while the frequency
recognition problem uses only four spike trains. When a
pattern recognition problem is used as the source for the
frequency recognition problem, four of the input neurons
have no signal. When the frequency recognition problem is
used as the source for a pattern recognition problem, each
input neuron combines the signals of two spike trains.

Figure 5 shows results using initial random liquids for
each source. Even though the frequency recognition and
pattern recognition problems have differing numbers of in-
put neurons, the behavior of the LSMs on either problem
does not change no matter which one is the source. This
demonstrates the ability of LSMs to transfer a liquid between
problems without dramatically effecting results of the LSM.
This means that once a good filter is found, it should be
usable in multiple problems. In a sense, the strengths of a
filter are being transferred to another problem.

SDSM uses training data to create new liquids from those
randomly generated for Figure 5. Since the new liquids that
are created depend upon the problem used to train them (the
liquid source), one might expect that the transferability of
the liquid would be compromised. Interestingly, the results
shown in Figure 4 clearly demonstrate that this is not the
case. In fact, liquids not created with frequency recogni-
tion as the source performed better on that problem than
liquids actually created with frequency recognition as the
source. However, liquids created with the various pattern
recognition sources did perform better on those problems
than liquids generated with frequency recognition as the
source. In both cases, SDSM still performed significantly
better than traditional LSMs (compare Figures 4 and 5). The
fact that liquids created with pattern recognition performed
better on both problems indicates that the source used to
create the liquid can make a difference. Looking at Figure 4
we see that, on all of the problems, liquids created with
pattern recognition sources outperformed liquids created with
frequency recognition as the source. Pattern recognition is
clearly the more complicated of the two problems; and, by
applying SDSM with the more complicated source problem,
the liquid may be primed for overall better performance. It
should be noted that transferring learning across different
numbers of classes and input neurons alone is a difficult
problem that is apparently less of an issue with SDSM.

VII. CONCLUSIONS

The nature of the liquid in an LSM allows it to transfer
knowledge across a large variety of problems. Traditionally
the liquid acts as a filter with the sole purpose of separating
input patterns into distinct neural activation patterns. It stands
to reason that a liquid capable of separating one domain of
distinct input patterns might also be able to separate other
domains of distinct classes. This is considered one of the
strengths of LSMs. While it may take a while to find a
suitable liquid, once one is found, it will likely be suitable
for more than one problem. Then, for each problem a simple

readout function (like a perceptron) can be effectively trained
on the output of the liquid.

With SDSM, we have demonstrated a method of train-
ing the liquid to more consistently and effectively separate
different input classes for a particular problem. For some
problems this improvement has yielded LSMs with more
than double the accuracy of traditional LSMs. Furthermore,
the efficacy of learning transfer has been maintained despite
the liquid being trained on a specific problem. This is
especially notable since the two different types of artificial
problems that we have explored have different numbers of
input neurons. Learning transfer occurred despite a naı̈ve
translation from one input representation to another. Even
within the pattern recognition problem type, transferring
learning across problems with different numbers of classes is
impressive since this essentially requires the ability to elicit
a variable number of distinct responses (one for each class)
within a single liquid.

The success of SDSM in allowing significant learning
transfer is most likely due to the fact that the goal of the
algorithm is to find a balance between chaotic and ordered
behavior within the liquid architecture. The algorithm simply
uses training data to evaluate the current balance within a
liquid and then adjusts the liquid’s structure accordingly. A
large spectrum of training data could likely be used to make
such an evaluation with similar results. Consequently, final-
ized liquids should behave similarly across a large variety of
input regardless of the data used to train the liquid.

REFERENCES

[1] S. Thrun and L. Pratt, Eds., Learning to Learn. Kluwer Academic
Publishers, 1998.

[2] K. Yu and V. Tresp, “Learning to learn and collaborative filtering,”
Neural Information Processing Systems workshop “Inductive Transfer:
10 Years Later”, 2005.

[3] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural
Networks, vol. 20, pp. 391–403, 2007.

[4] T. Natschläger, “Neural micro circuits,”
http:/www.lsm.turgraz.at/index.html, 2005.

[5] T. Natschläger, W. Maass, and H. Markram, “The “liquid” computer: A
novel strategy for real-time computing on time series,” Special Issue on
Foundations of Information Processing of TELEMATIK, vol. 8, no. 1,
pp. 39–43, 2002.

[6] E. Goodman and D. Ventura, “Effectively using recurrently connected
spiking neural networks,” Proceedings of the International Joint Con-
ference on Neural Networks, vol. 3, pp. 1542–1547, 2005.

[7] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Adapting reservoirs
to get Gaussian distributions,” European Symposium on Artificial
Neural Networks, pp. 495–500, 2007.

[8] E. Goodman and D. Ventura, “Spatiotemporal pattern recognition
via liquid state machines,” Proceedings of the International Joint
Conference on Neural Networks, pp. 3848–3853, 2006.

[9] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. V. Campenhout,
“Isolated word recognition with liquid state machine: a case study,”
Information Processing Letters, vol. 95, pp. 521–528, 2005.

[10] N. Brodu, “Quantifying the effect of learning on recurrent spiking
neurons,” Proceedings of the International Joint Conference on Neural
Networks, pp. 512–517, 2007.

[11] K. Jim, C. L. Giles, and B. G. Horne, “An analysis of noise in recurrent
neural networks: Convergence and generalization,” IEEE Transactions
on Neural Networks, vol. 7, pp. 1424–1438, 1996.

