
 
 

  

Abstract—Existing learning-based multi-modal biometric 
fusion techniques typically employ a single static Support 
Vector Machine (SVM). This type of fusion improves the 
accuracy of biometric classification, but it also has serious 
limitations because it is based on the assumptions that the set of 
biometric classifiers to be fused is local, static, and complete. We 
present a novel multi-SVM approach to multi-modal biometric 
fusion that addresses the limitations of existing fusion 
techniques and show empirically that our approach retains good 
classification accuracy even when some of the biometric 
modalities are unavailable. 

I. INTRODUCTION 
ANY biometric modalities, including fingerprint and 
facial recognition, are used for verification and 

identification purposes. However, despite significant 
research, biometric matching accuracy remains low. This 
accuracy problem has recently been addressed through 
multi-modal biometric (multi-biometric) fusion, which 
combines the match scores that are output by individual 
biometric classifiers. Multi-modal biometric fusion has been 
shown empirically to improve the accuracy of 
biometrics-based verification (one-to-one comparison) and 
identification (one-to-many comparison) [17]. Further, 
parametric machine learning algorithms, including Support 
Vector Machines and Bayesian networks, have been shown to 
outperform both non-parametric learning techniques and 
voting schemes, when combining biometric match scores 
[17], [19]. 

Existing multi-biometric fusion techniques face a number 
of limitations since they are based on the assumptions that 
each biometric modality is local, complete, and static. These 
limitations are particularly pronounced when considered in 
the context of biometric identification, as opposed to 
verification. Key limitations include: 

1. Each registered person must be entered into every 
modality. This may not be plausible and is very 
restrictive [12]. Moreover, this makes adding 
additional modalities to an existing system difficult 
or impossible. 

2. All of the classifiers must always be available. This 
will not be the case if the modalities are part of a 
distributed system, such as when a multi-biometric 
system is composed of traditional biometric systems 
that are maintained by different groups or 

 
Sabra Dinerstein is with the Computer Science Department, Brigham 

Young University, Provo, UT 84602 USA (e-mail: sdinerstein@NPL.com).  
Jonathan Dinerstein is with DreamWorks Animation, Redwood City, CA 

94062 USA (e-mail: jondinerstein@yahoo.com). 
Dan Ventura is with the Computer Science Department, Brigham Young 

University, Provo, UT 84602 USA (e-mail: ventura@cs.byu.edu). 

organizations and are connected via the Internet. 
3. No support for “offline” biometrics. “Offline” 

biometrics (such as DNA profiles) require laboratory 
processing to register individuals into the biometric 
system; the associated time and cost exacerbates 
limitations #1 and #2 listed above, and makes the 
utilization of offline biometrics impossible in 
existing biometric fusion systems [16]. 

4. Registration changes may decrease system accuracy. 
If learning is only performed when initially creating 
the multi-biometric system, the accuracy of the 
biometric fusion may degrade as individuals are later 
added to or removed from the system. 

5. Limited to verification. Due to the other limitations 
listed above, most existing fusion techniques are 
explicitly designed for verification only – 
identification is not supported. 

We propose a novel multi-biometric fusion technique that 
addresses the issues listed above and is suitable for both 
identification and verification. A mediator agent controls the 
fusion of the individual biometric match scores, using a 
“bank” of SVMs that cover all possible subsets of the 
biometric modalities being considered. This agent selects an 
appropriate SVM for fusion, based on which modality 
classifiers are currently available and have sensor data for the 
identity in question. (Our fusion technique differs from a 
traditional SVM ensemble – rather than combining the output 
of all of the SVMs [7], we apply only the SVM that best 
corresponds to the available modalities.) The mediator agent 
also controls the learning of new SVMs when modalities are 
added to the system or sufficient changes have been made to 
the data in existing modalities. 

Our experiments utilize the following biometric 
modalities: face, fingerprint, and DNA profile data. We 
empirically show that our multiple SVM technique produces 
more accurate results than the traditional single SVM 
approach. 

II. PREVIOUS WORK 
Accurate user verification and/or identification are 

necessary for a wide variety of applications. Biometric 
classification is particularly interesting because biometric 
data is typically bound to a specific user (rather than being 
disembodied, such as in the case of a Social Security 
number), and is often unique enough to be used effectively in 
classification [11]. However, in practice, biometric 
classification using only a single biometric modality is 
typically not accurate enough [9], [16]. For example, facial 
recognition techniques are often sensitive to changes in 
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lighting, camera angle, and distance from the camera. 
Additionally, not every user can provide data for the desired 
single biometric modality [12]. 

Fusion has been shown empirically to improve the 
accuracy of biometric classification and overcome the 
weakness of individual classifiers [8], [17], [13]. 
Additionally, in the case of a missing modality, a multi-modal 
biometric (multi-biometric) fusion system can still output a 
classification decision, by merely using one of the available 
modalities in a traditional manner [17]. Multi-biometric 
fusion is similar in spirit to bagging, stacking, and other 
techniques for combining complimentary classifiers. For 
example, in bagging, the output of two or more classifiers 
may be combined through voting, ideally to achieve more 
accurate classification results. 

Multi-biometric fusion is typically applied in one of three 
specific steps in the classification process: fusion of the input 
feature vectors, fusion of the match scores output by the 
individual classifiers, or fusion at the decision level [17]. 
Fusion of the input feature vectors is not always feasible, as 
these input features may not be directly accessible via 
professional biometric collection systems. Additionally, the 
specific input features that are used by the different 
modalities may not be compatible [12]. Fusion at the match 
score level is applicable to general multi-biometric systems, 
and has been shown to be more informative than 
decision-level fusion [17], [18]. 

Voting-based fusion improves the results of using only 
individual biometric classifiers, and provides a simple, 
understandable fusion technique. The addition of 
quality-based weighting has further improved the results of 
standard fusion techniques, providing quantification of both 
the quality of the biometric data itself [15] and of the accuracy 
of the specific biometric classifier [3]. 

Supervised parametric learning techniques, such as SVMs 
and Bayesian networks, have been shown empirically to 
produce more accurate fusion results than either voting or 
non-parametric learning [2], [3], [13], [17], [19]. Of these 
parametric learning-based fusion techniques, the SVM 
appears to be the most popular choice in the literature. In 
short, the SVM learns to map the vector of individual 
biometric match scores into a joint (i.e., fused) match score or 
classification. Current techniques learn a single, static SVM 
immediately before the multi-biometric system is made 
available for use [18], [16]. These techniques make an 
implicit assumption that all modalities in the system are 
always available; otherwise the fusion breaks down or the 
accuracy degrades. Thus they also require that users provide 
biometric data for every modality (missing data is analogous 
to an unavailable modality). Additionally, the learned SVM is 
specific to the current biometric data that is enrolled in the 
system – if the data changes too much, or if we wish to add 
another modality to the multi-biometric system, the fusion 
has to be completely re-learned. Adding a new modality is 
further complicated by the need to gather data for this 
modality from all individuals previously registered in the 

system. 
We present a multi-SVM fusion technique that addresses 

these limitations and improves upon the accuracy of the 
single static SVM when there are missing biometric 
modalities. We allow for the possibility of missing biometric 
modalities (due either to the non-universality of biometric 
data [12] or to the temporary unavailability of individual 
biometric classifiers) by learning multiple SVMs that are 
trained on all possible subsets of the biometric modalities. We 
demonstrate our multi-SVM fusion technique on an offline 
biometric modality, nuclear DNA, as well as the more 
traditional biometric modalities: face and fingerprint. 

III. BIOMETRIC CLASSIFIERS 
To test our multi-SVM fusion technique, we have 

implemented biometric classifiers using professional 
biometric SDKs. We use one classifier for each of the 
following biometric modalities: face, fingerprint, and nuclear 
DNA. 

A. Face Classifier 
Our 2D facial recognition classifier utilizes AcSys 

Biometric’s Face Recognition System (FRS) SDK. This 
system employs a neural network-based implementation, 
Holographic Neural Technology (HNeT) [1], which uses 
machine learning to improve recognition accuracy over time, 
as it is presented with multiple images of the same subject. 

During initialization, we presented our face classifier with 
static images of multiple subjects. Several images were 
presented for each subject, and the pictures were taken from a 
variety of angles and camera distances. For each subject, the 
best image (based on head size and the system's image quality 
metrics) was enrolled into the database. The face classifier 
was then trained on all of the images in the database. 

The use of multiple images (both of the same subject and of 
different subjects) resulted in a wide range of match scores, 
for both positive and negative examples. In our experiments, 
this facial recognition system produced extremely variable 
results (e.g., positive match scores in the range [-0.702, 
0.868] and negative match scores scattered throughout the 
range [-1.167, -0.043]), which allowed us to experiment with 
a less than perfect biometric classifier. It should be noted that 
AcSys Biometric’s Face Recognition System is reported to be 
more accurate when using a live video stream as opposed to 
static images, due to their neural network-based 
implementation, but this reduced accuracy provided 
interesting information for our experiments. 

B. Fingerprint Classifier 
We implemented a fingerprint classifier using the Identix 

BioEngine® SDK, which provides a minutiae-based 
fingerprint verification algorithm. In short, this system 
operates by extracting minutiae from the fingerprint ridges 
(such as the locations of ridge endings and bifurcations). The 
match score between two fingerprints is calculated by 
comparing these minutiae. For further information on 
minutiae-based fingerprint matching, see [10] and [14]. 



 
 

We created examples of fingerprint match scores using 
both live scans and static images. We used multiple scans of 
the same fingerprint, in addition to fingerprints from different 
subjects, in order to obtain a variety of match scores, 
including positive match scores in the range [65, 8364] and 
negative match scores in the range [-1, 132]. 

Fingerprint matching is known to be a relatively accurate 
biometric, even with only partial fingerprint data [9], [14]. 
Also, fingerprint acquisition hardware is quite affordable. 
Thus fingerprint matching is an excellent modality to include 
in any multi-biometric fusion system. 

C. DNA Classifier 
Our DNA profile examples are based on the United States 

Federal Bureau of Investigation's 13 core Short Tandem 
Repeat (STR) loci [4]. This is the standard used in the FBI's 
Combined DNA Index System (CODIS) [6]. This standard is 
both important and pertinent because it is admissible as 
identifying evidence in the legal courts of the United States 
and various other countries [4]. 

Each DNA profile is represented by a string made up of the 
characters, {A, T, G, C}: the profile string describes the allele 
values of the person's STR DNA for the 13 loci of interest. 
The profile string for a given person is derived through a 
laboratory typing process [4]. Our DNA classifier uses the 
Levenshtein distance metric to calculate the match score of 
two profile strings; these DNA profile match scores are in the 
range [0, 1], where a score of 1 represents a perfect match. 

DNA profile data represents an extremely robust and 
information-dense biometric modality. However, due to the 
time and cost of the offline processing requirements of DNA 
classification, DNA has not previously been tested in 
biometric fusion research [16]. Thus its inclusion is an 
interesting aspect of our work. 

IV. MULTI-SVM FUSION 
Our technique centers around the use of multiple 

specialized SVMs that are learned by a fusion agent. As 
discussed earlier, previous biometric fusion techniques utilize 
only a single SVM, resulting in the limitations stated in the 
introduction. In contrast, our fusion agent learns multiple 
SVMs. This overcomes the limitations of previous techniques 
by allowing the agent to perform effective fusion even when 
every modality is not currently available. We describe our 
technique in detail below. 

A. Learning Multiple SVMs 
We denote the set of available biometric modalities as: 

}.,,{ DNAtfingerprinfaceS =  

Of course, the elements of S correspond to the biometric 
modalities chosen for inclusion in the specific system – we 
list the modalities that we employ in our experiments for the 
purpose of clarity. 

Our fusion agent learns and utilizes multiple SVMs – one 
SVM for each possible subset of S that contains 2 or more 

elements. Note that this is simply the power set of the 
available modalities minus those sets of cardinality < 2 (in 
which case no fusion can be performed). This reduced power 
set for the given set S is: 

}}.,,{},,{
},,{},,{{*

DNAtfingerprinfaceDNAtfingerprin
DNAfacetfingerprinfaceS =  (1) 

One SVM is learned for each set in S*. Thus the fusion 
agent learns 2|S| - (|S| + 1) total SVMs, where each SVM learns 
to fuse a specific, unique set of biometric modalities. 

We utilize LIBSVM [5] for our implementation of these 
SVMs. Specifically, we use a Radial Basis Function (RBF) 
kernel: )||exp( 2vu −−γ . For each SVM, we choose the 
appropriate γ-value and constraints-violation cost, C, at 
run-time, by performing k-fold (stratified) cross-validation on 
the current set of training examples. The γ- and C-values that 
produce the best accuracy percentage in cross-validation are 
then used to train the SVM on the entire set of training 
examples. In our current implementation, each SVM learns to 
output a classification decision, rather than a specific fused 
score. 

B. Fusion 
Biometric data is collected and processed by the individual 

classifiers. Each classifier outputs a match score for their 
specific biometric modality. Upon receiving match scores 
from the participating individual biometric classifiers, the 
fusion agent creates an attribute vector out of these individual 
scores, and applies the learned SVM that best corresponds to 
the incoming data. (This fusion process differs from a 
traditional SVM ensemble – rather than combining the output 
of all of the SVMs [7], we apply only the SVM that best 
corresponds to the input modalities.) The selected SVM 
outputs a single classification decision for the joint attribute 
vector. See Fig. 1 for a conceptual description of this fusion 
process. 

The fusion agent selects an appropriate SVM based on the 
operational status and data completeness of each biometric 
classifier. Two conditions are necessary for a classifier to be 
included in the fusion process: the classifier must produce a 
match score for the identity in question, and the classifier 
must report that match score to the fusion agent. Currently, 
our implementation does not employ thresholding at the 
fusion level. However, some of the individual classifiers 
featured in our system perform thresholding on their reported 
matches: our fingerprint classifier returns -1 (indicating a 
completely negative classification) for matches that are below 
a certain score, and our face classifier allows the user to set 
the minimum score threshold at run-time. 

V. EXPERIMENTS AND RESULTS 

A. Data Preprocessing 
Our individual biometric classifiers, as described above, do 

not  share  a  common  scale  for  match  scores.  Instead,  each  



 
 

 
Fig. 1: Multi-SVM Fusion. Biometric data is collected from the user, and 
the individual classifiers are applied; these individual match scores are sent to 
the fusion agent. The fusion agent selects the appropriate fusion SVM, based 
on the available modality match scores. The system outputs one overall 
classification decision. 

classifier outputs  scores  that  correspond  to  their  own scale. 
Specifically, our fingerprint classifier tends to output very 
large scores (e.g., up to about 8000 for a good match), while 
our DNA classifier outputs scores in the range of [0, 1]. To 
remove  the  bias  of  the  large  fingerprint  match  scores,  we 
scale the output of each classifier to be in the range of [-1, 1], 
where a value of 1 represents a perfect match. 

We create both positive and negative multi-biometric 
examples by combining the scaled match scores of the 
individual biometric classifiers into one attribute vector with 
a corresponding label. In short, single-modality examples of 
the same class (either positive or negative) are combined, in 
order to create the multi-biometric examples. For example, 
for the SVM that fuses {face, fingerprint}, we create 
examples that contain both the face and the fingerprint match 
scores: 

 
<Classification of the multi-biometric example> 
<Scaled match score for the 1st modality (face)> 

<Scaled match score for the 2nd modality (fingerprint)> 
 
Training examples are drawn randomly with replacement, 

using a uniform distribution, from this set of multi-biometric 
examples. 

B. Comparison of the traditional single SVM with our 
multi-SVM technique 

Let us compare the multi-biometric fusion accuracy 
obtained when using a single static SVM to the accuracy of 
our multi-SVM approach. We calculate the fusion accuracy 
of each SVM by comparing the actual classification value of 

each example to its target classification value, and 
determining the percentage of the examples that are correctly 
classified. We estimate the test accuracy of each SVM by 
performing k-fold cross-validation on the training examples 
(using the γ- and C-values that produced the highest accuracy, 
as described in the previous section); the highest accuracy 
achieved by the k-fold cross-validation is reported as the 
estimated test accuracy of the SVM. 

We performed these fusion experiments with several 
different training set sizes, letting the number of training 
examples vary from 25 to 4500, and found that the number of 
training examples did not have a significant impact on the 
accuracy levels of the fusion algorithms, as long as the 
examples were sufficiently random. We performed 10 runs 
for each training example set size, to account for the 
variability in the selection of the training examples; accuracy 
values were averaged over all runs. 

1) Fusion accuracy when there are no missing biometric 
modalities 

Table 1 describes the accuracy of each fusion SVM when 
the corresponding biometric modalities are all available. Each 
SVM was trained and tested on examples that included 
exactly the specified set of biometric modalities. For 
example, the SVM that performs fusion on the set of 
modalities, {face, fingerprint}, was trained and tested on a set 
of examples whose feature vectors contained match scores for 
both the face and fingerprint modalities (and only these 
modalities). The other SVMs shown in Table 1 were trained 
and tested in a similar manner. 

As expected, all of the fusion SVMs in our system 
produced reasonable average accuracy, as described in Table 
1, verifying that the use of multiple SVMs does not reduce the 
accuracy of multi-modal fusion. Notice that the fusion SVM 
for {face, fingerprint} has the lowest average accuracy of all 
of the SVMs in the system. This can be attributed to the 
extremely variable output of our face classifier. Also notice 
that in our experiments, the fusion SVMs that incorporate 
DNA profile data seem to be very accurate. 

Table 1: Accuracy of each SVM, when all of the corresponding 
modalities are present. Each SVM was trained and tested on the specified 
set of biometric modalities. The values shown represent each SVM’s average 
fusion accuracy over 10 runs, and the corresponding standard deviation. 
These accuracy values correspond to the use of 500 training examples. 

 Accuracy % 
(No Missing 
Modalities) 

Standard 
Deviation 

Fusion SVM for  
{face, fingerprint} 

97.558 0.3135 

Fusion SVM for  
{face, DNA} 

100.0 0 

Fusion SVM for 
{fingerprint, DNA} 

100.0 0 

Fusion SVM for  
{face, fingerprint, DNA} 

99.492 0.0821 

 

Face 
classifier 

Fingerprint 
classifier 

DNA 
classifier 

Fusion 
Agent 

Fingerprint and 
DNA SVM 

Face and DNA 
SVM 

Face and 
Fingerprint SVM 

Face, Fingerprint, 
and DNA SVM 

1. Acquire biometric data, for single modality matching   
                    

2. Report match scores to the  
    fusion agent 

     
 
      4. Output the fused  

       classification decision 
                   
 
                               
 

3. Choose one 
    appropriate SVM,  

      and perform fusion 
 
 
 
 



 
 

2) Fusion accuracy with missing biometric modalities 
Next, we compare our multi-SVM technique to previous 

fusion techniques that use only a single static SVM. Just as 
before (when there were no missing modalities), each SVM is 
trained using data for only the corresponding set of biometric 
modalities. 

In our experiments, we let the fusion SVM for all of our 
modalities, {face, fingerprint, DNA}, represent the single 
static SVM approach to fusion. We simulate the single SVM 
approach to fusion (with missing biometric modalities) by 
applying the {face, fingerprint, DNA} SVM to examples that 
contain   subsets   of   the   available   modalities.    We  let  the 
absence of a match score represent a missing modality: 
LIBSVM [5] implements  each  attribute in the feature vector  
as an index and value pair.  Our implementation uses this 
index to indicate which modality the current attribute 
represents. For missing modalities, the corresponding index 
and value are simply not included in the feature vector. 

In our multi-SVM approach, the fusion agent selects and 
applies the fusion SVM that best corresponds to the current 
subset of available modalities, and therefore the accuracy of 
each SVM in our multi-SVM technique is not affected by the 
missing modalities. Instead, we again estimate the test 
accuracy of each SVM in our multi-SVM approach, by 
performing k-fold cross-validation on the training examples 
containing the specific subset of modalities. 

Average accuracy percentages (over 10 runs) for both the 
single SVM and multi-SVM techniques are shown in Fig. 2.  
As can be seen, the traditional single static SVM approach to 
multi-biometric fusion is highly sensitive to missing 
modalities. (The missing modality in each case is noted along 
the x-axis in Fig. 2.)  The fusion accuracy of the single SVM 
has decreased noticeably, for each of the missing modalities. 
Our multi-SVM technique, on the other hand, retains high 
average accuracy despite the missing biometric modalities; 
our multi-SVM technique appears to be robust against 
missing biometric modalities. 

Consider the massive loss of accuracy for the single SVM 
when fingerprint is the missing modality, as shown in Fig. 2. 
This severe decrease in accuracy can partially be accounted 
for when we consider the relative strength of the individual 
biometric classifiers used in our experiments. For example, 
we see the smallest loss of accuracy when we ignore the face 
modality (shown in the 3rd column of Fig. 2), because our 
facial recognition classifier is the least accurate of our 
individual classifiers. Therefore, the lack of match score data 
for the face modality causes the least perturbation to the 
classification decision that is output by the single static SVM. 

Our fingerprint classifier is much more accurate than our 
face classifier, and in fact, appears to be the most important of 
our individual classifiers. Therefore, without the fingerprint 
data (shown in the 2nd column of Fig.2), we see the largest 
difference in accuracy between our multi-SVM technique and 
the traditional single static SVM. 

Our DNA classifier is accurate, but it tends to produce 
match scores for positive examples that are at the very top of 
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Fig. 2: Accuracy of the single, static SVM fusion technique vs. our 
multi-SVM technique, with missing biometric modalities. In our 
multi-SVM approach, the fusion agent applies the SVM that best corresponds 
to the available biometric modalities. As can be seen here, our multi-SVM 
technique produces higher average accuracy (over 10 runs, using 500 training 
examples) than the single static SVM, when there are missing biometric 
modalities. In each case, the missing biometric modality is noted along the 
x-axis. (These accuracy differences between the single, static SVM approach 
and our multi-SVM approach were determined to be statistically significant 
at p < 0.001 using a paired permutation test.) 

the scaled range [-1, 1], and therefore the DNA match score 
examples are less informative than those produced by our 
fingerprint classifier. 

Our  experimental  data clearly shows that our  multi-SVM 
fusion technique retains distinctly higher average accuracy 
than the single SVM fusion technique, when there are missing 
biometrics. 

VI. CONCLUSION 
Existing learning-based multi-biometric fusion techniques 

utilize only a single static SVM that is dependent upon both 
the currently enrolled biometric data and the modalities that 
are currently in use. This static SVM approach to fusion 
improves biometric matching accuracy [17], but degrades 
when faced with missing biometric data. Biometric 
modalities are known to be non-universal [12], and therefore 
we would like a multi-biometric fusion system to be robust 
against missing biometrics. 

We now consider our multi-SVM approach to fusion, in the 
context of the limitations of the traditional single SVM 
approach: 

1.  Each registered person must be entered into every 
modality. As shown in Fig. 2, our multi-SVM fusion 
technique remains highly accurate, even when some of 
the biometric modalities are missing. If a registered 
person is missing any of the biometric modalities, our 
multi-SVM technique can still take advantage of the 
increased accuracy provided by multi-modal fusion (if 
that person supplies data for at least two modalities): 
our multi-SVM technique simply fuses the biometric 
data that is currently available. Further, this allows 
new biometric modalities to be added to the system, 
without affecting the persons that are already 



 
 

registered with the system – fusion can still be 
performed, even without collecting data for the new 
modality. 

2. All of the classifiers must always be available. Instead 
of being dependent upon the availability of all 
modalities, our multi-SVM technique takes advantage 
of whatever data is currently available. If an individual 
classifier is unavailable, its output is simply not used 
in the fusion. Just as with a missing modality, if the 
classifier is not available, our multi-SVM technique is 
still able to perform fusion with whatever classifiers 
are currently available.  

3. No support for “offline” biometrics. Our multi-SVM 
technique allows for the incorporation of offline 
biometrics, such as DNA, that have previously been 
excluded from multi-biometric fusion systems [16]. 
The inclusion of DNA profile data in our experiments 
implies that the use of multiple specialized SVMs 
allows our multi-modal fusion system to utilize 
whatever data is available at the moment, rather than 
requiring that all of the biometric data be collected and 
used at the same time. 

4. Registration changes may decrease system accuracy. 
In traditional static SVM implementations of 
biometric fusion, the single SVM is only effective as 
long as nothing has changed – if any of the biometric 
modalities are replaced or if new modalities are added, 
the entire learned fusion system must be replaced. In 
our implementation, however, much of the system can 
be re-used: only those SVMs that are directly affected 
by a modality change need to be replaced. Further, the 
addition of a new modality does not affect the existing 
SVMs. Instead, the fusion agent simply trains 
additional SVMs to handle the new modality 
combinations, as described in (1). Our implementation 
therefore provides the flexibility to easily add or 
modify biometric modalities as needed. 

5. Limited to verification. Current learning-based fusion 
techniques are typically limited to verification, rather 
than identification. Biometric verification often 
assumes that all of the biometric data has been 
collected at the same time (typically using multiple 
sensors) and fed into the system immediately. 
Biometric identification, on the other hand, is well 
suited to a distributed implementation – large 
repositories of biometric data, such as the CODIS and 
Integrated Automated Fingerprint Identification 
System (IAFIS) databases, are typically not hosted in a 
single location. Combining biometric match 
information from multiple sources should only 
increase the odds of successful identification. 
Identification, therefore, can benefit from the use of 
delayed information, not just what is known at the 
moment. Our experiments suggest that our multi-SVM 
fusion technique retains high accuracy regardless of 
which biometric modalities are available, and 

therefore our technique should be useful for biometric 
identification, as well as for verification. 
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