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 Abstract. The performance of Particle Swarm Optimization is 
greatly affected by the size and sociometry of the swarm.  This 
research proposes a dynamic sociometry, which is shown to be 
more effective on some problems than the standard star and ring 
sociometries.  The performance of various combinations of 
swarm size and sociometry on six different test functions is 
qualitatively analyzed. 

 
 
 
 
 

  
Introduction  

 Particle Swarm Optimization (PSO) is a relatively new 
computational learning algorithm, first introduced by 
James Kennedy and Russell Eberhart in 1995 [4, 8, 9].  
It bears some resemblance to evolutionary computation 
[1].  The goal of PSO is to find the global optimum of 
some multidimensional (usually nonlinear) function.  
The algorithm has proven effective in solving many 
problems [3, 5, 6, 8].   

 
 
 
 
 
 
 
 In PSO, the search through the problem space 

can be thought of as the flight of a swarm of particles 
(points in the space).  The goal is to have the particles 
converge on the optimum of the function, much like a 
flock of birds converges on some destination.  The 
particles are initially distributed randomly through the 
problem space and given an initial velocity.  Each 
particle keeps track of its location and fitness (the value 
of the function being optimized), as well as the best 
position (and corresponding fitness) it has encountered 
so far in its flight.  Over time, the velocity of each 
particle is adjusted so that it moves stochastically 
toward its own best position and the best position found 
by another particle in its neighborhood.  A particle’s 
neighborhood is the subset of particles in the swarm 
with which it has direct communication.  This network 
of connections between all of the particles is known as 
the sociometry, or topology of the swarm.  The 
algorithm stops when some criterion is met—perhaps 
after a certain number of iterations, or when many 
iterations pass without significant improvement.   
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When PSO is applied to real-life problems, the 
function evaluations themselves are the most expensive 
part of the algorithm.  Therefore, when comparing two 
PSO variations, it is helpful if they have both used the 
same number of function evaluations.  In the 
experiments that follow, the swarm is allotted a certain 
number of function evaluations and terminates when 
that number is reached.  Pseudocode for the algorithm 
is given in figure 1. 
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for each particle pi in swarm S 
    initialize position xi, velocity vi 
    and neighborhood Ni  
 
do 
    for i = 1 to size of swarm 
        nb ← argmax pj ∈ Ni (bestFitnessValue(pj)) 
        nx ← bestFitnessLocation(nb) 
        bx ← bestFitnessLocation(pi) 
        for d = 1 to numDimensions 
             φ1, φ2 ← uniform random numbers ∈ [0,2]
             vid ← χ [vid + φ1 (xid – bxd) + φ2(xid – nxd)] 
             xid ← xid + vid 
         next d 
         update fitness, best fitness 
     next i 
until termination criterion met 
 
χ = 0.729844 and is used to keep velocities from 
exploding [2].  
igure 1.  The basic Particle Swarm Optimization 
lgorithm. 

As with many other optimization algorithms, 
he user must define some parameters.  One of these is 
he number of particles in the swarm.  Kennedy and 
berhart have noted that PSO seems to work well with 
 smaller population than is generally used in genetic 
lgorithms [8].  Most implementations of PSO have 
sed a swarm size of 20.  Here, we explore the effects 
f different population sizes on swarm performance. 

Another parameter that the user must specify 
s the sociometry of the swarm network.  Two popular 
ociometries are known as the ring and the star.   In the  
ing sociometry, each particle pi is connected to pi-1 and 
i+1.  This topology tends to allow for broader 
xploration of the problem space.  When one particle 
inds a promising region, only its immediate neighbors 
ill initially be drawn to that area.  No other particles in 

he swarm will know about that region unless their own 
mmediate neighbors move there.  

In the star sociometry, every particle is 
onnected to every other particle.  If one particle finds a 
uperior region in the search space, all other members 
f the swarm are immediately drawn to it.  As a result, 



the swarm generally converges more quickly but 
sometimes to a suboptimal point in the space.   

Kennedy and Mendes have explored several 
topologies, including random connections, and a 
“wheel” (where there is one central particle to which all 
others are connected and no other links) [10].  They 
have also used swarms with clusters.  In these 
sociometries, the swarm is divided into three or four 
subgroups.  Particles are connected to every other 
particle in their subgroup, but there are only a few 
connections between the subgroups.  This is analogous 
to the “tribe” approach that is sometimes used in 
genetic algorithms.  In all cases, the sociometry has 
been specified at the time of initialization and has been 
static through the run of the algorithm. 
 
Dynamic Sociometry 

When exploring large problem spaces, 
optimization algorithms must effectively balance 
exploration and exploitation.  Generally, it is wise to 
first make a broad survey of the space, and then focus 
effort on the regions of the space that look most 
promising.  This has motivated the dynamic sociometry 
for PSO.  The swarm is initialized with a ring-type 
sociometry.  Each particle is connected to just one other 
member of the swarm.  Over time, additional links are 
added.  Eventually, the network is fully connected in a 
star sociometry.  The strategy implemented here is to 
have the swarm fully connected after 4/5ths of the 
allotted function evaluations have been used.  Before 
that time, one new connection is added to each particle 
at regular intervals.  In this implementation, 
connections are not symmetric.   
 For example, suppose a swarm has 12 particles 
and is allotted 9600 function evaluations.  Each particle 
pi is initially connected to pi+1 (with p11 connected to 
p0).  The swarm gradually adds connections, so that 
after 9600*0.8 = 7680 function evaluations have been 
made, all of the particles are inter-connected.  After the 
initial ring setup, each particle must be connected to 10 
more particles, so one new connection is added after 
each 768 evaluations (64 iterations of the algorithm on 
a 12-particle swarm).  After iteration 64, each pi is 
connected to pi+2; after 128 iterations, each pi is 
connected to pi+3; and so forth. 
 
Experiments and Results 

Experiments were run on six test functions.  
The dynamic sociometry was compared to the ring and 
star sociometries.  Experiments were also run to test the 
effect of different swarm sizes.  Population sizes of 5, 
10, 15, 20, 25, 30, 40, 50, and 60 were used.  For each 
combination of problem, size, and sociometry, the 
median performance over 200 runs is reported.  All 
problems were run with 30 dimensions.  Table 1 shows 
the definition of each function, its global minimum, and 
the range of values (along each dimension) used for the 

initialization of the particles’ positions.  Table 2 shows 
a snapshot of each function in two dimensions.  These 
graphs give some indication of the topographical 
features of each problem, although the “noise” in the 
problems is not visible at this resolution.  In all 
experiments, the particles were initialized with zero 
velocity.  The algorithm made 60,000 evaluations on 
each run.  Thus, for a swarm size of five, there were 
12,000 iterations; but with a population of 60, there 
were only 1,000 iterations.  Results of the experiments 
are shown in Table 3.  Some qualitative analysis 
follows. 

De Jong and Sphere.  These functions are 
similar.  The sphere function is the same on all axes, 
while De Jong becomes steeper in each dimension.  
Both are smooth, and the global optimum in both cases 
can be found simply by following the gradient.  The 
results for these two functions were, not surprisingly, 
quite similar.  On both problems, the most superior 
performance was achieved by the ring sociometry on a 
ten-particle swarm.  Performance improved drastically 
when  the population size increased from five to ten, 
but then deteriorated rapidly as the population 
continued to grow.   The poor performance of the five-
member swarms may be due to the fact that with such a 
small population, the probability of one of the particles 
stumbling across a promising region is small.  The 
degradation of performance observed as the population 
size increases is likely because of the smaller number of 
iterations that are allowed.  There is not enough time to 
track the gradient. 

Rosenbrock.  The same significant 
improvement is observed as the size of the swarm 
increases from five to ten.  However, the degradation of 
performance as swarm size increases from 10 to 60 is 
much less severe (less than one order of magnitude).  
There does not appear to be much variability between 
the three sociometries. 

Rastrigin.  This function has hundreds of steep 
local optima.  In contrast to the sphere and de Jong 
functions, performance actually increases as the size of 
the population is increased.  With the larger population, 
there is a better chance that one of the particles will 
stumble into the best “valley,” or at least a very good 
one. The dynamic sociometry performs much better 
than the other two at all population sizes.  The strategy 
used in the dynamic sociometry to balance exploration 
and exploitation appears to pay off in this case. 

Griewank.  At a macroscopic level, this 
function appears very similar to the sphere and de Jong 
functions.  It does, however, have a very significant 
amount of noise, so there are many deceiving local 
optima.  Performance is again worst with the smallest 
swarms but improves by several orders of magnitude 
for the ring and dynamic sociometries as the population 
size increases from 10 to 20.  From that point, 
degradation of performance occurs more rapidly for the 
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References ring topology than it does for the dynamic one.  The 
most surprising result here is how poorly the star 
sociometry performs.  Because of the high connectivity 
present at the beginning in the star sociometry, the 
swarm is drawn early to a sub-optimal region.  It fails to 
thoroughly explore the whole space. 

[1] Angeline, P., “Evolutionary optimization versus particle 
swarm optimization: Philosophy and performance 
differences.” Proceedings of the Seventh Annual Conference 
on Evolutionary Programming, March 1998, pp. 601-610. 
[2] Clerc, M. and Kennedy, J., “The particle swarm – 
explosion, stability, and convergence in a multidimensional 
complex space.”  IEEE Transactions on Evolutionary 
Computation, Volume 6, Issue 1, February 2002, pp. 58-73. 

Giunta.  As with the Rastrigin function, 
performance increases as the size of the population 
increases.  This function also has many steep local 
optima.  With a population size of five, the ring 
sociometry gives the best performance.  However, the 
ring fails to improve as much as the other two as size 
increases.  The star sociometry is much stronger than 
the dynamic with smaller swarm sizes, but that gap is 
much narrower when 60 particles are used.  The trend 
suggests that the optimal number of particles is even 
greater than 60, but the performance improvement is 
leveling out by that point. 

[3] Eberhart, R. and Hu. X., “Human tremor analysis using 
particle swarm optimization.”  Proceedings of the Congress 
on Evolutionary Computation, 1999, Washington, DC, pp. 
1927-1930. 
[4] Eberhart, R. and Kennedy, J.,  “A new optimizer using 
particle swarm theory.”  Proceedings of Sixth International 
Symposium on Micro Machine and Human Science, Nagoya, 
Japan, October 1995. 
[5] Eberhart, R. and Shi, Y.,  “Evolving artificial neural 
networks.”  Proceedings of the International Conference on 
Neural Networks and Brain, 1998, Beijing, P.R.C. PL5-PL13.  [6] Eberhart, R. and Shi. Y., “Tracking and optimizing 
dynamic systems with particle swarms.”  Proceedings of the 
Congress on Evolutionary Computation, 2001, Seoul, Korea. 

Conclusions and Future Work 
None of the sociometries studied here 
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Dynamic sociometry proved to be effective in 
some situations but not all.  This research proposed 
only one possible dynamic sociometry.  Other variants 
need to be explored. 
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Table 1.  Test problems used in experiments. 

Proceedings of the International Joint Conference on Information Sciences, pp. 1557-1560, 2003



 
   

k  
 
Table 2.  Graphs of functions used in experiments. 
 
 

 
Table 3. Median performance over 200 runs of PSO on six functions using var
swarm size.  The best combination of swarm size and sociometry for each prob
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us combinations of sociometry and 
 is highlighted. 
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