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This paper discusses the realization of a quantum associative memory using linear integrated
optics. An associative memory produces a full pattern of bits when presented with only a partial
pattern. Quantum computers have the potential to store large numbers of patterns and hence have
the ability to far surpass any classical neural network realization of an associative memory. In this
work two 3-qubit associative memories will be discussed using linear integrated optics. In addition,
corrupted, invented and degenerate memories are discussed.
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I. INTRODUCTION

Shor’s factorization algorithm [1] initiated extensive
theoretical and experimental work in quantum comput-
ing. Since Shor’s work, several other quantum comput-
ing algorithms have been proposed. Grover proposed a
super-classical search algorithm to find an element in an
unsorted array [2,3]. Schack showed that a quantum com-
puter could be used to study quantum chaos [4]. More
recently, Ventura and Martinez addressed the issue of as-
sociative memories and showed that quantum computers
could effectively realize these devices [5,6]. This article
proposes a linear, integrated-optics simulation of such a
quantum associative memory (QuAM).
Consider the problem of associative pattern comple-

tion – learning to produce one of the full patterns when
presented with only a partial pattern. Assume a set P of
m binary patterns of length n. The trivial solution is sim-
ply to store the set of patterns as a lookup table. There
are two reasons why this is not always the best solution.
First, it requires that a unique address be associated with
each pattern. Second, the lookup table requires mn bits
in order to store all the patterns. It is often desirable to
be able to recall the patterns in an associative fashion,
thus eliminating the need for explicit addressing. That is,
given a partial pattern one would like to be able to“fill in”
a reasonable guess as to the rest of the pattern. This may
also be considered a form of generalization as the partial
pattern may never have been seen during the learning of
the pattern set P . Further, it would of course be benefi-
cial if a smaller representation was possible. To this end,
various classical associative memory schemes have been
proposed, perhaps the most well-known being the Hop-
field network [7] and the bidirectional associative memory
[8]. These neural approaches to the pattern completion
problem allow for associative pattern recall [9], but suf-
fer severe storage restrictions. Storing patterns of length
n requires a network of n neurons, and the number of
patterns, m, is then limited by m ≤ kn, where typically
0.15 ≤ k ≤ 0.5. In an effort to improve on this, a QuAM
that maintains the ability to recall patterns associatively
while offering a storage capacity of O(2n) using only n
neurons has been proposed [6].
This QuAM is composed of 2 major components: a

storage algorithm that is detailed in [5] and a recall mech-
anism that is based on a modified version of Grover’s well-
known algorithm for quantum search [2,3]. It is the recall
operation of the QuAM algorithm that we will focus on
here. In fact, due to the nature of the proposed linear
optics implementation, the initial memory storage por-
tion of the algorithm becomes a relatively simple matter.
Therefore, only a brief discussion of the memory storage
will be made followed by a more thorough discussion of
the memory recall.
As stated, the associative memory device will be con-

structed using linear integrated optics. Linear integrated
optics have been shown to be a straightforward environ-

ment in which to study quantum algorithms [10,11]. This
is a result of the fact that single photons evolve unitarily
in an absorption free linear optics environment and hence
there is a one to one correlation with quantum comput-
ing [10–14]. The photon evolves as it passes through a
series of passive optical devices (gates) followed by mea-
surement. Each photon traverses through the entire cir-
cuit exploring all non-zero amplitude paths. Hence each
photon that traverses through the circuit represents a
realization of the experiment. An ensemble of single-
photons events will yield the probabilistic outcomes of a
single photon.
There are several unique features of a linear optics

quantum circuit. Each degree of freedom (a particular
path in the circuit) of the single photon is labeled as an
eigenstate of the Hilbert space. For example, in a 3-qubit
circuit there are eight basis states. Hence, there will be
eight paths, one associated with each basis state. For
example in figure 1, the |000〉 through |111〉 states are
each labeled with a particular path. The total contribu-
tion of the probability amplitude and phase of the photon
in each path yields the wavefunction of the single pho-
ton in a spatial mode basis. The operations performed
on each degree of freedom (path) yield the desired quan-
tum circuit. Unfortunately, the apparatus grows with the
Hilbert space and not with the number of bits [13] due
to lack of entanglement between photons. On the other
hand, there is small decoherence per logic gate in a linear
optics set up. Hence, linear optics is a good environment
in which to study few-bit quantum algorithms. In this
paper, the various aspects of the associative memory de-
vice will be discussed in terms of the 3-path bit device
shown in figure 1. After the 3-path bit discussion, a 2-
path 1-polarization bit scheme will be presented. The
latter is slightly less intuitive but easier to implement.
An important question is how does a quantum asso-

ciative memory implemented using linear optics com-
pare with classical optical implementations of associative
memories, which have been well studied [15–17]. The
answer is that if we were implementing a traditional as-
sociative memory in a quantum system, there would be
no benefit, as classical optics already provides good im-
plementations. However, this is not the case. The stor-
age and recall mechanisms for the QuAM are fundamen-
tally different than traditional associative schemes such
as Hopfield, bidirectional associative memory (BAM),
etc. Since classical optical approaches are implementing
these traditional schemes (indeed, they have no choice
as these are the best known classical associative mem-
ory algorithms), they are limited to storage capacities of
O(kn), where 0.15 ≤ k ≤ 0.5 (as mentioned earlier). The
appeal of a quantum approach to associative memory is
the ability to leverage non-classical properties of quan-
tum systems, providing for storage capacities of up to
O(2n).
Another potential benefit of quantum associative

schemes worth mentioning is the fact that they provide a
natural setting for considering higher order bit patterns.
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Traditional classical methods consider only second order
correlations. Modifications to the standard classical al-
gorithms have extended this to third and fourth order
correlations [18] and higher order correlations have been
shown to improve recall [19].

II. QUANTUM ASSOCIATIVE MEMORY

A. Memory Writing and Storage

In linear optics, generating the initial superposition of
states is straightforward. For example, one can generate
any superposition by using a network of beam splitters
with appropriately chosen reflectance and transmittance
and phase delays [12]. In this particular work, an input
state consisting of eigenstates with equal amplitude is de-
sired. Linear integrated optics can generate such equal
amplitude superpositions using symmetric fiber couplers
[10,11,21]. For example, in figure 1, an equal amplitude
superposition of the |000〉, |010〉 and |111〉 states is pre-
pared for the input state. This is realized by letting a
photon enter one of the ports of a 3×3 fiber coupler. By
adjusting the relative phases of the three output paths
and connecting the outputs to the inputs of an 8×8 fiber
coupler the desired state is “written” to the memory.
For the specific example shown in figure 1, the three

memories in storage are

M =




000
010
111


 (1)

The quantum system representing the memory is thus

|ψ0〉 = 1√
3
(|000〉+ |010〉+ |111〉) (2)

which, in vector notation will be represented as |ψ0〉 =
1√
3
[1, 0, 1, 0, 0, 0, 0, 1].
In this setup, the memory is only stored briefly in the

various paths or fibers before entering the recall portion
of the circuit. Mechanisms for storing the memory for
longer times can be considered. For example, the photon
amplitude for each path could be held in a conditional
loop and when a switch is triggered the photon ampli-
tudes are allowed to enter the recall device. The tech-
nical challenges of the storage portion of the device are
considerable. The primary purpose of this paper is to
study the recall mechanism.

B. Memory Recall

The memory recall uses a modified Grover’s search al-
gorithm. In [3] Grover showed that it was possible to
search for an element in a database using almost any
unitary transformation. In [11] it was shown that linear

integrated optics could realize Grover’s search algorithm
using the discrete Fourier transform (DFT) generated by
N × N symmetric fiber couplers and some prescribed
phase operators realized by phase delays in the appro-
priate paths. The matrix elements of a DFT are given
by

Fab = e2πiab/N (3)

where 0 ≤ a, b ≤ N − 1. The adjoint of the DFT F † is
realized by relabeling the output paths. The relabeling is
done according to a T operation, where F † = TF . The
T operation for three path bits in matrix form is given
by

T =




1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0




(4)

The T operation simply swaps rows of the DFT. For ex-
ample, the 111 path is relabeled as the 001 path. This is
shown in the second and fourth fiber coupler in figure 1.
Finally, we define the operator Iφ that inverts the

phase of state φ and define the operator IM such that it
inverts the phase of any state representing a valid mem-
ory. (This last operator is necessary to minimize the
effects of spurious memories that develop during the re-
call process; see [6] for details.) The phase operators
are obtained by placing a π phase delay in the appropri-
ate paths. Then assuming that |ψ0〉 represents a 3-qubit
QuAM containing valid memories, and assuming that we
want to recall the memory associated with the partial
pattern τ , the recall mechanism is

F−1I0̄FIMF−1I0̄FIτ |ψ〉 (5)

Now, consider the following 3-qubit associative mem-
ory example. The linear optics realization of this device
is shown in figure 1. The desired outcome is to recall the
memory pattern whose first two bits are 11, thus τ = 11?
where ‘?’ represents unknown and matches either 0 or 1.
This is done by successively applying each operator

from Eq. (5). First, any patterns in the memory that
match the query have their phases inverted

I11?|ψ0〉 = |ψ1〉 = 1√
3
[1, 0, 1, 0, 0, 0, 0,−1] (6)

This operation inverts the phase of any state where the
first two bits are equal to 1. This phase operator is re-
alized in figure 1 by inverting the phase of all elements
that have their first two bits high. Note that there is no
need to insert a phase delay in the 110 path in the circuit
described in figure 1 since there is no input to this path.
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Next, the inversion about average operation effected by
the operator sequence −F−1I0̄F is performed

−F−1I0̄F |ψ1〉 = |ψ2〉 = 1√
48

[−3, 1,−3, 1, 1, 1, 1, 5] (7)

This inversion-about-average operation is realized by a
balanced 8-path Mach-Zehnder interferometer consisting
of two 8× 8 fiber couplers. Notice the appearance of the
5 spurious memory patterns (those with amplitude 1√

48
).

At this point, if we were to observe the system,there is
a 25

48 ≈ 52% chance of recalling the appropriate pattern,
|111〉. Continuing with the operator sequence of Eq. (5),
the phases of all valid memory states are inverted.

IM |ψ2〉 = |ψ3〉 = 1√
48

[3, 1, 3, 1, 1, 1, 1,−5] (8)

This is realized by placing a phase delay in all of the paths
that have a valid memory. In order to get the correct out-
put to the correct input in figure 1, the fibers are crossed.
However, there is no interaction between the fibers. Once
again the rotation about average is performed yielding

−F−1I0̄F |ψ3〉 = |ψ4〉 = 1√
192

[−3, 1,−3, 1, 1, 1, 1, 13]

(9)

Observing the system will yield a 169
192 ≈ 88% chance of

seeing the correct pattern, |111〉. Hence, there is an 88%
chance that a photon will exit the 111 port of the last 8×8
coupler. A standard voting scheme will quickly indicate
that the desired state was found. Hence, introducing an
ensemble of single photons to the apparatus will show
roughly 88% of the photons coming out of the 111 port.

III. CORRUPTED, INVENTED OR
DEGENERATE MEMORIES

In the last section a specific memory search was per-
formed. There were two key elements to the search. The
first element was that the memory was a valid memory.
Second, the search was made for a valid element. If those
two conditions were satisfied, then the search was suc-
cessful 88% of the time. This three-bit search required
only two iterations of the inversion about the average
operator to achieve this high probability of success.
In this section, other types of memory outcomes are

discussed. We classify these memories as corrupted, in-
vented or degenerate. A corrupted memory is one in
which the storage doesn’t actually contain one or more
of the memories that were initially intended to be in the
storage. This can happen through decoherence, incor-
rect state preparation etc. For example, suppose that
the correct memory is the one discussed earlier described
by the vector 1√

3
[1, 0, 1, 0, 0, 0, 0, 1]. However, through

some process the memory has been corrupted and evolved

to 1√
3
[1, 0, 1, 0, 0, 0, 1, 0]. Then after implementing the

recall, the result yields 1√
192

[1, 5, 1, 5, 5, 5,−3, 9]. This
means there is an 81

192 ≈ 42% probability of measuring
the photon in the 111 path after the search. If the cor-
rupted memory was a result of a systematic error, such
that it could be repeated, then a voting scheme (or an
ensemble of experiments) would show a definitely distinct
result from the “good” memory probabilities.
An invented memory is one which does not exist, but

one decides to search for the memory, anyway. This is
a memory pattern that was never originally intended to
be in the storage. However, either by mistake or curios-
ity one decides to search for it. As an example, suppose
that the initial state is 1√

2
[1, 0, 1, 0, 0, 0, 0, 0]. After im-

plementing the recall that searches for τ = 11?, the out-
put state is 1√

128
[2, 2, 2, 2, 2, 2, 2, 10]. Therefore there is a

100
128 ≈ 78% chance of recalling the |111〉 state that didn’t
initially exist. Since this is a reproducible result, it can
be distinguished from the good memory after many ex-
periments. While the probability of finding the photon
in the 111 path is distinguishable from the good memory
result, the result still shows a high probability of find-
ing the invented memory. In addition, it would take a
relatively large number of experiments in order to signif-
icantly (in the statistical sense) distinguish between the
two. Also, as a note, the corrupted and invented mem-
ories, can, in many instances have the same statistical
outcomes.
A degenerate memory is best described by “cram-

ming” one part of the Hilbert space with many mem-
ories while leaving other parts of the Hilbert space rela-
tively sparsely populated. This creates a rather peculiar
result, if one is searching for memories in the “dense”
region of the Hilbert space. It is possible in this case,
when inverting about average, to actually have a neg-
ative average and hence amplify the states outside the
search. Even for a perfectly good memory and valid
search operation, undesirable amplifications take place.
Consider an initial state vector of 1√

3
[1, 0, 0, 0, 0, 0, 1, 1].

Hence, there are two memories associated with the query
τ = 11? and only one other memory in the Hilbert
space. The circuit is changed appropriately for this par-
ticular search. Once again, we search for a pattern(s)
whose first two bits are 11. The output of the recall is

1√
192

[−13,−1,−1,−1,−1,−1, 3, 3]. It can be seen that
the valid memory outside the search is the state that is
actually amplified by the search. It can be argued that a
degenerate memory is of little use, since it doesn’t utilize
the Hilbert space well. This implies that some advanced
planning should be involved in how to store the patterns
so as to avoid such results.
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IV. SIMPLIFIED SETUP: 2-PATH AND 1
POLARIZATION BIT

It is difficult to align and control 8 paths. The 3-
path bit representation shown in figure 1 does provide
a straightforward demonstration of the evolution of each
basis state. However, a more technically feasible re-
alization could be accomplished using a 2-path bit, 1-
polarization bit scheme. In this way, only 4 paths would
need to be aligned, which would dramatically decrease
the relative path length demands.
There are a few differences in the operators needed to

implement the simpler recall mechanism. Consider figure
2. It can be seen that 4 × 4 couplers and polarization
half wave plates (HWP) with fast axis at 22.5o are used
instead of the 8× 8 couplers. The matrix needed for this
transformation is generated by taking the tensor product
of a DFT on two bits with the Hadamard transformation
on one bit. The Hadamard transformation

H =
1√
2

(
1 1
1 −1

)
(10)

is effected by placing a half wave plate (HWP) with fast
axis at 22.5o with respect to one of the eigenpolariza-
tions. If one assumes that horizontally polarized light
represents the |0〉, then the 22.5o fast-axis orientation of
the half wave plate will put the photon in an equal ampli-
tude superposition of the two polarization states. Using
this in combination with the DFT allows us to construct
the inversion about average operator. A HWP at 45o will
rotate the polarization from one polarization state to an-
other. This operation is later used to generate the initial
superposition state. A HWP at 0o will create a half wave-
length phase delay for the vertical polarization. Likewise,
a HWP at 90o will create a half wavelength phase delay
for the horizontal polarization. These last two operators
are used to generate the desired phase matrices.
With the above operations, the simplified circuit can

be constructed as shown in figure 2. The spatial modes
are used for the first two bits and the polarization modes
will be used for the third bit. In this example the horizon-
tal polarization state will be the |0〉 state and the vertical
polarization state will be the |1〉 state. A horizontally po-
larized photon is introduced into one of the inputs of a
3×3 coupler. The coupler generates the equal amplitude
spatial mode superposition. The first 45o HWP rotates
the horizontally polarized light in the 11 path to the ver-
tical state. Hence the desired memory is now stored in
the system.
The recall mechanism proceeds much the same way as

the 3-path bit explained earlier. First, a π phase delay
swaps the phase of the states where the first two bits are
high. The first two couplers and the half wave plates per-
form the inversion about average operation. As a note,
it can be seen that a “compiling” technique similar to
the one prescribed in [14] could simplify this circuit. For

example, the first set of HWPs at 22.5o in each path ro-
tates the polarization to an equal amplitude superposi-
tion. Only the 00 path has an intermediate operation be-
fore performing the the inverse −22.5o operation. Hence,
there is no net change to the circuit if the HWPs in the
01, 10 and 11 paths are eliminated in figure 2. The IM
operation is performed by inserting the HWPs at the ap-
propriate angles. For example, a valid memory is the 000
and hence a HWP in the 00 path with its fast axis ro-
tated 90o with respect to the horizontal axis will delay
the 00H phase by π. Again, the inversion about average
operation is repeated. The final state of the photon is
then measured. The probabilistic results are the same as
described using the 3-path bit setup.

V. DISCUSSION

The ideas presented in this paper have been discussed
in terms of a linear optics circuit. One of the attractive
features of this linear optics environment is that classical
light fields which carry an ensemble of single photons
can be used. Hence, the voting scheme is simply realized
by having many photons propagate through the circuit.
The relative intensities at the output ports are equal to
the single photon probabilities. Such luxuries are not
afforded by more standard quantum computing systems,
which makes the idea of voting more difficult to realize.
Therefore in standard setups, it would be much more
difficult to distinguish between good, corrupted, invented
and degenerate memories in standard systems.
The idea of the “Oracle” which Grover discusses in

his original search proposal has not been mentioned so
far. The primary purpose of the oracle is to “mark” a
prescribed state by inverting its phase. The states with
inverted phase are the states that are searched for. An
excellent example of such a device for linear optics is
found in [14]. In this work, the role of the oracle has been
played by the person who constructs the circuit. The
oracle appropriately places phase delays and waveplates
in the desired paths to obtain the desired circuit. Hence,
it is a less general oracle than what Grover described, but
it suits the needs of the associative memory presented
here.
The implementation of a many-path circuit is nontriv-

ial. Spurious phase shifts, unequal amplitude splittings,
and absorption can alter the state from the desired out-
come. Several simulations were performed using nonideal
elements. Consider Fig. 3. In this figure three bars show
the results of simulations of the normalized relative in-
tensity coming out of the 111 path for ideal and nonideal
situations. In the simulation the initial state vector was
given by |ψ0〉 = 1√

3
[1, 0, 1, 0, 0, 0, 0, 1]. The search looked

for all patterns where the first two bits were high and the
third bit was unknown (|11?〉). The first bar shows the
relative intensity in the ideal situation (as discussed ear-
lier). The second bar shows the normalized relative inten-
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sity when a typical 8× 8 fiber coupler is introduced into
the system. The amplitude splittings of an actual 8 × 8
fiber coupler were used in this simulation [22] (the actual
8 × 8 coupler was used to simulate all 4 couplers in the
circuit). Notice that very little difference in normalized
relative intensity can be observed. However, there is only
a 62.5% probability that the photon will make it to the
end of the circuit without being absorbed in the actual
8×8 fiber couplers. On the other hand, the loss was well
balanced, and hence the fringe visibility remained high.
The third bar shows the nonideal coupler and random
spurious phase shifts in both inversion-about-average op-
erations. For example, the spurious phase shifts used in
the first inversion-about-average operation were 2π/25,
3π/50, −π/10, π/100, −π/50, 3π/50, 0, −π/25. Even
with passive thermal stabilization, thermal drifts (phase
shifts) can be as small as a few degrees of phase shift per
minute [23]. Hence, these phase shifts are reasonable.
Lastly, consider Fig. 4. This figure shows the normal-

ized relative output intensity coming out of the 111 path
using nonideal couplers. The phases in all of the paths are
ideal except for the 111 path in the first inversion-about-
average operation, where the phase is varied continuously
from 0o to 180o. As a note, adjusting the phases in the
other paths had similar effect, which was to lower the
probability of measuring a photon in the 111 path with
increased phase.
In conclusion, this article has discussed a proposal

for an experimental realization of a quantum associa-
tive memory. Quantum associative memories have the
capability to greatly surpass current classical associative
memories.
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FIG. 1. 3-path bit quantum associative memory. γ repre-
sents a single-photon input. The small boxes in the paths are
phase delays. The large boxes represent single-mode symmet-
ric fiber couplers with the indicated dimensions.

FIG. 2. 2-path and 1-polarization bit quantum associative
memory device. γH represents a single photon of horizontal
polarization at the input of the device. The small open box in
the 111 path is a phase delay. The small shaded boxes in the
paths are half wave plates at the specified orientation. The
large boxes represent single-mode symmetric fiber couplers
with the indicated dimensions.

FIG. 3. Normalized relative intensities out of 111 path.
The first bar shows the normalized relative intensity com-
ing out of the 111 path for an ideal circuit (equal amplitude
splittings, no spurious phase shifts). The second bar shows
the normalized relative intensity coming out of the 111 path
for the nonideal situation of unequal amplitude splittings for
a typical 8 × 8 fiber coupler. The third bar also shows the
normalized relative intensity coming out of the 111 path for
the nonideal situation in which unequal amplitude splittings
and randomly chosen spurious phase shifts are present.

FIG. 4. Probability of measuring a photon out of the 111
path as a function of a spurious phase shift in the 111 path
of the first inversion-about-average operation.
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