
Towards Automatic Shaping in Robot Navigation

Todd S. Peterson, Nancy E. Owens & James L. Carroll

Computer Science Department

Brigham Young University

todd@cs.byu.edu, owens@cs.byu.edu, james@jlcarroll.net

May 14, 2001

Abstract

Shaping is a potentially powerful tool in rein-
forcement learning applications. Shaping often
fails to function effectively because of a lack of
understanding about its effects when applied in
reinforcement learning settings and the use of in-
adequate algorithms in its implementation. Be-
cause of these difficulties current shaping tech-
niques require some form of manual interven-
tion. We examine some of the principles involved
in shaping and present a new algorithm for au-
tomatic transferral of knowledge which uses Q-
values established in a previous task to guide
exploration in the learning of a new task. This
algorithm is applied to two different but related
robot navigation tasks.

1 Introduction

Reinforcement learning is an attractive method
for developing robot behaviors because it does
not require a model of the environment, nor does
it require the designer to specify the exact be-
havior of the robot in every situation that may
occur. There are a few key concerns when ap-
plying reinforcement learning in robot settings:
first, reinforcement learning can be very slow in
large domains; and second, policies learned in re-
inforcement learning apply only to single tasks.
One method for overcoming these concerns is to
transfer knowledge gained from one task to the
performance of a new task through a process
called shaping. Unfortunately, current shaping
methods require manual intervention.

1.1 Reinforcement Learning

Reinforcement learning [11] is a class of algo-
rithms that uses temporal differences to learn
optimal control policies (or near optimal policies

in the case of learning with function approxima-
tion) for agents that are situated in a real or
simulated environment.
A popular on-line algorithm for learning the

optimal policy function is Q-learning [14]. In Q-
learning the policy is formed by determining a
Q-value for each state-action pair. A Q-value is
the discounted expected on-line return for per-
forming an action at the current state.

Q(st, at) = R(st, at) + γ maxaQ(st+1, a),

where Q(s, a) is the Q-value for state s and
action a, R(s, a) is the reinforcement received
from taking action a from state s and γ, where
0 < γ < 1, is the discount factor. The update
equation is

∆Q(st, at) = α(R(st, at) + γmaxaQ(st+1)),

where α is the learning rate.
In order to avoid learning sub-optimal policies

the agent often explores his environment semi-
randomly. One example of a semi-random ex-
ploration policy is to choose actions through a
Boltzmann distribution:

prob(at) =
eQ(st,at)/τ

∑

a eQ(st,at)/τ
,

where τ effects the amount of randomness in the
agents actions, and decays over time.
Reinforcement learning is particularly slow

when applied directly to robot settings because
of the extra time needed for physical interac-
tions. One way of decreasing the learning time
in robot settings is to use a simulator to speed
up the interaction of the robot with its envi-
ronment. Unfortunately, inherent noise in the
sensors and the actuators of the robot prevents
a simulator from exactly representing the dy-
namics of the environment or the robot’s ac-
tuators. Function approximation is often used
to increase the simulation’s accuracy, but is not

1



sufficient to completely solve this problem. Be-
cause of these and other modeling difficulties,
tasks learned on simulators often transfer poorly
to the real robot.
The second concern with applied reinforce-

ment learning is that policies learned to achieve
one task are not easily modified for new situa-
tions. Combining function approximation with
reinforcement learning allows an agent to ap-
ply a previously learned policy to new environ-
ments provided that the new environments share
some underlying environmental characteristics,
but it does not facilitate the modification of a
learned policy to match new goal conditions. If
the underlying environmental characteristics do
not match, or if goal conditions are sufficiently
different, further training is required in order to
achieve adequate performance.

1.2 Robot Shaping

Because of these and other difficulties, several re-
searchers have used various shaping techniques
to transfer knowledge from one problem domain
to another. Shaping is a term used in animal
psychology [8, 9] to describe a process in which
an animal is trained to perform a complex be-
havior in stages. The animal is first trained to
perform a very simple task, and is then retrained
to perform similar, although slightly more diffi-
cult, tasks in gradual degrees until the desired
behavior is attained. Shaping covers a variety
of different approaches (ex. [2, 5, 7, 13]), each
of which is somewhat successful. However, each
of the techniques requires some form of manual
intervention.
The first approach to shaping focuses on

manually changing the reward structure of the
problem so that the problem is easier to learn
[13, 3, 5, 4]. For example a gradient reward was
added to the terminating reward in our previ-
ous work on a hierarchical reinforcement learn-
ing strategy applied to a mine field navigation
task [10]. This approach to shaping has shown
to be effective in speeding up the learning pro-
cess, but it requires intimate knowledge of the
environment in order to appropriately place in-
termediate rewards.
Another approach to shaping is to change the

physics of the problem in order to make the
problem easier to learn. This approach was ap-
plied to a mountain car task [7]. The height of
the mountain was gradually increased for each
run, enabling the agent to learn to climb the
mountain faster than if the task is learned on
just the final height. This approach has also

shown to be effective, but it is impractical to
change the physics of a real-world environment,
and also requires knowledge of how to appropri-
ately change the physics. It can be practical to
apply this approach to shaping in a simulator,
then transfer the knowledge learned in a simu-
lator into a robot or other physical system.
In the last approach to shaping, the policy

learned for one task is modified through rein-
forcement learning in order to perform a new
task [2]. The idea here is to only change the
portion of the previously learned policy which is
different than the original. In order for the task
to be learned in less time than just learning the
task from scratch, Bowling et. al. needed to fix
the overlapping portion the task so that it could
not be modified. This required manual interven-
tion in order to determine which portions should
be learned and which should remain fixed.
Although each of the shaping techniques de-

scribed above allowed the agent to learn com-
plex tasks faster than traditional reinforcement
learning techniques, they all required some form
of design intervention.1 Part of the reason inter-
vention is required is in the subtleties involved
in appropriately transferring previously learned
policies.
In this work we demonstrate the failure of

a naive approach to shaping on a simple wall-
following task. We then present an analysis of
shaping in situations where the problem dynam-
ics stay the same, but where the reward struc-
ture of the problem is different, and present an
algorithm for applying shaping in this situation
that doesn’t require manual intervention. We
then demonstrate the success of this technique
on simplified simulations, and on a more real-
istic simulation of obstacle-avoidance and wall-
following.

2 The wall-following task

Using a reinforcement learning agent in a sim-
ulated environment, we explored the applica-
tion of shaping in learning a wall-following be-
havior. Specifically, the agent has as 8 sonars
inputs, evenly spaced throughout 360 degrees.
The agent is given a reward of 1.0 whenever the
agent detects a wall with its left or right sonar
and is within 35% of its maximum sonar range.
The agent is given a reward of −1.0 for colliding
with a wall.
The agent has a choice of five different actions,

each of which represents the desired turn angle

1manual intervention by the designer of the system

2



for the robot. The actions include a left or right
turn of 0, 20, or 60 degrees. The robot must
continue moving forward as it turns, and can-
not move backwards. The agent uses a CMAC
[1] to approximate the Q-values for each action.
The CMAC has 10 layers, each layer containing
3 bins per input.

A natural precursor to the wall-following task
is the task of wall-avoidance. In this task the
agent was trained to avoid collisions with walls.
Specifically, the agent was given a reward of−1.0
whenever the agent collided with a wall, and a
reward of 0.0 otherwise. Final Q-values from
the learned wall-avoidance task were then used
as the initial Q-values in a wall-following task.

We trained five agents directly on the wall-
following task, and five additional agents first on
wall-avoidance and then on wall-following. Fig-
ure 1 shows the average learning curve of the
agents trained from scratch on the wall-following
task. Figure 2 shows the average learning curve
of the agents trained on the wall-following task
through shaping. As can be seen in Figure 2 this
approach to shaping was dismally inadequate.

0

20

40

60

80

100

0 40000 80000 120000 160000 200000

Figure 1: Average of 5 runs of learning wall-
following from scratch. Shows the percentage of
time the agent is performing wall-following.

Not only did the shaping attempt not learn
the desired task more quickly than a “con-
trol” agent learning the task from scratch, but
the agent failed to learn the task at all within
200, 000 time steps (a more than generous al-
lotment of time). Other researchers have also
noticed this phenomenon Bowling98[2].

This unexpected result lead us to a more care-
ful examination of the principles involved in
shaping, particularly in shaping situations which
involve modified reward structures in a static en-
vironment. The hope was that a better under-
standing of the mechanics of shaping would lead
to an effective algorithm which could be success-
fully applied to various shaping situations.

0

20

40

60

80

100

0 40000 80000 120000 160000 200000

Figure 2: Average of 5 runs of learning wall-
following through shaping. Shows the per-
centage of time the agent is performing wall-
following.

3 Analysis

0

3 76 104 11 13 14

5 9

8

122

1

Figure 3: Simple analysis task. Agent starts task
at node 0 and terminates at one of the nodes at
the bottom of the tree.

We begin our discussion of shaping by consid-
ering a very simple decision task shown in Figure
3. In the task the agent starts at the top node
of the tree. Each of the leaf nodes of the tree
are termination nodes for the decision problem.
One of the paths (unknown to the agent) ter-
minates in a reward. The agent must learn to
consistently choose the path which leads to the
reward. This task is very easy and is learned in
about 10 iterations using a best-first exploration
strategy.
In the second phase of training, the task is

changed by altering the location of the reward.
If the reward remains close to its previous lo-
cation (is moved perhaps one node to the right)
then a large portion of the optimal policies of the
first and second tasks are identical. Intuition
suggests that information acquired during the
first task should be easily applicable to the sec-
ond, making this an ideal problem for shaping.

3



Several shaping approaches were tried, but each
failed to significantly decrease learning time.

3.1 Direct Transfer of Q-values

If the agent trains on the initial task until all
of the Q-values reach their optimal values, all of
the Q-values in the whole tree will be zero, ex-
cept for those on the branch leading towards the
goal. When the agent is retrained on the task,
using Q-values learned from the previous task
as the initial Q-values for the new task (a tech-
nique which we call direct transfer of Q-values),
the agent takes slightly longer to converge to an
optimal policy.

The reason for this extra time is explained by
considering that the agent is losing information
about its environment faster than it is gaining
information. If we assume a discount factor of
.95 and a learning rate of 1.0 (which is sufficient
for a deterministic world), and a best-first (de-
terministic) exploration strategy, the results of
training are as follows. During the first episode
of training the agent (incorrectly) assumes that
the goal will be exactly where it was. The agent
receives a reward of 0.0, and updates its Q-values
to be zero. At this point, all of the Q-values ac-
tions leading towards leaf nodes are zero. This
Q-value of 0.0 is propagated backwards each suc-
cessive episode until the value of the root node is
also updated to zero. The agent is then required
to do a blind search for the reward.

We might assume that the learning rate or the
discount factor is the problem here. However,
similar problems arise with other learning rates.
When a reward is moved from its original posi-
tion the original policy must be unlearned. The
difficulty is that if the learning rate is too low,
the agent spends even more time unlearning the
task than it would take to learn the initial task
with a high learning rate.

R(0) R(1)

0.9 0.0

Figure 4: Simple decision problem. If Q-values
are initialized as shown, the problem is difficult
to learn.

For example consider the above simple deci-
sion problem. When the reward is moved just
one position to the right the agent has a very
difficult re-learning task. It must drop the left

Q-value of .9 all the way down to say .49, while
moving the 0 up to .5.
Thus the learning rate must balance the

agent’s need to unlearn incorrect old informa-
tion, while preserving old information which was
correct. Best performance was achieved with a
learning rate near 0.5. Changing the discount
factor had little effect.

3.2 Modified Prioritized Sweeping

To help unlearn old incorrect information we
tried an algorithm which propagates the change
in Q-values more quickly, (similar to prioritized
sweeping [6].) The modified prioritized sweeping
doesn’t use a model of the environment, it sim-
ply keeps a history of the past n updated nodes,
which will be the state’s predecessors, and prop-
agates updates back to these nodes.
Modified prioritized sweeping decreased the

overall search time for both shaped and tradi-
tional reinforcement learning, but did not de-
crease the shaping time in comparison to the
original learning time.

3.3 Alternate Exploration

Strategies

We also tried several alternate exploration
strategies [12] including recency-based, counter-
based, and error-based exploration. None of
these methods work in conjunction with direct
transfer of Q-values for the same two reasons:
First, if the learning rate is too high, correct in-
formation is overwritten as new Q-values are up-
dated. Second, if the learning rate is low enough
to prevent the overwriting of good information,
it takes too long to unlearn the incorrect portion
of the previously learned policy.

4 Memory-Guided

Exploration

One solution to these problems is to keep the
old Q-values in a separate place, and initial-
ize the new Q-values to the same starting po-
sition as when learning from scratch. This is
advantageous because the agent doesn’t need to
spend additional time unlearning incorrect infor-
mation.
As learning commences, all of the Q-values are

set to some initial value such as 0.5. Even when
a small learning rate is used, the policy becomes
correct with one update, even though Q-values
may be far from their optimal values.

4



For example, in the decision problem shown
in Figure 5 only one iteration is required to find
the optimal policy, (even if the agent makes the
wrong choice), as compared to many iterations
in the decision problem shown in Figure 4.

R(0) R(1)

0.5 0.5

Figure 5: Simple decision problem. If Q-values
are initialized to 0.5, the problem is learned in
one iteration.

If the old Q-values are not used to initialize
the new Q-values, how then are they used to fa-
cilitate shaping? If the old Q-values can be used
to guide the agent in its initial exploration, the
agent should be able to find the optimal policy
much faster. The update of the new Q-values
is done from scratch, and is unaffected by the
old Q-values. In this way the agent is prevented
from having to unlearn an incorrect policy.

One exploration policy that worked well was a
version of choose best exploration with an eval-
uation function of:

Eval(s, a) =W1 ∗Q(s, a) +W2 ∗ oldQ(s, a),

whereW1 andW2 are weights that represent the
amount of consideration that should be given to
each value. Q(s, a) represents the current Q-
value of state s and action a, and oldQ(s, a) rep-
resents the Q-values learned in the primary task.
W2 should eventually decay to 0.0 so that the fi-
nal policy is based only on the new Q-values.
This ensures that the agent will eventually learn
the new task.

The effect of this exploration policy is to ini-
tially bias exploration near the previous policy.
W2 is set to be small enough that if the previ-
ous policy is incorrect, as Q-values are updated
the exploration shifts toward the new Q-values.
If the optimal policy is similar to the old pol-
icy then this will significantly reduce the time
required to learn the new task. In cases where
the primary and secondary tasks are dissimilar,
shaping would normally be inappropriate. How-
ever, this shaping algorithm requires only a few
more time steps to learn a dissimilar task than
it would to learn it from scratch. Therefore, a
robot encountering a completely unknown prob-
lem can safely choose to apply shaping if a pri-
mary policy has been learned previously.

5 Results

We applied memory-guided exploration to the
simulated wall-following task. The initial explo-
ration weights of W1 = 1.0, W2 = 0.1. W1 re-
mained constant andW2 decayed to 0 by 50, 000
steps.
Figure 6 shows the agent learning the wall-

following task from scratch, and Figure 72 shows
the agent using the memory-guided exploration
algorithm.

0

20

40

60

80

100

0 40000 80000 120000 160000 200000

Figure 6: Average of 5 runs of learning wall-
following from scratch. Shows the percentage of
time the agent is performing wall-following.

0

20

40

60

80

100

0 40000 80000 120000 160000 200000

Figure 7: Average of 5 runs of agent shap-
ing wall-following using memory-guided explo-
ration. Shows the percentage of time the agent
is performing wall-following.

Using the new exploration policy, the agent
learned the same shaping task in 20, 000 steps
as compared to 50, 000 steps to learn the task
from scratch, and more than 200, 000 steps with
direct transfer of Q-values.

2The CMAC offsets were incorrectly restored during

information transfer, further complicating the task. Di-

rect transfer failed to compensate, while memory-based

exploration succeeded. Preliminary data suggests that

while direct transfer can perform better than shown here,

memory-based exploration is still more effective.

5



6 Conclusion

Effective shaping in a reinforcement learning set-
ting can be difficult. This happens for two main
reasons, first the agent must unlearn a biased
incorrect policy, and second as new Q-values are
updated useful information about the old pol-
icy is lost. These difficulties can be overcome
through the use of a memory-guided exploration
policy. This policy allows the agent to initialize
and update Q-values normally, while retaining
knowledge of the previous policy which can be
used to guide the agent’s exploration.

This algorithm was shown to be effective in
shaping an obstacle-avoidance behavior into a
wall-following behavior. Memory-guided ex-
ploration attained the desired behavior much
more quickly than either learning the task from
scratch or the use of a naive shaping algorithm
based on direct transfer of Q-values. This al-
gorithm also differs from previous shaping ap-
proaches in that it is more easily automated.

7 Future Research

The successful development and application of
this algorithm suggest several potential avenues
of future research. Examination of our pre-
liminary graphs indicates that the proficiency
of an agent in learning a shaped task is de-
pendent upon how fully the original task was
learned. Further research must be done to de-
termine whether this is the case for all shaping
situations or only for certain shaping problems.

This exploration strategy could conceivably
use memory of more than one past skill to ex-
plore in an unfamiliar situation. Thus, an agent
with a repertoire of several previously learned
skills could apply knowledge acquired in all of
these tasks to a new problem. A filtering mech-
anism could be used to determine which of the
previously-learned tasks are most similar to the
current one.

One immediate application of this algorithm
is the transfer of simulator-learned policies to
real-world robots. Because of the difficulties dis-
cussed earlier, simulators rarely model a problem
accurately, and policies which execute perfectly
on simulators often fail to produce the desired
results in the real world. However, simulated
and real-world tasks have an extremely high de-
gree of similarity. Agents trained on a simulator
could use memory-guided exploration to apply
simulated information to the real world. This
approach would combine the quick learning rates

achieved with simulators with the optimal be-
havior obtained through real world training.

References

[1] J. S. Albus. A new approach to manipulator
control: The cerebellar model articular con-
troller (cmac). Trans. ASME, J. Dynamic Sys.,
Meas., Contr., 97:220–227, 1975.

[2] M. Bowling and M. Veloso. Reusing learned
policies between similar problems. In Proceed-
ings of the AIIA-98 Workshop on new trends in
robotics. Padua, Italy, 1998.

[3] M. Dorigo and M. Colombetti. The role of
the trainer in reinforcement learning. In Pro-
ceedings of MLC-COLT ’94 Workshop on Robot
Learning, S.Mahadevan et al. (Eds), pages 37–
45. New Brunswick, NJ, 1994.

[4] M. Dorigo and M. Colombetti. Precis of robot
shaping: An experiment in behavior engineer-
ing. Adaptive Behavior, 5:3–4, 1997.

[5] M.J. Mataric. Reward functions for accelerated
learning. In Machine Learning: Proceedings of
the Eleventh International Conference. Morgan
Kaufmann, CA, 1994.

[6] A. W. Moore and Christopher G. Atkeson. Pri-
oritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning,
13:103–130, 1993.

[7] J. Randlov and P. Alstrom. Learning to drive a
bicycle using reinforcement learning and shap-
ing. In Machine Learning: Proceedings of
the Eleventh International Conference. Morgan
Kaufmann, CA, 1999.

[8] B. F. Skinner. The Behavior of Organisms: An
Experimental Analysis. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1938.

[9] B. F. Skinner. Science and Human Behavior.
Colliler-Macmillian, New York, 1953.

[10] R. Sun and T. Peterson. A hybrid model for
learning sequential navigtion. In Proc. of IEEE
International Symposium on Computational In-
telligence in Robotics and Automation, pages
234–239, San Diego, CA., 1997. IEEE.

[11] R. Sutton. Learning to predict by the meth-
ods of temporal differences. Machine Learning,
3(1):9–44, August 1988.

[12] Sebastian Thrun. Exploration and model build-
ing in mobile robot domains. In Proceedings
of the 1993 International Conference on Neural
Networks, 1993.

[13] D.S. Touretzky and L.M. Saksida. Operant con-
ditioning in skinnerbots. Adaptive Behavior,
5(3/4):219–247, 1997.

[14] C. J. C. H. Watkins. Learning from Delayed
Rewards. PhD thesis, University of Cambridge,
1989.

6


