
Learning a Rendezvous Task with Dynamic Joint Action Perception

Nancy Fulda and Dan Ventura

Abstract— Groups of reinforcement learning agents inter-
acting in a common environment often fail to learn optimal
behaviors. Poor performance is particularly common in en-
vironments where agents must coordinate with each other to
receive rewards and where failed coordination attempts are
penalized. This paper studies the effectiveness of the Dynamic
Joint Action Perception (DJAP) algorithm on a grid-world
rendezvous task with this characteristic. The effects of learning
rate, exploration strategy, and training time on algorithm
effectiveness are discussed. An analysis of the types of tasks
for which DJAP learning is appropriate is also presented.

I. INTRODUCTION

When dealing with multiagent reinforcement learners,
compatible individual goals are no guarantee of successful
group behavior. Agents frequently settle into suboptimal
equilibria: local maxima in the joint reward space. This
problem is especially common when a high degree of co-
ordination between agents is required to obtain maximum
payoff and failed coordination attempts are penalized. Under
such conditions, standard reinforcement learners will often
learn to avoid actions that lead to penalties before successful
coordination patterns can be established [1], [2].

One common means of addressing this problem is to
allow each agent to perceive the action selections of its
counterparts, thus allowing it to discriminate between the
rewards and penalties received for successful and failed
coordination, respectively. This is the basic premise behind
joint action learning [1], the Nash Q-learning algorithm [3],
and sharing of instantaneous information [4].

The primary drawback of such algorithms is that the size
of the joint action space to be learned grows exponentially
with the number of agents in the system. This both increases
system overhead for storing utility estimates and slows down
learning because there is no generalization across the joint
action space. In a system with more than two or three agents,
this can significantly increase the necessary training time for
the algorithm.

The Dynamic Joint Action Perception (DJAP) algorithm
addresses this issue of scalability by allowing each agent
to dynamically learn which other agents affect its rewards.
The DJAP algorithm has been shown to out-perform standard
reinforcement learners and nearly match the performance of
hand-coded joint action learners on a variant of the matching
pennies game [5]. The algorithm has also been examined
within the larger context of multiagent learning and has been
shown to address the problem of action shadowing discussed
in [6]. Action shadowing occurs when individual actions

Nancy Fulda and Dan Ventura are with the Computer Science Department,
Brigham Young University, Provo, UT 84602, USA (email: nancy@fulda.cc,
ventura@cs.byu.edu).

contributing to optimal joint policies appear undesirable to
the agent because of the consequences of failed coordination
attempts. This paper extends previous research by providing
an analysis of the DJAP algorithm’s learning capabilities and
the effects of several parameters on algorithm performance.

We briefly review the Q-learning framework in Section II
and then detail a multi-agent learning task that requires
agent coordination and demonstrate its difficulty for existing
algorithms in Section III. In Section IV we discuss the DJAP
algorithm in the context of this task, and in Section V we
make some concluding remarks.

II. REINFORCEMENT LEARNING AND Q-LEARNING

Reinforcement learners attempt to learn the expected av-
erage reward (often called the utility) of each possible state-
action pair based on a series of experimental interactions with
the environment. Currently, the DJAP algorithm uses the Q-
learning update equation [7] to estimate the utility Q(st, at)
of performing action at in state st:

∆Q(st, at) = αt(r(st, at)+γmaxa{Q(st+1, a)}−Q(st, at))

where r(st, at) is the reward received for performing action
at in state st, 0 < α ≤ 1 is the learning rate and 0 ≤ γ < 1
is the discount factor. The learning rate may be decayed over
time according to the equation

αt = ραt−1

where 0 < ρ ≤ 1. Note that the value of ρ can have a
significant effect on the behavior of the algorithm, and we
will have more to say about this later.

At each time step, a reinforcement learner may either
exploit its knowledge of the environment by performing the
action with the highest estimated utility or explore its envi-
ronment by selecting some other action. For the experiments
used in this paper, each agent exploits its environment with
some probability p and selects a random action (which may
or may not be optimal) with probability 1− p.

III. A MULTIAGENT RENDEZVOUS

The learning task studied in this paper is defined as a 4-
tuple, T = {n, m, s, V }, where n defines the size of a square
grid, m is the number of agent groups, s is the size of each
group, and V is a set of possible rendezvous points. The
agents are arbitrarily divided into m groups Gi of s agents
each, so that

Fig. 1. An example starting configuration for the multiagent rendezvous
task with n = 20, m = 3, s = 4 and |V | = 3. Rendezvous points are
represented by filled circles and agents by alphabetic characters. Different
alphabetic characters represent different agent groups that must learn to
coordinate which rendezvous point they choose.

|Gi| = s, 1 ≤ i ≤ m

Gi ∩Gj = ∅, i 6= j

A =
⋃
i

Gi

|A| = ms

The locations of V are randomly generated and fixed for
a particular instantiation of the task. We measure a set A
of agents’ ability to learn a particular instantiation of the
task by allowing 5000 iterations of agent learning and then
averaging the agent rewards received when all agents exploit
with probability p = 1. Results reported here are the average
of 30 such experiments with n = 30, m = 6, s = 5 and
|V | = 3 fixed and with the locations of v ∈ V randomized
at the beginning of each new experiment. Note that even
with these modest values, the size of the joint action space
is 231, rendering joint action learners such as those discussed
in Section I computationally infeasible.

At the beginning of each iteration, each agent is randomly
assigned a location on the grid, and multiple agents may
share the same coordinates. During each iteration, each agent
may execute one of four possible actions: travel from its
starting coordinates to one of the rendezvous points, or stay
put. Each agent that chooses to move to a rendezvous point
does so in a single step, agent rewards are calculated, the
agents perform any learning, and the iteration is complete.

If all members of a group select the same rendezvous
point, then each agent in the group receives a reward of
10, otherwise they receive a reward of 0. The agents are
given no a priori information about the size of the groups
or which group they are in. This models real-world tasks in
which some agents are more tightly coupled than others, but
for which the couplings may not be determinable in advance

(see Figure 1 for an example initial configuration).
In addition to the potential reward for successful coordina-

tion, each agent a also incurs a cost for the distance it must
travel to reach its chosen rendezvous point v ∈ V . This cost
is the ratio of the Manhattan distance the agent travels to the
maximum possible travel distance. This cost is distributed
across the entire group, so that for each group G of agents
the group penalty pG that each agent receives is given by

pG =
∑
a∈G

|ax − vx|+ |ay − vY |
(30 + 30)

If we define the predicate ren(a, v) to be true if agent a
chooses to rendezvous at point v, then the group reward rG

can be expressed as

rG =
{

10− pG if ∀a ∈ G, ren(a, v)
0− pG otherwise

Since the penalty is received regardless of whether the
agents successfully coordinate their actions or not, the agents
may be tempted not to rendezvous and to simply remain
where they are (which incurs no cost). However, if the agents
learn to cooperate, they can (on average) obtain a reward of
about 7.5. (10 for rendezvousing, −0.5 for each agent to
get there, 10− 2.5 = 7.5). In fact, this estimate is somewhat
pessimistic, because the agents have a choice of 3 rendezvous
points and can choose the one that minimizes total travel cost
for all agents.

Figure 2 shows the performance of standard Q-learning
agents on this task for several possible values of ρ. The
agents have clearly not learned to coordinate their actions,
since even assuming the maximum possible costs for travel-
ing to the rendezvous point, the agents should receive a total
reward of at least 5 for successful coordination. Varying the
amount of exploitation does not significantly improve the
system’s performance, nor does increasing the number of
training iterations. Note that a more classical treatment of the

Fig. 2. Performance of standard reinforcement learners on the rendezvous
task for varying values of ρ and p. The agents were trained for 5,000 time
steps and the results of 30 experimental runs were averaged. The standard
deviation of each datapoint was less than 1.1.

learning rate decay (e.g., α = 1/(1 + visits(s, a)) produces
similar results (at a much slower rate) because the standard
Q-learners will never learn to consistently cooperate.

IV. THE DYNAMIC JOINT ACTION PERCEPTION
ALGORITHM

The Dynamic Joint Action Perception algorithm was orig-
inally introduced in [5]. The reader is referred to that paper
for a more extensive description.

The DJAP algorithm uses a decision tree to create a
variable resolution partitioning of the joint action space. The
algorithm begins execution with a tree consisting of a single
leaf node containing estimated utilities for performing each
possible action given the current state. The leaf node contains
a set of child fringe nodes indexed by the other agents in
the system. Each fringe node contains a set of joint utilities
which represent the expected reward for performing each
action given the current state and given the observed action
selection of the agent to which the fringe node corresponds.
An example of this structure is shown in Figure 3. Notice that
agent a cannot discriminate its actions without considering
the actions of other agents (the estimated utilities are 1 for
all three actions in the leaf node).

The agent is allowed to explore the environment (updating
the Q-values in the leaf and fringe nodes) until the leaf node
has been visited qk times, where q is the average number
of Q-values per associated fringe node and k is a user-
defined parameter. At that point, the leaf node is expanded
along the fringe node which maximizes the agent’s ability to
obtain reward. In the example in Figure 3, considering the
joint action space with agent c or agent d does not help a
discriminate the effect of its actions (see the fringe nodes
for c and d). However, the joint action space that includes
agent b’s actions does provide useful information (see the
fringe node for b in the figure). To take into account this
new information, the leaf node is replaced by a branch node

Fig. 3. An example root leaf node and associated fringe nodes for agent
a in a system of four agents, denoted as a, b, c, and d, each of which has
three possible action selections.

Fig. 4. The expansion of the tree in Figure 3 along the fringe node
associated with agent b’s action selection.

and a new set of leaf nodes is created, one for each possible
action selection of the agent represented by the fringe node
along which the leaf was expanded (in this case b). This
leaf node expansion is shown in Figure 4. Notice how each
newly created leaf node corresponds to a row in the joint
action Q-value table of fringe node b in Figure 3 and that
each new fringe node is initialized with these same Q-values.
The process of qk visitations followed by expansion is then
continued recursively for each of the newly created leaf
nodes.

When selecting actions for execution once the learning
phase is complete, the agent simply assumes that all other
agents will act to maximize its reward. It therefore selects
the individual action which will permit the agent’s most-
preferred joint action (based on the subset of the joint action
space represented by the DJAP tree structure) to be executed.

A. Representational and learning ability

The DJAP tree is capable of representing arbitrary nth-
order correlations between agents. But just because these
capabilities can be represented does not necessarily mean that
they are easy to learn. When the tree is being constructed, the
algorithm searches only for first-order correlations between
the current tree structure and the agents who have not yet
been incorporated into that section of the tree. This means
that higher-order correlations can be learned, but only if a
first-order correlation chain connects them.

For example, let A be a set of agents and Cn(ai, G)
represent an nth-order correlation between ai and G, where
ai ∈ A, G ⊂ A, and |G| = n. Given an arbitrary
ordering on the elements of A, {ai, ..., an}, the DJAP al-
gorithm can learn correlations which satisfy the condition
Ck−1(ak, {a1, ..., ak−1}) for all values of k, where 1 < k ≤
n.

Because the DJAP algorithm uses a policy-based test rather
than a statistically-based test to determine the best fringe
node to use for tree expansion, it will not necessarily find

Fig. 5. Performance of the Dynamic Joint Action Perception algorithm for
varying values of k and p. The agents were trained for 5,000 time steps and
the results of 10 experimental runs were averaged. The standard deviation
of each datapoint was less than 1.52.

every statistical correlation between other agents’ actions
and current rewards – it will expand first along fringe
nodes which provide the opportunity to increase rewards (for
example, fringe b in Figure 3) rather than those where a
statistical correlation exists but cannot be capitalized upon
(as with fringe c in Figure 3).

In the limit as expansion continues the tree will eventually
represent the entire joint action space. In practical terms,
however, this point is reached only in very small systems.

B. Learning rate and the parameter k

In the DJAP algorithm, the rate ρ at which α is decayed is
determined as a function of the user-defined parameter k. For
fringe nodes, the value of ρ is determined by the equation

ρ = e
ln(0.01

0.1)
k

For leaf nodes, the value of ρ is determined by

ρ = e
ln

(
0.001
αµ

)
ck

where c is the average number of possible percept values per
fringe node and αµ is the average learning rate of the leaf
node’s initial Q-values (usually about 0.1).

If the value of the parameter k is sufficiently large to
allow optimal convergence of the leaf and fringe node Q-
values then the DJAP algorithm will always branch along
the fringe node that allows maximum increase in expected
reward. However, large values of k increase the learning time
required by the algorithm.

Figure 5 shows DJAP performance on the rendezvous task
for several values of k under varying exploration strategies.
The agents were trained for 5,000 time steps in each ex-
perimental run. Overall, algorithm performance tends to be
superior with smaller values of k, even though there is no
guarantee that the tree will split optimally for these values.
The likely reason for this is that it is unnecessary to allow

the fringe node Q-values to fully converge. They need only
to begin converging towards their optimal values in order for
the algorithm to differentiate between fringe nodes that do
and don’t provide a potential increase in expected reward.

C. Exploration and training time

Figure 6 shows the response of both DJAP agents and
standard Q-learners to varying values of the exploitation
parameter p. Because standard Q-learners never learn an
acceptable group behavior for the rendezvous task, their
performance is not significantly affected by the value of p.
The DJAP algorithm, however, shows markedly improved
performance when p > 30. The reason is that the increased
exploitation on the part of each agent helps to concentrate
leaf node visitations in useful areas of the joint action space.
This causes those areas of the tree to branch earlier and helps
the agents to identify more members of their group before
training is done.

Figure 7 shows system performance as a function of
training time for both DJAP and standard Q-learning agents.
Again, the standard Q-learners are not significantly affected
by the amount of training because they never learn an
acceptable policy. DJAP agents using k = 5 and p = 50 learn
a reasonable policy relatively quickly, within about 2,000
time steps, and approach an optimal policy by 5,000 time
steps.

D. Applicability

Like most algorithms, the Dynamic Joint Action Percep-
tion algorithm is better-suited to some tasks than to others.
Tasks which are well-suited for the DJAP algorithm have the
following characteristics:
• Agents share common goals. The DJAP algorithm

relies on an optimistic assumption for action selection.
Each agent assumes that the other agents will act to
maximize its reward.

Fig. 6. System performance as a function of the exploitation parameter p.
For DJAP agents, k = 5. For standard Q-learners, ρ = 0.9. Agents were
trained for 5,000 time steps and the results of 30 experimental runs were
averaged. The standard deviation of each datapoint was less than 2.02 for
DJAP agents and less than 1.1 for standard Q-learners.

Fig. 7. System performance as a function of training time. Each agent
used an exploitation parameter of p = 50. For DJAP agents, k = 5. For
standard Q-learners, ρ = 0.9. The results of 30 experimental runs were
averaged. The standard deviation for each datapoint was less than 1.08 for
DJAP agents and less than 0.96 for standard Q-learners.

• Not all agents affect each other equally. The DJAP
algorithm is able to avoid the system overhead incurred
by complete joint action learning because it represents
only a small subset of the joint action space. If the
entire joint action space must be represented to achieve
optimal performance, then the DJAP algorithm has no
benefits over complete joint action learning.

• Failed coordination attempts are penalized. When
there is no penalty for failed coordination, standard
reinforcement learners are often as effective as agents
that perceive the joint action space. In this case, the
extra complexity of the DJAP algorithm is unnecessary.

• Correlations are first-order or linked by a first-order
correlation chain. If the DJAP algorithm cannot find
any first-order correlations in the available fringe nodes,
it will randomly select a fringe node for expansion. This
might lead to the accidental discovery of higher-order
correlations that do not fit the constraints described in
section IV-A, but there is no guarantee that this will
happen.

V. CONCLUSION

The Dynamic Joint Action Perception algorithm is able to
learn effective policies for coordination tasks by allowing
each agent to dynamically observe a subset of the joint
action space. This prevents the high overhead associated with
algorithms that learn the complete joint action space while
still producing effective performance on appropriate tasks.
This paper has used a 30 agent rendezvous task as the basis
for studying the performance of the DJAP algorithm under
different values of user-defined parameters. The algorithm
performs best for small values of k, values of p > 30,
and at least 2,000 time steps of training. The algorithm is
capable of learning higher-order correlations as long as they
are connected by a first-order correlation chain.

Future work in this area should concentrate on expanding
the range of learning situations to which the DJAP algorithm
is applicable. In situations where the optimistic assumption
is violated, the use of a minimax assumption for zero-
sum games or a fictitious play implementation for general-
sum games would be desirable. Alternative methods for
determining which node to split on should be investigated.
For example, a statistical test for significance of a particular
split might provide a more principled method for splitting
nodes and may also result in a natural stopping criterion (i.e.
when no splits are likely to produce statistically significant
improvement in the learned policy). A means of dynamically
determining an appropriate value for k should also be devel-
oped.

As defined, the task is stateless and episodic. However,
state can easily be introduced as the locations of v ∈ V ,
and the task could be further complicated by using agent
locations to augment this state. Also, agents could be given
a simpler action set (up, down, right, left) and forced to
re-evaluate their decisions every step on the way to the
rendezvous point. Competition could be introduced amongst
agent groups, the task could be made recurring, etc. This
would allow for a richer set of agent interactions, and would
create an environment for extending the DJAP algorithm
to allow for the possibility of agents employing signaling
mechanisms, threats, reputation, etc.

One of the difficulties of learning in multi-agent settings is
the non-stationarity of the environment (due to the fact that
the other agents are changing their behaviors as they learn).
This is problem can be ameliorated, to a degree, by allowing
agents to learn at different rates – the environment for the fast
learning agent appears relatively stationary (c.f. the WOLF
family of algorithms [8], [9]). It may be that a similar
approach will further improve DJAP learning performance
as well.

DJAP style learning produces a graphical representation
that in essence factorizes the joint action space, allowing
learning in situations where the full space is too large to treat
explicitly. Recent work on coordination graphs [10], [11]
presents efficient algorithms for agent coordination given a
graphical factorization of the joint action space. Combining
these two approaches may lead to an elegant approach to the
general multi-agent cooperation/coordination problem.

REFERENCES

[1] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems,” in AAAI/IAAI, 1998, pp. 746–752.

[2] S. Kapetanakis and D. Kudenko, “Improving on the reinforcement
learning of coordination in cooperative multi-agent systems,” in Sec-
ond AISB Symposium on Adaptive Agents and Multi-Agent Systems,
2002.

[3] J. Hu and M. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of Machine Learning Research, to appear, 2003.

[4] M. Tan, “Multi-agent reinforcement learning: Independent vs. coop-
erative learning,” in Readings in Agents. San Francisco: Morgan
Kaufmann, 1997, pp. 487–494.

[5] N. Fulda and D. Ventura, “Dynamic joint action perception for q-
learning agents,” in Proceedings of the International Conference on
Machine Learning and Applications, Los Angeles, Ca, 2003, pp. 73–
78.

[6] ——, “Predicting and preventing coordination problems in cooperative
q-learning systems,” in AAAI, in submission, 2006.

[7] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, University of Cambridge, 1989.

[8] M. H. Bowling and M. M. Veloso, “Multiagent learning using a
variable learning rate,” Artificial Intelligence, vol. 136, no. 2, pp. 215–
250, 2002.

[9] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Advances in Neural Information Processing Systems 17, L. K. Saul,
Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005,
pp. 209–216.

[10] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” in 14th Neural Information Processing Systems (NIPS-14),
2001, pp. 1523–1530.

[11] C. Guestrin, S. Venkataraman, and D. Koller, “Context specific multi-
agent coordination and planning with factored mdps,” in AAAI, 2002,
pp. 253–259.

