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Abstract 
 

This paper discusses a model of quantum associative memory which generalizes the 
completing associative memory proposed by Ventura and Martinez.  Similar to this model, our 
system is based on Grover’s well known algorithm for searching an unsorted quantum database.  
However, the model presented in this paper suggests the use of a distributed query of general 
form.  It is demonstrated that spurious memories form an unavoidable part of the quantum 
associative memory model; however, the very presence of these spurious states provides the 
possibility of organizing a controlled process of data retrieval using a specially formed initial state 
of the quantum database and also of the transformation performed upon it.  Concrete examples 
illustrating the properties of the proposed model are also presented. 
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1 Introduction 

Development of efficient and/or biologically plausible models of associative memory forms a very 
important part of neurocomputing research [1].  Among the various approaches to this problem 
Hopfield’s model of content-addressable memory [2], Kosko’s bidirectional autoassociative memory 
(BAM) [3] and Pollack’s Recursive Auto-Associative Memory (RAAM) [4] are most widely known and 
comprehensively studied.  One of the most important characteristics of neural models of associative 
memory is capacity.  Unfortunately, the capacity of existing neural memories grows only linearly with the 
number of neurons in a network (bits in a pattern) [1]. 

Recently, studies in quantum computation have been enriched by new works addressing the idea of 
developing quantum neural networks [5-8].  These quantum neural networks have many promising 
characteristics, both in the case of supervised and unsupervised learning.  In particular, an associative 
memory based on the use of Grover’s quantum search algorithm [9] has been proposed by Ventura and 
Martinez [10-12].  This network solves the completion problem; that is, it can restore the full pattern 
when initially presented with just a part of that pattern.  One of the most attractive properties of this 
memory is its exponential capacity. 

This paper presents a generalization of this model which is able to retrieve a memory state when 
presented with a corrupted (noisy) version of the pattern.  So, the model presented here solves the 
problem of associative search for which no part of the input stimulus is guaranteed to be noise free. 

The second section briefly outlines Grover’s algorithm and discusses its main features and possible 
interpretations.  It is argued that this algorithm in some sense already solves the completion problem for 
the simplest case of a database having a full set of coding fragments in its stored patterns.  The third 
section gives a short review of the model of quantum associative memory proposed by Ventura and 
Martinez and discuss its peculiarities.  The fourth section generalizes Grover’s algorithm to the case of 
distributed query and derives an analytical solution for the iterated amplitudes of the basis states whose 
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superposition describes the state of a quantum database.  The fifth section describes a generalized 
quantum associative memory which utilizes Grover’s algorithm and compares two distinct approaches to 
its implementation.  The second method, which uses the trick of exchanging stored memories for spurious 
ones, provides controlled iteration of the system and reaches a quantum state for which the probabilities 
of retrieving a given memory state take prescribed values defined by the form of the distributed query.   
Analytical solutions for the iterated  state and its different averages are used to analyze these variants of 
the presented model.  The conclusion summarizes the main results presented in the article. 

 
2 Grover’s algorithm 

This  algorithm, proposed by Grover [9], effectively searches for an entry in an unsorted quantum 
database of N entries, requiring only )( NO  steps to produce the appropriate item with high probability.  
This compares favorably with the classical lower bound of N/2 for the number of queries needed to find 
an item in an unsorted classical database containing N records.  Further, it has been proved that the 
efficiency of Grover’s algorithm is optimal for quantum search [13]. 

Here, the algorithm is briefly described so that some kind of equivalence between Grover’s approach 
and the quantum associative memory proposed in [10,11] may be established.  Consider the database 
(phone book) containing the four records shown in Table 1.  Each record consists of two parts –  name 
and  phone number.  The records are ordered by name and unordered with respect to the phone numbers.  
The direct problem of searching for the associated phone number given a name is obviously very easy.  
On the contrary , the inverse problem of searching for the associated name given a phone number is 
difficult.  The most efficient classical solution is random search which demands in the worst case N-1 
queries and on average N/2 queries.  

 
Table 1.  The records in a phone book are ordered by names coded using five bits.  Phone 
numbers (unordered) are coded using  two bits.  In the quantum analog of a phone book bits are 
replaced by qubits and the states of qubits corresponding to names and numbers are entangled. 

 
Name Code Number Code 

A 00001 3 11 
B 00010 0 00 
C 00011 2 10 
D 01010 1 01 

 
This classical random search can be thought of as testing each entry with probability N-1.  This 

situation may be described in a quasi-quantum manner.  Before testing every entry,  NameFinder is in the 
indefinite state 〉ψ| , which can be represented as a superposition of all possibilities: 

 

 ∑
−

=
〉=〉

1

0
,|1|

N

number
numbername

N
ψ  (1) 

 
Each testing corresponds to the collapse of the superposition (1) to one of its items with equal 

probability N-1 (this collapsing just means that NameFinder makes a decision to explore a particular entry 
in the phone book) .  In a classical statement of the problem, the coefficients of each entry in (1) are real 
numbers (probabilities) and the entries do not interfere.  Also the state of NameFinder 〉ψ|  does not 
evolve during the search process. 

In a truly quantum approach to the problem, the state of NameFinder can be described as a 
superposition of quantum basis states (wavefunction) 
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  (2) ∑
−

〉=〉
1

,||
N

number
number numbernamecψ

 
where ck are complex numbers, and the probability of the system to be found after the measurement in a 
given basis state k (probability to choose entry k)  is given by |ck|2.  The full database record 

is represented by two parts (sub-records) consisting of sets of qubits which code the 
name and phone number respectively.  For example, in Table 1 each phone number can be coded by two 
qubits and each name (one character) by five qubits (sufficient to represent any character in the English 
alphabet).  The states of these two parts of  the record are entangled .  This means that if the wavefunction 
collapses to the basis state having a given phone number value, the measurement of the state of the qubits 
which encode the name will produce the name corresponding to that phone number. 

〉numbername,|

Typically, the first sub-record of qubits corresponding to the name is omitted and the problem is 

formulated as the search for the entry with a given (marked) second record |  value known 
to Oracle.  In other words, Oracle knows the number and asks NameFinder to find the corresponding 
name in his phone book.  So in the language of associative memory, Oracle presents an external stimulus 
and NameFinder retrieves a memory item.  Further, the wavefunction 

〉=〉 xnumber
def

|

〉ψ|  will be referred to as 
describing the state of NameFinder in a database or in a memory.  These two cases are differentiated only 
for convenience in order to specify correspondingly the search for a record in a database having an 
enormous number (all 2d patterns consisting of d qubits) of data items, for which Grover’s algorithm was 
originally developed, and in a memory, which ordinarily includes a rather more restricted number of 
patterns (p << 2d).  

The essence of the quantum approach to the search is constructing an iteration scheme consisting of 
transformations performed by Oracle and NameFinder which change the NameFinder wavefunction in 
such a manner that the amplitude of the marked state (stimulus) increases and the amplitudes of other 
states decreases.  Then the collapse of NameFinder’s wave function (choice of entry in the database) will 
give, with high probability, the desired marked entry.  Finally, the entanglement of the states of the two 
parts of the record will permit the retrieval of the desired associated name.  Formally, this algorithm can 
be described as follows: 

• Initialize the state of NameFinder-in-Database as an equiprobable 

superposition | of all entries: 

∑
−

=
〉=〉

12

0
||

d

x
x xaψ

〉s

 ∑
−

=
〉=〉=〉

12

0

)0( |
2

1||
d

x d
xsψ  (3) 

 
where d denotes the number of qubits used to represent a phone number and | denotes a basis state 
whose  binary form corresponds to the phone number 

〉x
x .  

 
• Iterate the state 〉ψ|  using the sequence of two transformations Up and Us: 

1. Up: Oracle inverts the phase of marked state  〉p| :

   (4) 




≠
=−

→
pxa
pxa

a
x

x
x  if 

 if ,

,

 
2. Us: NameFinder-in-Database inverts the amplitudes of all states around 

their average value: 
  aa xx a −〉〈→ 2  (5) 
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 where 

 ∑
=

−=〉〈
d

x
x

d aa
2

0
2  

 
It has been shown [15] that after )( NO=T  ( N ) iterations the amplitude ad2= p becomes very 

close to unity while the amplitudes of the other states almost vanish.  At this point, measuring the state of 
NameFinder-in-Database will, with high probability, produce that basis state |  and the entangled name 
coded in the remaining qubits can be directly retrieved. 

〉p

Note that the database considered here is complete: it contains all possible 2d phone numbers.  So, the 
collapse of the system into any basis state will provide a valid database record.  This situation 
corresponds to the absence of spurious memories in quantum models of associative memory. 

 
3 Completing quantum associative memory 

A quantum associative memory with a capacity exponential in the number of qubits and based on 
Grover’s algorithm has been proposed by Ventura and Martinez [10-12].  This kind of memory solves the 
problem of pattern completion.  It can restore the full pattern when presented with only a partial one.  It is 
crucial that this partial pattern would exactly coincide with some part of a valid full pattern.  Then, in the 
recall phase only the remainder of the pattern is reconstructed while the initially presented partial pattern 
remains intact.  This kind of associative memory clearly differs from the general statement of associative 
search.  Indeed, general associative memory should also retrieve valid memory items when presented with 
noisy versions of these patterns.  In fact, the original Grover’s algorithm also solves the completion 
problem – in the interpretation described above it retrieves a full pattern (name, number) when presented 
with a partial pattern (?, number). 

The main difference between the quantum associative memory developed in [10-12] and Grover’s 
search algorithm of an unsorted database is that for the quantum associative memory the number of 
entries is smaller than 2d and they form a set M of so called memory states.  This is an important 
distinction for at least two reasons.  First, while the creation of a quantum superposition containing all 2d 
possible basis states is a straightforward operation [9],  the creation of a quantum superposition containing 
only those basis states that correspond to valid memories is a nontrivial task, the solution to which is 
detailed in [14].  Second, the superposition of all 2d basis states is a special case of the general wave 
function and researchers have to this point had difficulty discovering a practical use for Grover’s 
algorithm, theoretically spectacular as it is.  The quantum associative memory of [10-12] provides 
perhaps the first such practical application. 

Hence in the case of the quantum associative memory, the initial state of NameFinder-in- Memory is 
described as a superposition of these states 

 ∑
∈

〉=〉=〉
Mx

x
P

m |1|| )0(ψ  (6) 

where P denotes the number of memorized patterns. 
Also, the transformation performed by NameFinder-in- Memory now suggests the inversion of the 

amplitudes around the average of only the amplitudes of memorized patterns (zero amplitudes of the other 
ones play no role) [10]: 

 
2'. : NameFinder-in- Memory inverts amplitudes of all states around the 

average value for memorized patterns. 
ms UU ⇒

 
 xMx aaa −〉〈→ 2  (7) 
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 ∑
∈

=〉〈
Mx

xM a
P

a 1  

 
(Note, however, that in other versions of the model the original transformation Us is used [11-12]).  
Further, it is assumed that Oracle knows a part of one of the memorized patterns and no other pattern has 
the same part.  Then Grover’s algorithm is used to find the pattern having this part and entanglement 
permits the restoration of the remainder of this pattern. 

 
3.1 Completing versus general associative memory 
In general, associative search suggests the possibility of retrieving valid memory items when 

presented with any possible external stimulus, including noisy stimuli.  It is desirable to retrieve the 
memory state which is most similar to the given stimulus, i.e. that memory state which differs from the 
stimulus in the minimal number of bits (qubits).  In the binary case, this corresponds to the minimizing 
the Hamming distance between query and memory state.  So, this kind of memory is a correcting memory 
rather than a completing one.  However, the quantum associative memory proposed in [10-12] does not 
actually take into account the distance between states but only uses information about the presence of 
some prescribed bit values in the memory state.  Moreover,  the quantum state describing the simplest 
form of completing memory [10] will not evolve while performing iterations if the query (part of memory 
item) presented by Oracle does not coincide with some part of a valid memory state.  In order to 
overcome these difficulties, it is possible to introduce a metric into the quantum search algorithm in the 
form of distributed queries.  Further, this complication of a query permits a quantum state to evolve in the 
case of the use of the transformation Um; however it also leads to the appearance of spurious memories.  
Hence, while the completing associative memory proposed by Ventura and Martinez can be free from 
spurious memories (and can also contain them in other model variants [11-12] ), general correcting 
associative memory should contain spurious states.  Really, the appearance of spurious states in the model 
proposed in [12] is due to the traditional form of the transformation Us.  In a quantum associative memory 
of the general form discussed here, spurious memories arise even in the case when the transformation Um 
is used.  (Tables 2 and 3 illustrate the difference between these two situations.)  The following discussion 
will be restricted to considering the case of the use of the transformation Um in constructing a scheme for a 
general quantum associative memory.  More complex cases will be considered in the future. 

Distributed query means a query, or stimulus to the system, has the form of a  superposition, just as a 
quantum memory does, 

  

  (8) ∑
−

=
〉=〉

12

0
||

d

x

p
x

p xbb

 
which in general includes all basis states.  (Index p marks one of these states, | , which plays the role of 
the center of the distribution).  However, the introduction of distributed query demands the modification 
of the memory (phone book) in such a manner that it has every possible phone number (basis state), 
despite the fact that most of them have no corresponding name.  

〉p

 
Table 2.  A completing associative memory can use a database (phone book) free from spurious 
memory (it contains only some of the possible numbers) and any query must represent an exact 
part of a phone number in the database, for example (*11), (01*) etc.  Any query of a form similar 
to (10*) or (001) etc. will not cause any evolution of the quantum state describing a completing 
memory if transformation Um is used.   

 
Record Name Phone 

1 Alice 010 
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2 Bob 111 
 

Table 3.  The general (correcting) form of associative memory which uses distributed queries 
suggests that the database (phone book) includes a full set of numbers (8) but that some of them 
are not used, i.e. correspond to spurious memories.  Collapse of the wave function into one of the 
basis states corresponding to such a spurious memory does not provide useful information.  

 
Record Name Phone 
1 not used 000 

2 not used 001 
3 Alice 010 
4 not used 011 
5 not used 100 
6 not used 101 
7 not used 110 
8 Bob 111 

 
This modification introduces the possibility of the quantum state collapsing into a basis state 

corresponding to an entry having the code “not used” in the Name field.  In other words, such a memory 
will have so-called spurious memory states.  However, before considering such a generalized associative 
memory, the application of Grover’ algorithm to the case when Oracle defines not a single query (marked 
state) or finite set of such states [15] but rather defines a distributed fuzzy query.  

First, suppose that in distributed query (8) real amplitudes are distributed such that the maximal value 
occurs for some definite state , and the amplitudes of the other basis states 

decrease monotonically with Hamming distance | .  From here on, |  shall be 
referred to as the query  center. 

22 ||max||:|| p
x

x
p
p bbpx =〉=〉

− ||: xpx ↓↑⇒− 2||| p
xbp 〉p

One way to satisfy these conditions follows from the binomial distribution 
                                      
  (9) ||||2 )1(|| xpdxpp

x qqb −−− −=
 

where denotes Hamming distance between and , d is the number of qubits needed to code 
a phone number and  is an  arbitrary value which tunes the width of the distribution.  For 
example, d = 2; q = ¼; , produces the following distributed query 

|| xp − 〉p| 〉x|
2/10 << q
〉=〉 11|| p

 

〉+〉+〉+〉=〉 00|
4
110|

4
301|

4
311|

4
3| pb  

 
It is important to note once more that introducing a distributed query with Hamming distance-

dependent amplitudes for the basis states incorporates a metric into the model which permits comparison 
of the similarity of the stimulus and the retrieved memory.  This is a necessary condition for associative 
searching.  For this type of query the transformation performed by Oracle will have the form 

 
  (10) ||21 pp

b bbU 〉〈−=
 
It is well known that in the case of the traditional Grover’s algorithm the transformation performed by 

NameFinder-in- Database inverts the amplitudes of the basis states around their mean value  
 

Information Sciences 128(3-4):271-293, 2000



 7

 xx aaa −〉〈→ 2  (11) 
 

In the case of the simple completing associative memory [10], only memory states are used in building the 
transformation performed by a network 

 
 1||2 −〉〈= mmUm  (12) 
 

Correspondingly, this transformation inverts the amplitudes of the memory states (their equiprobable 
superposition ordinarily forms the initial quantum state) around the average value of only these memories 
(remember, no additional spurious memories arise). 

In the case of a distributed query, the Oracle transformation is defined by 
 
  ||21 pp

b bbU 〉〈−=

    (13) 〉〉〈−→ ψψψ ||2: pp
b bbU

 
 Since  

 
 =  (14) ∑ ∑∑ ∑ 〉〈=〉〈=〉〈

x y
y

p
x

x y
y

p
x

p yxabyaxbb ||||ψ ∑ ∑ ∑ 〉〈≡=
x y x

pp
xxxyy

p
x babaab |δ

 
where δ is the Kronecker delta function and 〈  represents an overlapping of the current quantum 
state with the query state,  

〉pba |

 
 ( )∑ ∑ 〉〉〈−=〉〉〈−〉=〉〉〈−

x x

p
x

p
x

pp
x

pp xbbaababxabb ||2||2|||2 ψψ  

 
or 

 
   (15) p

x
p

xx bbaaa 〉〈−→ |2
 

Note, that expression (15) can be transformed into the classical Grover’s transformation Us if b .  

In this case 〈 and (15) takes a familiar form: 

xp
p
x δ=

∑ ∑ ===〉
x x

pxpx
p
xx

p aababa δ|

 

 xppxx aaa δ2−→ ,  i.e.  




−
≠

=
otherwise

 if

x

x
x a

pxa
a

 
4 Grover’s search in unsorted database with distributed query 

Before considering the quantum associative memory with distributed queries, a generalization of  
Grover’s original algorithm in the context of distributed queries will be presented.  In general, a quantum 
database can have an arbitrary initial quantum state.  In fact, the algorithm proposed in [14] is used to 
create database states representing quantum memory of arbitrary sets of patterns.  How will Grover’s 
original algorithm perform with such quantum states using a distributed query model? 

 
4.1 Deriving the equations for averages 
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If for some iteration τ  the state of the system is described by the superposition  
 
  (16) ∑ >=

x
x xa |)()( ττψ

 
then after the transformation Ub (first sub-step of an iteration), the superposition becomes 

 
 ( )∑ ∑ 〉〉〈−=〉= ++

x x

p
x

p
xx xbbaaxa ||2| )()()2/1()2/1( ττττψ  (17) 

 
After Us, the transformation performed by the NameFinder-in-Memory (second sub-step of an iteration), 
which inverts amplitudes around their average value, 
 

 { }∑∑ 〉〉〈+−〉〉〈−〈=〉−〉〈= +++

x

p
x

p
x

p
x

p
x

x
x xbbaabbaaxaa ||2|22|)2( )()()()()2/1()2/1()1( τττττττψ  (18) 

 
Thus, one iteration causes the following change of amplitudes:  

 
   (19) p

x
p

x
p
x

p
xx bbaabbaaa )()()()()1( |2|22 τττττ 〉〈+−〉〉〈−〈=+

 
or, equivalently, 

 
  (20) p

x
p

x
pp

x bbaabbaaa )()()()()1( |2|42 τττττ 〉〈+−〉〈〉〈−〉〈=+

 
Note, that Grover’s original iteration scheme follows from (20) if 

 
 ∑ ∑ ===〉〈

x x
pxpx

p
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p aababa δ|  

 ∑ =∑ ==〉〈
x dxpdx

p
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p
bb

2

1

2

1

2

1 δ  (21) 

 
Then, a ,  xppppx aaaNa δτττττ )()()(1)()1( 242 +−−〉〈= −+

 

  (22) 
















 −+〉〈

≠





 +−〉〈

=
−

−
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otherwise412

 if412
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)1(

ττ
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τ
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x
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where N = 2d denotes all possible states for a register consisting of d qubits.  The particular case of initial 

state ( )〉〉+〉+〉+=〉 11|10|01|00|
2
1|ψ , means that  and for any p 2/1)0( =〉〈a

 

 








=⋅−+⋅

≠=⋅+−⋅
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otherwise1
2
1)4/41(

2
12
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2
1)4/41(

2
12
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and so follows the well-known result that for these conditions any query will transform the state of the 
system to that of the marked state (find the requested number in the phone book) after only one iteration.   

Now, starting from Equation (20) it is possible to obtain a closed system of two equations for the 
average values 〈  and 〈  (the approach is analogous to one used in [16]).  Multiplying this 
equation by N

〉a 〉pba |
-1 and adding the terms corresponding to all basis states results in 

 
  〉〈〉〈+〉〈−〉〈〉〈−〉〈=〉〈 + pppp bbaabbaaa )()()()()1( |2|42 τττττ

 
or, equivalently, 
 

  (23) 〉〈〉〈−〉〈=〉〈 + pp bbaaa )()()1( |2 τττ

 
Multiplying each of the Equations (20) by its corresponding b  value and summing over x produces p

x
 

  ∑〉〈+〉〈−〉〈〉〈−〉〈〉〈=〉〈
+

x

p
x

pppppp
bbababNbabNaba

2)()(2)()()1(
)(|2||42|

τττττ

Taking into account that vector  has a unity norm simplifies the last expression as  ),...,( 0
p
N

pp bb=b
 
  (24) )(2)()1( |)41(2| τττ 〉〈〉〈−+〉〉〈〈=〉〈 + pppp babNabNba
 

Finally, a closed system for the averages can be written as follows: 
 

  (25) 




〉〈〉〈−+〉〉〈〈=〉〈
〉〉〈〈−〉〈=〉〈

+

+

)(2)()1(

)()()1(

|)41(2|
|2

τττ

τττ

pppp

pp

babNabNba
babaa

 
In order to reduce this to Grover’s original scheme, assign  and 〈 .  Then p

p aba =〉〈 | 1−=〉 Nb p

 

  (27) 
( )





−+〉〈=

−〉〈=〉〈
+

+

)()()1(

)()()1(

/412
/2

τττ

τττ

pp

p

aNaa
Naaa

 
Thus, for the case of Grover’s iterations the second equation in (25) is transformed into the equation 

for the amplitude of the marked state (Oracle’s query).  In what follows, the convenient and more 
compact notation below will be used to represent the average values of system (25) 

 

  )()()()( |  , ττττ βα 〉〈=〉〈= p
defdef

baa
 

4.2 Solving the equations for averages 
An analytical solution of the system for average values will now be derived.  Rewriting (25) using the 

notation introduced above results in 
 

  (28) 




〉〈−+〉〈=
〉〈−=

+

+

)(2)()1(

)()()1(

)41(2
2

τττ

τττ

βαβ
βαα
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p

bNbN
b
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Rewriting the second equation in (28) as                                   

 
 { } )()()()1( 22 ττττ ββαβ +〉〈−〉〈=+ pp bbN  (29) 
 

it may be seen that the expression in curly braces is equivalent to the right hand side of the first equation 
of (28).  Hence, 

 
  (30) )()1()1( 2 τττ βαβ +〉〈= ++ pbN
 

Manipulating the last equation gives  

 
〉〈

−
=

+
+

pbN2

)()1(
)1(

ττ
τ ββα  (31) 

 
Substituting expression (31) into the first equation of system (28) and using (30) and some algebra gives 

 
  (32) )21(2 2)()1()1( 〉〈−=+ −+ pbNτττ βββ
 

Suppose that the solution of Equation (32) is of the form 
 
 )   (33) cos()( ϕωτβ τ += B
 

Inserting this expression into Equation (32) and using some trigonometry, an expression for the frequency 
may be obtained 

 
  (35) 221cos 〉〈−= pbNω
 

or, because cos , )2/(sin21 2 ωω −=
 
 )  (36) arcsin(2 〉〈= pbNω
 

Now using Equation (31) produces the analytical form of  )(τα
 

 
〉〈

+−−+
=

〉〈
−

=
−

pp bN
B

bN 2
))1(cos()cos(

2

)1()(
)( ϕτωϕωτββα

ττ
τ  (37) 

 
The values of the constants B and ϕ can be found from the initial conditions: 

 

 
〉〈

−−
= pbN

B
2

)cos(cos)0( ϕωϕα   (38) 

   (39) ϕβ cos)0( B=
 

It follows from (38) and (39), that 
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〉〈

−−
= pbN2

)cos(cos
cos

)0(
)0( ϕωϕ

ϕ
βα  (40) 

 
and after some transformation 

 

 












〉〈−−= pbN )0(

)0(
2cos1

sin
1tan

β
αω

ω
ϕ  (41) 

 
The other constant is expressible in terms of the phase value 

 

 
ϕ

β
cos

)0(

=B  (42) 

 
Note that the amplitude of every basis state, including those that have a zero amplitude in the initial 

state, can take non-zero values during the iteration process.  This corresponds to the development of 
spurious memories. 

Example 1.  Consider an unsorted database with phone numbers encoded with two qubits (d=2) and 
the distributed query  

 

 〉+〉+〉+〉=〉 11|
5
110|

5
201|

5
200|

5
4| pb  

 
This distribution of basis state amplitudes is visually represented by the histogram in the top right 

corner of Figure 1.  Grover’s iterations should be continued until the average overlap 
)()( ττ

β
p

ba=  

reaches one of the values { }.  After this it is necessary to perform a measurement and the probability 
for the system to be found in a given basis state becomes the prescribed function of Hamming distance 
from this state to the query center.  In this example, if the initial state of the database is an equiprobable 
superposition of all basis states, the value +1 is reached after three iterations. 

1±

 

ax

|00〉
|10〉

|01〉
|11〉

positive amplitude

negative amplitude

τ = 1

τ = 2

τ = 3

τ = 0
β = 0 900.

β = −0 216.

β = −0 632.

β = 1 000.+ 0 5.

− 0 5.

distributed query 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Right top corner: histogram of query amplitude distribution.  Left top corner: initial equally 
weighted state, describing unsorted data base.  Histograms of the iterated state amplitudes, with their 
corresponding β values, are placed along the diagonal. For the third iteration the distribution (lower right 
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corner) of the basis state amplitudes coincides with the distribution of amplitudes in the query (right top 
corner). 

 
For the previous example the period of state oscillations can be found using expression (35).  Since 

N = 4, and 45.0)2.04.04.08.0(41 =+++=〉〈 pb , then 

 3  ;7.02  ;7.0  ;6.0)45.045.0(81cos ≅≅≅−≅⋅⋅−= T
T

πππωω  

So, it may be concluded that the state of the system oscillates very quickly. 
 

5 Quantum associative memory with distributed query 
Now the general form for a quantum associative memory may be considered.  Recall that if binary 

patterns are considered this kind of memory suggests the retrieval of a memory state whose Hamming 
distance from the presented stimulus is minimal.  Also, recall that for the case of memory which includes 
only a restricted number of memory states it is necessary to change the transformation 1||2 −〉〈= sssU  to 
the transformation U .  1||2 −〉〈= mmm

Of course, it would be desirable if any quantum state 〉ψ|  describing our memory would not contain 
nonzero amplitudes for any basis state not corresponding to one of the memory patterns (the absence of 
spurious memories).  But while this may be possible for a completing associative memory it is impossible 
in the case of distributed queries because after the transformation performed by Oracle 

 p
x

p
xx bbaaa 〉〈−→ |2   

so that in general all amplitudes take non-zero values during the course of the algorithm’s iteration.  
 
5.1 Model description 

Hence, the state of our system will be described by an arbitrary wavefunction 〉ψ|  and the 
transformation performed by the NameFinder-in-Memory will have the form 

  
 〉〉−〉〈→ ψψψ |||2: mmUm   (44) 
 

Since 
 

 ∑ ∑ =∑ ∑ =〉〈=∑ 







∑ 〉〈=〉

∈∈∈ Mx y
xyy

Mx y
y

Mx y
y a

P
yxa

P
yax

P
m δψ 1|1||1|〈 ∑ 〉〈=

∈Mx
mx aPa

P
1  

 

where P is the number of patterns in memory and ∑=〉〈
∈Μx

xm a
P

a 1 , it can be established that 

 
 ∑ ∑

∈
〉−〉〉〈=〉〉−〉〈

Mx x
xm xaxamm ||2|||2 ψψ  

 
and the NameFinder-in-Memory transformation will be defined as 

 

  (45) 




−
∈−〉〈

→
otherwise

 if2

x

xm
x a

Mxaa
a

 
Hence, the amplitude transformation performed by NameFinder-in-Memory will have a form similar 

to the NameFinder-in-Database transformation in Grover’s algorithm, but this transformation will be 
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applied only to the basis states corresponding to valid memories.  For the rest of the basis states this 
transformation resembles the Oracle transformation (performing phase inversion).  Finally, the 
generalized search algorithm described in the previous section can be adapted to the case in point, taking 
the following “anti-symmetrical” form: 

 
       Oracle transformation: p

x
p

xx bbaaa 〉〈−→ |2  
       NameFinder-in-Memory  transformation: xxx ammaa −〉〈→ |2  (46) 
 
Example 2.  Consider the case of a memory state containing a single valid pattern |  and the 

distributed query centered on the basis state | ,   
〉=〉 01|m

〉11

  〉+〉〉〉〉 00|
10
101|

10
10

10
11

10
++=

3|3|9| b  

The Oracle transformation converts the initial state of the memory | into  〉=〉 01|)0(m
  〉−〉−〉+〉−=〉 11|54.010|18.001|82.000|06.0| )2/1(m

and the NameFinder-in-Memory transformation completes a single iteration as 
  〉+〉+〉+〉=〉 11|54.010|18.001|82.000|06.0| )1(m
Thus, after the first iteration the probability of measuring the system  and finding the memory state 
 (which is a Hamming distance of one from the query center ) takes a value 0.82〉01| 〉11| 2 ≈ 0.67.  The 

probability of collapsing into the spurious state |  is 0.54〉11 2 ≈ 0.29, and the probabilities for the system 
to be found in other spurious states are considerably lower. 

Example 3.  Consider the case of a memory containing two states 〉+〉=〉 01|
2

100|
2

1| m , and 

suppose that the query has the same form as for the previous example.  Let the initial state of our memory 
be | .  In this case after one iteration this state will take the form  〉=〉 ma |)0(

 
  += 000|0| a  〉+〉+〉〉〉 11|51.010|17.001|65.54.)1(

 
The probability for the system to be found after a measurement in the basis state | , which is nearest to 
the query center (in the sense of Hamming distance) takes a value 0.65

〉01

〉11

2 ≈ 0.42.  The probability for the 
system to be found in the memory state | , for which query amplitude is minimal is not small: 0.54〉00 2 ≈ 
0.29.  Also, the probability for the system to be observed in the spurious state , which corresponds to 
the query center, is fairly large.  Both of these examples demonstrate that the properties of a quantum 
associative memory with distributed query seem to be reasonable. 

|

In order to transform the expressions obtained earlier for Grover’s algorithm with distributed query to 
the case of a general quantum associative memory for which the transformation NameFinder-in-Memory 
is used, it is necessary to make changes 

 
 〉〈=⇒〉〈= maa m |αα  
  (47) 〉〈=⇒〉〈 mbbb m

p |
  22 ⇒N
 

For example , the expressions for the state frequency (35-36) take the form 
 
 )  (48) 21arccos( 2

mb−=ω
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 mbarcsin2=ω  (49) 
 
 
Now, using numbers from Example 3 gives 283.02/)3.01.0( ≅+=mb  and  

.  Therefore 57.0)283.021arccos( 2 ≅⋅−=ω 112
≅=

ω
πT , and the memory recall will require 11 

iterations of the algorithm to maximize the likelihood of obtaining the correct result (in this case 
observing the basis state . 〉01| )

 
5.2 Analytical solution for amplitudes 

The third example will become clearer after deriving an analytical solution for the amplitudes.  From 
Equations (46) it may be shown that  

 
  (50) )2(22)()1(

xm
p
xmxmxx mbbmaa

x
−++−=+ βαττ

 
Taking into account Equations (47) the following modifications of the expressions for the averages αm 
and βm originally written in expressions (33) and (37) may be obtained: 

 

 )2/sin()2/sin()))1(cos()(cos(
2

ωωϕωτϕτωϕωτα −+−=+−−+=
mm

m b
B

b
B  (51) 

 )cos( ϕωτβ += Bm   (52) 
 
Inserting the last expressions into Equation (50) results in 

 

 







−+−+−+−=+ )2/sin()2/sin()cos()2(2)()1( ωϕωτωϕωτττ

m

x
xm

p
xxx b

mmbbBaa  (53) 

 
Suppose the solution of the last equation can be cast in the form 

 
 )cos( xxx Aa δωτ +=  (54) 
 

Inserting (54) in (53) it is possible to derive  
 
 =++≡++++ )2/cos()2/cos(2))cos()(cos( ωδωτωδωτδωωτ xxxxx AA  

≡−+−+− )2/sin()2/sin(2)cos()2(2 ωϕωτωϕωτ
m

x
xm

p
x b

BmmbbB  

 ))sin()cos((2 ϕωτϕωτ +⋅++⋅ xx gfB  (55) 
 

where 
 

 )2/sin(2)2/(sin2 ωω x
p
xxm

p
x

m

x
def

x mbmbb
b
mf −≡−+=  (56) 
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 ωsin
2 m

x
def

x b
mg =   (57) 

 
Introducing a variable  

 














+
=

22
arccos

xx

x
x

gf

fζ   (58) 

 
Equation (55) can be transformed to 

 

 )cos()2/cos()2/cos( 22
xxxxx gfBA ζϕωτωδωτω +++=++  (59) 

 
From the last equation it follows immediately that the expressions for coefficients Ax and phases δx are 

 

 
)2/cos(

22

ω
xx

x
gfB

A
+

=  (60) 

 
 2/ωϕζδ −+= xx  (61) 
 
 
Expressions (54, 60-61) give the analytical form of the amplitudes of the basis states for a general 

quantum associative memory based on the use of Grover’s algorithm with distributed query.  Figure 2 
shows the analytical form of the amplitudes for the memory defined in the third example. 
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Figure 2.  Dependence of basis state amplitudes on Grover’s iterations for the memory defined in Example 
3. 

 
It can be seen in Figure 2 that the state |  has a phase delay compared to the other valid memory 

state, .  The observed delay is connected with the greater amplitude which basis state |  has in the 
query.  The change of phase δ

〉01
〉00| 〉01

x due to the change of basis state amplitude  in a query is dependent only 
upon the variation of ζ

p
xb

x; considering the derivative and applying some algebra 
 

 =














+−

−
=

22 2)(
cos

xx
p
xm

p
x

mx
p
x

p
x

xp
x mmbbb

bmb
bb ∂
∂ζ

∂
∂  

 0
2)(

sin
)2)((

)(

2)(

1
22

2

2/322

2

22
≥

+−
≡

+−
−

−
+− xx

p
xm

p
x

x

xx
p
xm

p
x

mx
p
x

xx
p
xm

p
x mmbbbmmbbb

bmb

mmbbb

ζ  

 
Hence,  
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2
sinsin ≥⋅−=− p
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x

m

x
p
x

x
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m
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ζω
∂
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or 

 

 0≤p
x

x

b∂
∂ζ  

 
Thus, the state |  which has a greater amplitude in the query than does the state |  will also have 

a lower phase value ζ
〉01 〉00
x, and, consequently, lower value of δx.  In query formation, amplitudes of basis 

states monotonously decrease with Hamming distance from the query center; therefore, the memory state 
nearest to this center will have maximal amplitude and, consequently, minimal phase value.  It may also 
be seen in Figure 2 that those basis states which do not belong to the set of valid  memories (spurious 
memories) all have the same phase value. 

As will be seen shortly, this fact is very important, and it can be verified using expression (58).  
Indeed, for any spurious memory, from (56-58) it follows that 01cos00 ≡⇒≡⇒≡⇒≡ xxxx gm ζζ .  
Then, from expression (61) the fact that constx =−= 2/ωϕδ  may be derived. 

Consider, once again, Figure 2.  Maximal amplitude belongs to the state |  for which the amplitude 
of the query is also maximal.  On the other hand, the state , has both minimal amplitude and minimal 
query amplitude.  However, in general, this relation is not valid.  Indeed, the dependence of the basis state 
amplitude on query amplitude 

〉11
〉00|

 

 
)2/cos(

22

ω
xx

x
gfB

A
+

=  

 
can be rewritten using explicit expressions for the parameters fx and gx given in (56) and (57) as follows  
 

 22 2)(
)2/cos( x
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p
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The expression on the right hand side is not a monotonic function of  and takes a minimal value on 

an internal point on the interval [0,1].  Therefore, basis states with lower query amplitude can have greater 
amplitude in memory. 

p
xb

Note, that in principle, in a distributed query some amplitudes can have zero values.  Then, 
corresponding basis states will never arise as spurious memories.  Thus, spurious memories are generated 
by the query itself demonstrating the principle: arise  if  suggested. 

The evolution of the amplitudes of memory states is rather complicated.  In general there exists no a 
priori knowledge about the structure of memory nor about the correspondence between the location of 
memories and the query center in configuration space.  It is therefore difficult to obtain an analytical 
expression for the number of iterations needed to reach the maximal values of amplitudes of memories in 
the vicinity of this center.  It is clear that the difficulty in deriving the necessary estimate is connected 
with the probabilistic character of the parameter bm.  But the situation can be improved considerably by 
changing the way the memory is structured, taking advantage of the fact that oscillating spurious 
memories all have the same phase value. 

 
5.3 Memories become easily retrieved when they become spurious 

The trick is simply to exchange the valid states to be memorized with other (spurious) states and vice 
versa.  Namely, create a memory whose initial state is   

 

  ∑== x|1| (ψ  
∉

〉〉〉
Mx P

m~|)0

 
and correspondingly, the transformation performed by this memory is defined as  

 
  〉〉−〉〈= ψψψ |||2: mU  ~~~ mm
 
In some sense this kind of memory is ideologically similar to the immune system, which includes 

antibodies corresponding to antigens that do not belong to the host organism and has almost no antibodies 
to its own proteins.  Analogically, the associative memory is formed by memorizing patterns which 
should not be recalled. 

 In this system , all valid memories be treated as spurious ones.  All these memories will be in phase 
with a phase value of -π/2 and have initial amplitudes of zero.  Therefore, the amplitudes of these states 
will evolve according to  

 
  ωττ sinxx Aa =

 
and because for these states mx = 0, 
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ωω
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based upon the query amplitudes.  Applying this trick to Example 3, the initial state of memory is        
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  〉〉〉 11
2

10
2

~ += |1|1| m  

 
Then,  85.02/)9.03.0(| ≅+=〉〈 mb  and 03.2≅ω , and now the states of the system will oscillate with 
considerably lower (compared to the original 11) period 1.3/2 ≅= ωπT . 

Since the amplitudes of all spurious memories achieve their maximal values at 4/T=τ , the system 
will be in a state for which the amplitudes of these “spurious” memories become proportional to their 
amplitudes in the query for 77.0≅τ .  Of course, the number of iterations must be integer valued so it is 
necessary to add some periods for nT+τ  to be as near as possible to an integer value.  In this case, for 
n = 2, 0.77 + 6.2 = 6.97 ≈ 7, so it will suffice to perform seven iterations of the algorithm before 
performing a measurement.  After these iterations the state of system will be 

 
 〉+〉+〉+〉=〉 11|53.010|6.001|57.000|19.0|ψ  
 
It is evident that the amplitudes of the “spurious” memories (really the valid memories) in this state 

are in the same proportion as in the query (a ratio of 1/3).  Nevertheless, in general it seems that the 
difficulty inherent in the previous scheme still remains: a dependence of the frequency ω on the set of 
valid memory patterns. 

However, taking into account that now the number of “valid” patterns is very near 2d (because 

p << 2d), .  Therefore, in contrast to the more intuitive approach 

(memorizing the valid patterns)  the value of b

∑∑
−

=∉

−−
=≅=

12

0

2/2/
2~2

d

x

p
x

Mx

d
m

p
x

d
m bbbb

m can be approximated as a priori knowledge, dependent 
only on the form of the query, not on the form of the set of memory states.  Therefore, using this 
approximated value of bm and the corresponding approximation of the frequency mb~arcsin2~ =ω , the 
number of iterations Tmax needed to transform the system into a state such that the amplitudes of spurious 
(actually valid) memories become maximal and proportional to their amplitudes in the distributed query is 

 

 
2

~
max

πω =T   ⇒
ω
π
~2max ≈T   

 
4.4. A note on initializing quantum states 

It has been recently pointed out that there is potentially an inherent problem with current quantum 
computational algorithms [17].  Quantum computers and quantum algorithms rely heavily on the phase 
information of quantum states -- if the relative phases of the various states in a system are not correct, the 
computation will not work.  Kak discusses the fact that quantum systems can possess random initial 
phases, whereas quantum algorithms implicitly assume some known initial phase conditions from which 
to begin the computation.  The consensus seems to be that it is possible that this initial variability in the 
state phases may be compensated for by quantum error correction schemes [18][19].  However, these 
schemes may also be flawed.  Classical error correction is based upon the fact that errors in classical 
systems are discrete -- a bit is flipped with some small probability.  However, because quantum 
computational systems contain phase information, they are susceptible to a continuum of possible errors, 
and quantum error correction schemes developed to date address only a small number of special cases. 
Therefore, the issue to be resolved is whether or not in practice (that is in constructing a quantum 
computer) we will encounter mostly those few cases of error which have been treated in the literature or 
we will see the many other possibilities that Kak points out.  
 
6 Conclusion  
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A model of quantum associative memory which is able to retrieve memory states with probability 
proportional to the amplitudes these states have in a query has been presented.  This quantum memory can 
retrieve valid stored patterns from arbitrary stimuli represented by a distributed query of general form 
(fuzzy stimulus).  Further investigation of the model is needed to estimate its other possible merits and 
limitations.  
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