

Abstract— Probabilistic record linkage has been used for
many years in a variety of industries, including medical,
government, private sector and research groups. The formulas
used for probabilistic record linkage have been recognized by
some as being equivalent to the naïve Bayes classifier. While
this method can produce useful results, it is not difficult to
improve accuracy by using one of a host of other machine
learning or neural network algorithms. Even a simple single-
layer perceptron tends to outperform the naïve Bayes
classifier—and thus traditional probabilistic record linkage
methods—by a substantial margin. Furthermore, many record
linkage system use simple field comparisons rather than more
complex features, partially due to the limits of the probabilistic
formulas they use. This paper presents an overview of
probabilistic record linkage, shows how to cast it in machine
learning terms, and then shows that it is equivalent to a naïve
Bayes classifier. It then discusses how to use more complex
features than simple field comparisons, and shows how
probabilistic record linkage formulas can be modified to handle
this. Finally, it demonstrates a huge improvement in accuracy
through the use of neural networks and higher-level matching
features, compared to traditional probabilistic record linkage
on a large (80,000 pair) set of labeled pairs of genealogical
records used by FamilySearch.org.

I. RECORD LINKAGE INTRODUCTION
ECORD LINKAGE is a term first coined by H. L. Dunn
[1] in the medical field. Record linkage is the process
of identifying pairs of records that refer to the same

thing. In most cases, each record refers to a person, and the
challenge is to identify which records refer to the same real
person. This challenge arises in many different areas,
including companies trying to avoid sending mail to the
same person multiple times; hospitals trying to track data on
the same patient across several visits; and many other
situations.
 FamilySearch uses record linkage for family history,
also called genealogy, in which people attempt to discover
who their ancestors and other relatives are. It recently faced
the task of having to find duplicate records in a billion-
person database, and continues to work hard to examine
incoming and existing records in its system to identify
multiple records that refer to the same real person.
 In each record linkage situation, the available records
have certain data fields that contain information about each
individual. In many applications, data fields may include
such items as name, address, zip code, phone number, and so
forth. In genealogy, data fields include names; dates and

Manuscript received December 16, 2010.
D. Randall Wilson is with FamilySearch, 50 East North Temple, Salt

Lake City, Utah. Tel. 801-240-9020; e-mail: wilsonr@familysearch.org.

places for events such as birth, christening, marriage, death
or burial; and names and events of relatives such as parents,
spouses and children. It can also make use of information
about what type of record it is and where it came from (for
example, two individuals listed as a child in different
original birth certificates are not usually the same person,
although the parents in those birth certificates could be the
same).
 Data values often have variation, even among records
that refer to the same real person. Names can have
variations due to things like nicknames (“Bob” vs.
“Robert”), married names vs. maiden names (“Elizabeth
Turner” vs. “Elizabeth Smith”), spelling variations
(“Elizabeth” vs. “Elisabeth”), initials (“John Henry” vs.
“John H.”), typographical errors, illegible handwriting, and
so on.
 Dates can vary due to formatting differences (“12 Jun
1850”, “6/12/1850”, “1850.12.6”), estimates (“1850”, “about
1848”), typos (“1701” vs. “1710”), or even calendar changes
(the beginning of the year moved from March to January in
1752, for example, and not everyone made the change at the
same time). The same place is often spelled differently,
abbreviated in various ways, or can be subject to boundary
or name changes over time (after all, “Istanbul was
Constantinople”).
 Often normalization is done to convert fields to lower
case, remove or standardize punctuation, put dates and
places in a consistent format, etc. It is even possible to use
name and place catalogs to get standard values or ids that
can be used for record comparison. For example, “Berkeley,
CA” and “Berkeley, Alameda, Calif.” could be looked up in
a catalog to determine that both refer to “Berkeley, Alameda,
California, United States.” Such normalization (or
standardization) helps avoid false disagreements in the data.
 On the other hand, many different people can have the
same name, and many different real people are born in the
same place, or can have other fields that agree. So although
fields tend to agree for matching pairs of records (i.e.,
records that refer to the same real person), it is also possible
for them to disagree on matching pairs and it is certainly
possible for some fields to agree on differing pairs of records
(i.e., on records that do not refer to the same real person).
 In order to separate the matching record pairs from the
differing ones, it is important to make the best use of as
much information as is reasonably possible.
 Most record linkage systems have traditionally used
simple field comparisons as the basis for classification.
However, record linkage algorithms can take advantage of
higher-level features that take into account not just whether

Beyond Probabilistic Record Linkage: Using Neural Networks
and Complex Features to Improve Genealogical Record Linkage

D. Randall Wilson

R

Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011

978-1-4244-9636-5/11/$26.00 ©2011 IEEE 9

two values in a field agree, but how well they agree, or any
other higher-level logic, such as “did one person die before
the other one was born,” or “do the two people have children
born too close together or too far apart to be reasonable.”
 One challenge of record linkage, then, is to find a list of
features (including simple normalized field comparisons)
that can be useful in determining whether two records refer
to the same person. Once the features have been found, the
next step is to find the best way to use these features to give
a score to a pair of records that reflects how likely it is that
the two records represent the same person.
 This paper reviews probabilistic record linkage, which
is commonly used in the industry. It then shows that this
method is equivalent to the naïve Bayes classifier in machine
learning. The paper then discusses the use of more powerful
features than simple field comparisons, and concludes with
empirical results showing a dramatic reduction in error rates
by using complex features coupled with neural network
training, when compared with traditional probabilistic record
linkage.

I. PROBABILISTIC RECORD LINKAGE
 The most common algorithm for record linkage has
traditionally been the statistical probabilistic record linkage
formulas, as set forth by Howard Newcombe et al. [2, 3],
and formalized by Fillegi and Sunter [4].
 Let M be a set of matched record pairs (that both
represent the same real person), and U be a set of differing
(also called unmatched) record pairs (that represent two
different people). If there are n data fields, then two field
agreement probabilities, called the m-probability and the
u-probability, can be defined for each data field i, with
i = 1..n, as follows.

 m i = P(field i agrees on a matched pair) = am,i / cm,i
 ui = P(field i agrees on a differing pair) = au,i / cu,i

 Similarly, the field disagreement probabilities can be
defined as

 m'i = P(field i disagrees on a matched pair) = dm,i / cm,i
 u'i = P(field i disagrees on a differing pair) = du,i / cu,i

where in both cases,

 am,i = number of matched pairs that agree on field i
 dm,i = number of matched pairs that disagree on field i
 cm,i = am,i + dm,i
 a u,i = number of differing pairs that agree on field i
 du,i = number of differing pairs that disagree on field i
 cu,i = au,i + du,i

 In much of the record linkage literature, it is assumed
that m'i = (1 - mi) and u'i = (1 - ui). However, note that cm,i
and cu,i could be less than |M| or |U|, respectively, because
often records are missing data for a given field, in which
case the field neither agrees nor disagrees. In practice,
therefore, we leave pairs of records out of the probability

calculations for a field when either or both of the records are
missing data for that field.
 To compute a score for a given pair of records, a weight
is added for each field. If the two records agree on the field,
an agreement weight is added. If they disagree, a
disagreement weight is added. If one or both records have
no data for the field, then neither weight is added.
 These weights can be computed as follows. The weight
for agreement on field i is

 wa,i = ln(mi / ui) = ln(mi) - ln(ui)

and the weight for disagreement on field i is

 wd,i = ln(m'i / u'i) = ln(m'i) - ln(u'i)

 Finally, a decision is made by comparing the “score”
(i.e., the summed weights) to a decision threshold, θ.

II. MEASURING ACCURACY
 The decision threshold θ is chosen to give the least
objectionable trade-off between recall and precision on
some labeled test data. Recall is the percent of known
matched pairs that get a score above θ. Precision is the
percent of pairs with a score above θ that are matched pairs.
Put another way, the classifier is calling pairs a match if they
get a score above θ. So recall is the percent of real matches
that the classifier calls a match, and precision tells what
percent of pairs that the classifier calls a match really are a
match. Thus, the false negative (or “missed match”) rate is
100% - recall, and the false positive (or “bad match”) rate is
100% - precision.
 It is important to understand this well, so Table 1
illustrates an example. Given 1000 labeled pairs of records,
let us assume 400 are matching pairs and 600 are differing
pairs. Assume also that 300 of the 400 matching pairs get a
score above some θ. This means that the recall is 300 / 400
or 75%. Assume also that 50 of the differing pairs also get a
score above θ. Then there are 300 matching and 50 differing
records with a score above θ, meaning that the precision is
300 / (50 + 300) = 300 / 350 = 85.7%.

 TABLE I
EXAMPLE OF PRECISION AND RECALL

 Matching
Pairs

Differing
Pairs

Total with
score > θ

Score > θ 300 50 350
Score < θ 100 550 650
Total 400 600 1000

Recall = 300/(300+100) = 300/400 = 75%.
Precision = 300/(300+50) = 300/350 = 85.7%.

 By choosing different values of θ, it is possible to
increase the recall at the expense of precision, or vice-versa.
The only way to increase both, however, is to improve the
classifier. Some ways this can be done include (a) better
normalization of data; (b) using different or more complex

10

features; or (c) generating the weights and/or scores using a
more powerful algorithm.

III. EQUIVALENCE OF PROBABILISTIC RECORD LINKAGE
AND THE NAÏVE BAYES CLASSIFIER

 One of the often-admitted weaknesses of probabilistic
record linkage is that it depends upon the assumption that
each of its fields is independent of the others. This is clearly
not the case, but results have been reasonable enough that
the formulas have still been useful in practice.
 It has been noted by some (e.g., [5]) that the
probabilistic record linkage formulas are equivalent to the
naïve Bayes classifier [6, 7], which depends upon the same
independence assumptions. To see that this is so, first
consider the formulas used by a naïve Bayes classifier. This
classifier attempts to calculate the probability of each class
C—which, in our case, include the two classes match (M)
and differ (D)—given the feature values x1,…,xn, such as
field agreement for each of the n fields. Using Bayes’
theorem, this can be written as:

 P(C | x1,…,xn) = P(C)P(x1,…,xn|C)/P(x1,…,xn)

Using the independence assumption, this results in

 P(C | x1,…,xn) = P(C)P(x1|C)…P(xn|C)/P(x1,…,xn)

 To decide whether a pair is a match or not, the classifier
determines which probability is greater, i.e., it assumes the
pair is a match (M) rather than a differ (D) if

where θ0 = ln(P(D)) - ln(P(M)), and is the constant, “default”
decision threshold. In practice, any value of θ could be
chosen that gives the best trade-off of recall and precision.
Note that the final formula is the same decision rule and set
of weights used by probabilistic record linkage.

IV. USING FEATURES INSTEAD OF FIELDS
 Probabilistic record linkage traditionally uses simple
field agreement or disagreement for its calculations.
However, it is possible to use more complicated features to
improve accuracy. To see how this can be done, we first
recast probabilistic record linkage into machine learning
terms by having two mutually exclusive binary features, f2i-1
and f2i, for each original field, i. For example, assume we
have two fields with weights as follows.

 Field 1: given name
 agreement weight = wa,1; disagreement weight = wd,1
 Field 2: surname
 agreement weight = wa,2; disagreement weight = wd,2

 We can map these two fields to four features with the
weights that apply when the feature “fires”:

 Feature f1: given name agrees; weight = wa,1
 Feature f2: given name disagrees; weight = wd,1
 Feature f3: surname agrees; weight = wa,2
 Feature f4: surname agrees; weight = wd,2

 Since a particular field cannot both agree and disagree,
only one or the other feature can fire for each field. If either
record in a pair is missing data for that field, then neither
will fire.
 Moving one step further, it is possible now to introduce
more complex features than simple field comparisons. For
example, in comparing birth dates, we have analyzed dates
among matching pairs of records and among differing pairs
of records, and have found several levels of agreement. An
exact day, month and year agreement is best. But matching
records often have a complete (day/month/year) dates that
differ by up to a couple of weeks in genealogical data (due
to calendar changes, the lag between birth and recording,
etc.). Many genealogical dates are year-only dates, and
these can be off by several years on matching records, as
they often represent rough estimates by genealogists or
automated systems. On the other hand, complete dates that
are off by more than a couple of weeks are rarely found
among matching records, so these are rated as a complete
disagreement.
 Similarly, name comparisons can benefit from having
several levels of agreement ranging from multiple identical
name pieces (e.g., “John Henry” for both), to similar but not
identical names (“John Henry” / “Jonathan H.”) to outright
conflicts (“John Henry” / “John William” or “David H.” /
“Jason Evan”).
 By having several levels of matching for names, dates,
places and other fields, it is possible to have different
weights for those cases, which allows the classifier to
discriminate more accurately.
 Once we are free from the restriction of using simple
field comparisons, it also becomes possible to use more
complex features that can help distinguish between matching
and differing pairs of records. For example, although we
may originally use the birth date and the death date as two

11

fields for comparison, we can also create another feature that
looks to see if one of the people died before the other was
born. This is especially helpful when one record does not
have a birth date and the other one does not have a death
date.
 By taking combinations of values and other higher-level
features into account, we can provide the classifier with
more domain knowledge so that it has more powerful pieces
of information to use in scoring pairs of records.
 Complex features might look something like this

 Feature f1: given name agrees very well
 Feature f2: given name agrees well
 Feature f3: given name partially agrees
 Feature f4: given name conflicts,

and so on.
 Each of these features either fires or does not for each
pair, and certain features can be clustered into groups that
are known to be mutually exclusive such as the four features
above. Genealogical matching features are described in
detail in [8].

V. MULTI-VALUED PROBABILISTIC RECORD LINKAGE
 With a slight modification, the probabilistic record
linkage formulas can be altered to support arbitrary features
instead of just field agreement and disagreement.
 Instead of using an “agreement weight” and a
“disagreement weight” for each “field”, each feature gets a
single weight that is added when that feature fires.
Equivalently, each feature can be viewed as having a weight
that is always multiplied by the input, which will be either 1
or 0.
 The formula for each feature weight is computed as

 wi = ln(mi / ui) = ln(mi) - ln(ui)

and mi and ui are altered just slightly to be defined as

 m i = P(feature i fires on a matched pair) = nm,i / |M|
 ui = P(feature i fires on a differing pair) = nu,i / |U|

where nm,i and nu,i are the number of times that the feature i
fires on matched and differing (“unmatched”) records,
respectively.
 When there are groups of features that are mutually
exclusive and missing values are common, then mi and ui can
use the number of matched pairs (and differing pairs,
respectively) for which any feature in the group fired,
instead of using |M| (or |U|, respectively).

VI. NEURAL NETWORKS FOR MORE ACCURACY
 Using a naïve Bayes classifier can produce useful
results, but there are many other neural network and
machine learning algorithms available, including a single-
layer perceptron [9], multilayer backpropagation network
[10], support vector machines [11], rule-based systems [12],
instance-based systems [13, 14], radial basis functions [15],
and so on. Often other algorithms can achieve significantly

higher accuracy than the naïve Bayes classifier, and thus,
higher accuracy than standard probabilistic record linkage.
 Unfortunately, there has not be as much overlap
between the record linkage and machine learning
communities as there perhaps should have been, so often
probabilistic record linkage is used by default even when
more accurate alternatives are available. One purpose of this
paper is to help rectify this disconnect.
 A single-layer perceptron has a simple learning rule,
which is given in the pseudo-code below.

Single Layer Perceptron(Training set T) {
 initialize w[1..n+1] to random values between -0.01 and +0.01
 let lr = 0.01 // small, constant learning rate
 for each iteration (up to 1000) {
 shuffle instances
 tss = 0 // total sum-squared error
 for each instance I in T (with inputs x[1..n+1] and target y) {
 x[n+1] = 1 // set bias input to 1 always
 sum = 0
 for i=1..n+1
 sum += x[i] * w[i]
 activation = 1/(1 + exp(-sum)) // sigmoid function
 error = y – activation // = target - output
 for i = 1..n+1
 w[i] = w[i] + lr * error * x[i]
 tss += error * error
 }
 stop if tss has not changed by more than 0.0001
 }
}

 The algorithm iterates through a training set, T,
consisting of instances, each of which has an input vector, x,
and a binary target value, y. One weight is trained for each
input, plus one more weight for a bias (which can be trained
by having an extra input whose value is always 1), and these
weights are initialized with small random values. One
iteration (or epoch) consists of running through all of the
training instances in random order. Usually several (e.g., a
few hundred) iterations are run, or training is stopped when
the error rate on the training set (or, ideally, on a hold-out set
of additional data) stops improving. For each instance, the
activation is calculated by multiplying the inputs by the
current weights and running the sum through a nonlinear
activation function such as a sigmoid. Then the error is
computed and weights are updated as shown.
 In our application, the input vector x consists of binary
attributes, one per feature value. At most one feature value
will be a “1” for each high-level feature, since each feature’s
set of values (or “levels of agreement”) are mutually
exclusive, as explained in earlier sections. The output value
y is also a binary value, where 0 means “not a match” and 1
means a “match”.
 One advantage that both probabilistic record linkage
and single-layer perceptrons have over some other
algorithms is that they derive a single weight for each
feature, which makes it possible to have some understanding
of the “meaning” of the weights. For example, if there is a
large negative weight on the “given name conflicts” feature,

12

and a small positive weight on the “given name weakly
agrees” feature, those weights can be examined by hand to
see if they make sense. Furthermore, when the classifier
makes a mistake, the features and weights can be examined
to gain insight into the best place to do further feature
engineering in order to improve accuracy.
 There are limits to how far one can trust their
interpretation of these weights, however. In one case, for
example, we found a negative weight associated with
agreement on the father’s name. This was counterintuitive,
but seemed to be explained by the nature of our data, i.e., the
records that had agreement in the father’s given name tended
to also have quite a bit of other data about the persons that
could be used; and yet it was quite common to have siblings
being compared, who of course have the same father
information, and a lot of other similar information. So the
neural network apparently found that penalizing for father
name agreement allowed better accuracy on the common
sibling case without hurting accuracy on real matches much.
 Having one weight per feature value does mean that
they are both constrained by having a linear decision
surface, unlike many other algorithms, but although we have
found a perceptron to yield much better results than
probabilistic record linkage formulas, we have not found
multilayer perceptrons or most other algorithms to improve
accuracy much beyond that, if any, in our genealogical data.
This may be due in part to the complex features that already
take advantage of domain knowledge and “flatten” the
decision space somewhat.
 Perhaps the largest advantage that even a single-layer
perceptron has over probabilistic record linkage (and,
equivalently, the naïve Bayes classifier) is that it does not
rely upon the independence assumption. If some of the
inputs are correlated, the training algorithm will tend to
adjust weights to account for this. By observing the effect of
weights on accuracy and adjusting weights accordingly,
neural networks can avoid assigning too much weight to
features that have correlation with other features. This
happens naturally as part of the training process.
 Neural networks typically initialize their training with
small, random weights. It would be possible to use
probabilistic record linkage formulas to calculate weights,
and use those as the initial weights for a single-layer neural
network. What would happen at that point is that the
algorithm would take those weighs as a starting point, and
then begin adjusting them based on the errors that are seen in
the training data. In other words, the probabilistic formulas
can produce weights that are perhaps a nice start, but they
fail to adjust the weights to overcome errors caused by the
independence assumption, whereas the neural network
training algorithm continues to adjust until the error rate
stabilizes.

VII. EMPIRICAL RESULTS
 Experiments were run using a set of 80,000 pairs of
genealogical records that were hand-labeled by genealogical
experts as a “matching” pair (i.e., both person records appear
to represent the same real person) or a “differing” pair

(where the two person records appear to represent two
different real persons). 48,000 of the records were used for
training and 32,000 were used for testing.
 Two versions of the data were generated. The first was
an original feature set with 159 binary features (in 32
“feature groups”). A simplified feature set was also
generated, in which features were limited to just 16 fields,
each of which was found to “agree” or “disagree”, as is done
in traditional probabilistic record linkage. (A field was said
to “agree” if it exactly or closely agreed, and to “disagree”
only if it conflicted. Very weak agreement was treated the
same as a missing value in the simplified feature set).
 The probabilistic record linkage formulas were
implemented as outlined in this paper, i.e., the original
formulas from Section I were used for the simplified feature
set to calculate agreement and disagreement weights, and the
multi-value formulas from Section V were used on the full
feature set to support the more complicated features.
(Incidentally, the multi-value formulas produced identical
results to those produced by the original formulas on the
simplified feature set, as expected.)
 A single-layer perceptron with initial weights in the
range of –0.01 to +0.01 and a learning rate of 0.01 was used
to train on both versions of the data as well. 1000 iterations
were run, though it appeared to be well trained after about
250 iterations. Training time was less than a second for PRL
and a few seconds for the neural network.
 Both algorithms resulted in one weight per feature, and
these weights were summed for all features that fired in
order to classify pairs in the test set as match or differ using
various thresholds. (In other words, although training is
done differently, execution is done identically for both
methods once the weights have been generated).

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

50 55 60 65 70 75 80 85 90 95 100
Precision

R
ec
al
l

Full Features-NN
Full Features-PRL
Simple Fields-NN
Simple Fields-PRL

Fig. 1. Precision and recall of a single-layer perceptron
neural network (NN) and a probabilistic record linkage
(PRL) algorithm on genealogical records, using “simple”
field agreement features or a full set of complex features.

 Figure 1 shows the precision/recall results for the
single-layer perceptron neural network (NN) and the
probabilistic record linkage formulas (PRL), on both the
simplified field-level comparisons (“Simple Fields”) and on
the full feature set (“Full Features”). The precision/recall

13

curves were generated by varying the threshold for each of
the four runs.
 As can be seen in Figure 1, the original PRL formulas
on simple fields did have some success. However, using a
single-layer perceptron on the exact same data produces
better results. Switching from simple fields to the full
features produces an even more dramatic improvement for
PRL, but using a neural network on the full features
improves accuracy even more.

 TABLE II
RECALL AT LEVELS OF PRECISION ABOVE 90%

 Simple Fields Full Features
Precision PRL NN PRL NN

90 77.3 85.5 93.9 98.6
91 76.4 84.1 93.5 98.5
92 75.4 82.6 93.2 98.2
93 74.5 81.2 92.8 98.0
94 73.5 79.7 92.5 97.7
95 72.5 77.3 91.0 97.2
96 71.6 74.9 89.8 96.7
97 60.7 64.2 86.8 95.5
98 49.8 55.7 83.6 92.9
99 40.6 45.1 68.9 90.7

100 5.9 34.7 32.6 81.6

 Table 2 shows the recall level at each precision level
from 90 to 100. As can be seen from the numbers, using the
full features was consistently better than using the simple
ones, and using a neural network was consistently better
than using the probabilistic record linkage weights. Note the
dramatic jumps in accuracy by using both improvements:
77.3 to 98.6; 40.6 to 90.7; 5.9 to 81.6.

VIII. CONCLUSIONS
 Early on in our work on genealogical record linkage, we
compared PRL with various neural network and machine
learning algorithms and found a great improvement by using
even a single-layer neural network. As we repeated these
experiments with more data (as presented in this paper), the
results have continued to hold. Even a single-layer neural
network has the huge advantage that it can adjust the
weights to minimize error instead of just setting them once
based on independent attribute statistics without any regard
to whether they really produce good results.
 In the machine learning and neural network literature,
new algorithms often yield very small improvements over
earlier ones. To see improvements this consistent and this
dramatic indicates that those still using traditional record
linkage need to take notice and use more powerful features
and better classifiers to improve accuracy. For those already
using neural networks, these results underscore the power of
taking advantage of domain knowledge to improve features.

REFERENCES
[1] Dunn, H. L. “Record Linkage,” American Journal of Public

Health, vol. 36, 1412-1416, 1956.
[2] Newcombe, H. B., Kennedy, J. M., Axford, S.J., and James,

A.P. “Automatic linkage of vital records.” Science, vol. 130,
954-959, 1959.

[3] Newcombe, Howard B. Handbook of Record Linkage, Oxford
University Press, New York, 1988.

[4] Fillegi, I. P. and Sunter, A. B. “A Theory for Record
Linkage,” Journal of the American Statistical Association, vol.
64, 1183-1210, 1969.

[5] Quass, Dallan, and Starkey, Paul. “Record Linkage for
Genealogical Databases,” ACM SIGKDD ’03 Workshop on
Data Cleaning, Record Linkage, and Object Consolidation,
August 24-27, 2003, Washington, D.C.

[6] Langley, Pat, Wayne Iba, and Kevin Thompson. “An Analysis
of Bayesian Classifiers,” In Proceedings of the 10th National
Conference on Artificial Intelligence, (AAAI-92), AAAI
Press/MIT Press, Cambridge, MA, pp. 223-228, 1992.

[7] Michie, D., D. Spiegelhalter, and C. Taylor. Machine
Learning, Neural and Statistical Classification, Ellis
Horwood, Hertfordshire, England. Book 19, 1994.

[8] Wilson, D. Randall. “Genealogical Record Linkage: Features
for Automated Person Matching,” RootsTech 2011, February
4, 2011, Salt Lake City, Utah.

[9] Rosenblatt, Frank. Principles of Neurodynamics, New York,
Spartan Books, 1959.

[10] Rumelhart, D. E., and J. L. McClelland. Parallel Distributed
Processing, MIT Press, 1986.

[11] Vapnik, V. Statistical Learning Theory. Wiley-Interscience,
New York, 1998.

[12] Quinlan, J. R. C4.5: Programs for Machine Learning, San
Mateo, CA: Morgan Kaufmann, 1993.

[13] Aha, David W., Dennis Kibler, Marc K. Albert. “Instance-
Based Learning Algorithms,” Machine Learning, vol. 6, pp.
37-66, 1991.

[14] Wilson, D. Randall and Martinez, Tony R. “An Integrated
Instance-Based Learning Algorithm,” Computational
Intelligence, vol. 16, no. 1, pp. 1-28, 2000.

[15] Broomhead, D. S., and D. Lowe. “Multi-variable functional
interpolation and adaptive networks.” Complex Systems, vol.
2, pp. 321-355, 1988.

14

