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Hopfield Networks

Relaxation

Totally Connected

Bidirectional Links (Symmetric)

Auto-Associator

10011
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Energy Landscapes formed by weight
settings

No learning - Programmed weights
through an energy function
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Early Hopfield

Each unit is a threshold unit (0,1)
Real valued weights

n
Vi= 2(Ty-Vi) -1
7]

More recent models use sigmoid rather
than Threshold

Similar in overall functionality

Sigmoid gives improved performance
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System Energy equation

n
(Ti-ViVy) - X(I;. V))

E=-3]
J=0

PV

T: weights
V: outputs
I: Bias

Correct Correlation gives Lower System
energy

Thus, minima must have proper
correlations fitting weights

R aVavd
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Programming the Hopfield Network

Derive Proper Energy Function

Stable local minima represent good states
(memory)

Set connectivity and weights to match the
energy function.
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Relaxation and Energy Contours
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When does a node update
n
V] = Z(th Vi) - 1
7]
Continuous - Real System

Random Update - Discrete Simulation

If not random then oscillations can occur

Processing:
Start system in initial state
random
partial

total

Will relax to nearest stable minima
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Hopfield as a CAM
(Content Addressable Memory)
Start with totally connected network with
number of node equal number of bits in the

training set patterns

Set the weights according to:

n
T - zl(zv,-s - 1oV 1)
S=

1.e. increment weight between two nodes when
they have the same value, else decrement the
weight

Could be viewed as a distributed learning
mechanism in this case

Number of storable patterns = .15N

No Guarantees, Saturation
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Limited by Lower order constraints
Has no hidden nodes, higher order units
All nodes visible
1.e. Program as CAM

000
011
101
110

However, relaxing auto-association allows a
garbled input to return a clean output

Assume two patterns trained
A->X
B->Y

Now enter the example with .6A and 4B
Result in a Backprop model?
Result in the Hopfield autoassociator: X
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Hopfield as a Computation Engine

Optimization

Travelling Salesman Problem (TSP)
NP-Complete

"Good" vs. Optimal Solutions

Very Fast Processing
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TSP

)

Shortest Cycle with no repeat cities
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N cities requires N2 nodes
2 ** (N2) possible states
N! Legal paths
N!/2N distinct legal paths
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Derive Energy equation for TSP

1. Legal State
2. Good State
Set weights accordingly

How would we do it
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Network Weights
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Actual Function used and Parameters

E=ADY Z ¥ VVy+ B2y P
+C/2(Z 5 V,,.-n)?

12DY ¥ ZdyyVei(Wiay+ V5 i-1)-

X Y=Xx |
Weight Settings

Txi,yj=—Adxy(1-4,;) “inhibitory connections within
each row”

— Bo,;{1-46,,) “inhibitory connections within
cach column”

— C “global inhibition”

—Ddy {0, 141+ 0;-4) “data term”

[0;,=1 I i=j and is 0 otherwisc].
The external input currents are:

Ixi= + Cn *‘excitation bias”.

Parameters
A=B=D=500 C=200 n=15 jio= .02
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Position in path
(Path=DHIFGEAJCB)

For N=30
4.4 * 1030 Distinct Legal Paths
Typically finds one of 107 best,
Thus pruning 1023

How do you handle occasional bad
minima?
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Summary
Much Current Work
Saturation and No Convergence
For Optimization, Saturation 1S moot
Many important Optimization problems

Non learning, but reasonably intuitive
programming - extensions to learning

Highly Parallel
Expensive Interconnect

Lots of Physical Implementation work, optics
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