
13

The Hopfield Model

One of the milestones for the current renaissance in the field of neural networks
was the associative model proposed by Hopfield at the beginning of the 1980s.
Hopfield’s approach illustrates the way theoretical physicists like to think
about ensembles of computing units. No synchronization is required, each
unit behaving as a kind of elementary system in complex interaction with the
rest of the ensemble. An energy function must be introduced to harness the
theoretical complexities posed by such an approach. The next two sections
deal with the structure of Hopfield networks. We then proceed to show that
the model converges to a stable state and that two kinds of learning rules can
be used to find appropriate network weights.

13.1 Synchronous and asynchronous networks

A relevant issue for the correct design of recurrent neural networks is the ad-
equate synchronization of the computing elements. In the case of McCulloch-
Pitts networks we solved this difficulty by assuming that the activation of each
computing element consumes a unit of time. The network is built taking this
delay into account and by arranging the elements and their connections in the
necessary pattern. When the arrangement becomes too contrived, additional
units can be included which serve as delay elements. What happens when
this assumption is lifted, that is, when the synchronization of the computing
elements is eliminated?

13.1.1 Recursive networks with stochastic dynamics

We discussed the design and operation of associative networks in the previous
chapter. The synchronization of the output was achieved by requiring that all
computing elements evaluate their inputs and compute their output simulta-
neously. Under this assumption the operation of the associative memory can

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

338 13 The Hopfield Model

be described with simple linear algebraic methods. The excitation of the out-
put units is computed using vector-matrix multiplication and evaluating the
sign function at each node.

The methods we have used before to avoid dealing explicitly with the
synchronization problem have the disadvantage, from the point of view of both
biology and physics, that global information is needed, namely a global time.
Whereas in conventional computers synchronization of the digital building
blocks is achieved using a clock signal, there is no such global clock in biological
systems. In a more biologically oriented simulation, global synchronization
should thus be avoided. In this chapter we deal with the problem of identifying
the properties of neural networks lacking global synchronization.

Networks in which the computing units are activated at different times
and which provide a computation after a variable amount of time are stochas-
tic automata. Networks built from this kind of units behave like stochastic
dynamical systems.

13.1.2 The bidirectional associative memory

Before we start analyzing asynchronous networks we will examine another
kind of synchronous associative model with bidirectional edges. We will arrive
at the concept of the energy function in a very natural way.

We have already discussed recurrent associative networks in which the
output of the network is fed back to the input units using additional feed-
back connections (Figure 12.3). In this way we designed recurrent dynamical
systems and tried to determine their fixpoints. However, there is another way
to define a recurrent associative memory made up of two layers which send
information recursively between them. The input layer contains units which
receive the input to the network and send the result of their computation
to the output layer. The output of the first layer is transported by bidirec-
tional edges to the second layer of units, which then return the result of their
computation back to the first layer using the same edges. As in the case of
associative memory models, we can ask whether the network achieves a stable
state in which the information being sent back and forth does not change after
a few iterations [258]. Such a network (shown in Figure 13.1) is known as a
resonance network or bidirectional associative memory (BAM). The activa-
tion function of the units is the sign function and information is coded using
bipolar values.

The network in Figure 13.1 maps an n-dimensional row vector x0 to a k-
dimensional row vector y0. We denote the n×k weight matrix of the network
by W so that the mapping computed in the first step can be written as

y0 = sgn(x0W).

In the feedback step y0 is treated as the input and the new computation is

xT
1 = sgn(WyT

0).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.1 Synchronous and asynchronous networks 339

x1

x2

x3

xn

y1

y2

y3

yk

w11

wnk

.

.

.

.

.

.

Fig. 13.1. Example of a resonance network (BAM)

A new computation from left to right produces

y1 = sgn(x1W).

After m iterations the system has computed a set of m + 1 vector pairs
(x0,y0), . . . , (xm,ym) which fulfill the conditions

yi = sgn(xiW) (13.1)

and
xT

i+1 = sgn(WyT
i). (13.2)

The question is whether after some iterations a fixpoint (x,y) is found. This
is the case when both

y = sgn(xW) and xT = sgn(WyT) (13.3)

hold. The BAM is thus a generalization of a unidirectional associative memory.
An input vector, the “key”, can be presented to the network from the left or
from the right and, after some iterations, the BAM finds the corresponding
complementary vector. As can be seen, no external feedback connections are
necessary. The same edges are used for the transmission of information back
and forth.

It can be immediately deduced from (13.3) that if a vector pair (x,y) is
given and we want to condition a BAM to accept this pair as a fixed point,
Hebbian learning can be used to compute an adequate matrix W. If W is
defined as W = xTy, as prescribed by Hebbian learning, then

y = sgn(xW) = sgn(xxTy) = sgn(‖x‖2y) = y

and also

xT = sgn(WyT) = sgn(xTyyT) = sgn(xT‖y‖2) = xT.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

340 13 The Hopfield Model

If we want to store several vector pairs (x1,y1), . . . , (xm,ym) in a BAM, then
Hebbian learning works better if the vectors x1, . . . ,xm and y1, . . . ,ym are
pairwise orthogonal within their respective groups, because in that case the
perturbation term becomes negligible (refer to Chap. 12).

For a set of m vector pairs the matrix W is set to

W = xT
1 y1 + xT

2 y2 + · · ·+ xT
mym.

BAMs can be used to build autoassociative networks because the matrices
produced by the Hebb rule or by computing the pseudoinverse are symmetric.
To see this, define X as the matrix, each of whose m rows is an n-dimensional
vector, so that if W denotes the connection matrix of an autoassociative
memory for those m vectors, then it is true that

X = XW and XT = WXT,

because W is symmetric. This is just another way of writing the type of
computation performed by a BAM.

13.1.3 The energy function

With the BAM we can motivate and explore the concept of an energy function
in a simple setting. Assume that a BAM is given for which the vector pair
(x,y) is a stable state. If the initial vector presented to the network from
the left is x0, the network will converge to (x,y) after some iterations. The
vector y0 is computed according to y0 = sgn(x0W). If y0 is now used for a
new iteration from the right, excitation of the units in the left layer can be
summarized in an excitation vector e computed according to

eT = Wy0.

The vector pair (x0,y0) is a stable state of the network if sgn(e) = x0. All
vectors e close enough to x0 fulfill this condition. These vectors differ from
x0 by a small angle and therefore the product x0eT is larger than for other
vectors of the same length but further away from x0. The product

E = −x0eT = −x0WyT
0

is therefore smaller (because of the minus sign) if the vector WyT
0 lies closer

to x0. The scalar value E can be used as a kind of index of convergence to
the stable states of an associative memory. We call E the energy function of
the network.

Definition 16. The energy function E of a BAM with weight matrix W, in
which the output yi of the right layer of units is computed in the i-th iteration
according to equation (13.1) and the output xi of the left layer is computed
according to (13.2) is given by

E(xi,yi) = −1
2
xiWyT

i . (13.4)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 341

The factor 1/2 will be useful later and is just a scaling constant for the
energy function. In the following sections we show that the energy function
assumes locally minimal values at stable states. The energy function can also
be generalized to arbitrary vectors x and y.

Up to this point we have only considered units with the sign function as
activation nonlinearity in the type of associative memories we have discussed.
If we now consider units with a threshold and the step function as its activation
function, we must use a more general expression for the energy function.
This can be done by extending the input vectors with an additional constant
component. Each n-dimensional vector x will be transformed into the vector
(x1, . . . , xn, 1). We proceed in a similar way with the k-dimensional vector
y. The weight matrix W must be extended to a new matrix W′ with an
additional row and column. The negative thresholds of the units in the right
layer of the BAM are included in row n + 1 of W′, whereas the negative
thresholds of the units in the left are used as the entries of the column k + 1
of the weight matrix. The entry (n+ 1, k+ 1) of the weight matrix can be set
to zero. This transformation is equivalent to the introduction of an additional
unit with constant output 1 into each layer. The weight of each edge from
a constant unit to each one of the others is the negative threshold of the
connected unit. It is straightforward to deduce that the energy function of
the extended network can be written as

E(xi,yi) = −1
2
xiWyT

i +
1
2
θryT

i +
1
2
xiθ

T
� . (13.5)

The row vector of thresholds of the k units in the left layer is denoted in the
above expression by θ�. The row vector of thresholds of the n units in the
right layer is denoted by θr.

13.2 Definition of Hopfield networks

So far we have considered only conventional or bidirectional associative mem-
ories working with synchronized units. Dropping the assumption of simultane-
ous firing of the computing elements leads to the appearance of novel network
properties.

13.2.1 Asynchronous networks

In an asynchronous network each unit computes its excitation at random times
and changes its state to 1 or −1 independently of the others and according to
the sign of its total excitation. The probability of two units firing simultane-
ously is zero. Consequently, the same dynamics can be obtained by selecting
one unit randomly, computing its excitation and updating its state accord-
ingly. There will not be any delay between computation of the excitation and
state update. We adopt the additional simplification that the state of a unit

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

342 13 The Hopfield Model

is not changed if the total excitation is zero. This means that we leave the
sign function undefined for the argument zero. Asynchronous networks are
of course more realistic models of biological networks, although the assump-
tion of zero delay in the computation and transmission of signals lacks any
biological basis.

Using the energy function it can be shown that a BAM arrives at a stable
state after a finite number of iterations. A stable state is a vector pair (x,y)
which fulfills the conditions (13.3). When a BAM reaches this state pair, no
component of the bipolar vectors x and y can be changed without contra-
dicting (13.3). The vector pair (x,y) is therefore also a stable state for an
asynchronous network.

Proposition 19. A bidirectional associative memory with an arbitrary weight
matrix W reaches a stable state in a finite number of iterations using either
synchronous or asynchronous updates.

Proof. For a vector x = (x1, x2, . . . , xn), a vector y = (y1, y2, . . . , yk) and an
n× k weight matrix W = {wij} the energy function is the bilinear form

E(x,y) = −1
2
(x1, x2, . . . , xn)

⎛
⎜⎜⎜⎝
w11 w12 · · · w1k

w21 w22 · · · w2k

...
. . .

...
wn1 wn2 · · · wnk

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
y1
y2
...
yk

⎞
⎟⎟⎟⎠ .

The value of E(x,y) can be computed by multiplying first W by yT and the
result with −x/2. The product of the i-th row of W and yT represents the
excitation of the i-th unit in the left layer. If we denote these excitations by
g1, g2, . . . , gn the above expression transforms to

E(x,y) = −1
2
(x1, x2, . . . , xn)

⎛
⎜⎜⎜⎝
g1
g2
...
gn

⎞
⎟⎟⎟⎠ .

We can also compute E(x,y) multiplying first x by W. The product of the i-th
column of W with x corresponds to the excitation of unit i in the right layer.
If we denote these excitations by e1, e2, . . . , ek, the expression for E(x,y) can
be written as

E(x,y) = −1
2
(e1, e2, . . . , ek)

⎛
⎜⎜⎜⎝
y1
y2
...
yk

⎞
⎟⎟⎟⎠ .

Therefore, the energy function can be written in the two equivalent forms

E(x,y) = −1
2

k∑
i=1

eiyi and E(x,y) = −1
2

n∑
i=1

gixi.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 343

In asynchronous networks at each time t we randomly select a unit from the
left or right layer. The excitation is computed and its sign is the new activation
of the unit. If the previous activation of the unit remains the same after this
operation, then the energy of the network has not changed.

The state of unit i on the left layer will change only when the excitation gi

has a different sign than xi, the present state. The state is updated from xi to
x′i, where x′i now has the same sign as gi. Since the other units do not change
their state, the difference between the previous energy E(x,y) and the new
energy E(x′,y) is

E(x,y) − E(x′,y) = −1
2
gi(xi − x′i).

Since both xi and −xi have a different sign than gi it follows that

E(x,y) − E(x′,y) > 0.

The new state (x′,y) has a lower energy than the original state (x,y). The
same argument can be made if a unit on the right layer has been selected, so
that for the new state (x,y′) it holds that

E(x,y) − E(x,y′) > 0,

whenever the state of a unit in the right layer has been flipped.
Any update of the network state reduces the total energy. Since there are

only a finite number of possible combinations of bipolar states, the process
must stop at some point, that is, a state (a,b) is found whose energy cannot
be further reduced. The network has fallen into a local minimum of the energy
function and the state (a,b) is an attractor of the system. �

The above proposition also holds for synchronous networks, since these
can be considered as a special case of asynchronous dynamics. Note that the
proposition puts conditions on the matrix W. This means that any given real
matrix W possesses bidirectional stable bipolar states.

13.2.2 Examples of the model

In 1982 the American physicist John Hopfield proposed an asynchronous neu-
ral network model which made an immediate impact in the AI community. It
is a special case of a bidirectional associative memory, but chronologically it
was proposed before the BAM.

In the Hopfield model it is assumed that the individual units preserve
their individual states until they are selected for a new update. The selection
is made randomly. A Hopfield network consists of n totally coupled units,
that is, each unit is connected to all other units except itself. The network
is symmetric because the weight wij for the connection between unit i and

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

344 13 The Hopfield Model

unit j is equal to the weight wji of the connection from unit j to unit i. This
can be interpreted as meaning that there is a single bidirectional connection
between both units. The absence of a connection from each unit to itself avoids
a permanent feedback of its own state value [198].

Figure 13.2 shows an example of a network with three units. Each one of
them can assume the state 1 or −1. A Hopfield network can also be interpreted
as an asynchronous BAM in which the left and right layers of units have fused
to a single layer. The connections in a Hopfield network with n units can be
represented using an n× n weight matrix W = {wij} with a zero diagonal.

unit 3unit 2

unit 1

x3

x1

x2

w12 w13

w23

Fig. 13.2. A Hopfield network of three units

It is easy to show that if the weight matrix does not contain a zero diagonal,
the network dynamics does not necessarily lead to stable states. The weight
matrix

W =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ ,

for example, transforms the state vector (1, 1, 1) into the state vector
(−1,−1,−1) and conversely. In the case of asynchronous updating, the net-
work chooses randomly among the eight possible network states.

A connection matrix with a zero diagonal can also lead to oscillations in
the case where the weight matrix is not symmetric. The weight matrix

W =
(

0 −1
1 0

)

describes the network of Figure 13.3. It transforms the state vector (1,−1)
into the state vector (1, 1) when the network is running asynchronously. After
this transition the state (−1, 1) can be updated to (−1,−1) and finally to
(1,−1). The state vector changes cyclically and does not converge to a stable
state.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 345

1

–1

x1 x2

Fig. 13.3. Network with asymmetric connections

The symmetry of the weight matrix and a zero diagonal are thus necessary
conditions for the convergence of an asynchronous totally connected network
to a stable state. These conditions are also sufficient, as we show later.

The units of a Hopfield network can be assigned a threshold θ different
from zero. In this case each unit selected for a state update adopts the state
1 if its total excitation is greater than θ, otherwise the state −1. This is the
activation rule for perceptrons, so that we can think of Hopfield networks as
asynchronous recurrent networks of perceptrons.

The energy function of a Hopfield network composed of units with thresh-
olds different from zero can be defined in a similar way as for the BAM. In
this case the vector y of equation (13.5) is x and we let θ = θ� = θr.

Definition 17. Let W denote the weight matrix of a Hopfield network of n
units and let θ be the n-dimensional row vector of units’ thresholds. The energy
E(x) of a state x of the network is given by

E(x) = −1
2
xWxT + θxT.

The energy function can also be written in the form

E(x) = −1
2

n∑
j=1

n∑
i=1

wijxixj +
n∑

i=1

θixi.

The factor 1/2 is used because the identical terms wijxixj and wjixjxi are
present in the double sum.

The energy function of a Hopfield network is a quadratic form. A Hop-
field network always finds a local minimum of the energy function. It is thus
interesting to look at an example of the shape of such an energy function. Fig-
ure 13.4 shows a network of just two units with threshold zero. It is obvious
that the only stable states are (1,−1) and (−1, 1). In any other state, one of
the units forces the other to change its state to stabilize the network. Such
a network is a flip-flop, a logic component with two outputs which assume
complementary logic values.

The energy function of a flip-flop with weights w12 = w21 = −1 and two
units with threshold zero is given by

E(x1, x2) = x1x2,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

346 13 The Hopfield Model

0
–1

0

Fig. 13.4. A flip-flop

where x1 and x2 denote the states of the first and second units respectively.
Figure 13.5 shows the energy function for the so-called continuous Hopfield
model [199] in which the unit’s states can assume all real values between 0 and
1. In the network of Figure 13.4 only the four discrete states (1, 1), (1,−1),
(−1, 1) and (−1,−1) are allowed. The energy function has local minima at
(1,−1) and (−1, 1). A flip-flop can therefore be interpreted as a network ca-
pable of storing one of the states (1,−1) or (−1, 1).

-1

0

1 x1

-1

0

1

x2 -1

0

1

-1

0

1 x1

-1

0

1

x2 -1

0

1

Fig. 13.5. Energy function of a flip-flop

Hopfield networks can also be used to compute logical functions. Con-
junction, for example, can be implemented with a network of three units. The
states of two units are set and remain fixed during the computation (clamping
their states). Only the third unit can change its state. If the network weights
and the unit thresholds have the appropriate values, the unconstrained unit
will assume a state which corresponds to the conjunction of the two clamped
states.

Figure 13.6 shows a network for the computation of the logical disjunction
of two Boolean values x1 and x2. The input is clamped and after some time
the network settles to a state which corresponds to the disjunction of x1 and
x2. The constants “true” and “false” correspond to the numerical values 1
and −1. In this network the thresholds of the clamped units and their mutual
connections play no role in the computation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 347

x1

x2

unit 3unit 2

unit 1

0.5

1

1
–

Fig. 13.6. Network for the computation of the OR function

Since the individual units of the network are perceptrons, the question of
whether there are logic functions which cannot be computed by a Hopfield
network of a given size arises. This is the case in our next example. Assume
that a Hopfield network of three units should store the set of stable states
given by the following table:

unit 1 2 3
state 1 −1 −1 −1
state 2 1 −1 1
state 3 −1 1 1
state 4 1 1 −1

From the point of view of the third unit (third column) this is the XOR
function. If the four vectors shown above are to become stable states of the
network, the third unit cannot change state when any of these four vectors
has been loaded in the network. In this case the third unit should be capable
of linearly separating the vectors (−1,−1) and (1, 1) from the vectors (−1, 1)
and (1,−1), which we know is impossible. The same argument is valid for
any of the three units, since the table given above remains unchanged after
a permutation of the units’ labels. This shows that no Hopfield network of
three units can have these stable states. However, the XOR problem can be
solved if the network is extended to four units. The network of Figure 13.7
can assume the following stable states, if adequate weights and thresholds are
selected:

unit 1 2 3 4
state 1 −1 −1 −1 1
state 2 1 −1 1 1
state 3 −1 1 1 1
state 4 1 1 −1 −1

The third column represents the XOR function of the two first columns. The
fourth column corresponds to an auxiliary unit, whose state can be set from

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

348 13 The Hopfield Model

outside. The unknown weights can be found using the learning algorithms
described in the next sections.

w12 w13

w23

unit 3unit 2

unit 1

unit 4

x3x2

x1

x4

w14

w24 w34

Fig. 13.7. Network for the computation of XOR

13.2.3 Isomorphism between the Hopfield and Ising models

Physicists have analyzed the Hopfield model in such exquisite detail because
it is isomorphic to the Ising model of magnetism (at temperature zero) [25].
Ising proposed the model which now bears his name more than 70 years ago in
order to describe some properties of ensembles of elementary magnets [214].

In general, the Ising model can be used to describe those systems made of
particles capable of adopting one of two states. In the case of ferromagnetic
materials, their atoms can be modeled as particles of spin 1/2 (up) or spin
−1/2 (down). The spin points in the direction of the magnetic field. All tiny
magnets interact with each other. This causes some of the atoms to flip their
spin until equilibrium is reached and the total magnetization of the material
reaches a constant level, which is the sum of the individual spins. With these
few assumptions we can show that the energy function deduced from the Ising
model has the same form as the energy function of Hopfield networks.

The total magnetic field hi sensed by the atom i in an ensemble of particles
is the sum of the fields induced by each atom and the external field h∗ (if
present), that is

hi =
n∑

j=1

wijxj + h∗, (13.6)

where wij represents the magnitude of the magnetic coupling between the
atoms labeled i and j. The magnetic coupling changes according to the dis-
tance between atoms and the magnetic permeability of the environment. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 349

external field

Fig. 13.8. Particles with two possible spins

potential energy E of a certain state (x1, x2, . . . , xn) of an Ising material can
be derived from (13.6) and has the form

E = −1
2

n∑
i,j

wijxixj +
n∑
i

−h∗xi. (13.7)

In paramagnetic materials the coupling constants are zero. In ferromagnetic
materials the constants wij are all positive, which leads in turn to a significant
coupling of the spin states.

Equation (13.7) is isomorphic to the energy function of Hopfield networks.
This is why the term energy function is used in the first place. Both systems
are dynamically equivalent, but only in the case of zero temperature, since
the system behaves deterministically at each state update. Later on, when we
consider Boltzmann machines, we will accept a time-varying temperature and
stochastic state updates as in the full Ising model.

13.3 Converge to stable states

It is easy to show that Hopfield models always converge to stable states. The
proof of this fact relies on analysis of the new value of the energy function
after each state update.

13.3.1 Dynamics of Hopfield networks

Before going into the details of the convergence proof, we analyze two simple
examples and compute the energy levels of all their possible states. Figure 13.9
shows a network composed of three units with arbitrarily chosen weights and
thresholds. The network can adopt any of eight possible states whose transi-
tions we want to visualize. Figure 13.10 shows a diagram of all possible state
transitions for the network of Figure 13.9. The vertical axis represents the
energy of the network defined in the usual way. Each state of the network is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

350 13 The Hopfield Model

represented by an oval located at its precise energy level. The arrows show the
state transitions allowed. Each transition has the same probability because the
probability of selecting one of the three units for a state transition is uniform
and equal to 1/3. Note that the diagram does not show the few transitions in
which a state returns to itself.

unit 3unit 1

unit 2

0.5

0.5 0.5

1 1

–1

Fig. 13.9. Example of a Hopfield network

We can make other interesting observations in the transition diagram. The
state (1,−1, 1), for example, is extremely unstable. The probability of leaving
it at the next iteration is 1, because three different transitions to other states
are possible, each with probability 1/3. The state (−1, 1, 1) is relatively stable
because the probability of leaving it at the next iteration is just 1/3. There is
only a single stable state, namely the vector (−1,−1,−1), as the reader can
readily verify. The only two states without a predecessor are shown in gray.
In the theory of cellular automata, such “urstates” are called garden of Eden
configurations. They cannot be arrived at, they can only be induced from the
outside before the automaton starts working.

The network in Figure 13.11 has the same structure as the network consid-
ered previously, but the weights and thresholds have the opposite sign. The
diagram of state transitions (Figure 13.12) is the inversion of the diagram
in Figure 13.10. The new network has two stable states and just one state
without predecessors. As can be seen from the diagrams, the dynamic of the
Hopfield model is always the same: the energy of the system eventually reaches
a local minimum and the state of the network can no longer change.

13.3.2 Convergence proof

We can now proceed to prove that, in general, Hopfield models behave in the
way shown in the last two examples.

Proposition 20. A Hopfield network with n units and asynchronous dynam-
ics, which starts from any given network state, eventually reaches a stable
state at a local minimum of the energy function.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 351

3.5

3.0

2.5

2.0

1.5

1.0

0.5

- 0.5

-1.0

-1.5

-2.0

-2.5

1 –1 1

1 1 1

–1 1 1

–1 –1 1

–1 –1 –1

–1 1 –1

1 1 –1

1 –1 –1

energy

stable state

Fig. 13.10. State transitions for the network of Figure 13.9

unit 3unit 1

unit 2

–1 –1

1

– 0.5

– 0.5 – 0.5

Fig. 13.11. Second example of a Hopfield network

Proof. The energy function of a state x = (x1, x2, . . . , xn) of a Hopfield net-
work with n units is given by

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

352 13 The Hopfield Model

2.5

2.0

1.5

1.0

0.5

-0.5

-1.0

- 1.5

-2.0

-2.5

-3.0

-3.5 1 –1 1

1 1 1

–1 1 1

–1 –1 1

–1 –1 –1

–1 1 –1

1 1 –1

1 –1 –1

energy

 stable state

 stable state

Fig. 13.12. State transitions for the network of Figure 13.11

E(x) = −1
2

n∑
j=1

n∑
i=1

wijxixj +
n∑

i=1

θixi, (13.8)

where the terms involved are defined as usual. If during the current iteration
unit k is selected and does not change its state, then the energy of the system
does not change either. If the state of the unit is changed in the update
operation, the network reaches a new global state x′ = (x1, . . . , x

′
k, . . . , xn)

for which the new energy is E(x′). The difference between E(x) and E(x′) is
given by all terms in the summation in (13.8) which contain xk and x′k, that
is

E(x)− E(x′) = (−
n∑

j=1

wkjxkxj + θkxk)− (−
n∑

j=1

wkjx
′
kxj + θkx

′
k).

The factor 1/2 disappears from the computation because the terms wkjxkxj

appear twice in the double sum of (13.8). Since wkk = 0 we can rewrite the
above equation as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 353

E(x) − E(x′) = −(xk − x′k)
n∑

j=1

wkjxj + θk(xk − x′k)

= −(xk − x′k)(
n∑

j=1

wkjxj − θk),

from which we finally obtain

E(x) − E(x′) = −(xk − x′k)ek,

where ek denotes the total excitation of unit k (including subtraction of the
threshold). The excitation ek has a different sign from xk and −x′k, because
otherwise the unit state would not have been changed. This means that the
product −(xk − x′k)ek is positive and therefore

E(x)− E(x′) > 0.

This shows that every time the state of a unit is altered, the total energy
of the network is reduced. Since there is only a finite set of possible states, the
network must eventually reach a state for which the energy cannot be reduced
further. It is a stable state of the network, as we wanted to prove. �

There is a simpler proof of the last proposition, which has the advantage
of offering a nice visualization of the dynamics of a Hopfield network [74].
Assume that we classify the units of a network according to their state: the
first set contains the units with state 1, the second set the units with state
−1. There are edges linking every unit with all the others, so that some edges
go from one set to the other. We now randomly select one of the units and
compute its “attraction” by the units in its own set and the attraction by the
units in the other set. The “attraction” is the sum of the weights of all edges
between a unit and the units in its set or in the other one. If the attraction
from the outside is greater than the attraction from its own set, the unit
changes sides by altering its state. If the external attraction is lower than the
internal, the unit keeps its current state. This procedure is repeated several
times, each time selecting one of the units randomly. It corresponds to the
updating strategy of a Hopfield network. Figure 13.13 shows an example in
which the attraction from the outside is greater than the internal one. The
selected unit must change sides. It is clear that the network must eventually
reach a stable state, because the sum of the weights of all edges connecting
one set to the other can only become lower in the course of time. Since the
number of possible network states is finite, a global state must be reached in
which the attraction of one set by the other cannot be further reduced. This
is the task known in combinatorics as the minimal cut problem, in which we
want to find a cut of minimal flow in a graph. The procedure described always
finds a locally minimal cut.

The wording of Proposition 20 has been carefully chosen. That the net-
work “eventually” settles in a stable state, means that the probability of not

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

354 13 The Hopfield Model

-1

1
-1 -1

-1
-1

1

1

1

 external
attraction = 15

 internal
attraction =10

Fig. 13.13. Attraction from the inside and from the outside of a unit’s class

reaching such a state approaches zero as the number of iterations increases.
It would be possible to select always one and the same unit for computation
of the excitation, and in this case the network would stay in deadlock. Since
the units are selected randomly, the probability of such pathological behavior
falls to zero as time progresses.

In the proof of Proposition 20 only the symmetry and the zero diagonal of
the weight matrix were used. The proof of convergence is very similar to the
proof of convergence for the BAM. However, in the case of a BAM the decisive
property was the independence of a unit’s state from its own excitation. This
is also the case for Hopfield networks, since no unit feeds its own state back
into itself, i.e., the diagonal of the weight matrix is zero.

13.3.3 Hebbian learning

A Hopfield network can be used as an associative memory. If we want to
“imprint” m different stable states in the network we have to find adequate
weights for the connections. In the case of the BAM we already mentioned
that Hebbian learning is a possible alternative. Since Hopfield networks are
a specialization of BAM networks, we also expect Hebbian learning to be
applicable in this case. Let us first discuss the case of a Hopfield network with
n units and threshold zero.

Hebbian learning is implemented by loading the m selected n-dimensional
stable states x1,x2, . . . ,xm on the network and by updating the network’s
weights (initially set to zero) after each presentation according to the rule

wij ← wij + xk
i x

k
j , i, j = 1, . . . , n and i �= j.

The symbols xk
i and xk

j denote the i-th and j-th component respectively of
the vector xk. The only difference from an autoassociative memory is the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 355

requirement of a zero diagonal. After presentation of the first vector x1 the
weight matrix is given by the expression

W1 = xT
1 x1 − I,

where I denotes the n× n identity matrix. Subtraction of the identity matrix
guarantees that the diagonal of W becomes zero, since for any bipolar vector
xi it holds that xi

kx
i
k = 1. Obviously W1 is a symmetric matrix.

The minimum of the energy function of a Hopfield network with the weight
matrix W1 is located at x1 because

E(x) = −1
2
xW1xT = −1

2
(xxT

1 x1xT − xxT)

and xxT = n for bipolar vectors. This means that the function

E(x) = −1
2
‖xxT

1 ‖2 +
n

2

has a local minimum at x = x1. In this case it holds that

E(x) = −n
2

2
+
n

2
.

This shows that x1 is a stable state of the network.
In the case of m different vectors x1,x2, . . . ,xm the matrix W is defined

as
W = (x1xT

1 − I) + (xT
2 x2 − I) + · · ·+ (xT

mxm − I),

or equivalently

W = xT
1 x1 + xT

2 x2 + · · ·+ xT
mxm −mI.

If the network is initialized with the state x1, the vector e of the excitation
of the units is

e = x1W

= x1xT
1 x1 + x1xT

2 x2 + · · ·+ x1xT
mxm −mx1I

= (n−m)x1 +
m∑

j=2

α1jxj .

The constants α12, α13, . . . , α1m represent the scalar products of the first vec-
tor with each one of the other m−1 vectors x2, . . . ,xm. The state x1 is stable
when m < n and the perturbation term

∑m
j=2 α1jxj is small. In this case it

holds that
sgn(e) = sgn(x1)

as desired. The same argumentation can be used for any of the other vec-
tors. The best results are achieved with Hebbian learning when the vectors
x1,x2, . . . ,xm are orthogonal or close to orthogonal, just as in the case of any
other associative memory.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

356 13 The Hopfield Model

13.4 Equivalence of Hopfield and perceptron learning

Hebbian learning is a simple rule which is useful for the computation of the
weight matrix in Hopfield networks. However, sometimes Hebbian learning
cannot find a weight matrix for which m given vectors are stable states, al-
though such a matrix exists. If the vectors to be stored lie near each other,
the perturbation term can grow so large as to preclude a solution by Hebbian
learning. In this case another learning rule is needed, which is a variant of
perceptron learning.

13.4.1 Perceptron learning in Hopfield networks

Let us consider Hopfield networks composed of units with a non-zero threshold
and the step function as activation function. The units adopt state 1 when
the excitation is greater than the threshold and otherwise the state −1. The
units are just perceptrons and it is straightforward to assume that perceptron
learning could be used for determination of the weights and thresholds of the
network for a given learning problem.

Let n denote the number of units in a Hopfield network, let W = {wij}
be the n × n weight matrix, and let θi denote the threshold of unit i. If a
vector x = (x1, . . . , xn) is given to be “imprinted” on the network, this vector
will be a stable state only when, if loaded in the network, the network global
state does not change. This is the case if for every unit its excitation minus
its threshold has the same sign as the current state (the value zero is assigned
the minus sign). This means that the following n inequalities must hold:

For unit 1 : sgn(x1)(0 + x2w12 + x3w13 + · · ·
+ xnw1n − θ1) < 0

For unit 2 : sgn(x2)(x1w21 + 0 + x3w23 + · · ·
+ xnw2n − θ2) < 0

...
For unit n : sgn(xn)(x1wn1 + x2wn2 + · · · + xn−1wnn−1

+ 0 − θn) < 0

The factor sgn(xi) is used in each inequality to obtain always the same in-
equality operator (“less than”). Only the n(n − 1)/2 non-zero entries of the
weight matrix as well as the n thresholds of the units appear in these inequal-
ities. Let v denote a vector of dimension n + n(n − 1)/2 whose components
are the non-diagonal entries wij of the weight matrix W (with i < j so as to
consider each weight only once) and the n thresholds with minus sign. The
vector v is given by

v = (w12, w13, . . . , w1n︸ ︷︷ ︸
n−1

, w23, w24, . . . , w2n︸ ︷︷ ︸
n−2

, . . . , wn−1n︸ ︷︷ ︸
1

,−θ1, . . . ,−θn︸ ︷︷ ︸
n

).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.4 Equivalence of Hopfield and perceptron learning 357

The vector x is transformed into n auxiliary vectors z1, z2, . . . , zn of dimension
n+ n(n− 1)/2 given by the expression

z1 = (x2, x3, . . . , xn︸ ︷︷ ︸
n−1

, 0, 0, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
n

)

z2 = (x1, 0, . . . , 0︸ ︷︷ ︸
n−1

, x3, . . . , xn︸ ︷︷ ︸
n−2

, 0, 0, . . . , 0, 1, . . . , 0︸ ︷︷ ︸
n

)

...
zn = (0, 0, . . . , x1︸ ︷︷ ︸

n−1

, 0, 0, . . . , x2︸ ︷︷ ︸
n−2

, 0, 0, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
n

).

The components of the vectors z1, . . . , zn were defined so that the previous
inequalities for each unit can be written in the equivalent form

unit 1 sgn(x1)z1 · v > 0
unit 2 sgn(x2)z2 · v > 0
...
unit n sgn(xn)zn · v > 0

The vectors z1, z2, . . . , zn can always be defined in this way. We will not write
down the exact transformation rule here because it is rather involved.

The last set of inequalities shows that the solution to the original problem
is found by computing a linear separation of the vectors z1, z2, . . . , zn. The
vectors which belong to the positive half-space are those for which sgn(xi)
holds. The vectors which belong to the negative half-space are those for which
sgn(xi) = −1. This problem can be solved using perceptron learning, which
allows us to compute the vector v of weights needed for the linear separation,
and from this we can deduce the weight matrix W.

In the case where m vectors x1,x2, . . . ,xm are given to be imprinted in the
Hopfield network, we have to use the above transformation for every one of
them. Each vector is transformed into n auxiliary vectors, so that at the end
we have nm different auxiliary vectors which must be linearly separated. If
they are actually linearly separable, perceptron learning will find the solution
to the problem, coded in the vector v of the transformed perceptron.

The analysis performed above shows that it is possible to transform a
learning problem in a Hopfield network with n units into a learning problem
for a perceptron of dimension n+n(n−1)/2, that is, n(n+1)/2. Figure 13.14
shows an example of a Hopfield network that can be transformed into the
equivalent perceptron to the right. The three-dimensional Hopfield problem
is transformed in this way into a learning problem for a six-dimensional per-
ceptron.

Each iteration of the perceptron learning algorithm updates only the
weights of the edges attached to a single unit and its threshold. For example,
if a correction is needed because of the sign of z1 · v, then only the weights

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

358 13 The Hopfield Model

0
w12 w13

w23

w12

w13

w23

θ1

θ2 θ3

−θ1

−θ2

−θ3

Fig. 13.14. Transformation of a Hopfield network into a perceptron

w12, w13, . . . , w1n and the threshold θ1 must be updated. This means that it
is possible to use perceptron learning or the delta rule locally. During training
all units are set to the desired stable states. If the sign of a unit’s excita-
tion is incorrect for the desired state, then the weights and threshold of this
individual perceptron are corrected in the usual manner. It is not necessary
to transform the Hopfield states into the n(n + 1)/2-dimensional perceptron
states every time we want to start the learning algorithm. This is only needed
to prove the equivalence of Hopfield and perceptron learning.

13.4.2 Complexity of learning in Hopfield models

The interesting result which can immediately be inferred from the equivalence
of Hopfield networks and perceptrons is that every learning algorithm for
perceptrons can be transformed into a learning method for Hopfield networks.
The delta rule or algorithms that proceed by finding inner points of solution
polytopes can also be used to train Hopfield networks.

We have already shown in Chap. 10 that learning problems for multilayer
networks are in general NP-complete. However, some special architectures
can be trained in polynomial time. We saw in Chap. 4 that the learning prob-
lem for Hopfield networks can be solved in polynomial time, because there
are learning algorithms for perceptrons whose complexity grows polynomi-
ally with the number of training vectors and their dimension (for example,
Karmarkar’s algorithm). Since the transformation described in the previous
section converts m desired stable states into nm vectors to be linearly sep-
arated, and since this can be done in polynomial time, it follows that the
learning problem for Hopfield networks can be solved in polynomial time. In
Chap. 6 we also showed how to compute an upper bound for the number of
linearly separable functions. This upper bound, valid for perceptrons, is also
valid for Hopfield networks, since the stable states must be linearly separable
(for the equivalent perceptron). This equivalence simplifies computation of
the capacity of a Hopfield network when it is used as an associative memory.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 359

13.5 Parallel combinatorics

The networks analyzed in the previous sections can be used either to compute
Boolean functions or as associative memories. Those recurrent networks for
which an energy function of a certain form exists can be used to solve some
difficult problems in the fields of combinatorics and optimization theory. Hop-
field networks have been proposed for these kinds of tasks.

13.5.1 NP-complete problems and massive parallelism

Many complex problems can be solved in a reasonable length of time using
multiprocessor systems and parallel algorithms. This is easier for tasks that
can be divided into independent subproblems, which are then assigned to
different processors. The solution to the original problem is obtained by col-
lecting the partial results after they have been computed. However, many well-
known and important problems cannot be split in this manner. The parallel
processes must cooperate and exchange information, so that the programmer
must include some synchronization primitives in the system. If synchroniza-
tion consumes too many resources and too much time, the parallel system
may become only marginally faster than a sequential one.

Hopfield networks do not need any kind of synchronization; they guarantee
that a local minimum of the energy function will be reached. If an optimiza-
tion problem can be written in an analytical form isomorphic to the Hopfield
energy function, it can be solved by a Hopfield network. We can assume that
every unit in the network is simulated by a small processor. The states of
the units can be computed asynchronously by transmitting the current unit
states from processor to processor. There is no need for expensive synchro-
nization and the task is solved by a massively parallel system. This strategy
can be applied to all those combinatorial problems for whose solution large
mainframes have traditionally been used.

We now show how to “load” an optimization problem on a Hopfield net-
work discussing some progressively complicated examples. In the next subsec-
tions we will use the usual coding (with 0 and 1) for binary vectors and not
the bipolar coding used in the previous examples.

13.5.2 The multiflop problem

Assume that we are looking for a binary vector of dimension n whose compo-
nents are all zero with the exception of a single 1. The Hopfield network that
solves this problem when n = 4 is depicted in Figure 13.15. Whenever a unit
is set to 1, it inhibits the other units through the edges with weight −2. If the
network is started with all units set to zero, then the excitation of every unit
is zero, which is greater than the threshold and therefore the first unit to be
asynchronously selected will flip its state to 1. No other unit can change its
state after this first unit has been set to 1. A stable state has been reached.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

360 13 The Hopfield Model

One may think of this network as a generalization of the flip-flop network for
two-dimensional vectors.

-1 -1 -1 -1

-2

-2

-2

-2 -2 -2

Fig. 13.15. A multiflop network

The weights for this network can be deduced from the following consider-
ations. Let x1, x2, . . . , xn denote the binary states of the individual units. Our
task is to find a minimum of

E(x1, . . . , xn) = (
n∑

i=1

xi − 1)2.

This expression can also be written as

E(x1, . . . , xn) =
n∑

i=1

x2
i +

n∑
i�=j

xixj − 2
n∑

i=1

xi + 1.

For binary states it holds that xi = x2
i and therefore

E(x1, . . . , xn) =
n∑

i�=j

xixj −
n∑

i=1

xi + 1

which can be rewritten as

E(x1, . . . , xn) = −1
2

n∑
i�=j

(−2)xixj +
n∑

i=1

(−1)xi + 1.

This expression is isomorphic to the energy function of the Hopfield network of
Figure 13.15 (not considering the constant 1, which is irrelevant for the opti-
mization problem). The network solves the multiflop problem in an automatic
way by following its inherent dynamics.

13.5.3 The eight rooks problem

We make the optimization problem a notch more complicated: n rooks must
be positioned in an n× n chess board so that no one figure can take another.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 361

It is thus necessary to position each rook in a different row and column to the
others. This problem can be thought of as a two-dimensional generalization
of the multiflop problem. Each row is a chain of cells and only one of them
can be set to 1. The same holds for each column.

The network of Figure 13.16 can solve this problem for a 4 × 4 board.
Each field is represented by a unit. Only the connections of the first unit in
the board are shown to avoid cluttering the diagram. The connections of each
unit to all elements in the same row or column have the weight −2, all others
have a weight zero. All units have the threshold −1. Any unit set to 1 inhibits
any other units in the same row or column. If a row or column is all set to 0,
when one of its elements is selected it will immediately switch its state to 1,
since the total excitation (zero) is greater than the threshold −1.

–2
–2

–2 –2 –2

–2

–2

–2

–2

–2

–1 –1 –1 –1

–1

–1

–1

–1 –1 –1

–1 –1 –1

–1 –1 –1

Fig. 13.16. Network for the solution of a four rooks problem

The weights for the network are derived from the following considerations:
Let xij represent the state of the unit corresponding to the square ij in the
n× n board. The number of ones in column j is given by

∑n
i=1 xij . If in each

column only a single 1 is allowed, the following function must be minimized:

E1(x11, . . . , xnn) =
n∑

j=1

(
n∑

i=1

xij − 1)2.

The minimum of the function corresponds to the situation in which just one
rook has been positioned in every column. Similarly, for the rows of the board
we define the function E2 according to

E2(x11, . . . , xnn) =
n∑

i=1

(
n∑

j=1

xij − 1)2.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

362 13 The Hopfield Model

We want to minimize the function E = E1 + E2. The general strategy is to
reduce its analytical expression to a Hopfield form. The necessary algebraic
steps can be avoided by noticing that the expression for E1 is the sum of n
independent functions (one per column). The term (

∑n
i=1 xij−1)2 corresponds

to a multiflop problem. The weights for the edges in each column can be set
to −2, as was done before in the multiflop problem. The same is done for each
row: the weights between any unit and its row partners are set to −2. Only the
thresholds must be selected with a little more care. The simple juxtaposition
of a row-multiflop with a column-multiflop at each field will give us a threshold
of −1 + (−1) = −2. This would mean that each row or column can contain
up to two elements whose state is 1. This is avoided by setting the thresholds
of the units to −1. The resulting network is the one shown in Figure 13.16.
Each field will be forced to adopt the state zero whenever another unit is set
to 1 in its own row or its own column.

13.5.4 The eight queens problem

The well-known eight queens problem can also be solved with a Hopfield net-
work. It is just a generalization of the rooks problem, since now the diagonals
of the board will also be considered. Each diagonal can be occupied at most
once by a queen. As before with the rooks problem, we solve this task by
overlapping multiflop problems at each square. Figure 13.17 shows how three
multiflop chains have to be considered for each field. The diagram shows a
4×4 board and the overlapping of multiflop problems for the upper left square
on the board. This overlapping provides us with the necessary weights, which
are set to wij = −2, when unit i is different from unit j and belongs to the
same row, column or diagonal as unit j. Otherwise we set wij to zero. The
thresholds of all units are set to −1.

Fig. 13.17. The eight queens problem

A computer simulation shows, however, that this simple connection pat-
tern does not always provide a correct solution for the n-queens problem. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 363

proposed connection weights produce an energy function in which local min-
ima with less than n queens are possible. The only alternative if such a stable
state is found is to start the simulation again.

It is not possible to set the weights of the network of Figure 13.17 in such a
way as to obtain only correct solutions. The difficulty is that diagonals can be
occupied by a queen but they can also be unoccupied. Simple overlapping of
multiflop problems does not work any more. The energy function has become
much more complex than in the previous cases and we now have to achieve
compromises between the weights which we choose for rows and columns and
for diagonals.

13.5.5 The traveling salesman

The Traveling Salesman Problem (TSP) is one of the most celebrated bench-
marks in combinatorics. It is simple to state and visualize and it is NP-
complete. If we can solve the TSP efficiently, we can provide an efficient
solution for other problems in the class NP. Hopfield and Tank [200] were
the first to try to solve the TSP using a neural network.

A

B
C

D

E

F

G

Fig. 13.18. A TSP and its solution

In the TSP we are looking for a path through n cities S1, S2, . . . , Sn, such
that every city is visited at least once and the length of a round trip is minimal.
Let dij denote the distance between the cities Si and Sj . A round trip can
be represented using a matrix. Each of the n rows of the matrix is associated
with a city. The columns are labeled 1 through n and they correspond to the
n necessary visits. The following matrix shows a path going through the cities
S1, S2, S3 and S4 in that same order:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

364 13 The Hopfield Model

1 2 3 4
S1 1 0 0 0
S2 0 1 0 0
S3 0 0 1 0
S4 0 0 0 1

A single 1 is allowed in each row and each column, otherwise the salesman
would visit a city twice or two cities simultaneously. This matrix must fulfill
the same conditions as in the rooks problem and we can again use a network
in which a unit is used to represent each entry in the matrix (the new “chess
board”).

Solving the TSP requires minimizing the length of the round trip, that is
of

L =
1
2

n∑
i,j,k

dijxikxj,k+1,

where xik represents the state of the unit corresponding to the entry ik in
the matrix. When xik and xj,k+1 are both 1, this means that the city Si is
visited in the k-th step and the city Sj in the step k+1. The distance between
both cities must be added to the total length of the round trip. We use the
convention that the column n+ 1 is equal to the first column of the matrix,
so that we always obtain a round trip.

In the minimization problems we must include the constraints for a valid
round trip. It is necessary to add the energy function of the rooks problem to
the length L to obtain the new energy function E, which is given by

E =
1
2

n∑
i,j,k

dijxikxj,k+1 +
γ

2
(

n∑
j=1

(
n∑

i=1

xij − 1)2 +
n∑

i=1

(
n∑

j=1

xij − 1)2),

where the constant γ regulates how much weight is given to the minimization
of the length or to the generation of legal paths. The first summation to the
right of the equal sign already has the form of a Hopfield energy function; the
expression in parentheses has it too, since it is the energy function of a rooks
problem. The weights for the network can be deduced immediately from this
expression: the weights of edges between units in the same row or column
must be set to −γ and the thresholds of the units to −γ/2. The weights must
be modified by including the length between states, so that the weight of the
edge between unit ik and unit j, k + 1 becomes

wik,jk+1 = −dij + tik,jk+1

where tik,jk+1 = −γ whenever the units belong to the same row or column,
otherwise tik,jk+1 is zero.

With this network we can try to find solutions of the TSP. A simulation
shows that the generated routes are sometimes not legal, because one city is
not visited or more than one city is visited in a single step. We can always

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 365

force the network to generate legal tours: it is only necessary to set γ to a
very large value so as to obliterate the contribution of the cities’ distances. If
γ is zero, we do not care whether the tour is a legal one and only the total
length is minimized (by choosing an “empty” tour). Since the value of γ is
not prescribed, it can be found by trial and error. In general the network
will not be capable of finding the global minimum and because large TSPs
(with more than 100 cities) have so many local minima, it is difficult to decide
whether the local minimum that has been found is a good approximation to
the optimal result. The whole approach is dependent on the existence of real,
massively parallel systems, since the number of units required to solve a TSP
increases quadratically with the number n of cities (and the number of weights
increases proportionally to n4).

13.5.6 The limits of Hopfield networks

The first articles of Hopfield and Tank on parallel solutions to combinatorial
problems received a lot of attention [200, 201]. The theoretical question was
whether this could be a method to solve NP-hard problems or at least to get
an approximate solution in polynomial time. In the following years many other
researchers tried to extend the range of combinatorial problems that could be
solved using Hopfield’s technique, trying to improve the quality of the results
at the same time. It emerged that well-behaved average problems could be
solved efficiently. However, these average results should be compared to the
expected running time for the worst case. Bruck and Goodman [74] showed
that a polynomially bounded network (on the size of the problem) is unable
to find the global minimum of the energy function of NP-complete problems
(encoded as Hopfield networks) with a 100% guarantee. Stated in another
way: if we try to transform all local minima of the Hopfield network into an
optimal solution of the combinatorial problem, the size of the network explodes
exponentially. We proceed to prove the result of Bruck and Goodman, but we
must first introduce an additional complexity class: the complement of the
class NP.

The class NP of nondeterministic problems solvable in polynomial time is
different from the class P of problems solvable in polynomial time not only in
the way exposed already in Chap. 10. If a problem is a member of the class
P , the same is true for the complementary problem. The complement of the
decision problem “For the problem instance I, is X true for I?”is just “For
the problem instance I, is X false for I?”. A deterministic polynomial time
algorithm terminates on each of the two questions. It is only necessary to
substitute “true” for “false” to transform a polynomial time algorithm for a
problem in P in an algorithm for its complement. But this is not necessarily so
for problems in NP. A solution for the Traveling Salesman Decision Problem
(TSDP), that is, the computation of the tour’s length and the comparison
with the decision’s threshold, can be verified in polynomial time. However,
the complementary problem has the wording “Is there no tour with a total

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

366 13 The Hopfield Model

length smaller than R?”. If the answer is “yes”, no polynomial time algorithm
is known that could verify this assertion. It would be necessary to propose a
data structure on which to perform some computations which could convince
us of the truth of the assertion. Theoreticians assume that the complement
of the TSDP probably does not belong to the class NP. The class which
contains the complement of all NP problems is called co-NP. It is generally
assumed that NP �= co-NP . This inequality is somewhat strong, since it
implies that P �= NP . Otherwise we would have co-P = co-NP = P = NP ,
i.e., the equality NP = co-NP would be valid. Yet theoreticians expect that
eventually it will be proved that NP �= co-NP . Figure 13.19 illustrates the
expected containments of the classes NP, P and co-NP.

NPco-NP

P

NPc

Fig. 13.19. The classes NP and co-NP

The following lemma determines under what conditions equality of the
classes NP and co-NP would be possible. We can assume that this condition
cannot be fulfilled.

Lemma 1. If there is an NP-complete problem X whose complement Xc be-
longs to NP, then NP = co-NP .

The lemma is true because any problem Y in NP can be reduced in poly-
nomial time into X . The complement of Y can therefore be transformed in
polynomial time into Xc. Since a solution of Xc can be verified in polyno-
mial time, the same is true for any solution of Y c. This and some additional
technical details would imply that NP = co-NP .

Neural networks are just a subset of the algorithmic world. Since it is
suspected that there is no polynomial time algorithm for the problems in the
class NP, it should be possible to prove that Hopfield networks of bounded
size are subjected to the same limitations. The following proposition settles
this question [75].

Proposition 21. Let L be an NP-complete decision problem and H a Hopfield
network with a number of weights bounded by a polynomial on the size of the
problem. If H can solve L (100% success rate) then NP = co-NP .

Proof. The problem L has a certain size defined by an appropriate coding.
Since we must compute the energy function and from it derive the necessary

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.6 Implementation of Hopfield networks 367

weights for H , a polynomial bound on the total number of weights is neces-
sary. A Hopfield network always finds a local minimum of its energy function.
In our case, a 100% hit rate means that all local minima of the energy func-
tion should make possible a decision on the truth or falsity of the decision
problem L. The Hopfield network can be considered a data structure that
makes possible the verification of the found solution. It is only necessary to
verify whether the solution found by the network is indeed a local minimum
of the energy function. The polynomial size of the net makes this verification
possible in polynomial time. The decision problem and the complement are,
in this case, completely symmetric. The TSDP can be answered with “yes” if
the tour found by the network is shorter than the decision threshold. But the
complement of the TSDP can be decided also just by comparing the length
of the optimal tour found with the decision threshold. Therefore the comple-
ment of L is a member of the class NP and it follows from Lemma 1 that
NP = co-NP . Since it is generally assumed that this cannot be so, there
should be a contradiction in the premises. The network H does not exist
unless NP = co-NP . �

Even if we content ourselves with a polynomially bounded network that
can provide approximate solutions (for example, TSP round-trips not larger by
a given ε than the optimal tour), no such network can be built. It is because of
this inherent limitation that some authors have sought to introduce stochastic
factors into the networks, as we will discuss when we deal with Boltzmann
machines in the next chapter.

13.6 Implementation of Hopfield networks

Hopfield networks as massively parallel systems are only interesting if they
can be implemented in hardware and not just simulated in a sequential com-
puter. Some proposals have been made for special chips capable of simulating
Hopfield networks but the most promising approach are optical computers,
capable of solving the connectivity problem of neural networks.

13.6.1 Electrical implementation

In 1984 Hopfield proposed an electrical realization of his model which uses
a circuit very similar to the ones used by Steinbuch (Chap. 18) [199]. Fig-
ure 13.20 shows a diagram of the circuit. The outputs of the amplifiers
x1, x2, . . . , xn are interpreted as the states of the Hopfield units. Their com-
plements ¬x1,¬x2, . . . ,¬xn are produced by inverters. All states and their
complements are fed back to the input of the electrical circuit. An electrical
contact is represented by a small circle. A resistance is present at each con-
tact point. The connection r13, for example, contains a resistor with resistance
r13 = 1/w13. The constants wij represent the weights of the Hopfield network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

368 13 The Hopfield Model

between the units i and j. Inhibiting connections between one unit and an-
other (that is, connections with negative weights) are simulated by connecting
one inverted output of a unit to the other one. In Figure 13.20, for example,
the connection points in the upper row all come from the inverted output of
unit 1.

...
x1

1

2

2

3 3

r13

x x

x x

x

Fig. 13.20. Electrical implementation of a Hopfield network

In a network with n amplifiers the current Ii at the input to the i-th
amplifier is given by

Ii =
n∑

j=1

xj

rij
=

n∑
j=1

xjwij ,

where we have used the convention that rij is negative if the inverted value
of xj has been connected to the input of the amplifier xi. The current Ii rep-
resents the excitation of unit i. The amplifier transforms the total excitation
into 0 or 1 according to a certain electrical threshold, which can be set to an
arbitrary positive value.

This simple circuit can be used to simulate Hopfield networks in a fraction
of the time needed by a sequential computer. If the circuit is provided with
variable resistors it is then possible to implement some learning algorithms
directly in hardware.

13.6.2 Optical implementation

The most important computation that must be accelerated for a fast simula-
tion of Hopfield networks is the vector matrix multiplication. Computation of
the excitation of a node requires such an operation every time a unit’s state
is to be updated. Optical methods can be used to perform this numerical op-
eration faster. Figure 13.21 shows an optical realization of the Hopfield model
[132].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.6 Implementation of Hopfield networks 369

The logical structure is in principle the same as in the network of Fig-
ure 13.20, but the vector matrix multiplication is computed analogically using
optical techniques. The n binary values which represent the network’s state
are projected through the vertical lens to the left of the arrangement. The
lens projects each value xi onto the corresponding row of an optical mask.
Each row i in the mask is divided into fields which represent the n weights
wi1, wi2, . . . , win. Each field is partially darkened according to the value of
the corresponding weight. The individual unit states are projected using light
emitting diodes and the luminosity is proportional to the corresponding xi

value. The light going through the mask is collected by another lens in such
a way that all the incoming light from a column is collected at a single posi-
tion. The amount of light that goes through the mask is proportional to the
product of xi and wij at each position ij of the mask. The incoming light at
the j-th detector represents the total excitation of unit j, which is equal to

sj =
n∑

i=1

wijxi.

The total excitation of the unit j can now be processed by an analog or digital
circuit to produce the unit state which is used again in a new iteration of the
network.

w
x

illuminated row

input from
light emitting
diodes ij

i

excitation
of the j-th unit

SLM mask

lens

lens

Fig. 13.21. Optical implementation of a Hopfield network

The difference compared with the electrical model is that the weights and
signals must be normalized and scaled to fit the kind of optical processing
being done. The most significant difference is the absence of direct connections.
The light paths do not affect each other, so that it is possible to implement
much larger networks than in the purely electrical realization. We will come
back to the topic of optical implementations when we discuss neural hardware
in Chap. 18.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

370 13 The Hopfield Model

13.7 Historical and bibliographical remarks

With the introduction in 1982 of the model named after him, John Hopfield
established the connection between neural networks and physical systems of
the type considered in statistical mechanics. This in turn gave computer sci-
entists a whole new arsenal of mathematical tools for the analysis of neural
networks. Other researchers had already considered more general associative
memory models in the 1970s, but by restricting the architecture of the net-
work to a symmetric connection matrix with a zero diagonal, it was possible
to design recurrent networks with stable states. With the introduction of the
concept of the energy function, the convergence properties of the networks
could be more easily analyzed.

The Hopfield network also has the advantage, in comparison with other
models, of a simple technical implementation using electronic or optical de-
vices [132]. The computing strategy used when updating the network states
corresponds to the relaxation methods traditionally used in physics [92].

The properties of Hopfield networks have been investigated since 1982 us-
ing the theoretical tools of statistical mechanics [322]. Gardner [155] published
a classical treatise on the capacity of the perceptron and its relation to the
Hopfield model. The total field sensed by particles with a spin can be com-
puted using the methods of mean field theory. This simplifies a computation
which is hopeless without the help of some statistical assumptions [189]. Using
these methods Amit et al. [24] showed that the number of stable states in a
Hopfield network of n units is bounded by 0.14n. A recall error is tolerated
only 5% of the time. This upper bound is one of the most cited numbers in
the theory of Hopfield networks.

In 1988 Kosko proposed the BAM model, which is a kind of “missing
link” between conventional associative memories and Hopfield networks. Many
other variations have been proposed since, some of them with asynchronous,
others with synchronous dynamics [231]. Hopfield networks have also been
studied from the point of view of dynamical systems. In this respect spin
glass models play a relevant role. These are materials composed of particles
with a spin and mutual interactions [412].

Combinatorial problems have a long tradition, but a really systematic
theory capable of unifying the myriad of heuristic methods developed in the
past was first developed in the 1960s and 1970s [361]. The important point
was the increasingly important role played by computers and the emergence
of a new attitude which tried to reach whole classes of problems and not
just individual cases. An important research theme which remains is how to
split a combinatorial problem into subtasks that can be assigned to different
processors [160].

The efforts of Hopfield and Tank with the TSP led to many other similar
experiments in related fields. Wilson and Pawley [456] repeated their experi-
ments but they could not confirm the optimistic results of the former authors.
The main difficulty is that complex combinatorial problems produce an expo-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.7 Historical and bibliographical remarks 371

nential number of local minima of the energy function. In sequential comput-
ers, Hopfield models cannot compete with conventional methods [224]. Many
heuristics have been proposed for the TSP, starting with the classical work by
Kernighan and Lin [274]. The only way to make Hopfield models competitive
is through the use of special hardware. Sheu et al. have obtained interesting
results and significant speedup in comparison with sequential computers by
using a technique they call hardware annealing.

One of the first to deal with the intrinsic limits of the Hopfield model for
the solution of the TSP was Abu-Mostafa [3], who nevertheless considered
only the case of networks of constant size. Bruck and Goodman [75] consid-
ered networks of variable but polynomially bounded size and obtained the
same negative results. Although this almost meant the “death of the travel-
ing salesman” [322], the Hopfield model and its stochastic variants have been
applied in many other fields, such as psychology, simulation of ensembles of
biological neural networks, and chaotic behavior of neural circuits.

The optical implementation of Hopfield networks is a promising field of
research. Other than masks, holograms can also be used to store the network
weights [352]. The main technical problem is still the size reduction of the op-
tical components, which could make them a viable alternative to conventional
electronic systems.

Exercises

1. Train a Hopfield network in the computer using the perceptron learning
algorithm.

2. Solve a TSP of 10 cities with a Hopfield network. How many weights do
you need for the network?

3. Compute the energy of the different possible states of the network shown
in Figure 13.6. Do the same for Figure 13.7 assigning some values to the
weights and thresholds.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

