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Boltzmann Machine

Bidirectional Net with Visible and Hidden Units

Learning Algorithm

Can Seek Global Minima

Avoids local minima (& speeds up a slow
learning algorithm) through stochastic nodes and
simulated annealing
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Unit: Logistic Function
For a node

AEy = net = Y (Wi - si) - Ok
]

Output: sk = 1 with probability

1
Pk = [ +e-AE T

where T = Temperature
Asynchronous Random Updates
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Global Energy Function Like Hopfield

E= Y(wije Sisj) +E(9,~- Si
I7t] l

w: weights
S: outputs
6: Bias
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Simulated Annealing

1. Start with high T
More randomness in update and large jumps

2. Progressively lower T until equilibrium reached

(Minima Escape and Speed)
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Learning Algorithm

System at thermal equilibrium obeys the Boltzmann
Distribution

Po
Pp = e (Eo-Ep)/T

P+(V) = Probability of state o when clamped
Depends only on the training set environment
P-(Vo) = Probability of state o when free
Goal: P-(Va) = P+(Vo)

For example, a training set
1001
1110
1001
0000

What are Probabilities
Could be auto or pattern associator
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Learning Mechanisms

Information Gain (G) 1s a measure of similarity
between P-(Vq) and P+(Vo)

P+(Vq
G = 2P+(Va) lnﬁva))

(@

G =0 1f the same, positive otherwise

So, when can seek a gradient descent algorithm
for weight change by taking the partial derivative

J6G 1
dwi; =- T (P*ij - Pij)

Awij = C (p+jj - prij)
pij = probability that pi and pj are simultaneously
on when 1n equilibrium

Logistic Node & Annealing break out of local
minima
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Annealing and Statistics Gathering

A network time step 1s the period in which each
node has updated = once.

Initialize node outputs to random values
(except for visible when 1n the clamped state)

Annealing Schedule

1..
2@30,3@20,3@10,4@5

Then gather pij stats for 10 time steps
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Learning Algorithm (Intuitive)
Separate Visible units into Input & Output units

Until Convergence (Aw < ¢€)
Pick a pattern and clamp all visible units
anneal and gather p+j;
Unclamp Output units
Anneal and gather p-j;

Update weights
End

Might work, but not the true algorithm
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Boltzmann Learning Algorithm

Until Convergence (Aw < ¢€)
For each pattern in training set
Clamp pattern on all visible units
Anneal several times and gather p+ij;
end
Average p+ij for all patterns
Unclamp all visible units
Anneal several times and gather p-j;
Update weights
End
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Tricks

Noisy Input Vectors
To avoid infinite weights for non-trained states

For each bit in a pattern during training, have a
finite probability of toggling it.

Weight Decay

Fixed Magnitude Weight Changes

Neural Networks - Boltzmann 12



Encoder Problem
Map Single Input Node to Single Output Node

Q\

requires = log(n) hidden units
For 4-2-4 Encoder

1. Anneal and gather p+ij for each pattern twice
(10 time steps for gather). Noise .15 of 1 to 0, .05

of Oto 1.
Annealing Schedule: 2@202@152@12,4@10

2.Anneal and gather p-ij in free state an equal
number of times

3. Awij =2 (pij - prij)
Average: 110 cycles
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Example Encoder Weights
(Before ,After)
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Shifting Network
9000 Cycles
No I/O Directionality
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Boltzmann Summary

Stochastic Relaxation

More General than Hopfield - Can do arbitrary
functions

Slow learning algorithm

Completely Probabalistic Model - Seeks to mimic
the environment

Annealing and stochastic units help speed and
minima escaping
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