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Abstract—Extracting information from a training data set 

for predictive inference is a fundamental task in data mining 
and machine learning. With the exponential growth in the 
amount of data being generated in the past few years, there is an 
urgent need to develop or adapt existing learning algorithms to 
efficiently learn from large data sets. This paper describes three 
scaling techniques enabling machine learning algorithms to 
learn from large distributed data sets. First, a general 
single-pass formula for computing the covariance matrix of 
large data sets using the MapReduce framework is derived. 
Second, two new efficient and accurate sampling schemes for 
scaling down large data sets for local processing are presented. 
The first sampling scheme uses the single-pass covariance 
formula to select the most informative data points based on 
uncertainties in the linear discriminant score. The second 
technique on the other hand selects informative points based on 
uncertainties in the logistic regression model. A series of 
numerical experiments demonstrates numerically stable results 
from the application of the formula and a fast, efficient, 
accurate and cost effective sampling scheme.  

 
Index Terms—Linear discriminant analysis, logistic 

regression, classification, sampling, mapreduce, single-pass. 
 

I. INTRODUCTION 
The basic machine learning task is that of extracting 

relevant information from a training set for predictive 
inference. Given today's ever and steadily growing data set 
sizes, the machine learning process must be able to 
effectively and efficiently handle large amounts of data. 
However, most existing machine learning algorithms were 
designed at a time where data set sizes were far smaller than 
current sizes. This has led to a significant amount of research 
in scaling methods, that is, designing algorithms to 
efficiently learn from large data sets. Two general approaches 
can be identified in this endeavor:  scaling up and  scaling 
down. 

The first approach attempts to  scale up machine learning 
algorithms, that is, develop new algorithms or modify 
existing algorithms so that they can better handle large data 
sets. There has been a rapid rise in research methods for 
scaling up machine learning algorithms. This research has 
been aided in part by the fact that some machine learning 
algorithms can be readily deployed in parallel. For example  
[1] showed that ten commonly used machine learning 
algorithms (logistic regression, näive Bayes, k-means 
clustering, support vector machine etc) can be easily written 
as MapReduce programs on multi-core machines. The other 
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part can be attributed to the rapid evolution of hardware and 
programming architectures  [2]. These new technologies are 
highly optimized for distributed computing in the sense that 
they are parallel efficient, reliable, fault tolerant and scalable. 
The Hadoop-MapReduce framework for example has been 
successfully applied to a broad range of real world machine 
learning applications  [3], [4]. 

Despite the appealing properties of scaling up machine 
learning algorithms, there are some obvious problems with 
this approach. First, scaling up an algorithm so that it can 
handle "large" data today does not necessarily mean it will 
handle "large" data tomorrow. Second, adapting current 
algorithms to cope with large data can be very challenging 
and the scaled-up algorithm may end up being too complex 
and computationally very expensive to deploy. Finally, not 
all machine learning algorithms can be modified for parallel 
implementation. Coupled with the fact that there is no single 
algorithm that is uniformly the best in all applications, it is 
sometimes necessary to deploy many algorithms so that they 
can collaborate to improve accuracy. 

The second approach to the scaling problem attempts to  
scale down large data sets to reasonable sizes that allow 
practical use of existing algorithms. The traditional approach 
is to take a random sample of the large data for learning. This 
näive approach can run the risk of learning from 
non-informative instances. For example, in imbalance 
classification problems where one class is underrepresented, 
it is possible for random sampling to select only a few 
members of the minority class and a large number of the 
majority class, presenting yet another imbalance learning 
problem. 
   Though not exhaustively explored, research in methods for 
scaling up algorithms have been on the rise in the past few 
years. Not much work has been done in finding efficient ways 
to scale down very large distributed data sets for learning. 

This work presents three key contributions to the research 
in learning from large distributed data sets. In a first step, a 
new single-pass formula for computing the covariance matrix 
of large data sets on the MapReduce framework is derived. 
The formula can be seen as an efficient generalization of the 
pairwise and incremental update formula presented in  [5]. 
The single-pass covariance matrix estimation is then used in a 
second step to derive two new sampling schemes for scaling 
down large distributed data set for efficient processing 
locally in memory. Precisely, uncertainties in the linear 
discriminant score and the logistic regression model are used 
to infer the informativeness of data points with respect to the 
decision boundary. The informative instances are selected 
through uncertainties of interval estimates of these statistics. 

Because real data is not always normal, linear discriminant 
analysis (LDA) may perform poorly when the normality 
assumption is violated. Thus the Hausman specification test  
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[6] can be applied to test for normality and decide which 
sampling scheme to use. The Hausman test requires 
consistent estimators of the asymptotic covariance matrix of 
parameters of the models to be tested. The fisher information 
matrix is easily computed from the output of the logistic 
regression (LR) and provides a consistent estimator of the 
asymptotic covariance matrix of the parameters. On the other 
hand, consistent estimators of the asymptotic covariance 
matrix of parameters of LDA are not readily available. To 
solve this problem, this paper also derives a consistent 
asymptotic covariance matrix of the parameters of LDA that 
is simple and easy to compute for large data sets using the 
single-pass covarinace formula. 

Empirical results show that using these techniques, large 
classification data sets can be efficiently scaled down to 
manageable sizes permitting local processing in memory, 
while sacrificing little if any accuracy. There are also many 
potential benefits of the sampling approach: The selected 
samples can be used to gain more knowledge about the 
characteristics of the decision boundary, for visualization and 
to train other algorithms that cannot be easily trained on 
MapReduce. A specific example to illustrate the usefulness 
of this approach is presented where the support vector 
machine (SVM) is trained using scaled down data and large 
scale predictions is carried out on MapReduce. 

For simplicity, this paper considers only binary 
classification problems and organized as follows: Related 
work is presented in Section II. Section III presents a general 
single-pass formula for computing the covariance matrix of 
large data sets. Section IV briefly reviews LDA and LR and 
presents confidence interval estimates of the models. 
Derivation of the asymptotic covariance matrix of parameters 
of LDA is also presented in this Section. Implementation of 
the single-pass covariance matrix computation and the 
proposed sampling schemes on MapReduce is presented in 
Section V. Numerical experiments are reported in Section VI 
while Section VII concludes the paper. 

Because of space limitations, the proofs of the propositions 
presented in the paper will be omitted. The interested reader 
is referred to http://www.mli.gmu.edu/publications for proofs 
and other detailed information. 
 

II.   RELATED WORK 
Single-pass pairwise updating algorithms especially for 

the variance have been in existence for some time and proven 
to be numerically stable  [5]. In these techniques, the data set 
is always split into two subsets and the variance/covariance 
of each subset computed and combined. This leads to a tree 
like structure where each node is the result of the 
combination of two statistics each of which resulted from the 
combination of two other statistics and so on. The draw back 
of these methods lies in the pairwise incremental updating 
step. At each round of the computation, the data is split into 
two and the formula is applied recursively. Some special data 
structures and bookkeeping may be required to handle the 
tree-like structure of the algorithm. More over, it is not 
readily amenable to the MapReduce framework as some 
communications between processes may be required. The 
single-pass formula presented in this paper avoids the tree 
like combination structure and computes the covariance 
matrix in one step. 

Much work has been done on scaling up existing machine 
learning algorithms so that they can handle large data sets and 
reduce execution time. While this approach is attractive, they 
are many situations where it is not possible to scale up a 
machine learning algorithm or the scale up may produce a 
complex or computationally more expensive algorithm. In 
such situations, scaling down by sampling is an attractive 
alternative. Various approaches have been followed to reduce 
training set sizes such as dimension reduction, random 
sampling, active learning [7] etc. The simplest of these 
sampling techniques is random sampling in which there is no 
control of the nature and type of instances that are added to 
the training set. It is possible to reduce training size with 
random sampling and end up with a training set with no 
precise decision boundary. It is therefore important to guide 
random sampling so that the reduced training set always has 
classes separated by a precise decision boundary. 

Active learning on the other hand is a controlled sampling 
technique that has been shown in several applications to be 
reasonably successful in dealing with the problem of 
acquiring training data. Its main purpose is to minimize the 
number of data points requested for labeling there by 
reducing the cost of learning. In active learning using SVM 
for example [7], training size reduction is archived by 
training a classifier using only the support vectors or data 
points close to the SVM hyperplane. A major drawback of 
using SVM for sample size reduction is that training SVM is 
at least quadratic in the training set size. Thus, the 
computational cost for large data sets can be very significant. 
In addition, SVM is also known to be very difficult to 
parallelize especially on MapReduce where there is little or 
no communication between processes. 

The sampling schemes for sample sized reduction 
presented in this work are designed to avoid or minimize 
these problems. 
 

III. SINGLE-PASS PARALLEL STATISTICS 
 

Accurate computation of statistics such as the mean, 
variance/covariance matrix and the correlation 
coefficient/matrix are critical for the deployment of many 
machine learning applications. For example, the performance 
of discriminant analysis, principal component analysis, 
outlier detection,  etc . depends on the accurate estimation of 
these statistics. However, the computation of these statistics 
especially the variance or covariance matrix can be very 
expensive for large data sets and potentially unstable when 
their magnitude is very small. The standard approach consist 
of calculating the sum of squares deviation from the mean. 
This involves passing through the data twice, first to compute 
the mean and second the deviations from the mean. This 
naive two-pass algorithm is known to be numerically stable, 
but may become too costly. 

Single-Pass Covariance Matrix Formula 
Given a large distributed data set   that can be 

partitioned into 2k t finte blocks 1
k
i i  �  with  

,i j i j� � z . Each i is typically a set of in  multivariate 

random samples 1{ , , }
ii nX X }  where each iX  is a 1pu   
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random vector: 
1

( , , )
p

T
i i iX X X } . The scatter matrix for 

each block is given by ( )( )
i

T
i i iX

X X X X
�

 � �¦S , 

where  1/
iXi XX n

�
 ¦  is the sample mean of each block. 

Unbiased estimate of the covariance matrix of each block is 
given by ˆ 1/ ( 1)i in �Σ S . The main goal is to compute the 
covariance matrix of the complete data  . 

Proposition 1.   The scatter matrix of the distributed data 
  partitioned into 2k t  disjoint data-blocks 1{ }k

i i   is 
given by  
 

 
1 1 1 2 1 2

1

1 ( )( )
k

T
i

i
n n X X X X

n S S S S S S
S 

 � � �¦ ¦S S   (1)   

 

where 
1

, 1/
i

i i i
k

i X
n Xnn X

� 
  ¦ ¦ and ( )

S
�¦    

denotes the summation over � �2
k combinations of distinct 

pairs 1 2( , )S S   from (1, , )k} . 
 

IV. SCALING DOWN SAMPLING SCHEMES 
In most classification problems, the classifier usually has 

great uncertainty in deciding the class memberships of 
instances on or very close to the decision boundary. These are 
interesting data points warranting further investigation. If the 
classifier can be taught how to accurately classify these 
points, then classifying the non-boundary points will be a 
trivial process. It is well known in the active learning 
community that training a classifier only on the most 
uncertain examples can drastically reduce data labeling cost, 
computational time and training set size without sacrificing 
predictive accuracy of the classifier  [7]. Borrowing this idea, 
this section presents two complementary sampling schemes 
based on the linear discriminant score and the logistic 
regression model to scaled down large distributed data set for 
local learning.  

A. A Linear Discriminant Score Sampling Scheme 
LDA aim at discriminating between two multivariate 

normal populations with a common covariance matrix 
1 1( , )pH  μ Σ  and 21 ( , )pH  μ Σ   say, on the basis of 

independent random samples of sizes 1n   and 2n . Fisher's 
linear discriminant rule assigns a new test example x  into 
population  1H  if the discriminant score ( )xT  satisfies  
 

                             0( ) 0Tx xT O � tλ                              (2) 
 

where 1
0 2 1 2 1 2 1

1log( / ) ( ) ( ),
2

TO S S � � � �μ μ Σ μ μ   

1
2 1( )� �λ Σ μ μ   and iS    is the probability that x  belongs 

to population iH .  
The decision boundary is defined by points satisfying  
( ) 0xT  . If the true value of  ( )xT  is known, then these 

points can be easily determined. However ( )xT  is not known 

and is usually estimated using unbiased sample versions such 
as the minimum variance unbiased estimator  [8] given as 
 

               2 2
2 1 2 1

1 1ˆ ˆ ˆ( ) ( ) ( ) log( / )
2 2

x x x n nT D D � �                (3) 

 
where 2 1

1 2
ˆ ( 3)( ) ( ) /T

i i p i in n p x X x X p nD � � � � � � �S    

with iX   the sample mean and  pS the pooled covariance 

matrix. If the probability distribution of ˆ( )xT is known, then 
one can easily find the likelihood that the true value of the 
score is within some specified range for each test point x . 

For example if  ˆ( )xT  is assumed to be normally distributed, 
then a 95% confidence interval centered at 0 will correspond 
to data points close to the decision boundary. 

The LDA sampling scheme presented in this work is based 
on an approximate distribution derived in [8] under the 
assumption of equal priors i.e 1 2S S .   The case of unequal 
priors can be adjusted accordingly.  

Letting 2 1( ) ( ) ( )T
i i ix x x�'  � �μ Σ μ be the squared 

Mahalanobis distance between x  and the population center  

iμ  and  2
12
21 1( ) ( ) ( )

2 2
x x xI  ' � '  , it is shown in  [8] that  

ˆ( )xT  is asymptotically normally distributed with mean ( )xT   

and variance ˆ( )( )var xT   given (in a simplified form) as:  

� �

� �

2

2 4
2 1 2 1

2 2 2

ˆ( ( )) ( ( ) / (2 ))

( )( / ( )) ( ) / 4

2 ( ) / ( 1) /

avar x x cM n
b
b x cN n
a
bc p N M n c M n
d

T T

I

 �

� � ' �'

� � � �

μ μ (4) 

 
where  1 2N nn � , 2 1M nn �  , 1 2n n n  , 1a N p � �  , 

2b a �  , 2c N �  and ( 1)( 2)d a b � � .  

With the approximate distribution of  ˆ( )xT , uncertainties 
in classifying each data point x  can be estimated by 

computing confidence intervals about the mean value  ˆ( )xT . 
In particular, the  )1 0%( 10G�  confidence interval about the 
decision boundary  ( ) 0xT   is given by   

                        
2 2

1 1

ˆ( )
ˆ( ( ))

x

var x
Z ZG G

T

T� �
d d�                        (5)    
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Fig. 1. Performance of sampling schemes. 

 
Data points within this interval represent points for which 

the classifier has high uncertainty about class memberships 
and are the most informative for learning. A large confidence 
interval will select more points while a tight interval will 
return fewer points. Equation 5 therefore presents an efficient 
principled query strategy for uncertainty base active learning  
[7] that can be used for sample size reduction.  

In the standard pooled based active learning parlance, a 
small labeled training set l  and a large "unlabeled" pool  

u  are assumed to be available. The task of the active learner 
is to use the information in l  in a smart way to select the 

best query point *
ux �  and ask the user or an oracle for its 

label and then add to l . This process continues until the 
desired training set size or accuracy of the learner has been 
archived. For the sampling schemes proposed in this work 
however, both l  and u  are labeled training sets, and the 
idea is to select the most informative data points and their 
labels from u . The proposed learning algorithm for sample 
size reduction is presented in Algorithm 1.  

The stopping criterion of the algorithm can be set equal to 
the  required sample size of the reduced training set. Note that 
at each round of the algorithm, the selected points can be used 
to train a different classifier such as LR or SVM. Fig. 1(a) 
shows a comparison of the classification performance of LR 
trained at each step of the sampling scheme using: data points 
selected by LDA sampling scheme, the support vectors from 
a SVM training, and random sampling (Random). 

The forest covertype data from the UCI Machine learning 
repository [9] was used for training. The classification 
problem represented by this data is to discriminate between 7 
forest cover types using 54 cartographic variables. The data 
was converted to binary by combining the two majority forest 
cover types (Spruce-Fir with n = 211840, and Lodgepole Pine 
with n = 283301) to one class and the rest (n = 85871) to the 
second class. The data was split into 75% training and 25% 
testing. The sampling schemes were stopped once 0.7% of 
the training set has been queried for learning. The results 
showed that for the LDA sampling scheme, to archive a 
reduction in error of about 22% (approximately where the 
algorithm stabilizes) only about 0.23% carefully selected 
training data points were needed whereas random sampling 
method uses all 0.7% of the training data and still achieved   
only 0.24 % reduction in error. The performance of LDA and 
SVM sampling schemes are very similar, however LDA took 
by far a smaller time to converge compared to SVM. 

Precisely in this example, the time ratio of SVM to LDA was 
about 140 averaged over ten fold cross-validation. 

To the best of the knowledge of the authors of this paper, 
this is the first "active" learning technique for sample size 
reduction based on uncertainties in the linear discriminant 
score.  

B. A Logistic Regression Sampling Scheme 
LR is another popular discriminative classification method 

that makes no assumption about the distribution of the 
independent variables. It has found wide used in machine 
learning, data mining, and statistics. 

Let 1{( , )}n
i i ix y    be a set of training examples where 

the random variables (0,1)i iY y  are binary and   
p

i iX x �  are p -dimensional feature vectors. The 
fundamental assumption of the LR model is that the log-odds 
or "logit" transformation of the posterior probability 

( ; ) Pr( 1| ; )x y xS   β β   is linear i.e   
 

                             0log
1

T xS E
S

§ ·  �¨ ¸�© ¹
β                     (6)                                

 
where 0E and ( , , )i pE E }β  are the unknown parameters of 
the model. 

Typically, the method of maximum likelihood is used to 
estimate the unknown parameters. By setting : (1, )x x  and 

0: ( , )E β β  the regularized log-likelihood function is given 
by  

 � � 2

1

) log 1 exp( |( ) || |
n

T T T
i

i

l x Z
 

 � � �¦β β X Y β β   

 
where X  is the design matrix, Y  the response vector and Z   
reflects the strength of regularization. Iterative methods such 
as gradient based methods or the Newton-Raphson method 
are commonly used to compute the maximum likelihood 
estimates (MLE) β̂  of β . For example, the one step training 
of 2L  -regularized stochastic gradient descent (SGD) is given 
by  

 
              ( )new old old old

i i iy xD S Zm � � �ª º¬ ¼β β β β               (7) 

 
where 0D !   is the learning rate. Each iteration of SGD 
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consist of choosing an example ( , )i ix y  at random from the 
training set and updating the parameter β . 

An important feature of the LR parameters is that the 
parameter estimates are consistent. It can be shown that the 
MLE of LR are asymptotically normally distributed i.e  
 

 � � � �1ˆ , ( )n �� oβ β O I β    

 
where ( ) T I β X WX is the Fisher information matrix with  

{ (1 )}, 1, ,i idiag i nS S �  }W  (see for example [10] 

Section 6.5). Based on the distribution of β̂ ,  the asymptotic 
distribution of the MLE of the logistic function Ŝ  can be 
derived by application of the delta method. Specifically, for 
any real valued function  g  with the property that ( ) /gw wβ β  
one has  
 

 � � � �1ˆ( ) ( ) , ( ) ( ) ( )Tn g g g g�� o � �β β O β I β β   

 
where �  is the gradient operator.  By taking  ( ) ( ; )g xS β β , 

it can be seen that ˆˆ ( ; )xS S β  is asymptotically normally 
distributed with mean ( ; )xS β and variance 

� � 1ˆ( ; ) ( ; ) ( ) ( ; )Tx xVar xS S S� � �β β I β β . 

The decision boundary of LR model is defined by  

0 0T xE �  β   i.e where ( ; ) 0.5xS  β . This shows that points 
on the boundary have equal chances of being assigned to 
either population. Therefore, uncertainties in ˆ( ; )xS β  for the 
boundary points can be statistically captured by a  

)1 0%( 10G�  confidence interval about 0.5. 
Confidence intervals for parameter estimates of LR can be 

calculated from critical values of the student t-distribution. 
By following a similar calculation presented in  [11] Section 
8.6.3 for computing the confidence interval of a linear 
function Ta β  of  parameters of a linear regression model, one 

obtains for  ˆ( ;x)S β  the statistics:  
 

 
� �

ˆ( ; ) ( ; ) ~ ( 1)
ˆ( ; )

t
Va

x x t
r

n p
x

S S

S
 

�
� �

β β

β
  

 
which has a student t-distribution with  1n p� �  degrees of 
freedom. Uncertainties about the true decision boundary  

( ; ) 0.5xS  β can now be inferred through confidence 
intervals. In particular, the )1 0%( 10G� confidence interval 
about the decision boundary is given by   
 

               
� �, 1 , 1

2 2

ˆ( ; ) 0.5
ˆ( ; )n p n p

x

Var
t

x
tG G

S

S
� � � �

�
d� d

β

β
.                 (8) 

  
A similar algorithm for sample size reduction using the 

logistic regression model is presented in Algorithm 2. 
 

 
Fig. 1 (b) shows the error curve for the logistic regression 

trained at each step of the sampling scheme using: data points 
selected by the LR sampling scheme, the support vectors 
from a SVM training, and random sampling. The Waveform 
data set from the UCI machine learning repository was used 
for this example. There are a total of 5000 records in this data  
set with 40 attributes, 75% was used for training and 25% for 
testing. All the sampling schemes were stopped once 16% of 
the training set has been queried for learning. Clearly, the LR 
sampling scheme outperforms both the SVM and Random 
schemes. 

The authors of this paper are unaware of any previous use 
of uncertainties in the LR model as described in Algorithm 2 
for sample size reduction or for active learning. A closely 
related but different approach is the variance reduction active 
learning for LR presented in  [12]. The idea of this approach 
is to select data points that minimizes the mean square error 
of the LR model. To do this, the mean square error is 
decomposed into its bias and variance components. However, 
in the active learning step, only the variance is minimized and 
the bias term neglected. Frequently however, the bias term 
constitutes a large portion of the model's error, so this 
variance only active learning approach may not select all 
informative data points. 

C. The Hausman Specification Test 
Under the normal assumption, LDA and LR estimators are 

known to be consistent but LDA is asymptotically more 
efficient [13]. Thus the Hausman specification test can be 
applied to test for these distributional assumptions by 
comparing the two estimators. This section briefly presents 
the derivation of the asymptotic covariance matrix of the 
LDA parameters required for the Hausman specification test. 
This is useful in deciding which of the sampling schemes 
presented in this paper is best to use. 

The LDA and LR models are very similar in form but 
significantly different in model assumptions. LR makes no 
assumptions about the distribution of the independent 
variables while LDA explicitly assumes a normal distribution. 
Specifically, LR is more applicable to a wider class of 
distributions of the input than the normal LDA. However, as 
illustrated in [13], when the normality assumption holds, 
LDA is more efficient than LR. Under non-normal conditions, 
LDA is generally inconsistent whereas LR maintains its 
consistency. Since LDA may perform poorly on non-normal 
data, an important criterion for choosing between LR and 
LDA is to check whether the assumption of normality is 
satisfied. 

The Hausman's specification test is an asymptotic 
chi-square test based on the quadratic form obtained from the 
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difference between a consistent estimator under the 
alternative hypothesis and an efficient estimator under the 
null hypothesis. Under the null hypothesis of normality, both 
LDA and LR estimators should be numerically close, 
implying that for large samples sizes, the difference between 
them converges to zero. However under the alternative 
hypothesis of non-normality, the two estimators should differ. 
Naturally then, if the null hypothesis is true, one should use 
the more efficient estimator, which is the LDA estimator and 
LR estimator otherwise. 

Let ˆ LDAΣ  and ˆ LRΣ  be the estimated asymptotic covariance 

matrices of λ̂  and β̂ ; the estimators of LDA and LR 

respectively.  Letting ˆ ˆ �Q λ β  , the Hausman chi-squared 
statistic [6] is defined by   
 

                        
†

2ˆ ˆ ~T
LDA LR pFª º �¬ ¼Q Σ Σ                          (9) 

  
where †  denotes the generalized inverse. 

During training, ˆ
LRΣ  is readily available through the 

Fisher information matrix ˆ( )I β . Therefore, the main 
difficulty in computing the Hausman statistic is how to 
compute ˆ LDAΣ .  Several methods have been proposed in the 

literature to compute ˆ
LDAΣ  [6], [13]. These methods are 

however too complex to implement on MapReduce. In this 
work, a much simpler approach following proposition 2 is 
derived and the resulting covariance matrix can be easily 
computed by the single-pass formula. 
    Proposition 2: Given the training set 1{( , )}n

i i ix y    
where 1,2iy j   indicates the multivariate normal 

( , )p jμ Σ  that ix  comes from. The limiting distribution of 
the MLE of LDA paraneters is given by  
 
 *( ) ~ ( , )pn �λ λ O Γ   
 
where           * 1

2 1
ˆ( 2) , ( )n � �  �λ λ λ Σ μ μ and 

1 1 1

1 2

T Tn
n n

� � �§ ·
 � �¨ ¸

© ¹
Γ Σ μμ μ Σ μ Σ  with  2 1 �μ μ μ . 

 
Computing Γ  for large data sets only requires a straight 

forward application of the single-pass formula.  Note that the 
constant term  0O  in (2) has been omitted for convenience. 

 

V.  A DISTRIBUTED FRAMEWORK FOR MACHINE LEARNING 
This Section briefly describes the Hadoop-MapReduce 

framework and its application to machine learning. The 
section ends with the implementation of the single-pass 
covariance formula, LDA and LR sampling schemes on 
MapReduce.  

A. The Hadoop-MapReduce Framework 
The MapReduce (MR) framework is based on a typical 

divide and conquer parallel computing strategy. Any 
application that can be designed as a divide and conquer 

application can generally be set-up as a MR program. The 
application core of MR consists of two functions: a  Map and 
a  Reduce function. The input to the Map function is a list of  
key-value pairs. Each key-value pair is processed separately 
by each Map function and outputs a key-value pair. The 
output from each Map is then shuffled so that values 
corresponding to the same key are grouped together. The 
Reduce function aggregates the list of values corresponding 
to the same key based on the user specified aggregating 
function. 

In Hadoop (http://hadoop.apache.org/) implementation of 
MR, all that is required is for the user to provide the Map and 
Reduce functions. Data partitioning, distribution, replication, 
communication, synchronization and fault tolerance is 
handled by the Hadoop platform. 

While highly scalable, the Hadoop-MapReduce 
framework however, suffers from one serious limitation for 
machine learning tasks: it does not support iterative 
procedures. However, a number of techniques have recently 
been  proposed to train iterative machine learning algorithms 
like LR efficiently on MR  [14], [15]. In  [14] the Taylor first 
order approximation of the logistic function is used to 
approximate the logistic score equations. This leads to a 
"least-squares normal equations" for LR. The authors 
demonstrated that the least-squares approximation technique 
is easy to implement on MR and showed superior scalability 
and accuracy compared to gradient based methods. In  [15], a 
parallelized version of SGD is proposed. The full SGD is 
solved by each MR Map function and the Reducer simply 
averages the results to obtain the global solution. 

The least-squares method for LR proposed in  [14] is 
suitable for the purpose of this paper, however there is no 
guarantee that the estimates will remain consistent for 
carrying out the Hausman specification test. The parallelized 
SGD approach is therefore implemented for the LR sampling 
scheme. To speed up convergence of SGD, the least-squares 
solutions are used as initial estimates.  

B. MapReduce Implementation 
The appealing property of the single-pass covariance 

matrix computation is that its MR implementation is very 
straight forward. Each Map function computes the 
covariance matrix of data assigned to it and the Reducer 
simply combines them by application of the single-pass 
formula. Selecting informative data points by the LDA 
sampling scheme proceeds in a similar way. Each Map 
function selects its most informative data points using 
Algorithm 1. The selected points, covariance matrix and 
mean vector are then passed to the Reducer who applies the 
single-pass formula to compute the global covariance matrix 
of the reduced data from all mappers. Optionally, another run 
of Algorithm 1 can be carried out by the reducer but with the 
sample mean and covariance matrix set to the global values. 
This step is useful to filter out any un-informative data points 
that were selected to initialize the algorithm. The whole 
process is performed as a single-pass sampling scheme over 
the distributed data. 

The LR sampling scheme also proceeds in a similar 
fashion. Here each mapper solves the SGD for the parameter 
estimates and selects informative points by application of 
Algorithm 2. The Reducer aggregates all informative points 
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and averages the LR parameters from all mappers and 
optionally performs another sampling using the global 
parameter estimates. The algorithm equally proceeds as a 
single-pass MR job. 

To decide which sampling scheme to adopt when there is 
concern about the normality assumption of LDA, the 
Hausman specification test can be used. Both sampling 
schemes can be run by the same MR program, and each 
mapper performs the Hausamn test before querying data 
points. 

 

VI. EXPERIMENTS 
This section presents numerical results to demonstrate the 

correctness of the single-pass covariance matrix computation 
and the effectiveness of the LDA and LR sampling schemes. 
First, a series of synthetic binary classification data sets are 
used to assess the accuracy of the covariance matrix 
calculations. Then the two sampling schemes are used to 
scale down two real data sets for local processing. For 
comparison, SVM is also trained on the full and sampled data 
and tested on a large test data on a Hadoop cluster.  

A. Correctness of the Single-Pass Algorithm 
The accuracy of the single-pass formula was assessed by 

estimating the common covariance matrix for a series of two 
multivariate normal populations: ( , ), 1,2p i i  μ Σ . The 
parameters of the two populations are generated as follows: 
The mean of the first population 1μ  is uniformly generated 
from three intervals: 1 [0.99,1.0], I    2 [999.99,1000] I  
and 3 [999999.99,1000000] I while the second population 
mean is taken as 2 1 1.5 �μ μ or 2 1 1.5 �μ μ . The 
covariance matrix Σ  is also randomly generated such that 
the diagonals are sampled from the intervals , 1,2,3i i  I .  

The intervals iI are specially chosen so that the generated 
data points are large with very small deviations from each 
other. In this way, they will almost cancel each other out in 
the computation of the variance. This allows the study of 
numerical stability on large data sets with small variances. 
For each interval, four experiments were performed with the 
sample size varying as 31010n  u , 3100 10u , 31000 10u  
and 33000 10u . The proportion of observations falling in the 
first population was chosen as 0.3  while the dimension of the 
multivariate normal distribution was set to 50p  . The 
common population covariance matrix is estimated by the 
pooled sample covariance matrix pS . Since the true 

parameters iμ and Σ are known, it is easy to access 
numerical accuracy of the computations. The Accuracy of the 
algorithms is measured using the Log Relative Error metric 
introduced in  [16] and defined as  
 

 
10

ˆ| |log
| |
T T
T

§ ·�
 ¨ ¸¨ ¸

© ¹
LRE   

 
where  T̂  is the computed value from an algorithm and  T  is 
the true value. LRE is a measure of the number of correct 
significant digits that match between the two values. Higher 

values of LRE indicates the algorithm is numerically more 
stable. The naive two-pass pooled covariance matrix of the 
full data sets are also computed for comparison. 

All experiments were performed using Hadoop version 
1.0.4 on a small cluster of three machines: One 8 core 16 GB 
RAM and two 6 core 8 GB RAM each. Table I presents the 
LRE values obtained from the single-pass and the naive two 
pass algorithms. The results indicate that the single-pass is 
slightly more stable than the naive two-pass. For sample sizes 
greater than  33000 10u  it became too costly to compute the 
naive two-pass covariance matrix on a single machine. 

 
TABLE I: ACCURACY OF SINGLE-PASS AND TWO-PASS ALGORITHMS 

   Range 
Sample Size 

310u   
Covariance Matrix 

(LRE) 
  Two-Pass Single-Pass 

1I   
 

10 
100 
1000 
3000 

16.85 
23.08 
28.84 
28.70 

16.85 
23.11 
29.04 
28.71 

 

2I   
 

10 
100 
1000 
3000 

16.90 
21.98 
28.13 
27.97 

16.90 
22.26 
28.08 
27.96 

3I   
 

10 
100 
1000 
3000 

17.03 
22.38 
27.06 
28.77 

17.03 
22.08 
27.08 
28.94 

 
 
TABLE II: ACCURACY OF LOCAL MODELS VS DISTRIBUTED MODEL 

 

B. Effective Scale-Down Sampling Scheme 
This section demonstrates the effectiveness of using 

uncertainties in LDA and LR as tools for down-sampling 
large data sets. Empirical results on two real large data sets 
are presented. 

The basic idea is to apply Algorithms 1 and 2 and the 
Hausman's test on distributed data to select only the most 
informative examples for local learning. The algorithms also 
outputs the parameters of LDA and LR from which local 
learning and distributed learning can be compared. 

C. Data Sets 
The first real data set is the Airline data set 

(http://stat-computing.org/dataexpo/2009/) consisting of 
more than 120 million flight arrival and departure 
information for all commercial flights within the USA, from 
October 1987 to April 2008. The classification problem 

D
Dataset 

 
Models  

 
Accuracy  

 
Training Size  

 
Training Time 
(min) 

 
 
   
Flight  

LDAd 

LRd 
SVMd 

0.75  
0.78   
- 

28,259,655  
28,259,655 
28,259,655 

43.7  
125.9 
- 

LDAl 
LRl 
SVMl 

0.73  
 0.77  
 0.77  

 587,079  
 40,154 
 40,154 

 45.3  
 126.3 
 137.4  

 
 
Linkage 

LDAd 
LRd 
SVMd 

 0.98  
 0.99  
 0.98  

 4,311,849 
 4,311,849 
 4,311,849 

 10.81 
 25.6 
 786.47 

LDAl 
LRl  
SVMl 

 0.98  
 0.99  
 0.99  

 110,078 
 20,328 
 20,328 

 15.81 
 27.6 
 32.7 
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formulated here is to predict flight delays. The data contained 
a continuous variable indicating flight delays in minutes 
where negative values meant flight was early and positive 
values represented delayed flights. A binary response 
variable was created where values greater than 15 min were 
coded as 1 and zero otherwise. Flights details for four years: 
2004-2007 (n = 28,259,655) was used for training and details 
for 2008 (n = 5,810,461) reserved for testing. 

The second data set is the Record Linkage Comparison 
Patterns data set from the UCI machine learning repository 
and consists of 5,749,132 record pairs. The classification task 
is to decide from comparison patterns whether the underlying  
(medical) records belongs to the same individual. The data 
set was split into 75% training and 25% testing. 

Three classifiers: LDA, LR and SVM were trained on  
scaled down (local data) and their performance assessed on a 
large distributed test data. The three classifiers were equally 
trained on the full distributed data using MR and tested on the 
same test set. Due to the large sample size of the flight data, it 
was computationally very expensive to train SVM on the full 
data, so only the local results are available. An attempt was 
also made to perform an SVM sampling scheme on 
MapReduce, i.e select only the support vectors for learning. 
However, the approach was again computationally too 
expensive and was dropped. The Gaussian kernel was used 
for SVM with 5-fold cross-validation procedure for 
parameter selection. To differentiate a local model from 
distributed model the subscripts l  and d  will be used 
respectively. 

The Airline and record linkage data sets contain binary and 
categorical variables with at least 3 levels clearly indicating 
non-normal conditions. This was verified by Hausman's test 
meaning that LR may be more robust to learn the data than 
LDA. However, LDA results will still be reported. With a 
95% confidence interval, it was observed that the number of 
samples selected by both sampling schemes was usually less 
than 3% of the training size. 

Table II shows the performance of LDA, LR and SVM 
models trained locally using sampled data selected by the 
LDA and LR sampling schemes compared to their 
performance on the full training set. The local LDA model is 
trained on data sampled by the LDA sampling scheme and 
likewise for the local LR model. However, because the LDA 
normal assumption was violated for both data sets, the SVM 
local model was trained on data selected by the LR sampling 
scheme. The training times for the local models in the last 
column is the total time to perform the scaled down operation 
on MR and to carry out local training of the classifiers on a 
single machine. 

The results from Table II illustrates the effectiveness of the 
sampling schemes in terms of both accuracy and time 
scalability. While it was not possible to train SVM on the 
large flight data set, using the LR sampling scheme, it was 
possible to train SVM locally giving almost the same 
predictive accuracy as LR trained on the full data set. Equally 
for the record linkage data set, it took almost 13 hours to train 
the SVM classifier on MapReduce while an even better 
accuracy was obtained with less than 0.5% the training size in 
only about half an hour. 

Training the classifiers on less than 3% of the original 
training size resulted in almost the same accuracy as leaning 

from the complete data. This result illustrates the 
effectiveness of the sampling schemes. Though the LDA 
failed the Hausman's specification test, its overall 
performance was however very good. 

 

VII. CONCLUSION 
    This paper presented three major contributions to research 
in machine learning with large distributed data sets. First, a 
general single pass formula for computing the covariance 
matrix of large distributed data sets was derived. Numerical 
results obtained from application of the new formula showed  
slightly more stable and accurate results than the traditional 
two pass algorithm. In addition, the presented formula does 
not require any pairwise incremental updating schemes as 
existing techniques. Second, two new simple, fast, parallel 
efficient, scalable and accurate sampling techniques based on 
uncertainties of the linear discriminant score and the logistic 
regression model were presented. These schemes are readily 
implemented on the MapReduce framework and makes use 
of the single-pass covariance matrix formula. With these 
sampling schemes, large distributed data sets can be scaled 
down to manageable sizes for efficient local processing on a 
single machine. Numerical evaluation results demonstrated 
that the approach is accurate and cost effective, producing 
results that are accurate as learning from the full distributed 
data set. 
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