
Neural Networks 23 (2010) 770–781
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2010 Special Issue

Classification of 2-dimensional array patterns: Assembling many small neural
networks is better than using a large one
Liang Chen a,∗, Wei Xue b, Naoyuki Tokuda c,1
a Computer Science Department, University of Northern British Columbia, Prince George, B.C., Canada V2N 4Z9
bWenzhou University, Wenzhou City, Zhejiang Province, China
c SunFlare R & D Center, Shinjuku Hirose Bldg, Yotsuya 4-7, Shinjuku-ku, Tokyo 160-0004, Japan

a r t i c l e i n f o

Article history:
Received 17 October 2009
Revised and accepted 24 March 2010

Keywords:
Neural network
Robust
Task decomposition
Noisy environment
Pattern classification
Image and signal processing

a b s t r a c t

In many pattern classification/recognition applications of artificial neural networks, an object to be
classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the
cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted
neural network, which takes all the elements in the array as inputs could be used for problems such as
these. However, a districted neural network can be used to reduce the training complexity. A districted
neural network usually consists of two levels of sub-neural networks. Each of the lower level neural
networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and
is expected to output a temporary class label, called an individual opinion, based on the partial information
of the entire array. The higher level neural network, called an assembling sub-neural network, uses the
outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision
for the object. Each of the sub-neural networks can be trained separately and thus the training is less
expensive. The regional sub-neural networks can be trained and performed in parallel and independently,
therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model,
that a districted neural network is actually more stable than an undistricted neural network in noisy
environments. We conjecture that the result is valid for all neural networks.
This theory is verified by experiments involving gender classification and human face recognition.

We conclude that a districted neural network is highly recommended for neural network applications in
recognition or classification of 2-dimensional array patterns in highly noisy environments.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem definition

Our aim in a typical pattern classification application of artificial
neural networks is to approximate a mapping f : Rl×w

→ L,
where L is a set of class labels, l and w are integers. The object,
R, to be classified is represented by an l×w array of uniform type
which corresponds to cells in a l×w grid.We assumehere that l×w
is a large number so that our discussion of large neural networks
makes sense.
An example of such applications is the classification of images,

where an object is an l × w array of which the elements are the
intensity values of pixels in an image. Another application is the
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nucleotide sequence promoter predication problem, where l = 1
andw is a large integer.
The neural network used for these classification problems for 2

dimensional array patterns is usually a multi-layer neural network
with l × w inputs and some hidden neurons. This network might
be very complex, such as the interesting RSONFIN in Juang and
Lin (1999) and Wu and Lin (2001), which consists of 6 layers.
In this paper, we are not interested in the internal structure,
such as the number of hidden neurons or the relations among
neurons. Therefore, we represent the neural network as a ‘‘black
box’’, illustrated by Fig. 1. We suppose that although it may
sometimes come up with errors, the output of the neural network
with any input array xl×w is expected to agree with the label of
the object the input array represents. We call this an undistricted
neural network, as opposed to a districted neural network, which
we will explain later. An undistricted neural network is usually
large, due to the size of the input arrays. Many methods for
training, and also for avoiding over-training, have been proposed
for undistricted large neural networks. We shall not discuss the
details of training in this paper; allwe need to emphasize is that the
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Fig. 1. Undistricted neural network.
training of a neural network with N inputs, when N is reasonably
large, is definitelymuchmore difficult than the training of K neural
networks of similar structure but with only N/K inputs each.
Following the divide-and-conquer idea, we can partition the

grid of input array into non-overlapping regions so as to employ
a neural network structure, called a districted neural network,
as shown in Fig. 2. A districted neural network consists of two
levels of neural networks, some lower level networks and a higher
level network. Each of the lower level neural networks, called
regional sub-neural networks, takes a block (region) of cells as its
inputs; the higher level network, called an assembling sub-neural
network, takes the outputs of the regional sub-neural networks as
inputs, and derives the final label decision for the object. Each of
the sub-neural networks can be trained separately and thus the
training is less expensive. The regional sub-neural networks can
be trained and performed in parallel and independently, therefore
a high speed can be achieved.
We expect that, while it is most likely to come up with many

more errors in comparison to the original undistricted large neural
network, each regional sub-neural network can independently
determine a class label for any input array. That is, for an object
denoted as xl×w belonging to class C , we expect the output of any
regional sub-neural network whose input array is part of xl×w can
agreewith the class label C . Of course, this might havemany errors
because of limited input sizes. But we can also expect that not all
the regional sub-neural networks come to the wrong conclusion
at the same time, therefore the assembling sub-neural network is
able to combine the ‘‘opinions’’ of these individual regional sub-
neural networks to derive the correct answer.
In this paper, we will discuss the stability of districted and

undistricted neural networks, and we will forego the requirement
that the region size should be ‘‘large’’ enough, since there is no
formal definition of ‘‘too small’’.
Although we believe that the validity of our method does not

depend on the particulars of neural networks used as sub-neural
networks in the districted neural network, we do not expect that
we are able to set up amodel for arbitrary neural networks.We use
only the simplest Feed-Forward Back-Propagation neural network
as the sub-neural networks in the analysis. We further only use
a simple bi-classification problem for theoretical analysis of the
stabilities of districted and undistricted neural networks.

1.2. Relation with previous work in neural networks

It is easy to realize that, after the self-organization is
performed, the neocognitron (Fukushima & Miyake, 1982) can
be viewed as a special distributed neural network. It has been
approved by experiences that the neocognitron has shown
improved recognition rates in many applications (Fukushima,
2003). The advantage of the neocognitron can be seen from
the neurophysiological findings of the visual nervous system.
Neocognitron reflects the hierarchical structure of the general
organization of the visual cortex in a series of layers from simple
cells to complex cells, to complex feature cells, to complex
composite cells and then to view-tuned cells (Riesenhuber &
Poggio, 1999). We can see that the distributed neural network
shares the same physiological background.
This paper is motivated to show mathematically, but not

physiologically, that districted neural networks are actually more
stable than undistricted neural networks. We do realize that the
idea of ensembling regional sub-neural networks into a large
neural network has been successfully applied in face detection.
In Rowley, Baluja, and Kanade (1998), the authors proposed a 3
level retinally connected neural network looking at windows of
20× 20 pixels for upright face detection. In their implementation,
they employ three types of hidden neurons: 4which look at 10×10
pixel sub-regions, 16 which look at 5× 5 pixel sub-regions, and 6
which look at overlapping 20 × 5 pixel horizontal strips of pixels.
Each of these types was chosen to allow the hidden neurons to
detect local features that might be important for face detection.
More closely related to this work, Tan, Chen, Zhou, and

Zhang (2005) recently developed a face recognition system by
partitioning the upright face images into regions of 5 by 5 pixels,
using an SOM network in each region, for calculating the ‘‘distance
between unknown picture blocks and known picture blocks, and
then using a simple weighted voting approach. They showed that
their system is able to outperform the standard PCA approach for
face recognition in AR and FERET face collections. It is easy to see, of
course, that the ‘‘weighted voting’’ can be taken as a simple neural
network with the results from the SOM network as inputs.
Before any further discussion, we should emphasize here that

our analysis is not valid for the situations when the elements of an
input array are of different data types, e.g., some are the numbers
of electrons and some are the values of temperature degrees, nor
when the elements are the values of cells distributed in the space
without any neighboring relation, e.g., one element is the value
of the electron current of a lamp in the White House, another
is that of a fan on my desk. The object we are concerned with
should be able to be represented by an array of uniform typewhich
corresponds to the cells in a grid. We can see that both the image
classification and the nucleotide sequence promoter recognition
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Fig. 2. Districted neural network.
problems mentioned above are good examples of applications of
our method.
The districted neural network structure is very similar to the

US presidential election system, also called the Electoral College,
where the winner of the nation is selected according to a weighed
sum of winning states while the winner of a state is decided by
a simple majority. An undistracted approach, however, is like the
popular election vote system where a win simply means getting
more votes. In Chen and Tokuda (2005a, 2003b), Chen and etal
proved that the Electoral College (referred to as regional voting
in these papers) is more stable than the popular election (referred
to as national voting then), subject to the restriction that the size
of regions is large enough to accommodate the (weak) average
distribution assumption. Of course the districted and undistricted
neural networks are much more complex than both the regional
and national voting systems. In this paper, we will discuss the
stability of districted and undistricted neural networks, and we
will forego the requirement that the region size should be ‘‘large’’
enough, since there is no formal definition of ‘‘too small’’.
While a districted neural network can be viewed as a divide-

and-conquer approach, it is radically different form theM3 neural
network proposed by Lu and Ito (1999), where a multi-label
classificationproblem is partitioned into a series of bi-classification
problems, each of which is solved by a neural network. We divide
the input vectorswhile Lu and Ito (1999) partitions the output label
sets. But these two approaches are notmutually exclusive; they can
bemixed together by first partitioning a class label set with Lu and
Ito’s approach to generate many bi-classification problems, then
solving each of the bi-classification problems using the districted
neural network we propose in this paper.
It is worth noting that the districted neural network we

propose and discuss is substantially different from the neural
network committee machines (Haykin, 1999), sometimes called
hierarchical modular neural networks, such as the ensemble-
averaging/boosting based committeemachine,mixtures of experts
(ME) model and hierarchical mixture of experts (HME) model. A
neural network committee machine can always be regarded as a
divide and conquer strategy, where each input date is taken as
a point in high dimensional space, and each of those lower-level
sub-neural networks is expected to work best in a certain part
of the space. The districted neural network we discuss, on the
other hand, partitions the input array into sub-arrays, such that
the size of input of each of the lower level sub-neural networks
is much smaller than the original input array. The neural network
committee machines may reduce the training time complexity
because each of the sub-neural network is only required to work
best in a certain part of the space. The districted neural network can
remarkably reduce the training time complexity, because it is well
known that the training of one neural network with large input
size is always much more difficult (and time consuming) than the
training of many neural network with small sized inputs.
Actually, the neural network ensembling method (Ho, 1998;

Kittler, Hatef, Duin, & Matas, 1998; Zhou, Wu, & Tang, 2002) also
generates and combines multiple neural networks to improve the
accuracy of individual neural networks. Usually these multiple
neural networks are obtained through manipulating or partition-
ing the training data set. The districted neural networkwe propose
in this paper can be taken as a special ensemble neural network,
where the constituting neural networks used are obtained by ma-
nipulating or partitioning the input arrays. Therefore the sizes of
these neural networks are always smaller. The major advantage
of the districted neural network is the time complexity reduction
in training, as we mentioned before. We do not claim, of course,
that our approach can be used to replace the general ensembling
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method, as the input object we require is special; that is, the input
object should be able to be represented by an array of uniform type
which corresponds to the values of cells in a grid.
The districted neural network is also substantially different

from neural network regression. In the neural network regression
approach, although the neural networks used for regression may
have different internal structures, the size of input array remains
the same for each of the neural networks. The input size of the
constituting neural networks for our districted neural network, on
the other hand, is always much smaller, as we claimed before.
The remainder of the paper is organized as follows:Wewill first

define a simple Bi-label classification problem for the purpose of
neural network performance analysis, then provide a simplemodel
for noise, undistricted neural networks, and districted neural
networks for stability analysis in Section 2.Wewill derive ourmain
theoretical results in Section 3. The theory will be verified by two
experiments in Section 4, and the concluding remarkswill be given
in Section 5.

2. Basic model and assumption

2.1. Bi-label classification problem, undistricted and districted neural
network models

2.1.1. Bi-label classification problem description
For the convenience of discussion, we only discuss a bi-label

classification problem. But note that the following derivation can
also be generalized to M-label classification problems for M > 2.
We assume the elements of an array representing an object either
take the value ‘‘+1’’ or ‘‘−1’’, and suppose the class labels are ‘‘+’’
and ‘‘−’’. We suppose that we have one data set for training and
another for testing.

2.1.2. Undistricted and districted neural networks
We discuss only the following two simplified neural networks:

(1) An undistricted neural network as shown in Fig. 1, where the
block NNu denotes a single output neuron with the sign function
as its activation function. So, the output of the undistricted neural
network on input array xl×w is:

fu(xl×w) =


+1, if

∑
1≤i≤l,1≤j≤w

wi,jxi,j > 0,

−1, if
∑

1≤i≤l,1≤j≤w

wi,jxi,j < 0,

0 otherwise;

where xi,j (1 ≤ i ≤ l, 1 ≤ j ≤ w) is an element xl×w , and
fu(xl×w) = +1, or −1, or 0, represents the label for xl×w is ‘‘+’’,
or ‘‘−’’, or ‘‘?’’ (a tied-up case) respectively.
(2) A districted neural network as shown in Fig. 2, where all the
blocks NNa and Nu,v ’s denote single neurons with sign functions as
their activation functions. We suppose the region sizes are rl × rw ,
and assume rl and rw divide l and w respectively. Thus, given an
input array xrl×rwu,v , which consists of the elements xi,j in xl×w , (u−
1)×rl+1 ≤ i ≤ u×rl and (v−1)×rw ≤ j ≤ v×rw , the output of a
regional sub-neural network NNu,v (1 ≤ u ≤ l/rl, 1 ≤ v ≤ w/rw)
should be:

fu,v(xrl×rwu,v ) =



+1 if
∑

(u−1)×rl+1≤p≤u×rl
(v−1)×rw≤q≤v×rw

w′p,qxp,q > 0,

−1 if
∑

(u−1)×rl+1≤p≤u×rl
(v−1)×rw≤q≤v×rw

w′p,qxp,q < 0,

0 otherwise.
With a lw
rlrw

tuple (f1,1, . . . , fu,v, . . . , fl/rl,w/rw ) as its input,
2 the

output of the assembling sub-neural network NNa, should be:

fd(f1,1, . . . , fu,v, . . . , fl/rl,w/rw )

=



+1 if
∑
1≤p≤l/rl
1≤q≤w/rw

w′′p,qfp,q(x
rl×rw
p,q ) > 0,

−1 if
∑
1≤p≤l/rl
1≤q≤w/rw

w′′p,qfp,q(x
rl×rw
p,q ) < 0,

0 otherwise.

Notice that f1,1, . . . , fu,v, . . ., and fl/rl,w/rw are outputs of lower level
regional sub-neural networks, fd (f1,1, . . . , fu,v, . . . , fl/rl,w/rw ) =
fd(f1,1(x

rl×rw
1,1 ), . . . , fu,v(x

rl×rw
u,v ), . . . , fl/rl,w/rw (x

rl×rw
l/rl,w/rw

)) = +1, or
−1, or 0, which represent the label for xl×w , which is ‘‘+’’, ‘‘−’’, or
‘‘?’’ (a tied-up case) respectively.
To simplify the terminology, we call a neural network positive

definite (or negative define, or indefinite, respectively) for an input
if and only if the output of the network is positive (or negative, or
indefinite, respectively) with this input.

2.1.3. Training data
(1) Training Data Set for the Undistricted Neural Network
We assume that we have a very large and perfect data set for

training purposes so that it covers all the possible situations.3 We
assume an ideal situation here, that is, all 2l×w samples covering all
different patterns are included in the training set.4

We further assume that the inner relationship between each
sample and its label and each sample follows the following
equation5:

L =



‘‘+ ’’, if
∑
i,j

di,jxi,j > 0,

‘‘− ’’, if
∑
i,j

di,jxi,j < 0,

‘‘?’’, if
∑
i,j

di,jxi,j = 0;

(1)

where x.,. is an element of array xl×w , ‘‘?’’ represents the case that
the problem is tied-up so that the exact label is unknown6 and
d.,. (d.,. > 0) is the weight of a cell in determining a class label.
Although we do not have pre-knowledge of d.,.’s and they should
not be equivalent, we should assume that they are well distributed
in the whole array in the following ways:

• for any subset S of {(i, j)|1 ≤ i ≤ l, 1 ≤ j ≤ w}, if
∑

(i,j)∈S
xi,j > 0 (<0, respectively), then most likely,

∑
(i,j)∈S di,jxi,j > 0

(<0, respectively); there are more (or less, respectively) sam-
ples satisfying

∑
(i,j)∈S di,jxi,j > 0 than those satisfying

∑
(i,j)∈S

di,jxi,j < 0

2 We can take it as an l/rl × w/rw array, of course.
3 As mentioned in Introduction, we suppose our neural networks are trained in a
noise free laboratory environment.
4 Theoretically, there are a total of 2l×w different samples. Practically, we can only
require that the training set consist of a large part of these samples, in which the
following feature is satisfied: these samples in the training set are chosen such that,
for any arbitrarily chosen subset of the perfect sample set, the number of elements
included in the training set is proportional to the size of the subset. The training set
with this feature is called the perfect training set.
5 It is what the districted and the undistricted neural networks are required to
learn from the sample.
6 Note that, ‘‘?’’ is NOT a third label. It simply indicates that an object array
(vector) is on the boundary of two classes.
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• for any subset S of {(i, j)|1 ≤ i ≤ l, 1 ≤ j ≤ w},
∑

(i,j)∈S di,j =∑
1≤i≤l,1≤j≤w di,j ×

|S|
lw

• any portion of the elements in the input array is decisive, that
is, for any subset S of {(i, j)|1 ≤ i ≤ l, 1 ≤ j ≤ w}, for each
{xi,j|(i, j) ∈ S}, xi,j = 1 or−1, which satisfies

∑
(i,j)∈S di,jxi,j > 0

(or <0, respectively), there exists {xi,j|(i, j) 6∈ S}, xi,j = 1 or
−1, such that

∑
(i,j)6∈S di,jxi,j +

∑
(i,j)6∈S di,j(−xi,j) < 0 (or >0,

respectively), and
∑

(i,j)∈S di,jxi,j +
∑

(i,j)6∈S di,jxi,j > 0 (or <0,
respectively).

Therefore, we say di,j’s follow the well distribution assumption.
We denote this sample setU. We will use all the data inU for

the training of the undistricted neural network. A sample of the
training data should be in the form (xl×w; ∗)where ∗ can be either
+1, −1, or 0, representing either ‘‘+’’, ‘‘−’’, or ‘‘?’’ (the labels for
xl×w) respectively.
As we assume we have a large and perfect data set as described

above, we can prove the following Lemma.

Lemma 1. 1. The undistricted neural network can be trained
perfectly so that the accuracy on the training data set U is 100%.

2. After the undistricted neural network is trained perfectly, all the
weights of the connectionswi,j > 0.

3. Suppose, after the undistricted neural network is trained perfectly,
for any (i1, j1) and (i2, j2), if di1,j1 > di2,j2 , thenwi1,j1 > wi2,j2 .

Brief proof

1. This conclusion can be obtained by setting allwi,j to di,j.
2. This is true because each element xi,j is decisive.
3. When we take xi1,j1 = 1, xi2,j2 = −1, di1,j1xi1,j1 + di2,j2xi2,j2 =
di1,j1 − di2,j2 > 0. Because the subset S = {(i1, j1), (i2, j2)} of
the input array elements is decisive, there exists {xi,j|(i, j) 6∈ S},
xi,j = 1 or−1, such that

∑
(i,j)6∈S di,jxi,j+di1,j1xi1,j1+di2,j2xi2,j2 >

0, and
∑

(i,j)6∈S di,jxi,j − di1,j1xi1,j1 − di2,j2xi2,j2 < 0. Therefore,∑
(i,j)6∈S wi,jxi,j+wi1,j1xi1,j1+wi2,j2xi2,j2 > 0, and

∑
(i,j)6∈S wi,jxi,j−

wi1,j1xi1,j1 −wi2,j2xi2,j2 < 0. Therefore,wi1,j1xi1,j1 +wi2,j2xi2,j2 =
wi1,j1 − wi2,j2 > 0.

Lemma 1 implies that theweight of a connection is very closely,
if not exactly proportional to di,j, especially when l × w is a large
number. Thus, without losing generality, we assume wi,j = di,j
after the undistricted neural network is trained.7
(2) Training Data Set for Districted Neural Network
The training set Ru,v for a regional sub-neural network NNu,v

(1 ≤ u ≤ l/rl, 1 ≤ v ≤ w/rw) is constructed as follows: for any
(xl×w; ∗) ∈ U, where ∗ can be either +1, or −1 or 0, we obtain a
sample (xrl×rwu,v ; ∗)where x

rl×rw
u,v consists of the elements xi,j, for all

(u− 1)× rl + 1 ≤ i ≤ u× rl and (v − 1)× rw ≤ j ≤ v × rw .
The training set A for the assembling sub-neural network

NNa is constructed as follows: Firstly, we have all the regional
sub-neural networks NNu,v trained using the training sets Ru,v
described above; Then, for any (xl×w; ∗) ∈ U, where ∗ can be
either +1, −1 or 0, we place a sample (f1,1(x

rl×rw
1,1 ), . . . ,

fu,v(x
rl×rw
u,v ), . . . , fl/rl,w/rw (x

rl×rw
l/rl,w/rw

); ∗) in A, where fu,v(x
rl×rw
u,v )

(1 ≤ u ≤ l/rl, 1 ≤ v ≤ w/rw) is the output of the trained regional
sub-neural network NNu,v with input x

rl×rw
u,v .

It is easy to see that the training set Ru,v for the regional sub-
neural network NNu,v consists of 2l×w samples, and there aremany
contradictory samples inRu,v . It is easy to prove that for any array
xrl×rwu,v , if

∑
xi,j∈xu,v di,jxi,j > 0 (or <0, or = 0, respectively), then

7 Carefully checking the results in our theorems in the later sections, we could
know that it actually does not matter if wi,j = di,j is not true for all i and j, as long
as the conclusion of item 3 of Lemma 1 is valid.
there aremore (or less, or the same number of) samples of the form
(xrl×rwu,v ;+1) inRu,v than those of form (x

rl×rw
u,v ;−1) inRu,v .8

Weknow that if there are contradictory samples, the output of a
well trained neural network follows the majority principle.9 Thus,
we have the following lemma using similar techniques employed
for proving Lemma 1.

Lemma 2. 1. A regional sub-neural network NNu,v can be trained
perfectly so that fu,v(xl×wu,v ) = +1 (or −1, or 0, respectively)
if di,jxl×wu,v is larger than (or smaller than, or equal to, respec-
tively) 0.10

2. After a regional sub-neural network NNu,v is trained perfectly, all
the weights of the connectionsw′i,j > 0.

3. After the undistricted neural network is trained perfectly, for any
(i1, j1) and (i2, j2),wi1,j1 > wi2,j2 iff di1,j1 > di2,j2 .

It is also easy to see that the training set A for the assembling
sub-neural network consists of 2l×w samples, and there are again
many contradictory samples inA. This can be seen in the following
example.
Example: Suppose we have an undistricted neural network with
l = w = 3, rl = 3, rw = 1 and all the weights wi,j are equal to 1.
Let’s consider two samples (a3×3;+1), (b3×3;−1) ∈ U, where all
the weights di,js are equal to 1, and

ai,j =
{
+1, if (1 ≤ i ≤ 2&1 ≤ j ≤ 2) or (i = 1&j = 3);
−1, otherwise;

and

bi,j =
{
+1, if 1 ≤ i ≤ 2&1 ≤ j ≤ 2;
−1, otherwise.

We know these two samples will come up with two samples
(+1,+1,−1;+1) ∈ A and (+1,+1,−1;−1) ∈ A for the train-
ing of the assembling sub-neural network NNa. These two samples
are contradictory, however; we can not expect a neural network
to satisfy both. But we can find that there are more samples of
the form (+1,+1,−1;+1) than those of form (+1,+1,−1;−1),
simply because +1 + 1 − 1 > 0. Theoretically then, we have the
following lemma.

Lemma 3. For a given lw
rlrw
tuple (f1,1, . . . , fu,v, . . . , fl/rl,w/rw ), where∑

1≤u≤l/rl
1≤v≤w/rw

Du,v fu,v (2)

>0 (or <0, or =0, respectively), the number of samples of the
form (f1,1, . . . , fu,v, . . . , fl/rl,w/rw ;+1) is greater than (or less
than, or equal to, respectively) that of samples of the form
(f1,1, . . . , fu,v, . . . , fl/rl,w/rw ;−1). Here, Du,v =

∑
(u−1)×rl+1≤pu,v≤u×rl
(v−1)×rw≤qu,v≤v×rw

dpu,v ,qu,v .

This lemma is easily understood: First, allDu,v should be roughly
equivalent for all u, v, because of the well distribution feature of
di,j. Therefore, Eq. (2) > 0 (or <0, or = 0, respectively) means
that the number of regions of which the weighted sum of values

8 Basically, when
∑
xi,j∈xu,v di,jxi,j > 0, for each sample of which

∑
0≤i≤l,0≤j≤w

di,jxi,j < 0, we can find a sample x, where xi,j = −xi,j for all xi,j ∈ xu,v , xi,j = xi,j for
all other xi,j , such that

∑
0≤i≤l,0≤j≤w di,jxi,j > 0.

9 Alternatively,we can view it as the removal ofminority samples before training,
when contradiction happens.
10 In practice, for the case di,jxl×wu,v is equal to 0, the neural network may output
either +1 or −1 because of the possible errors. But this does not influence the
analysis below.
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of all the cells is greater than 0 is larger than (or smaller than,
or equal to) the number of regions of which the weighted sum of
values of all the cells is greater than 0. Then, it is most likely that,
in the whole grid, the weighted sum of all the cells is larger than
(or smaller than, or equal to, respectively) 0. Notice that a sample
inU in the form of (· · · · · · ; +1) (or (· · · · · · ; −1), or (· · · · · · ; 0),
respectively), will come upwith a sample of the form (· · · · · · ; +1)
(or (· · · · · · ; −1), or (· · · · · · ; 0), respectively) for the training of the
assembling neural network NNa. Therefore, the lemma is correct.
The detailed proof is omitted.
Using Lemma 3, and the techniques used in proving Lemmas 1

and 2, we can come up with.

Lemma 4. 1. An assembling sub-neural network can be trained
perfectly so that fd(f1,1, . . . , fu,v, . . . , fl/rl,w/rw ) > 0 (or<0, or =
0, respectively) iff f1,1+· · ·+ fu,v+ fl/rl,w/rw > 0 (or <0, or = 0,
respectively).

2. After an assembling sub-neural network is trained perfectly, all the
weights of the connectionsw′′i,j > 0.

3. After the assembling neural network is trained perfectly, for any
(u1, v1) and (u2, v2),wu1,v1 > wu2,v2 iff Du1,v1 > Du2,v2 .

Because of Lemmas 2 and 4, without losing generality, we can
assume w′′u,v = Du,v and w

′

i,j = 1 for all possible w
′′
u,v and w

′

i,j.
Because all Du,v are roughly equivalent, according to the well
distribution assumption, we further assumew′′u,v = 1.

2.2. Stability criterion for stability analysis

As we are estimating stability, we suppose, without losing
generality, that an object yl×w to be classified is a ‘‘+’’ object, and it
is very close to the critical point. That is, the number of elements in
yl×w taking the value ‘‘+1’’ is very close to the number of elements
taking the value ‘‘−1’’. We let α and β denote the proportions
of elements taking the values ‘‘+1’’ and ‘‘−1’’ respectively in the
absence of noise. Immediately, we have

(1) α + β = 1;
(2) 1 > α > β > 0.11

(3) α − β is close to 0.

We will provide the formal definition of noise in Section 2.3.
We are to find the upper bound of the ‘‘amount’’ of noise that can
change the label selections of districted and undistricted neural
networks.
Because we consider the input array to have a reasonably large

number of elements, we could regard α and β as the probability
that an element has the value of ‘‘+1’’ and ‘‘−1’’ respectively, when
wearbitrarily choose an element in the array yl×w . This implies that
in a large subset consisting of elements in yl×w , the ratio of ‘‘+1’’
elements should remain the same throughout the whole vector.
The two label classification systemwe adopt in this paper is not

as restrictive as it looks, it is not difficult to see that the conclusions
are still valid for a multi-label model involving three or more class
labels.

2.3. Noise definition

1. The noise is defined as a change of environment that forces
a change of classification label. When subjected to noise, the

11 In a later section,wewill see that fu = fd = +, whichmeans that both districted
and undistricted neural networks shall classify yl×w as a positive object in a noise
free environment.
values of some of the cells will undergo a change from ‘‘+1’’
to ‘‘−1’’, some from ‘‘−1’’ to ‘‘+1’’, and others may remain
unchanged. The noise that influences values of cells to change
from ‘‘+1’’ to ‘‘−1’’ (or ‘‘−1’’ to ‘‘+1’’) is called anti-positive-
noise (or anti-negative-noise). A cell whose value undergoes
a change from ‘‘+1’’ to ‘‘−1’’ (or ‘‘−1’’ to ‘‘+1’’) is called an
anti-positive-noise-contaminated cell (or anti-negative-noise-
contaminated cell).

2. Two types of noise caused by independent, known or unknown,
sources are considered: concentrated noise, which influences
the values of cells within a concentrated block of the grid, and
white noise, which is distributed uniformly and randomly over
the whole grid.

3. A set of anti-positive-white noise (or anti-negative-white noise,
respectively) is dispersed uniformly over the grid, producing a
uniform chance of converting values of cells from ‘‘+1’’ to ‘‘−1’’
(or ‘‘−1’’ to ‘‘+1’’, respectively). The result of white noise thus
could be regarded as a change in the probability of a cell taking
value ‘‘+1’’ from α to a new value, and a change in probability
of a cell taking value ‘‘−1’’ from β to a new value accordingly.12

4. We call a region concentrated/white noise polluted if and
only if there is at lease one cell is concentrated/white
noise contaminated. We call it concentrated/white noise free
otherwise. When a region is concentrated/white noise polluted
(or free) we call the regional sub-neural network for it a
concentrated/white noise polluted (or free) regional sub-neural
network.

5. A set of anti-positive-concentrated noise (or anti-negative-
concentrated noise, respectively) is defined as the union of non-
overlapping rectangle blocks of size nl × nw , on each of which
each cell taking the value ‘‘+1’’ (or ‘‘−1’’, respectively) will be
changed to ‘‘−1’’ (or ‘‘+1’’). The corresponding union of these
rectangle areas is called a noise concentrated area and nl × nw
is called the size of noise blocks.13

6. In accordance with the above two types of noise, the anti-
positive-noise-contaminated cells (or anti-negative-noise-
contaminated cells, respectively) comprise two different
types depending on the noise type, namely anti-positive-
concentrated-noise-contaminated cells (or anti-negative-
concentrated-noise-contaminated cells, respectively) and
anti-positive-white-noise-contaminated cells (or anti-negative-
white-noise-contaminated cells, respectively).
Notice that when both of white noise and concentrated noise
coexist, some noise-contaminated cells may belong to both of
these types, aswill be seen in the proof of theorems in Section 3.
It is reasonable that the noise concentrated area should be
viewed as reasonably large. Since white noise is dispersed
uniformly over the grid, a ratio of white noise contaminated
cells in the noise concentrated area should not change from that
in the whole grid.

7. For the interests of the lower bounds of the stabilities of
the neural networks, we throughout this paper consider only
the anti-positive-noise in the analysis. Thus when we refer
to noise, concentrated noise, white noise, or contaminated
cells hereafter, anti-positive-noise, anti-positive-concentrated
noise, anti-positive-white noise, anti-positive-noise contami-
nated cells respectively are implied.

12 It is obvious that the union of a set of white noise is also a set of white noise.
13 Intuitively, the ‘‘white noise’’ is isolated and scattered randomly over discrete
‘‘points’’ of the grid while ‘‘concentrated noise’’ is distributed over connected,
continuous areas which may be randomly distributed across the grid.
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2.4. Assumption

We always assume that the number of cells in the whole grid is
large and the amount of noise is large so that both the total number
of noise contaminated cells and the noise concentrated area are
large.
Basic Assumption: In the absence of concentrated noise, the
proportion of positive (negative) definite regional sub-neural
networks among all the regional sub-neural networks, or among
a set of a large number of arbitrarily chosen regional sub-neural
networks, whichmay or may not be neighbors, is equivalent to the
chance that more cells take values of ‘‘+1’’ than those of ‘‘−1’’ (or
more cells take values of ‘‘−1’’ than those of ‘‘+1’’) in a region.
This assumption implies.

Lemma 5. In the absence of both white and concentrated noise,
among a set of a large number of arbitrarily chosen regional neural
networks, the proportions of positive definite, negative definite and
indefinite regional sub-neuron networks, denoted by P+, P−, and P?,
can be computed by:

P+ =

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
βyαrlrw−y;

P− =

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
αyβrlrw−y;

P? =


0, if rlrw is an odd number,(
rlrw
rlrw/2

)
αrlrw/2βrlrw/2, otherwise.

Lemma 6. In the presence of only white noise, in a set of a large
number of arbitrarily chosen regional sub-neural networks, the ratios
of positive definite, negative definite and indefinite regional sub-
neural networks, denoted as P ′

+
, P ′
−
and P ′? can be computed by:

P ′
+
=

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
β ′yα′rlrw−y;

P ′
−
=

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
α′yβ ′rlrw−y;

P ′? =


0, if rlrw is an odd number,(
rlrw
rlrw/2

)
α′rlrw/2β ′rlrw/2 otherwise;

where α′ and β ′ are the ratios of the cells taking value of ‘‘ +1 ’’ or
‘‘ −1 ’’ respectively, in the presence of white noise.

Of course, we have P+ + P− + P? = 1, and P ′+ + P
′
−
+ P ′? = 1.

The fact that P+ > P− iff α > β , simply indicates that in a
noise free environment, both the undistricted neural network and
the districted neural network select the same label ‘‘+’’ for xl×w .
We should regard the set of concentrated noise polluted regions

as a set of ‘‘arbitrarily’’ chosen regions discussed in the above Basic
Assumption.

3. Theorems, conclusions and conjecture

We shall let ℵc and ℵw denote the number of concentrated-
noise contaminated cells and the number of white-noise contami-
nated cells respectively.
3.1. The stability of undistricted neural network

Theorem 1. In the presence of white and concentrated noise, the
output of the undistricted neural network will be:

+1, if ℵc + ℵw −
ℵcℵw

αN
<
α − β

2
× N;

0, if ℵc + ℵw −
ℵcℵw

αN
=
α − β

2
× N;

−1, if ℵc + ℵw −
ℵcℵw

αN
>
α − β

2
× N.

Proof. Since the ‘‘+1’’ cells constitute α portion of all cells in the
grid, the total number of ‘‘+1’’ cells is αN . When the number
of concentrated-noise-contaminated cells is ℵc , the portion of
concentrated-noise-contaminated cells among all ‘‘+1’’ cells is ℵc

αN ;
When the number of white-noise-contaminated cells is ℵc , the
portion of white-noise-contaminated cells among all ‘‘+1’’ cells is
ℵc
αN . Considering Basic Assumption, we know that

ℵc
αN ×

ℵc
αN ×αN =

ℵcℵw
αN cells are overlapped between the set of concentrated-noise-
contaminated cells and the set of white-noise-contaminated cells.
The undistricted neural network outputs ‘‘+1’’ (‘‘0’’, or ‘‘+1’’) if and
only if the number of overall noise-contaminated cells is less than
(equal to, or greater than) α−β2 × N .

3.2. The stability of districted neural networks

Theorem 2. The districted neural network will output
(1) ‘‘ +1 ’’, if:

ℵc <

nlnw
rlrw(⌈

nl−1
rl

⌉
+ 1

) (⌈
nw−1
rw

⌉
+ 1

)
×

P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N,

and

ℵw < (α − β)/2× N;
(2) ‘‘ −1 ’’ if:

ℵc >
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N,

or

ℵw > (α − β)/2× N;

where P+(ℵw) and P−(ℵw) denote the proportions of positive definite
and negative definite neural networks in the presence of white noise,
and can be calculated as

P+(ℵw) =

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
(β + ℵw/N)y(α − ℵw/N)rlrw−y,

P−(ℵw) =

⌊
rlrw−1
2

⌋∑
y=0

(
rlrw
y

)
(α − ℵw/N)y(β + ℵw/N)rlrw−y.

Proof. Let Sr denote the total size of concentrated noise polluted
regions within the grid.
Noticing that a noise block of size nl × nw can be partitioned

into, at most (d nl−1rl e + 1)(d
nw−1
rw
e + 1) different regions, at least

nlnw
rlrw
, we have:

1 ≤
Sr
ℵc/α

≤

(⌈
nl − 1
rl

⌉
+ 1

)(⌈
nw − 1
rw

⌉
+ 1

)
rlrw
nlnw

. (3)
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Let X (0 ≤ X ≤ 1) denote the proportion of concentrated
noise polluted regional sub-neural networks among all regional
sub-neural networks.
(1) Ifℵw < (α−β)/2×N , it is easy to see that P+(ℵw) > P−(ℵw),
and thus the districtedneural networkwill remain positive definite
if concentrated noise is not present.
Assume

ℵc <

nlnw
rlrw(⌈

nl−1
rl

⌉
+ 1

) (⌈
nw−1
rw

⌉
+ 1

)
×

P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N,

the inequality (3) indicates:

Sr <
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

.

We have

X =
Sr
N
<

P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

.

According to Lemma 6, we know that a P+(ℵw) portion of all the
concentrated-noise free regional sub-neural networks are positive
definite and a P−(ℵw) portion are negative definite. In the presence
of an X portion of concentrated noise polluted regional sub-
neural networks, by regarding all the concentrated-noise polluted
regional sub-neural networks as negative definite,14 the total
number of positive definite regional sub-neural networks should
be

(1− X)P+(ℵw) >
P+(ℵw)

1+ P+(ℵw)− P−(ℵw)
;

the total number of negative defined regional sub-neural networks
should be

X + (1− X)P−(ℵw) = P−(ℵw)+ X(1− P−(ℵw))

<
P−(ℵw)(1+ P+(ℵw)− P−(ℵw))+ (P+(ℵw)− P−(ℵw))(1− P−(ℵw))

1+ P+(ℵw)− P−(ℵw)

=
P+(ℵw)

1+ P+(ℵw)− P−(ℵw)
.

It is clear here that the number of positive definite regional sub-
neural networks should be greater than the number of negative
definite regional sub-neural networks. Therefore the districted
neural network should be able to remain positive definite. This
ends the proof of item (1) of Theorem 2.
(2) Ifℵw > (α−β)/2×N , it is easy to see that P+(ℵw) < P−(ℵw);
thus the districted neural network will be negative positive
definite if concentrated noise is not present.
Assume

ℵc >
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N,

considering the total size of concentrated noise polluted regions
within the grid cannot be less than the total size of the noise
concentrated area, the left inequality in inequality (3) holds.
Thus

Sr >
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

,

14 Indeed, it is quite possible that some of them still remain positive definite or
only turn out to be indefinite in practice.
and

X =
Sr
N
<

P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

.

In this situation, in the presence of an X portion of concentrated
noise polluted regional sub-neural networks, all concentrated-
noise polluted regional sub-neural networks will be negative
definite. Therefore, the total number of positive definite regional
sub-neural networks should be

(1− X)P+(ℵw) <
P+(ℵw)

1+ P+(ℵw)− P−(ℵw)
;

the total number of negative defined regional sub-neural networks
should be

X + (1− X)P−(ℵw) = P−(ℵw)+ X(1− P−(ℵw))

>
P−(ℵw)(1+ P+(ℵw)− P−(ℵw))+ (P+(ℵw)− P−(ℵw))(1− P−(ℵw))

1+ P+(ℵw)− P−(ℵw)

=
P+(ℵw)

1+ P+(ℵw)− P−(ℵw)
.

Therefore the districted neural network will be negative
definite. This ends of the proof of the conclusion of item (2) of
Theorem 2.

3.3. Average stability of the districted neural network

In item (1) of Theorem 2 above, the ceiling operations are used
to develop a sufficient condition of stability that accounts for the
worst possible condition,whereby each of the noise blocks pollutes
a maximum number of regions and regional sub-neural networks.
We shall see that, by average, a Districted Neural Network can
accommodate more concentrated-noise contaminated cells than
the lower boundary in item (1) of Theorem 2. However, it is
unlikely that the worst situation for each noise block will happen
at the exactly same time. Some appropriate averaging will be
introduced here by shifting the partitions.
The following theorem shows the averaged result.

Theorem 3. By average, a districted neural network will output
‘‘ +1 ’’ if:

ℵc <
nlnw

(rl + nl − 1)(rw + nw − 1)
·
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N

and

ℵw <
1
2
(α − β)N

where P+(ℵw) and P−(ℵw) are calculated as they are in Theorem 2.

Proof. Geometrically, we regard the pair of opposing edges along
the outer boundary of the rectangular grid as ‘‘glued’’ together,
so that they are able to glide onto the other end as we move
across the boundary, allowing a total of rl × rw different partitions
by merely shifting the horizontal and vertical boundaries of the
regions. Now, with all the rlrw different partitions, we have a total
of rlrw × N/(rlrw) = N different regions.
Let Sr denote the average of the total size of concentrated noise

polluted regions within the grid, X (0 ≤ X ≤ 1) be the average
of the proportion of concentrated noise polluted regions among all
the regions for a districted neural network.
For each nl×nw sized noise block,we enumerate all the possible

rl × rw partitions by the positions of their intersections relative
to the noise block. For a partition through the intersection p (0 ≤
p ≤ rl − 1) cells above the bottom edge of the noise block and q
(0 ≤ p ≤ rl − 1) cells right to the left edge of the noise block, it
divides the block into (d prl e + d

nl−p
rl
e)× (d

q
rw
e + d

nw−q
rw
e) regions.
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It is not difficult to prove that,

rl−1∑
p=0

rw−1∑
q=0

(⌈
p
rl

⌉
+

⌈
nl − p
rl

⌉)
×

(⌈
q
rw

⌉
+

⌈
nw − q
rw

⌉)
= (nl + rl − 1)(nw + rw − 1).

Therefore, a noise block of size nl × nw will be divided into
(nl + rl − 1)(nw + rw − 1) different regions for all the rl × rw
different partitions. By average, the block will be divided into
(nl+rl−1)(nw+rw−1)

rl×rw
different regions. Accordingly, we have

Sr
ℵc/α

=
(nl + rl − 1)(nw + rw − 1)

nl × nw
,

and

X = Sr/N =
(nl + rl − 1)(nw + rw − 1)

nl × nw
× ℵc/αN.

When

ℵc <
nlnw

(rl + nl − 1)(rw + nw − 1)
·
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N,

immediately we have

X <
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

.

As shown in the proof for Theorem2, the above inequality indicates
the number of positive definite regional sub-neural networks
should be greater than the number of negative definite regional
sub-neural networks. Thus, the districted neural network should
be able to remain positive definite, and we have proved the
theorem.

3.4. Conclusions

Considering a near equilibrium case of α − β = 0.03 as it is
assumed (see Section 2.2), and using the conclusion of Theorem 3
for districted neural network so as to see an averaged situation,
we have Fig. 3 to illustrate the number of noise-contaminated cells
that districted and undistricted neural networks can accommodate
before the original label selection ‘‘+’’ is reversed.
We see that the number of noise contaminated cells that a dis-

tricted neural network can accommodate increases continuously,
as the size of subdivided regions decreases. Until up to a certain
limit, beyondwhich the stabilitymargin starts to decrease, becom-
ing asymptotic to an undistricted neural network limit where the
improvement in stability from localizing the effects of noise into
regional sub-neural networks is minimized.
From Fig. 3, it seems that for very large regions with little

white noise, the stability margin for the districted neural network
looks smaller than that of the undistricted neural network for
concentrated noise.
We shall see that, in fact, Theorem 2 leaves the case of

nlnw
rlrw(⌈

nl−1
rl

⌉
+ 1

) (⌈
nw−1
rw

⌉
+ 1

) · P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N

≤ ℵc ≤
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N;

and

ℵw < (α − β)/2× N;

undecided.
Fig. 3. Numbers of white & concentrated noise contaminated cells that the
districted and undistricted neuron networks can accommodate.

Even taking into consideration of the ‘‘averaged case’’ as
demonstrated by Theorem 3, the case that

nlnw
(rl + nl − 1)(rw + nw − 1)

·
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N

≤ ℵc ≤
P+(ℵw)− P−(ℵw)
1+ P+(ℵw)− P−(ℵw)

· α · N;

and

ℵw < (α − β)/2× N;

is still undecided.
In such a situation, whether the districted neural network

remains positive definite depends on the number of concentrated-
noise polluted regional sub-neural networks that still remain
positive. We can find that, in the proofs of Theorems 2 and 3, we
always regard all the concentrated noise polluted regional sub-
neural network as negative definite so that only the regional sub-
neural networks that remain entirely clean are counted as keeping
their positive definite state. In fact, many of the concentrated
noise polluted regional sub-neural networks still remain positive
definite or only turn out to be indefinite. Evidently this is most
serious when the size of regions is large, as we can see that a
positive definite regional sub-neural network has very little chance
to be transformed to negative definite when only a few cells of the
inputs change their signs. We could see that if the size of regions
is close to the size of the grid, the districted neural network will
be close to an undistricted neural network again. This implies that
if the effect of over-estimation of the concentrated noise polluted
regional sub-neural networks is properly taken into account, the
stability margin will increase so that the surface representing the
districted neural network closing to the right-back corner of Fig. 3
will move up slightly from the peak point to the right end. Thus, we
conclude that the districted neural network is always more stable
than the undistricted neural network, even when the size of the
regions is very large. In addition, the districted neural network and
the undistricted neural network will become identical when the
size of regions is as small as 1 or as large as that of the grid.
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3.5. Conjecture

In the previous sections, we used a simple BP neural network
as the undistricted neural network, and also as the sub-
neural networks that constitute the districted neural network;
we only use a simple 2-classification problem as the pattern
recognition/classification to be solved. We believe, however, that
the above conclusion about districted and undistricted neural
networks still remains valid, even when more complicated neural
network structures are involved, and more complicated pattern
recognition/classification problems are to be solved, so long as
the objects to be classified are represented as 2-dimensional fixed
sized arrays of uniform type which correspond to cells in a 2-
dimensional grid.

4. Experiments

The experiments we show here are gender classification and
human face recognition, where neural network approach has
been extensively used (e.g. Garcia & Delakis, 2004; Mäkinen &
Raisamo, 2008; Rowley et al., 1998; Tan et al., 2005). We should
emphasize here that although there aremany approaches, e.g. Turk
and Pentland (1991) and Gordon, Chervonenkis, Gammerman,
Shahmuradov, and Solovyev (2003), that can work better than
neural networks for these applications, we in this paper only
intend to show districted neural networks are better than their
undistricted versions. It is not our purpose to compare our
approach to other methods. We use these experiments simply for
validating our theory, and showing that our conjecture is correct.

4.1. Gender classification

4.1.1. Data set
We use the FERET subsets15 used in Mäkinen and Raisamo

(2008) for experiment: The Training Set consists of 304 FERET face
images, an equal number of both genders; Two sets are used for
testing, The Test Set includes 107 FERET forefront face images, 60
males and 47 females; The Pose Test Set contains the face images of
112 subjects, an equal number of both genders, eachwith 9 images
representing the poses of the subject rotating −60°, −45°, −30°,
−15°, 0°, 15°, 30°, 45° and 60° out-of-plane. In our experiment, the
images are first resized into 24×24 pixels, where the line between
two eyes has fixed length and is parallel to the horizontal line.

4.1.2. Detailed methods and results
Two types of neural networks, multilayer feedforward net-

works and linear networks, are used for the experiments.
(1) Feedforward network structure.
We implemented an undistricted neural network with 3 layers,

24 × 24 inputs, 2 hidden units16 and 1 output. A positive output
represents ‘‘male’’, and a negative ‘‘female’’.
The districted neural network was constructed as follows: we

divided the each image into K (K = (24/r)2) regions of size r ×
r (r = 2, 3, 4, 6, 8, 12).We implemented a 3-layer neural network
(regional sub-neural network) for each region. A regional sub-
neural network had r × r inputs, 2 hidden neurons and 1
outputs. The assembling sub-neural network used all the outputs
of regional sub-neural networks as inputs, that is, it had K inputs;
the number of the hidden neurons for a assembling sub-neural
network was always 2 again.

15 http://www.cs.uta.fi/hci/mmig/vision/datasets/.
16 We tested different number of hidden units and found that 2 is always the best
for undistricted neural network for this experiments in terms of accuracy.
Table 1
Accuracy of gender classification for test set.

Undistricted
neural
network

Size of regions for districted
NNs

2×2 3×3 4×4 6×6 8× 8

Linear network 0.523 0.888 0.850 0.876 0.720 0.710
Feedforward
network

0.822 0.879 0.822 0.888 0.757 0.832

Table 2
Accuracy of gender classification for pose test set.

Undistricted
neural
network

Size of regions for districted
NNs

2×2 3×3 4×4 6×6 8× 8

Linear network 0.551 0.657 0.650 0.665 0.629 0.641
Feedforward
network

0.568 0.705 0.622 0.640 0.573 0.622

We used the linear transfer function (purelin) as the activation
function for each neuron of hidden layers of the undistricted
neural network, of the regional sub-neural networks and of the
assembling sub-neural network; The hyperbolic tangent sigmoid
transfer function (tansig) was used as the activation function for
the output neuron of undistricted and districted neural networks,
and those of regional sub-neural networks. The undistricted neural
network, as well as each of the sub-neural networks in the
districted neural network, was trained by the implementation
of the Levenberg–Marquart algorithm (trainlm). 80% of the
training images were used for training and 20% for validation;
an ‘‘early stopping’’ technique was used so that the training
was terminated if the network performance on the validation
vectors fails to improve or remains the same for 5 epochs in a
row. The ‘‘early stopping’’ technique was aimed to improve the
generalization and avoid over-fitting. Each of undistricted neural
networks, regional sub-neural networks, and assembling sub-
neural networks is trained 100 times, we choose only the one with
highest performance on the validation set.
The trained undistricted and districted neural networks were

used on the test set and the pose test set, the results are shown in
Tables 1 and 2.
(2) Linear network structure.
Two layer linear networks (newlind) of Matlab were used

directly as the undistricted neural network, regional sub-neural
network and assembling sub-neural network. The undistricted
neural network has 24 × 24 inputs and 1 output where a positive
output represents ‘‘male’’, and a negative ‘‘female’’. A regional sub-
neural network had r × r inputs (r = 2, 3, 4, 6, 8, 12, r × r
corresponds with the region sizes) and 1 outputs. The assembling
sub-neural network used all the outputs of regional sub-neural
networks as inputs, that is, it had K (K = (24/r)2) inputs; it has
1 output too.
The trained undistricted and districted neural networks were

used on the test set and the pose test set, the results are also shown
in Tables 1 and 2.
We can clearly see that the districted neural network approach

performs much better than the undistricted matching version,
which verifies our theorems, and roughly, as the size of regions gets
smaller, the performance gets better up to a limit, after which the
performance starts to decrease.

4.2. Face recognition

These experiments were done for the human face recognition
problem. Usually, mainly because of the registration problem,
face recognition is based on features extracted from facial images

http://www.cs.uta.fi/hci/mmig/vision/datasets/
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Fig. 4. Examples of training and testing faces.
rather than using pixels directly. However, half-automatic face
recognition approaches based on pixel information directly do
workwell, as long as the face images are pre-processed by cropping
each picture into a fixed size and rotating each face into a standard
position. Successfulworks using pixel basedmatching canbe found
in Ikeda, Watta, Artiklar, and Hassoun (2001) and Mu, Artiklar,
Hassoun, and Watta (2003).

4.2.1. Data set
A picture collection of 20 people is used for the experiment.

Each people has 2 sets of 4 gray-scale pictures showing different
facial expressions: blank, smile, angry and surprised. We cropped
each picture into a face of size 30 × 30 pixels where the line
between two eyes has fixed length and is parallel to the horizontal
line, as shown in Fig. 4, and stored them in raw format. We used
all these photos as the training data. We obtained by adding noise
using Photoshop 6.0, a set of 20 noise polluted pictures of these 20
people, then cropped them into faces of size 30× 30 satisfying the
requirement on the line between two eyes. Several typical training
faces and a testing face are shown in Fig. 4.

4.2.2. Detailed methods and results
We implemented an undistricted neural network with 3 layers,

30× 30 inputs, 60 hidden units and 20 outputs. These 20 outputs
represent 20 different people. Each of them is used for predicating
whether the photo to be classified belongs to a certain person in
the data set. The output of the network is interpreted by believing
the output neuron with the highest score. The districted neural
network was constructed as follows: we divided the each image
into K = (30/r)2 regions of size r × r (r = 3, 5, 10, 15) each.
We implemented a 3-layer neural network (regional sub-neural
network) for each region. A regional sub-neural network had
r × r inputs, 2r hidden neurons and 20 outputs. The assembling
sub-neural network used all the outputs of regional sub-neural
networks as inputs, that is, it had 20×K inputs; the number of the
hidden neurons for a assembling sub-neural network was always
2× r .
We used the hyperbolic tangent sigmoid transfer function

(tansig) as the activation function for each neuron of hidden
layers of the undistricted neural network, of the regional sub-
neural networks and of the assembling sub-neural network. The
log-sigmoid transfer function (logsig) was used as the activation
function for each output neuron of undistricted and districted
neural networks, and those of regional sub-neural networks.
The undistricted neural network, as well as each of the sub-

neural networks in the districted neural network, was trained
by the implementation of the back-propagation algorithm with
adaptive learning rate (traingda). During the training process, an
‘‘early stopping’’ techniquewas used to improve the generalization
and avoid over-fitting. If the error did not decrease in 10
Table 3
Matching result of human faces.

Undistricted neural network Size of regions for districted NNs
2×2 3×3 5×5 10×10 15×15

7 7 8 19 15 12

consecutive epochs, the training of the neural network was
terminated to avoid over fitting.
The undistricted and districted neural networks were trained

20 times, and the trained networks were used on the test set, the
best results are shown in Table 3.
We see that the experiments showed aphenomenon that is very

close to our theory.

5. Further work and open problems

Some interesting neural network schemes may emerge from
our districted neural network to extend the applicability of the
method to awider range of decisionmaking processes involving 2D
array patterns. For example, it seems to be a highly exciting subject
to pursue the analysis of a multi-level districted neural network
where the regional sub-neural networks in a districted neural
network are recursively replaced by a districted neural network
by recursively partitioning each of the regions into smaller (sub)
regions.
Recently, Cao, Murata, ichi Amari, Cichocki, and Takeda

(2003, 2002) have successfully used a PCA-based pre-whitening
technique to reduce noise before further separation of different
signal components for Magnetoencephalography (MEG) data
analysis. It may be very useful, and substantially increase accuracy
to use a similar technique to reduce the noise of a pattern before
employing a districted neural network to determine its class label.
As the advantage of a districted neural network comes from fact
that it can localize the effects of concentrated noise into a restricted
number of regional sub-neural networks, and it does not show
any advantage if only white noise is present. A careful analysis
of the features of remaining component should be interesting and
important if we want to use a noise reduction as the first stage of
classification.
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