4 Conclusion

The proposed new learning algorithm RPROP is an easy to implement and easy to com-
pute local learning scheme, which modifies the update-values for each weight according
to the behaviour of the sequence of partial derivatives in each dimension.

The number of required epochs is drastically reduced in comparison to the original
backpropagation procedure, whereas the expense of computation is only slightly increased
in contrast to many other adaptive learning algorithms, e.g. SuperSAB or Quickprop.

Considering the examined learning tasks, RPROP outperformed all other algorithms
with respect to the epochs required to learn the task and the robustness of the choice of
its parameters.

When choosing the standard parameter values for the increase and decrease factor
nT = 1.2,n~ = 0.5, which actually produce the best results independent of the learning
problem, there remains only one parameter to be adjusted, namely the initial update-value
Ao, which is also found to be uncritical.

RPROP is currently beeing tested on further learning tasks. The results obtained so
far are very promising and seem to confirm the quality of the new algorithm with respect
to both convergence time and robustness.

References

[1] D. E. Rumelhart, J. McClelland, ”Parallel Distributed Processing”, 1986

[2] C. Anderson, ”Learning and Problem Solving with Multilayer Connectionist Sys-
tems”, Technical Report COINS TR 86-50, University of Massachusetts, Ambherst,
MA. 1986

[3] T. Tollenaere, ”"SuperSAB: Fast Adaptive Backpropagation with good Scaling Prop-
erties”, Neural Networks, Vol 3, pp. 561 - 573, 1990

[4] R. Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation”,
Neural Networks, Vol 1, No 4, 1988

[5] S. E. Fahlman, "An Empirical Study of Learning Speed in Back-Propagation Net-
works”, CMU-CS-88-162, September 1988

[6] H.Braun, J. Feulner, V. Ullrich, ”Learning Strategies for solving problem of planning
using backpropagation”, Proceedings of NEURO Nimes, 1991

[7] J. Feulner, V. Ullrich, "On Learning Strategies for Deterministic Games Using Back-
propagation: A Case Study”, in: Baray/Ozgii¢ (eds.), Proceedings of ISCIS VI,
Elsevier 1991

3.4 Nine Men’s Morris

To show the performance of the learning procedures on bigger networks, a network was
trained to play the endgame of Nine Men’s Morris [6], [7].

Ni ne- Men’ s-Morri s

30 ‘ | | |
BP

Super SAB - 1

error

30 40 50 60 70 80
epochs

Figure 4: Decrease of the error over learning time for the Nine Men’s Morris task

The entire network is built up of two indentical networks, linked by a ’comparator
neuron’. Two alternative moves are presented to the respective partial network and the
network is to decide, which move is the better one. Each partial network has an input
layer with 60 units, two hidden layers with 30 and 10 neurons respectively, and a single
output unit.

The pattern set consists of 90 patterns, each encoding two alternative moves and the

desired output of the comparator neuron. The results of the Nine Men’s Morris problem
are listed below (see also Fig. 4):

Nine Men’s Morris
Algorithm | ¢/Ao | p/v [9™ | n~ || # epochs | 0 | WR(e/A)
Original BP | 0.2 | 0.5 | - - 98 34 | [0.03,0.2]
SuperSAB 0.05 | 0.9 | 1.7]0.5 34 4 [0.01,0.3]
Quickprop | 0.005 | 1.75 | - - 34 12 | [0.001,0.02]
RPROP 0.05 - [1.2]05 23 3 | [0.05,0.3]

After several trials to find good parameter values, SuperSAB is able to learn the task
in approximately 1/3 of the time used by the original algorithm. Quickprop also took 34
epochs to learn the task, but the choice of its parameters was much easier compared to

SuperSAB.

A further improvement was achieved using RPROP, which only took 23 epochs to
learn. Again, the standard choice of n™ and 5~ was used, and the choice of the initial
update-value Ay was found to be fairly uncritical.

3.3 The 12-2-12 Encoder Problem

The task of the 12-2-12 Encoder is to learn an autoassociation of 12 input/output patterns.
The network consists of both 12 neurons in the input and the output layer, and a hidden
layer of only 2 neurons ("Tight Encoder’), demonstrating the capabilities of the learning
algorithm to solve difficult tasks, where a solution in weight-space is hard to find:

12-2-12 'Tight Encoder’
Algorithm [¢/Ao | /v | n* | n~ || # epochs | o | WR(¢/A)

Original BP | div. | div. - - > 5000

SuperSAB 1.0 | 0.95|1.05] 0.5 534 90 [0.01,4.5]
Quickprop 0.05 | 1.3 - - 405 608 | [0.05,1.1]
RPROP 1.0 - 1.2 105 322 112 | [0.0001,5.0]

Although a wide variety of parameter values for € and g has been tested, original
backpropagation was not able to find a solution for the tasks in less than 5000 epochs. Su-
perSAB without the momentum-term did its job, but only when trying a higher moment,
were acceptable learning times achieved. So despite the adaptivity of the learnig-rates,
several experiments were needed to find an optimal parameter set.

12-2-12 Average Learning Tine

1200 | / ‘ ‘ |
: Super SAB -
1000 | A= |
E RPROP ——
%) 9
5 ”"\ ” “
o 800 | |
= N R PRI I |
s 600 F v 7
@
& aof
>
>
© 200 | |
O 1
0 1 5 s . !

initial |earning paraneter

Figure 3: Behaviour of the average learning time for the 12-2-12 encoder task when varying
the parameter ¢ rsp. Ag. The figure shows the dependency of the several adaptive learning
algorithms on a good estimate for their initial parameter values.

Quickprop converges fast, but a number of trials were needed to find a good value for e
(note the very small WR). Again, the best result was obtained using RPROP. On the one
side, the algorithm converges very fast, and on the other side, a good parameter choice
can be easily found (standard values for n*,n~, very broad WR). Figure 3 demonstrates
the (averaged) behaviour of the adaptive algorithms on the 12-2-12 encoder task.

in which every pattern of the training set is presented once. For each algorithm, a wide
variety of parameter values was tested to find an optimal choice to allow a fair comparison

between the several learning procedures Backpropagation, SuperSAB [3], Quickprop [5],
and RPROP.

Learning is complete, if a binary criterion is reached. That is, the activation of each
unit in the output layer is smaller than 0.4 if its target value is 0.0, and bigger than 0.6
if its target value is 1.0.

In the following, € denotes the (initial) learning-rate (BP, SuperSAB, Quickprop),
A denotes the initial update-value (RPROP), p is the momentum (BP, SuperSAB), v
the maximal growth factor (Quickprop), and n*, = denote the increase/decrease factor

(SuperSAB, RPORP).

In order to get a measure of the difficulty to find an optimal parameter set, a "Well-
working Region’ (WR) of the parameter ¢ (respectively 2\g for RPROP) is defined. If the
value of € rsp. Ay is selected within that intervall WR, convergence is guaranteed within
at most 1.5 times the minimum learning time, achieved with the optimal paramter choice.

3.2 The 10-5-10 Encoder Problem

The first problem to be described is the 10-5-10 Encoder task, for it is also discussed
largely in [5]. The task is to learn an autoassociation between 10 binary input/output
patterns. The network consists of 10 neurons in both the input and the output layer, and
a hidden layer of 5 neurons. The following table shows the average learning times used
by the diffent learning procedures:

10-5-10 Encoder
Algorithm | ¢ [p/v | ot | n~ | # epochs | o | WR(e)

Original BP | 1.9 | 0.0 - - 121 30 | [1.1,2.6]
SuperSAB | 2.0| 0.8 | 1.05] 0.5 55 11| [0.1,6.0]
Quickprop | 1.5 | 1.75 | - - 21 : [0.1,3.0]
RPROP 20| - 1.2 10.5 19 3 | [0.05,2.0]

As can be seen, the adaptive procedures RPROP, Quickprop and SuperSAB do much
better than the original backpropagation algorithm with respect to the convergence time
as well as the robustness of the choice of their parameter values (indicated by the width
of the WR). The Quickprop algorithm still outperforms SuperSAB by a factor 2.5, and is
about 6 times as fast as original backpropagation.

The best result is achieved using RPROP, which learned the task in an average time
of only 19 epochs using the standard choice of n* = 1.2 and = = 0.5. As shown in the
width of the WR, the choice of the initial weight update-value /g isn’t critical either.

Note that the update-value is not influenced by the magnitude of the derivatives, but
only by the behaviour of the sign of two succeeding derivatives. Every time the partial
derivative of the corresponding weight w;; changes its sign, which indicates that the last
update was too big and the algorithm has jumped over a local minimum (fig. 2), the
update-value A\;; is decreased by the factor n~. If the derivative retains its sign, the
update-value is slightly increased in order to accelerate convergence in shallow regions
(fig. 1).

The update-rule for the weights is the same as in eq. (3) with one exception: if
the partial derivative changes sign, the previous update-step, leading to a jump over the
minimum, is reverted:

oE (1)+ oE

A'wij(t) = —A’wi]'(t — 1) , if (t — 1) <0 (5)

8w2-]- 6w”
When a change of sign occured, the adaptation process is 'restarted’, which means,
that in the succeeding step no adaptation of the update-value is performed (in practice
this can be done by setting %(t —1):=0ineq (4))
i

The update-values and the weights are changed every time the whole pattern set has
been presented once to the network (learning by epoch).

At first glance, this approach resembles a little to the well-known SuperSAB algorithm
[3].[4]. However, there are a few important differences. SuperSAB tries to adapt the
learning-rate which scales the partial derivative to compute the weight-update Aw;;(t) =
€ (1) %(t). So, the weight-update is still strongly dependent on the magnitude of the
partial derivative. This is possibly leading to either emphasizing or compensating effects,
which means that the adaptation is partly unworthy because of the unforseeable influence

of the magnitude of the partial derivative.

To avoid this problem of ’double adaptivity’, RPROP changes the value of the weight-
update A;; directly, only depending on the sign of the partial derivative without reference
to its magnitude. As a further effect of the only sign-dependent weight-update, learning
is spread equally all over the entire network, whereas with value-sensible learning-rules,
weight-update is a function of the distance between the weight and the output-layer.

At the beginning, all update-values A;; are set to an initial value Ay. The choice of
this value is not critical, for it is adapted as learning proceeds (see the results in the next
section). In all experiments, the decreasing and increasing factors were held constant to
nt = 1.2 and = = 0.5. The range of the update-values was restricted to an upper limit
of 50.0 and a lower limit of 1¢7® to avoid underflow problems of floating point variables.

3 Results

3.1 Methodology

In the following experiments, learning time was measured as the average number of epochs
required until the task was learned in ten different runs. An epoch is defined as the period

- _»/
| wij wij
Figure 1: In shallow regions a small Figure 2: Large learning-rates lead to
learning-rate leads to long convergence oscillation in the proximity of local
times. minima.

Many algorithms have been proposed so far to deal with the above problems, e.g.
by introducing a momentum term or doing some sort of parameter adaptation during
learning. The following section presents a new adaptive learning scheme combining both
easy computation and powerful adaptation for the sake of faster convergence.

2 The RPROP-algorithm

RPROP stands for 'resilient propagation’ and is a new adaptive learning algorithm that
considers the local topology of the errorfunction to change its behaviour. It is based on
the so-called "Manhattan-Learning’-rule, described by Sutton in [2]:

Ay , if2E >0

Jwijy
Awij = —|—A0 , if qu <0 (3)
0 , else

where Ay, the 'update-value’, is a problem-dependent constant.

Due to its simplicity, this is a very coarse way to adjust the weights, and so it is not
surprising that this method doesn’t work satisfactory on difficult problems, where it is
hard to find an acceptable solution (e.g strong nonlinear mappings).

The basic idea for the improvement realized by the RPROP algorithm was to achieve
some more information about the topology of the errorfunction so that the weight-update
can be done more appropriately. For each weight we introduce its own "personal’ update-
value A\;;, which evolves during the learning process according to its local sight of the
errorfunction £. So we get a second learning-rule for the update-values themselves:

Dyt = 1) =gt i S5 = 1) % 22 (t) > 0
Nty =9 At —1) s, if 224 —1)% 2E(4) <0 (4)

Owiy

Nyt —=1) , else

Jwy

with 0 <p~ <1<npt

To appear in: Proceedings of ISCIS VII

RPROP - A Fast Adaptive Learning Algorithm

Martin Riedmiller and Heinrich Braun

Institut fur Logik, Komplexitat und Deduktionssysteme, Universitat Karlsruhe, Kaiser-

strasse 12, 7500 Karlsruhe, FRG

Abstract

In this paper, a new learning algorithm, RPROP, is proposed. To overcome the inher-
ent disadvantages of the pure gradient-descent technique of the original backpropagation
procedure, RPROP performs an adaptation of the weight update-values according to the
behaviour of the errorfunction. The results of RPROP on several learning tasks are shown
in comparison to other well-known adaptive learning algorithms.

1 Introduction

Backpropagation is the most widely used algorithm for supervised learning with multi-
layered feed-forward networks. The basic idea of the backpropagation learning algorithm
is the repeated application of the chain rule to compute the influence of each weight in
the network with respect to an arbitrary errorfunction F [1]:

oE JFE da; Onet;
8wij N 8ai 6neti 6w”

(1)

where w;; is the weight from neuron j to neuron ¢, a; is the activation value and net;
is the weighted sum of the inputs of neuron 2. Once the partial derivative for each weight
is known, the aim of minimizing the errorfunction is achieved by performing a simple
gradient descent:

wii(t+1) = wy(t) — ¢ aafj () (2)

The choice of the learning rate €, which scales the derivative, has an important effect
on the time needed until convergence is reached. If it is set too small, too many steps are
needed to reach an acceptable solution (fig. 1); on the contrary a large learning rate will
possibly lead to oscillation, preventing the error to fall below a certain value (fig. 2).

