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Abstract

A framework is developed to explore the connection between e�ective optimization
algorithms and the problems they are solving� A number of �no free lunch� �NFL�
theorems are presented that establish that for any algorithm� any elevated performance
over one class of problems is exactly paid for in performance over another class� These
theorems result in a geometric interpretation of what it means for an algorithm to
be well suited to an optimization problem� Applications of the NFL theorems to
information theoretic aspects of optimization and benchmark measures of performance
are also presented� Other issues addressed are time�varying optimization problems
and a priori �head�to�head� minimax distinctions between optimization algorithms�
distinctions that can obtain despite the NFL theorems� enforcing of a type of uniformity
over all algorithms�

� Introduction

The past few decades have seen increased interest in general�purpose �black�box� optimiza�
tion algorithms that exploit little if any knowledge concerning the optimization problem on
which they are run� In large part these algorithms have drawn inspiration from optimization
processes that occur in nature� In particular� the two most popular black�box optimization
strategies� evolutionary algorithms �FOW��� Hol��	 and simulated annealing �KGV
�	 mimic
processes in natural selection and statistical mechanics respectively�
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In light of this interest in general�purpose optimization algorithms� it has become im�
portant to understand the relationship between how well an algorithm a performs and the
optimization problem f on which it is run� In this paper we present a formal analysis that
contributes towards such an understanding by addressing questions like the following� Given
the plethora of black�box optimization algorithms and of optimization problems� how can we
best match algorithms to problems i�e�� how best can we relax the black�box nature of the
algorithms and have them exploit some knowledge concerning the optimization problem�� In
particular� while serious optimization practitioners almost always perform such matching� it
is usually on an ad hoc basis� how can such matching be formally analyzed� More generally�
what is the underlying mathematical �skeleton� of optimization theory before the ��esh� of
the probability distributions of a particular context and set of optimization problems are im�
posed� What can information theory and Bayesian analysis contribute to an understanding
of these issues� How a priori generalizable are the performance results of a certain algorithm
on a certain class of problems to its performance on other classes of problems� How should
we even measure such generalization� how should we assess the performance of algorithms
on problems so that we may programmatically compare those algorithms�

Broadly speaking� we take two approaches to these questions� First� we investigate what
a priori restrictions there are on the pattern of performance of one or more algorithms as one
runs over the set of all optimization problems� Our second approach is to instead focus on
a particular problem and consider the e�ects of running over all algorithms� In the current
paper we present results from both types of analyses but concentrate largely on the �rst
approach� The reader is referred to the companion paper �MW��	 for more kinds of analysis
involving the second approach�

We begin in Section � by introducing the necessary notation� Also discussed in this
section is the model of computation we adopt� its limitations� and the reasons we chose it�

One might expect that there are pairs of search algorithms A and B such that A per�
forms better than B on average� even if B sometimes outperforms A� As an example� one
might expect that hill�climbing usually outperforms hill�descending if one�s goal is to �nd a
maximum of the cost function� One might also expect it would outperform a random search
in such a context�

One of the main results of this paper is that such expectations are incorrect� We prove
two NFL theorems in Section � that demonstrate this and more generally illuminate the
connection between algorithms and problems� Roughly speaking� we show that for both
static and time dependent optimization problems� the average performance of any pair of
algorithms across all possible problems is exactly identical� This means in particular that if
some algorithm a��s performance is superior to that of another algorithm a� over some set of
optimization problems� then the reverse must be true over the set of all other optimization
problems� The reader is urged to read this section carefully for a precise statement of these
theorems�� This is true even if one of the algorithms is random� any algorithm a� performs
worse than randomly just as readily over the set of all optimization problems� as it performs
better than randomly� Possible objections to these results are also addressed in Sections ���
and ����

In Section � we present a geometric interpretation of the NFL theorems� In particular�
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we show that an algorithm�s average performance is determined by how �aligned� it is with
the underlying probability distribution over optimization problems on which it is run� This
Section is critical for anyone wishing to understand how the NFL results are consistent with
the well�accepted fact that many search algorithms that do not take into account knowledge
concerning the cost function work quite well in practice

Section ��� demonstrates that the NFL theorems allow one to answer a number of what
would otherwise seem to be intractable questions� The implications of these answers for
measures of algorithm performance and of how best to compare optimization algorithms are
explored in Section ����

In Section � we discuss some of the ways in which� despite the NFL theorems� algo�
rithms can have a priori distinctions that hold even if nothing is speci�ed concerning the
optimization problems� In particular� we show that there can be �head�to�head� minimax
distinctions between a pair of algorithms� it i�e�� we show that considered one f at a time� a
pair of algorithms may be distinguishable� even if they are not when one looks over all f �s�

In Section � we present an introduction to the alternative approach to the formal analysis
of optimization in which problems are held �xed and one looks at properties across the space
of algorithms� Since these results hold in general� they hold for any and all optimization
problems� and in this are independent of the what kinds of problems one is more or less likely
to encounter in the real world� In particular� these results state that one has no a priori
justi�cation for using a search algorithm�s behavior so far on a particular cost function
to predict its future behavior on that function� In fact when choosing between algorithms
based on their observed performance it does not su�ce to make an assumption about the cost
function� some currently poorly understood� assumptions are also being made about how
the algorithms in question are related to each other and to the cost function� In addition to
presenting results not found in �MW��	� this section serves as an introduction to perspective
adopted in �MW��	�

We conclude in Section 
 with a brief discussion� a summary of results� and a short list
of open problems�

We have con�ned as many of our proofs to appendices as possible to facilitate the �ow
of the paper� A more detailed � and substantially longer � version of this paper� a version
that also analyzes some issues not addressed in this paper� can be found in �WM��	�

Finally� we cannot emphasize enough that no claims whatsoever are being made in
this paper concerning how well various search algorithms work in practice� The focus of
this paper is on what can be said a priori� without any assumptions and from mathematical
principles alone� concerning the utility of a search algorithm�

� Preliminaries

We restrict attention to combinatorial optimization in which the search space� X � though
perhaps quite large� is �nite� We further assume that the space of possible �cost� values� Y�
is also �nite� These restrictions are automatically met for optimization algorithms run on
digital computers� For example� typically Y is some �� or �� bit representation of the real
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numbers in such a case�
The size of the spaces X and Y are indicated by jX j and jYj respectively� Optimization

problems f sometimes called �cost functions� or �objective functions� or �energy func�
tions�� are represented as mappings f � X �� Y� F � YX is then the space of all possible
problems� F is of size jYjjX j � a very large but �nite number� In addition to static f � we
shall also be interested in optimization problems that depend explicitly on time� The extra
notation needed for such time�dependent problems will be introduced as needed�

It is common in the optimization community to adopt an oracle�based view of computa�
tion� In this view� when assessing the performance of algorithms� results are stated in terms
of the number of function evaluations required to �nd a certain solution� Unfortunately
though� many optimization algorithms are wasteful of function evaluations� In particular�
many algorithms do not remember where they have already searched and therefore often
revisit the same points� Although any algorithm that is wasteful in this fashion can be made
more e�cient simply by remembering where it has been c�f� tabu search �Glo
�� Glo��	��
many real�world algorithms elect not to employ this stratagem� Accordingly� from the point
of view of the oracle�based performance measures� there are �artefacts� distorting the ap�
parent relationship between many such real�world algorithms�

This di�culty is exacerbated by the fact that the amount of revisiting that occurs is
a complicated function of both the algorithm and the optimization problem� and therefore
cannot be simply ��ltered out� of a mathematical analysis� Accordingly� we have elected to
circumvent the problem entirely by comparing algorithms based on the number of distinct
function evaluations they have performed� Note that this does not mean that we cannot
compare algorithms that are wasteful of evaluations � it simply means that we compare
algorithms by counting only their number of distinct calls to the oracle�

We call a time�ordered set of m distinct visited points a �sample� of size m� Samples are
denoted by dm � fdxm��� dym���� � � � � dxmm�� dymm��g� The points in a sample are ordered
according to the time at which they were generated� Thus dxmi� indicates the X value of
the ith successive element in a sample of size m and dymi� is the associated cost or Y value�
dym � fdym��� � � � � dymm�g will be used to indicate the ordered set of cost values� The space
of all samples of size m is Dm � X �Y�m so dm � Dm� and the set of all possible samples
of arbitrary size is D � �m��Dm�

As an important clari�cation of this de�nition� consider a hill�descending algorithm�
This is the algorithm that examines a set of neighboring points in X and moves to the one
having the lowest cost� The process is then iterated from the newly chosen point� Often�
implementations of hill�descending stop when they reach a local minimum� but they can
easily be extended to run longer by randomly jumping to a new unvisited point once the
neighborhood of a local minimum has been exhausted�� The point to note is that because
a sample contains all the previous points at which the oracles was consulted� it includes the
X �Y� values of all the neighbors of the current point� and not only the lowest cost one that
the algorithm moves to� This must be taken into account when counting the value of m�

Optimization algorithms a are represented as mappings from previously visited sets of
points to a single new i�e�� previously unvisited� point in X � Formally� a � d � D ��
fxjx �� dXg� Given our decision to only measure distinct function evaluations even if an
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algorithm revisits previously searched points� our de�nition of an algorithm includes all
common black�box optimization techniques like simulated annealing and evolutionary algo�
rithms� Techniques like branch and bound �LW��	 are not included since they rely explicitly
on the cost structure of partial solutions� and we are here interested primarily in black�box
algorithms��

As de�ned above� a search algorithm is deterministic� every sample maps to a unique new
point� Of course essentially all algorithms implemented on computers are deterministic�� and
in this our de�nition is not restrictive� Nonetheless� it is worth noting that all of our results
are extensible to non�deterministic algorithms� where the new point is chosen stochastically
from the set of unvisited points� This point is returned to below��

Under the oracle�based model of computation any measure of the performance of an
algorithm after m iterations is a function of the sample dym� Such performance measures
will be indicated by �dym�� As an example� if we are trying to �nd a minimum of f � then
a reasonable measure of the performance of a might be the value of the lowest Y value in
dym� �d

y
m� � minifdymi� � i � � � � � mg� Note that measures of performance based on factors

other than dym e�g�� wall clock time� are outside the scope of our results�
We shall cast all of our results in terms of probability theory� We do so for three reasons�

First� it allows simple generalization of our results to stochastic algorithms� Second� even
when the setting is deterministic� probability theory provides a simple consistent framework
in which to carry out proofs�

The third reason for using probability theory is perhaps the most interesting� A crucial
factor in the probabilistic framework is the distribution P f� � P fx��� � � � � fxjXj��� This
distribution� de�ned over F � gives the probability that each f � F is the actual optimization
problem at hand� An approach based on this distribution has the immediate advantage that
often knowledge of a problem is statistical in nature and this information may be easily
encodable in P f�� For example� Markov or Gibbs random �eld descriptions �KS
�	 of
families of optimization problems express P f� exactly�

However exploiting P f� also has advantages even when we are presented with a single
uniquely speci�ed cost function� One such advantage is the fact that although it may be
fully speci�ed� many aspects of the cost function are e�ectively unknown e�g�� we certainly
do not know the extrema of the function�� It is in many ways most appropriate to have this
e�ective ignorance re�ected in the analysis as a probability distribution� More generally�
we usually act as though the cost function is partially unknown� For example� we might
use the same search algorithm for all cost functions in a class e�g�� all traveling salesman
problems having certain characteristics�� In so doing� we are implicitly acknowledging that
we consider distinctions between the cost functions in that class to be irrelevant or at least
unexploitable� In this sense� even though we are presented with a single particular problem
from that class� we act as though we are presented with a probability distribution over cost
functions� a distribution that is non�zero only for members of that class of cost functions�
P f� is thus a prior speci�cation of the class of the optimization problem at hand� with
di�erent classes of problems corresponding to di�erent choices of what algorithms we will

�In particular� note that random number generators are deterministic given a seed�
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use� and giving rise to di�erent distributions P f��
Given our choice to use probability theory� the performance of an algorithm a iterated

m times on a cost function f is measured with P dymjf�m� a�� This is the conditional proba�
bility of obtaining a particular sample dm under the stated conditions� From P dymjf�m� a�
performance measures �dym� can be found easily�

In the next section we will analyze P dymjf�m� a�� and in particular how it can vary with
the algorithm a� Before proceeding with that analysis however� it is worth brie�y noting
that there are other formal approaches to the issues investigated in this paper� Perhaps the
most prominent of these is the �eld of computational complexity� Unlike the approach taken
in this paper� computational complexity mostly ignores the statistical nature of search� and
concentrates instead on computational issues� Much though by no means all� of computa�
tional complexity is concerned with physically unrealizable computational devices Turing
machines� and the worst case amount of resources they require to �nd optimal solutions� In
contrast� the analysis in this paper does not concern itself with the computational engine
used by the search algorithm� but rather concentrates exclusively on the underlying statisti�
cal nature of the search problem� In this the current probabilistic approach is complimentary
to computational complexity� Future work involves combining our analysis of the statistical
nature of search with practical concerns for computational resources�

� The NFL theorems

In this section we analyze the connection between algorithms and cost functions� We have
dubbed the associated results �No Free Lunch� NFL� theorems because they demonstrate
that if an algorithm performs well on a certain class of problems then it necessarily pays
for that with degraded performance on the set of all remaining problems� Additionally� the
name emphasizes the parallel with similar results in supervised learning �Wol��a� Wol��b	�

The precise question addressed in this section is� �How does the set of problems F� � F
for which algorithm a� performs better than algorithm a� compare to the set F� � F for
which the reverse is true�� To address this question we compare the sum over all f of
P dymjf�m� a�� to the sum over all f of P dymjf�m� a��� This comparison constitutes a major
result of this paper� P dymjf�m� a� is independent of a when we average over all cost functions�

Theorem � For any pair of algorithms a� and a��X
f

P dymjf�m� a�� �
X
f

P dymjf�m� a���

A proof of this result is found in Appendix A� An immediate corollary of this result is that for
any performance measure �dym�� the average over all f of P �d

y
m�jf�m� a� is independent

of a� The precise way that the sample is mapped to a performance measure is unimportant�
This theorem explicitly demonstrates that what an algorithm gains in performance on

one class of problems it necessarily pays for on the remaining problems� that is the only way
that all algorithms can have the same f �averaged performance�
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A result analogous to Theorem � holds for a class of time�dependent cost functions� The
time�dependent functions we consider begin with an initial cost function f� that is present
at the sampling of the �rst x value� Before the beginning of each subsequent iteration of
the optimization algorithm� the cost function is deformed to a new function� as speci�ed
by a mapping T � F � N � F �� We indicate this mapping with the notation Ti� So the
function present during the ith iteration is fi�� � Tifi�� Ti is assumed to be a potentially
i�dependent� bijection between F and F � We impose bijectivity because if it did not hold�
the evolution of cost functions could narrow in on a region of f �s for which some algorithms
may perform better than others� This would constitute an a priori bias in favor of those
algorithms� a bias whose analysis we wish to defer to future work�

How best to assess the quality of an algorithm�s performance on time�dependent cost
functions is not clear� Here we consider two schemes based on manipulations of the de�nition
of the sample� In scheme � the particular Y value in dymj� corresponding to a particular
x value dxmj� is given by the cost function that was present when dxmj� was sampled� In
contrast� for scheme � we imagine a sample Dy

m given by the Y values from the present
cost function for each of the x values in dxm� Formally if d

x
m � fdxm��� � � � � dxmm�g� then

in scheme � we have dym � ff�dxm���� � � � � Tm��fm���dxmm��g� and in scheme � we have
Dy
m � ffmdxm���� � � � � fmdxmm��g where fm � Tm��fm��� is the �nal cost function�
In some situations it may be that the members of the sample �live� for a long time� on

the time scale of the evolution of the cost function� In such situations it may be appropriate
to judge the quality of the search algorithm by Dy

m� all those previous elements of the sample
are still �alive� at timem� and therefore their current cost is of interest� On the other hand�
if members of the sample live for only a short time on the time scale of evolution of the cost
function� one may instead be concerned with things like how well the �living� members� of
the sample track the changing cost function� In such situations� it may make more sense to
judge the quality of the algorithm with the dym sample�

Results similar to Theorem � can be derived for both schemes� By analogy with that
theorem� we average over all possible ways a cost function may be time�dependent� i�e�� we
average over all T rather than over all f�� Thus we consider

P
T P d

y
mjf�� T�m� a� where f�

is the initial cost function� Since T only takes e�ect for m � �� and since f� is �xed� there
are a priori distinctions between algorithms as far as the �rst member of the population is
concerned� However after rede�ning samples to only contain those elements added after the
�rst iteration of the algorithm� we arrive at the following result� proven in Appendix B�

Theorem � For all dym� D
y
m� m � �� algorithms a� and a�� and initial cost functions f��X

T

P dymjf�� T�m� a�� �
X
T

P dymjf�� T�m� a���

and X
T

P Dy
mjf�� T�m� a�� �

X
T

P Dy
mjf�� T�m� a���

�An obvious restriction would be to require that T doesn�t vary with time� so that it is a mapping simply
from F to F � An analysis for T �s limited this way is beyond the scope of this paper�
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So in particular� if one algorithm outperforms another for certain kinds of evolution operators�
then the reverse must be true on the set of all other evolution operators�

Although this particular result is similar to the NFL result for the static case� in general
the time�dependent situation is more subtle� In particular� with time�dependence there are
situations in which there can be a priori distinctions between algorithms even for those
members of the population arising after the �rst� For example� in general there will be
distinctions between algorithms when considering the quantity

P
f P d

y
mjf� T�m� a�� To see

this� consider the case where X is a set of contiguous integers and for all iterations T is a
shift operator� replacing fx� by fx	 �� for all x with minx�	 � � maxx��� For such a
case we can construct algorithms which behave di�erently a priori� For example� take a to
be the algorithm that �rst samples f at x�� next at x��� and so on� regardless of the values
in the population� Then for any f � dym is always made up of identical Y values� Accordingly�P

f P d
y
mjf� T�m� a� is non�zero only for dym for which all values dymi� are identical� Other

search algorithms� even for the same shift T � do not have this restriction on Y values� This
constitutes an a priori distinction between algorithms�

��� Implications of the NFL theorems

As emphasized above� the NFL theorems mean that if an algorithm does particularly well on
one class of problems then it most do more poorly over the remaining problems� In particular�
if an algorithm performs better than random search on some class of problems then in must
perform worse than random search on the remaining problems� Thus comparisons reporting
the performance of a particular algorithm with particular parameter setting on a few sample
problems are of limited utility� While sicj results do indicate behavior on the narrow range
of problems considered� one should be very wary of trying to generalize those results to other
problems�

Note though that the NFL theorem need not be viewed this way� as a way of comparing
function classes F� and F� or classes of evolution operators T� and T�� as the case might
be�� It can be viewed instead as a statement concerning any algorithm�s performance when
f is not �xed� under the uniform prior over cost functions� P f� � ��jFj� If we wish instead
to analyze performance where f is not �xed� as in this alternative interprations of the NFL
theorem� but in contrast with the NFL case f is now chosen from a non�uniform prior� then
we must analyze explicitly the sum

P dymjm�a� �
X
f

P dymjf�m� a�P f� ��

Since it is certainly true that any class of problems faced by a practitioner will not have a �at
prior� what are the practical implications of the NFL theorems when viewed as a statement
concerning an algorithm�s performance for non��xed f� This question is taken up in greater
detail in Section � but we make a few comments here�

First� if the practitioner has knowledge of problem characteristics but does not incorpo�
rate them into the optimization algorithm� then P f� is e�ectively uniform� Recall that






P f� can be viewed as a statement concerning the practitioner�s choice of optimization al�
gorithms�� In such a case� the NFL theorems establish that there are no formal assurances
that the algorithm chosen will be at all e�ective�

Secondly� while most classes of problems will certainly have some structure which� if
known� might be exploitable� the simple existence of that structure does not justify choice of
a particular algorithm� that structure must be known and re�ected directly in the choice of
algorithm to serve as such a justi�cation� In other words� the simple existence of structure
per se� absent a speci�cation of that structure� cannot provide a basis for preferring one al�
gorithm over another� Formally� this is established by the existence of NFL�type theorems in
which rather than average over speci�c cost functions f � one averages over speci�c �kinds of
structure�� i�e�� theorems in which one averages P dym j m�a� over distributions P f�� That
such theorems hold when one averages over all P f� means that the indistinguishability of
algorithms associated with uniform P f� is not some pathological� outlier case� Rather uni�
form P f� is a �typical� distribution as far as indistinguishability of algorithms is concerned�
The simple fact that the P f� at hand is non�uniform cannot serve to determine one�s choice
of optimization algorithm�

Finally� it is important to emphasize that even if one is considering the case where f is
not �xed� performing the associated average according to a uniform P f� is not essential for
NFL to hold� NFL can also be demonstrated for a range of non�uniform priors� For example�
any prior of the form

Q
x�X P

�fx�� where P �y � fx�� is the distribution of Y values�
will also give NFL� The f �average can also enforce correlations between costs at di�erent
X values and NFL still obtain� For example if costs are rank ordered with ties broken in
some arbitrary way� and we sum only over all cost functions given by permutations of those
orders� then NFL still holds�

The choice of uniform P f� was motivated more from theoretical rather pragramattic
concerns� as a way of analyzing the theoretical structure of optimization� Nevertheless� the
cautionary observations presented above make clear that an analysis of the uniform P f�
case has a number of rami�cations for practitioners�

��� Stochastic optimization algorithms

Thus far we have considered the case in which algorithms are deterministic� What is the sit�
uation for stochastic algorithms� As it turns out� NFL results hold even for such algorithms�

The proof of this is straightforward� Let � be a stochastic �non�potentially revisiting�
algorithm� Formally� this means that � is a mapping taking any d to a d�dependent distribu�
tion over X that equals zero for all x � dx� In this sense � is what in statistics community is
known as a �hyper�parameter�� specifying the function P dxm��m��� j dm� �� for all m and
d�� One can now reproduce the derivation of the NFL result for deterministic algorithms�
only with a replaced by � throughout� In so doing all steps in the proof remain valid� This
establishes that NFL results apply to stochastic algorithms as well as deterministic ones�

�



� A geometric perspective on the NFL theorems

Intuitively� the NFL theorem illustrates that even if knowledge of f perhaps speci�ed
through P f�� is not incorporated into a� then there are no formal assurances that a will
be e�ective� Rather� e�ective optimization relies on a fortuitous matching between f and a�
This point is formally established by viewing the NFL theorem from a geometric perspective�

Consider the space F of all possible cost functions� As previously discussed in regard to
Equation �� the probability of obtaining some dym is

P dymjm�a� �
X
f

P dymjm�a� f�P f��

where P f� is the prior probability that the optimization problem at hand has cost function
f � This sum over functions can be viewed as an inner product in F � More precisely� de�ning
the F �space vectors �vdym�a�m and �p by their f components �vdym�a�mf� � P dymjm�a� f� and
�pf� � P f� respectively�

P dymjm�a� � �vdym�a�m � �p� ��

This equation provides a geometric interpretation of the optimization process� dym can
be viewed as �xed to the sample that is desired� usually one with a low cost value� and m
is a measure of the computational resources that can be a�orded� Any knowledge of the
properties of the cost function goes into the prior over cost functions� �p� Then Equation
�� says the performance of an algorithm is determined by the magnitude of its projection
onto �p� i�e� by how aligned �vdym�a�m is with the problems �p� Alternatively� by averaging over
dym� it is easy to see that Ed

y
mjm�a� is an inner product between �p and Edymjm�a� f�� The

expectation of any performance measure �dym� can be written similarly�
In any of these cases� P f� or �p must �match� or be aligned with a to get desired

behavior� This need for matching provides a new perspective on how certain algorithms can
perform well in practice on speci�c kinds of problems� For example� it means that the years
of research into the traveling salesman problem TSP� have resulted in algorithms aligned
with the implicit� �p describing traveling salesman problems of interest to TSP researchers�

Taking the geometric view� the NFL result that
P

f P d
y
mjf�m� a� is independent of a has

the interpretation that for any particular dym andm� all algorithms a have the same projection
onto the the uniform P f�� represented by the diagonal vector ��� Formally� vdym�a�m � �� �
cstdym�m�� For deterministic algorithms the components of vdym�a�m i�e� the probabilities
that algorithm a gives sample dym on cost function f after m distinct cost evaluations� are
all either � or �� so NFL also implies that

P
f P

�dym jm�a� f� � cstdym�m�� Geometrically�
this indicates that the length of �vdym�a�m is independent of a� Di�erent algorithms thus
generate di�erent vectors �vdym�a�m all having the same length and lying on a cone with constant

projection onto ��� A schematic of this situation is shown in Figure � for the case where
F is ��dimensional�� Because the components of �vc�a�m are binary we might equivalently
view �vdym�a�m as lying on the subset the vertices of the Boolean hypercube having the same

hamming distance from ���
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Figure �� Schematic view of the situation in which function space F is ��dimensional� The
uniform prior over this space� �� lies along the diagonal� Di�erent algorithms a give di�erent
vectors v lying in the cone surrounding the diagonal� A particular problem is represented by
its prior �p lying on the simplex� The algorithm that will perform best will be the algorithm
in the cone having the largest inner product with �p�

Now restrict attention to algorithms having the same probability of some particular dym�
The algorithms in this set lie in the intersection of � cones�one about the diagonal� set by
the NFL theorem� and one set by having the same probability for dym� This is in general an
jFj	� dimensional manifold� Continuing� as we impose yet more dym�based restrictions on a
set of algorithms� we will continue to reduce the dimensionality of the manifold by focusing
on intersections of more and more cones�

The geometric view of optimization also suggests alternative measures for determining
how �similar� two optimization algorithms are� Consider again Equation ��� In that the
algorithm directly only gives �vdym�a�m� perhaps the most straight�forward way to compare two
algorithms a� and a� would be by measuring how similar the vectors �vdym�a��m and �vdym�a��m are�
E�g�� by evaluating the dot product of those vectors�� However those vectors occur on the
right�hand side of Equation ��� whereas the performance of the algorithms � which is after
all our ultimate concern � instead occur on the left�hand side� This suggests measuring
the similarity of two algorithms not directly in terms of their vectors �vdym�a�m� but rather in
terms of the dot products of those vectors with �p� For example� it may be the case that
algorithms behave very similarly for certain P f� but are quite di�erent for other P f�� In
many respects� knowing this about two algorithms is of more interest than knowing how
their vectors �vdym�a�m compare�

As another example of a similarity measure suggested by the geometric perspective�
we could measure similarity between algorithms based on similarities between P f��s� For
example� for two di�erent algorithms� one can imagine solving for the P f� that optimizes
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P dym j m�a� for those algorithms� in some non�trivial sense�� We could then use some
measure of distance between those two P f� distributions as a gauge of how similar the
associated algorithms are�

Unfortunately� exploiting the inner product formula in practice� by going from a P f�
to an algorithm optimal for that P f�� appears to often be quite di�cult� Indeed� even
determining a plausible P f� for the situation at hand is often di�cult� Consider� for
example� TSP problems with N cities� To the degree that any practitioner attacks all
N �city TSP cost functions with the same algorithm� that practitioner implicitly ignores
distinctions between such cost functions� In this� that practitioner has implicitly agreed
that the problem is one of how their �xed algorithm does across the set of all N �city TSP
cost functions� However the detailed nature of the P f� that is uniform over this class of
problems appears to be di�cult to elucidate�

On the other hand� there is a growing body of work that does rely explicitly on enu�
meration of P f�� For example� applications of Markov random �elds �Gri��� KS
�	 to cost
landscapes yield P f� directly as a Gibbs distribution�

� Calculational applications of the NFL theorems

In this section we explore some of the applications of the NFL theorems for performing
calculations concerning optimization� We will consider both calculations of practical and
theoretical interest� and begin with calculations of theoretical interest� in which information�
theoretic quantities arise naturally�

��� Information�theoretic aspects of optimization

For expository purposes� we simplify the discussion slightly by considering only the histogram
of number of instances of each possible cost value produced by a run of an algorithm� and
not the temporal order in which those cost values were generated� Essentially all real�
world performance measures are independent of such temporal information�� We indicate
that histogram with the symbol �c� �c has Y components cY� � cY�� � � � � cYjYj�� where ci is the
number of times cost value Yi occurs in the sample dym�

Now consider any question like the following� �What fraction of cost functions give a
particular histogram �c of cost values after m distinct cost evaluations produced by using a
particular instantiation of an evolutionary algorithm �FOW��� Hol��	��

At �rst glance this seems to be an intractable question� However it turn out that the
NFL theorem provides a way to answer it� This is because � according to the NFL theorem
� the answer must be independent of the algorithm used to generate �c� Consequently we
can chose an algorithm for which the calculation is tractable�

�In particular� one may want to impose restrictions on P �f�� For instance� one may wish to only consider
P �f� that are invariant under at least partial relabelling of the elements in X � to preclude there being an
algorithm that will assuredly �luck out� and land on minx�Xf�x� on its very �rst query�
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Theorem � For any algorithm� the fraction of cost functions that result in a particular
histogram �c � m�� is

�f ��� �

�
m

c� c� ��� cjYj

�
jYjjX j�m

jYjjX j �

�
m

c� c� ��� cjYj

�
jYjm �

For large enough m this can be approximated as

�f��� 
� Cm� jYj� exp �mS���	QjYj
i�� �

���
i

where S��� is the entropy of the distribution ��� and Cm� jYj� is a constant that does not
depend on ���

This theorem is derived in Appendix C� If some of the ��i are �� the approximation still holds�
only with Y rede�ned to exclude the y�s corresponding to the zero�valued ��i� However Y
is de�ned� the normalization constant of Equation �� can be found by summing over all ��
lying on the unit simplex ��	�

A question related to one addressed in this theorem is the following� �For a given cost
function� what is the fraction �alg of all algorithms that give rise to a particular �c�� It turns
out that the only feature of f relevant for this question is the histogram of its cost values
formed by looking across all X � Specify the fractional form of this histogram by ��� there
are Ni � �i jX j points in X for which fx� has the i�th Y value�

In Appendix D it is shown that to leading order� �alg��� ��� depends on yet another

information theoretic quantity� the Kullback�Liebler distance �CT��	 between �� and ���

Theorem � For a given f with histogram �N � jX j��� the fraction of algorithms that give
rise to a histogram �c � m�� is given by

�alg��� ��� �

QjYj
i��

�
Ni

ci

�
�
jX j
m

� � ��

For large enough m this can be written as

�alg��� ��� 
� Cm� jX j� jYj� e
�mDKL�������QjYj

i�� �
���
i

where DKL��� ��� is the Kullback�Liebler distnace between the distributions � and ��

As before� C can be calculated by summing �� over the unit simplex�
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��� Measures of performance

We now show how to apply the NFL framework to calculate certain benchmark performance
measures� These allow both the programmatic rather than ad hoc� assessment of the e�cacy
of any individual optimization algorithm and principled comparisons between algorithms�

Without loss of generality� assume that the goal of the search process is �nding a mini�
mum� So we are interested in the 	�dependence of P min�c� � 	 j f�m� a�� by which we mean
the probability that the minimum cost an algorithm a �nds on problem f in m distinct
evaluations is larger than 	� At least three quantities related to this conditional probability
can be used to gauge an algorithm�s performance in a particular optimization run�

i� The uniform average of P min�c� � 	 j f�m� a� over all cost functions�

ii� The form P min�c� � 	 j f�m� a� takes for the random algorithm� which uses no infor�
mation from the sample dm�

iii� The fraction of algorithms which� for a particular f andm� result in a �c whose minimum
exceeds 	�

These measures give benchmarks which any algorithm run on a particular cost function
should surpass if that algorithm is to be considered as having worked well for that cost
function�

Without loss of generality assume the that i�th cost value i�e�� Yi equals i� So cost values
run from a minimum of � to a maximum of jYj� in integer increments� The following results
are derived in Appendix E�

Theorem �

X
f

P min�c� � 	 j f�m� � 
m	�

where 
	� � � 	 	�jYj is the fraction of cost lying above 	� In the limit of jYj � �� this
distribution obeys the following relationship

P
f Emin�c� j f�m�

jYj �
�

m� �
�

Unless one�s algorithm has its best�cost�so�far drop faster than the drop associated with
these results� one would be hard�pressed indeed to claim that the algorithm is well�suited to
the cost function at hand� After all� for such performance the algorithm is doing no better
than one would expect it to for a randomly chosen cost function�

Unlike the preceding measure� the measures analyzed below take into account the actual
cost function at hand� This is manifested in the dependance of the values of those measures
on the vector �N given by the cost function�s histogram  �N � jX j����
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Theorem � For the random algorithm �a�

P min�c� � 	 j f�m��a� �
m��Y
i��

 	�	 i�jX j
�	 i�jX j � ��

where  	� � PjYj
i��Ni�jX j is the fraction of points in X for which fx� � 	� To �rst order

in ��jX j

P min�c� � 	 j f�m� �a� �  m	�
�
� 	 mm	 ���	  	��

� 	�

�

jX j � � � �
�
� ��

This result allows the calculation of other quantities of interest for measuring performance�
for example the quantity

Emin�c�jf�m� �a� �
jYjX
���

	 �P min�c� � 	 j f�m��a� 	 P min�c� � 	� � j f�m� �a�	�

Note that for many cost functions of both practical and theoretical interest� cost values are
distributed Gaussianly� For such cases� we can use that Gaussian nature of the distribution
to facilitate our calculations� In particular� if the mean and variance of the Gaussian are �
and � respectively� then we have  	� � erfc		���p������ where erfc is the complimentary
error function�

To calculate the third performance measure� note that for �xed f and m� for any deter�
ministic� algorithm a� P �c � 	 j f�m� a� is either � or �� Therefore the fraction of algorithms
which result in a �c whose minimum exceeds 	 is given by

P
a P min�c� � 	 j f�m� a�P

a �
�

Expanding in terms of �c� we can rewrite the numerator of this ratio as
P

�c P min�c� �
	j�c�Pa P �c j f�m� a�� However the ratio of this quantity to

P
a � is exactly what was calcu�

lated when we evaluated measure ii� see the beginning of the argument deriving Equation
���� This establishes the following�

Theorem � For �xed f and m� the fraction of algorithms which result in a �c whose minimum
exceeds 	 is given by the quantity on the right�hand sides of Equations �� and ���

As a particular example of applying this result� consider measuring the value of min�c�
produced in a particular run of your algorithm� Then imagine that when it is evaluated for
	 equal to this value� the quantity given in Equation �� is less than ���� In such a situation
the algorithm in question has performaed worse than over half of all search algorithms� for
the f and m at hand� hardly a stirring endorsement�

None of the discussion above explicitly concerns the dynamics of an algorithm�s perfor�
mance as m increases� Many aspects of such dynamics may be of interest� As an example� let
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us consider whether� as m grows� there is any change in how well the algorithm�s performance
compares to that of the random algorithm�

To this end� let the sample generated by the algorithm a after m steps be dm� and de�ne
y� � mindym�� Let k be the number of additional steps it takes the algorithm to �nd an
x such that fx� � y�� Now we can estimate the number of steps it would have taken the
random search algorithm to search X 	 dX and �nd a point whose y was less than y�� The
expected value of this number of steps is ��zd� 	 �� where zd� is the fraction of X 	 dxm
for which fx� � y�� Therefore k��	 ��zd� is how much worse a did than would have the
random algorithm� on average�

Next imagine letting a run for many steps over some �tness function f and plotting how
well a did in comparison to the random algorithm on that run� as m increased� Consider
the step where a �nds its n�th new value of min�c�� For that step� there is an associated k
the number of steps until the next mindym�� and zd�� Accordingly� indicate that step on
our plot as the point n� k � �	 ��zd��� Put down as many points on our plot as there are
successive values of min�cd�� in the run of a over f �

If throughout the run a is always a better match to f than is the random search algorithm�
then all the points in the plot will have their ordinate values lie below �� If the random
algorithm won for any of the comparisons though� that would mean a point lying above ��
In general� even if the points all lie to one side of �� one would expect that as the search
progresses there is corresponding perhaps systematic� variation in how far away from � the
points lie� That variation tells one when the algorithm is entering harder or easier parts of
the search�

Note that even for a �xed f � by using di�erent starting points for the algorithm one
could generate many of these plots and then superimpose them� This allows a plot of
the mean value of k � � 	 ��zd� as a function of n along with an associated error bar�
Similarly� one could replace the single number zd� characterizing the random algorithm
with a full distribution over the number of required steps to �nd a new minimum� In these
and similar ways� one can generate a more nuanced picture of an algorithm�s performance
than is provided by any of the single numbers given by the performance measure discussed
above�

� Minimax distinctions between algorithms

The NFL theorems do not direclty address minimax properties of search� For example� say
we�re considering two deterministic algorithms� a� and a�� It may very well be that there
exist cost functions f such that a��s histogram is much better according to some appropriate
performance measure� than a��s� but no cost functions for which the reverse is true� For the
NFL theorem to be obeyed in such a scenario� it would have to be true that there are many
more f for which a��s histogram is better than a��s than vice�versa� but it is only slightly
better for all those f � For such a scenario� in a certain sense a� has better �head�to�head�
minimax behavior than a�� there are f for which a� beats a� badly� but none for which a�
does substantially worse than a��

��



Formally� we say that there exists head�to�head minimax distinctions between two algo�
rithms a� and a� i� there exists a k such that for at least one cost function f � the di�erence
E�c j f�m� a��	E�c j f�m� a�� � k� but there is no other f for which E�c j f�m� a��	E�c j
f�m� a�� � k� A similar de�nition can be used if one is instead interested in ��c� or dym
rather than �c��

It appears that analyzing head�to�head minimax properties of algorithms is substantially
more di�cult than analyzing average behavior like in the NFL theorem�� Presently� very
little is known about minimax behavior involving stochastic algorithms� In particular� it is
not known if there are any senses in which a stochastic version of a deterministic algorithm
has better!worse minimax behavior than that deterministic algorithm� In fact� even if we
stick completely to deterministic algorithms� only an extremely preliminary understanding
of minimax issues has been reached�

What we do know is the following� Consider the quantity

X
f

Pdym�� �d
y
m��
z� z� j f�m� a�� a���

for deterministic algorithms a� and a�� By PAa� is meant the distribution of a random
variable A evaluated at A � a�� For deterministic algorithms� this quantity is just the
number of f such that it is both true that a� produces a population with Y components z
and that a� produces a population with Y components z��

In Appendix F� it is proven by example that this quantity need not be symmetric under
interchange of z and z��

Theorem � In general�

X
f

Pdym�� �d
y
m��
z� z� j f�m� a�� a�� ��

X
f

Pdym�� �d
y
m��
z�� z j f�m� a�� a��� ��

This means that under certain circumstances� even knowing only the Y components of the
populations produced by two algorithms run on the same unknown� f � we can infer some�
thing concerning what algorithm produced each population�

Now consider the quantity

X
f

PC��C�z� z
� j f�m� a�� a���

again for deterministic algorithms a� and a�� This quantity is just the number of f such that
it is both true that a� produces a histogram z and that a� produces a histogram z�� It too
need not be symmetric under interchange of z and z� see Appendix F�� This is a stronger
statement then the asymmetry of dy �s statement� since any particular histogram corresponds
to multiple populations�

It would seem that neither of these two results directly implies that there are algorithms
a� and a� such that for some f a��s histogram is much better than a��s� but for no f �s is the
reverse is true� To investigate this problem involves looking over all pairs of histograms one
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pair for each f� such that there is the same relationship between the performances of the
algorithms� as re�ected in� the histograms� Simply having an inequality between the sums
presented above does not seem to directly imply that the relative performances between
the associated pair of histograms is asymmetric� To formally establish this would involve
creating scenarios in which there is an inequality between the sums� but no head�to�head
minimax distinctions� Such an analysis is beyond the scope of this paper��

On the other hand� having the sums equal does carry obvious implications for whether
there are head�to�head minimax distinctions� For example� if both algorithms are determinis�
tic� then for any particular f Pdym�� �d

y
m��
z�� z� j f�m� a�� a�� equals � for one z�� z�� pair� and �

for all others� In such a case�
P

f Pdym�� �d
y
m��
z�� z� j f�m� a�� a�� is just the number of f that re�

sult in the pair z�� z��� So
P

f Pdym�� �d
y
m��
z� z� j f�m� a�� a�� �

P
f Pdym�� �d

y
m��
z�� z j f�m� a�� a��

implies that there are no head�to�head minimax distinctions between a� and a�� The converse
does not appear to hold however��

As a preliminary analysis of whether there can be head�to�head minimax distinctions� we
can exploit the result in Appendix F� which concerns the case where jX j � jYj � �� First�
de�ne the following performance measures of two�element populations� Qdy���

i� Qy�� y�� � Qy�� y�� � ��

ii� Qy�� y�� � Qy�� y�� � ��

iii� Q of any other argument � ��

In Appendix F we show that for this scenario there exist pairs of algorithms a� and a� such
that for one f a� generates the histogram fy�� y�g and a� generates the histogram fy�� y�g�
but there is no f for which the reverse occurs i�e�� there is no f such that a� generates the
histogram fy�� y�g and a� generates fy�� y�g��

So in this scenario� with our de�ned performance measure� there are minimax distinc�
tions between a� and a�� For one f the performance measures of algorithms a� and a� are
respectively � and �� The di�erence in the Q values for the two algorithms is � for that f �
However there are no other f for which the di�erence is ��� For this Q then� algorithm a� is
minimax superior to algorithm a��

It is not currently known what restrictions on Qdym� are needed for there to be minimax
distinctions between the algorithms� As an example� it may well be that for Qdym� �
minifdymi�g there are no minimax distinctions between algorithms�

More generally� at present nothing is known about �how big a problem� these kinds of
asymmetries are� All of the examples of asymmetry considered here arise when the set of

�Consider the grid of all �z� z�� pairs� Assign to each grid point the number of f that result in that grid
point�s �z� z�� pair� Then our constraints are i� by the hypothesis that there are no head�to�head minimax
distinctions� if grid point �z�� z�� is assigned a non�zero number� then so is �z�� z��	 and ii� by the no�free�
lunch theorem� the sum of all numbers in row z equals the sum of all numbers in column z� These two
constraints do not appear to imply that the distribution of numbers is symmetric under interchange of rows
and columns� Although again� like before� to formally establish this point would involve explicitly creating
search scenarios in which it holds�
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X values a� has visited overlaps with those that a� has visited� Given such overlap� and
certain properties of how the algorithms generated the overlap� asymmetry arises� A precise
speci�cation of those �certain properties� is not yet in hand� Nor is it known how generic
they are� i�e�� for what percentage of pairs of algorithms they arise� Although such issues are
easy to state see Appendix F�� it is not at all clear how best to answer them�

However consider the case where we are assured that in m steps the populations of two
particular algorithms have not overlapped� Such assurances hold� for example� if we are
comparing two hill�climbing algorithms that start far apart on the scale of m� in X � It
turns out that given such assurances� there are no asymmetries between the two algorithms
for m�element populations� To see this formally� go through the argument used to prove
the NFL theorem� but apply that argument to the quantity

P
f Pdym�� �d

y
m��
z� z� j f�m� a�� a��

rather than P �c j f�m� a�� Doing this establishes the following�

Theorem� If there is no overlap between dxm�� and dxm��� then

X
f

Pdym�� �d
y
m��
z� z� j f�m� a�� a�� �

X
f

Pdym�� �d
y
m��
z�� z j f�m� a�� a��� ��

An immediate consequence of this theorem is that under the no�overlap conditions� the
quantity

P
f PC��C�z� z

� j f�m� a�� a�� is symmetric under interchange of z and z�� as are
all distributions determined from this one over C� and C� e�g�� the distribution over the
di�erence between those C�s extrema��

Note that with stochastic algorithms� if they give non�zero probability to all dxm� there
is always overlap to consider� So there is always the possibility of asymmetry between
algorithms if one of them is stochastic�

� P �f ��independent results

All work to this point has largely considered the behavior of various algorithms across a wide
range of problems� In this section we introduce the kinds of results that can be obtained
when we reverse roles and consider the properties of many algorithms on a single problem�
More results of this type are found in �MW��	� The results of this section� although less
sweeping than the NFL results� hold no matter what the real world�s distribution over cost
functions is�

Let a and a� be two search algorithms� De�ne a �choosing procedure� as a rule that
examines the samples dm and d�m� produced by a and a� respectively� and based on those
populations� decides to use either a or a� for the subsequent part of the search� As an
example� one �rational� choosing procedure is to use a for the subsequent part of the search
if and only it has generated a lower cost value in its sample than has a�� Conversely we
can consider a �irrational� choosing procedure that went with the algorithm that had not
generated the sample with the lowest cost solution�

At the point that a choosing procedure takes e�ect the cost function will have been
sampled at d� � dm �d�m� Accordingly� if d�m refers to the samples of the cost function that
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come after using the choosing algorithm� then the user is interested in the remaining sample
d�m� As always� without loss of generality it is assumed that the search algorithm chosen
by the choosing procedure does not return to any points in d��	

The following theorem� proven in Appendix G� establishes that there is no a priori
justi�cation for using any particular choosing procedure� Loosely speaking� no matter what
the cost function� without special consideration of the algorithm at hand� simply observing
how well that algorithm has done so far tells us nothing a priori about how well it would do
if we continue to use it on the same cost function� For simplicity� in stating the result we
only consider deterministic algorithms�

Theorem 	 Let dm and d�m be two �xed samples of size m� that are generated when the
algorithms a and a� respectively are run on the �arbitrary� cost function at hand� Let A and
B be two di�erent choosing procedures� Let k be the number of elements in c�m� ThenX

a�a�

P c�m j f� d� d�� k� a� a�� A� �
X
a�a�

P c�m j f� d� d�� k� a� a�� B��

Implicit in this result is the assumption that the sum excludes those algorithms a and a�

that do not result in d and d� respectively when run on f �
In the precise form it is presented above� the result may appear misleading� since it

treats all populations equally� when for any given f some populations will be more likely
than others� However even if one weights populations according to their probability of
occurrence� it is still true that� on average� the choosing procedure one uses has no e�ect on
likely c�m� This is established by the following result� proven in Appendix H�

Theorem �
 Under the conditions given in the preceding theorem�

X
a�a�

P c�m j f�m� k� a� a�� A� �
X
a�a�

P c�m j� f�m� k� a� a�� B��

These results show that no assumption for P f� alone justi�es using some choosing
procedure as far as subsequent search is concerned� To have an intelligent choosing procedure�
one must take into account not only P f� but also the search algorithms one is choosing
among� This conclusion may be surprising� In particular� note that it means that there is no
intrinsic advantage to using a rational choosing procedure� which continues with the better
of a and a�� rather than using a irrational choosing procedure which does the opposite�

These results also have interesting implications for degenerate choosing procedures A �
falways use algorithm ag� and B � falways use algorithm a�g� As applied to this case� they

�a can know to avoid the elements it has seen before� However a priori� a has no way to avoid the elements
it hasn�t seen yet but that a� has �and vice�versa�� Rather than have the de�nition of a somehow depend
on the elements in d�� d �and similarly for a��� we deal with this problem by de�ning c�m to be set only by
those elements in d�m that lie outside of d�� �This is similar to the convention we exploited above to deal
with potentially retracing algorithms�� Formally� this means that the random variable c�m is a function of
d� as well as of d�m� It also means there may be fewer elements in the histogram c�m than there are in the
population d�m�
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mean that for �xed f� and f�� if f� does better on average� with the algorithms in some set
A� then f� does better on average� with the algorithms in the set of all other algorithms�
In particular� if for some favorite algorithms a certain �well�behaved� f results in better
performance than does the random f � then that well�behaved f gives worse than random
behavior on the set all remaining algorithms� In this sense� just as there are no universally
e�cacious search algorithms� there are no universally benign f which can be assured of
resulting in better than random performance regardless of one�s algorithm�

In fact� things may very well be worse than this� In supervised learning� there is a
related result �Wol��a	� Translated into the current context that result suggests that if one
restricts our sums to only be over those algorithms that are a good match to P f�� then it is
often the case that�stupid� choosing procedures � like the irrational procedure of choosing
the algorithm with the less desirable �c � outperform �intelligent� ones� What the set of
algorithms summed over must be for a rational choosing procedure to be superior to an
irrational is not currently known�

� Conclusions

A framework has been presented in which to compare general�purpose optimization algo�
rithms� A number of NFL theorems were derived that demonstrate the danger of comparing
algorithms by their performance on a small sample of problems� These same results also in�
dicate the importance of incorporating problem�speci�c knowledge into the behavior of the
algorithm� A geometric interpretation was given showing what it means for an algorithm to
be well�suited to solving a certain class of problems� The geometric perspective also suggests
a number of measures to compare the similarity of various optimization algorithms�

More direct calculational applications of the NFL theorem were demonstrated by inves�
tigating certain information theoretic aspects of search� as well as by developing a number
of benchmark measures of algorithm performance� These benchmark measures should prove
useful in practice�

We provided an analysis of the ways that algorithms can di�er a priori despite the
NFL theorems� We have also provided an introduction to a variant of the framework that
focuses on the behavior of a range of algorithms on speci�c problems rather than speci�c
algorithms over a range of problems�� This variant leads directly to reconsideration of many
issues addressed by computational complexity� as detailed in �MW��	�

Much future work clearly remains � the reader is directed to �WM��	 for a list of some
of it� Most important is the development of practical applications of these ideas� Can the ge�
ometric viewpoint be used to construct new optimization techniques in practice� We believe
the answer to be yes� At a minimum� as Markov random �eld models of landscapes become
more wide�spread� the approach embodied in this paper should �nd wider applicability�
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A NFL proof for static cost functions

We show that
P

f P �c j f�m� a� has no dependence on a� Conceptually� the proof is quite
simple but necessary book�keeping complicates things� lengthening the proof considerably�
The intuition behind the proof is quite simple though� by summing over all f we ensure that
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the past performance of an algorithm has no bearing on its future performance� Accordingly�
under such a sum� all algorithms perform equally�

The proof is by induction� The induction is based on m � � and the inductive step is
based on breaking f into two independent parts� one for x � dxm and one for x �� dxm� These
are evaluated separately� giving the desired result�

For m � � we write the sample as d� � fdx� � fdx��g where dx� is set by a� The only
possible value for dy� is fd

x
��� so we have �X

f

P dy� j f�m � �� a� �
X
f

dy�� fd
x
���

where  is the Kronecker delta function�
Summing over all possible cost functions� dy�� fd

x
��� is � only for those functions which

have cost dy� at point d
x
� � Therefore that sum equals jYjjX j��� independent of dx��X

f

P dy� j f�m � �� a� � jYjjX j��

which is independent of a� This bases the induction�
The inductive step requires that if

P
f P d

y
mjf�m� a� is independent of a for all dym� then

so also is
P

f P d
y
m��jf�m� �� a�� Establishing this step completes the proof�

We begin by writing

P dym��jf�m� �� a� � P fdym����� � � � � d
y
m��m�g� dym��m� ��jf�m� �� a�

� P dym� d
y
m��m� ��jf�m� �� a�

� P dym��m� ��jdm� f�m� �� a�P dymjf�m� �� a�

and thusX
f

P dym��jf�m� �� a� �
X
f

P dym��m� ��jdym� f�m� �� a�P dymjf�m� �� a��

The new y value� dym��m � ��� will depend on the new x value� f and nothing else� So we
expand over these possible x values� obtainingX

f

P dym��jf�m��� a� �
X
f�x

P dym��m� ��jf� x�P xjdym� f�m��� a�P dymjf�m� �� a�

�
X
f�x

dym��m� ��� fx��P xjdym� f�m��� a�P dymjf�m� �� a��

Next note that since x � adxm� d
y
m�� it does not depend directly on f � Consequently we

expand in dxm to remove the f dependence in P xjdym� f�m��� a��X
f

P dym��jf�m��� a� �
X

f�x�dxm

dym��m� ��� fx��P xjdm� a�P dxmjdym� f�m� �� a�

� P dymjf�m� �� a�

�
X
f�dxm

dym��m� ��� fadm��� � P dmjf�m� a�
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where use was made of the fact that P xjdm� a� � x� adm�� and the fact that P dmjf�m�
�� a� � P dmjf�m� a��

The sum over cost functions f is done �rst� The cost function is de�ned both over those
points restricted to dxm and those points outside of dxm� P dmjf�m� a� will depend on the f
values de�ned over points inside dxm while dym��m� ��� fadm��� depends only on the f
values de�ned over points outside dxm� Recall that ad

x
m� �� dxm�� So we haveX

f

P dym��jf�m��� a� �
X
dxm

X
f�x�dxm�

P dmjf�m� a�
X

f�x��dxm�

dym��m���� fadm���� 
�

The sum
P

f�x ��dxm� contributes a constant� jYjjX j�m��� equal to the number of functions
de�ned over points not in dxm passing through dxm��m� ��� fadm���� SoX

f

P dym��jf�m��� a� � jYjjX j�m��
X

f�x�dxm��dxm

P dmjf�m� a�

�
�

jYj
X
f�dxm

P dmjf�m� a�

�
�

jYj
X
f

P dymjf�m� a�

By hypothesis the right hand side of this equation is independent of a� so the left hand side
must also be� This completes the proof�

B NFL proof for time�dependent cost functions

In analogy with the proof of the static NFL theorem� the proof for the time�dependent case
proceeds by establishing the a�independence of the sum

P
T P cj f� T�m� a�� where here c is

either dym or Dy
m�

To begin� replace each T in this sum with a set of cost functions� fi� one for each iteration
of the algorithm� To do this� we start with the following�X

T

P cjf� T�m� a� �
X
T

X
dxm

X
f����fm

P cj�f� dxm� T�m� a�P f� � � � fm� dxm j f�� T�m� a�

�
X
dxm

X
f����fm

P �c j �f� dxm�P dxm j �f�m� a�
X
T

P f� � � � fm j f�� T�m� a��

where the sequence of cost functions� fi� has been indicated by the vector �f � f�� � � � � fm��
In the next step� the sum over all possible T is decomposed into a series of sums� Each sum
in the series is over the values T can take for one particular iteration of the algorithm� More
formally� using fi�� � Tifi�� we writeX

T

P cjf� T�m� a� �
X
dxm

X
f����fm

P �c j �f� dxm�P dxm j �f �m� a�

�X
T�

f�� T�f��� � � �
X
Tm��

fm� Tm��Tm��� � � T�f������
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Note that
P

T P cjf� T�m� a� is independent of the values of Ti�m��� so those values can be
absorbed into an overall a�independent proportionality constant�

Consider the innermost sum over Tm��� for �xed values of the outer sum indices T� � � � Tm���
For �xed values of the outer indices Tm��Tm��� � � T�f���� is just a particular �xed cost func�
tion� Accordingly� the innermost sum over Tm�� is simply the number of bijections of F that
map that �xed cost function to fm� This is the constant� jFj	��$� Consequently� evaluating
the Tm�� sum yieldsX

T

P cj f� T�m� a�� 
X
dxm

X
f� ���fm

P cj�f� dxm�P dxm j �f�m� a�

�X
T�

f�� T�f��� � � �
X
Tm��

fm��� Tm��Tm��� � �T�f������

The sum over Tm�� can be accomplished in the same manner Tm�� is summed over� In fact�
all the sums over all Ti can be done� leavingX

T

P cjf� T�m� a�� 
X
dxm

X
f����fm

P Dy
mj�f� dxm�P dxm j �f�m� a�

�
X
dxm

X
f����fm

P cj�f � dxm�P dxm j f� � � � fm���m� a�� ��

In this last step the statistical independence of c and fm has been used�
Further progress depends on whether c represents dym or Dy

m� We begin with analysis of

the Dy
m case� For this case P cj�f � dxm� � P Dy

mjfm� dxm�� since Dy
m only re�ects cost values

from the last cost function� fm� Using this result givesX
T

P Dy
mj f� T�m� a�� 

X
dxm

X
f����fm��

P dxmjf� � � � fm���m� a�
X
fm

P Dy
mjfm� dxm�

The �nal sum over fm is a constant equal to the number of ways of generating the sample
Dy
m from cost values drawn from fm� The important point is that it is independent of

the particular dxm� Because of this the sum over dxm can be evaluated eliminating the a
dependence� X

T

P Dy
mjf� T�m� a� X

f����fm��

X
dxm

P dxm j f� � � � fm���m� a�  �

This completes the proof of Theorem � for the case of Dy
m�

The proof of Theorem � is completed by turning to the dym case� This is considerably

more di�cult since P �c j �f� dxm� can not be simpli�ed so that the sums over fi can not be
decoupled� Nevertheless� the NFL result still holds� This is proven by expanding Equation
�� over possible dym values�X
T

P dymjf� T�m� a� X
dxm

X
f����fm

X
dym

P dymjdym�P dym j �f � dxm�P dxm j f� � � � fm���m� a�

�
X
dym

P dymjdym�
X
dxm

X
f����fm

P dxm j f� � � � fm���m� a�
mY
i��

dymi�� fid
x
mi���
���
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The innermost sum over fm only has an e�ect on the dymi�� fid
x
mi��� term so it contributesP

fm d
y
mm�� fmd

x
mm���� This is a constant� equal to jYjjX j��� This leaves

X
T

P dymj f� T�m� a� X
d
y
m

P dymjdym�
X
dxm

X
f����fm��

P dxm j f� � � � fm���m� a�
m��Y
i��

dymi�� fid
x
mi����

The sum over dxmm� is now simple�X
T

P dymjf� T�m� a� X
d
y
m

P dymjdym�
X
dxm���

� � � X
dxm�m���

X
f����fm��

P dxm�� j f� � � � fm���m� a�

�
m��Y
i��

dymi�� fid
x
mi����

The above equation is of the same form as Equation ���� only with a remaining population
of size m	 � rather than m� Consequently� in an analogous manner to the scheme used to
evaluate the sums over fm and dxmm� that existed in Equation ���� the sums over fm�� and
dxmm	 �� can be evaluated� Doing so simply generates more a�independent proportionality
constants� Continuing in this manner� all sums over the fi can be evaluated to �ndX

T

P �c j f� T�m� a�� 
X
d
y
m

P �c j dym�
X
dxm���

P dxm�� j m�a� dym��� f�d
x
m�����

There is algorithm�dependence in this result but it is the trivial dependence discussed pre�
viously� It arises from how the algorithm selects the �rst x point in its population� dxm���
Restricting interest to those points in the sample that are generated subsequent to the �rst�
this result shows that there are no distinctions between algorithms� Alternatively� summing
over the initial cost function f�� all points in the sample could be considered while still
retaining an NFL result�

C Proof of �f result

As noted in the discussion leading up to Theorem � the fraction of functions giving a speci�ed
histogram �c � m�� is independent of the algorithm� Consequently� a simple algorithm is
used to prove the theorem� The algorithm visits points in X in some canonical order�
say x�� x�� � � � � xm� Recall that the histogram �c is speci�ed by giving the frequencies of
occurrence� across the x�� x�� � � � � xm� for each of the jYj possible cost values� The number
of f �s giving the desired histogram under this algorithm is just the multinomial giving the
number of ways of distributing the cost values in �c� At the remaining jX j 	m points in X
the cost can assume any of the jYj f values giving the �rst result of Theorem ��

The expression of �f ��� in terms of the entropy of �� follows from an application of
Stirling�s approximation to order O��m�� which is valid when all of the ci are large� In this

��



case the multinomial is written�

ln

�
m

c� c� � � � cjYj

�

� m lnm	

jYjX
i��

ci ln ci �
�

�

�
lnm	

jYjX
i��

ln ci

�


� mS��� �
�

�

��
�	 jYj

�
lnm	

jYjX
i��

ln�i

�

from which the theorem follows by exponentiating this result�

D Proof of �alg result

In this section the proportion of all algorithms that give a particular �c for a particular f is
calculated� The calculation proceeds in several steps�

Since X is �nite there are �nite number of di�erent samples� Therefore any determinis�
tic� a is a huge # but �nite # list indexed by all possible d�s� Each entry in the list is the x
the a in question outputs for that d�index�

Consider any particular unordered set of m X �Y� pairs where no two of the pairs share
the same x value� Such a set is called an unordered path �� Without loss of generality� from
now on we implicitly restrict the discussion to unordered paths of length m� A particular
� is in or from a particular f if there is a unordered set of m x� fx�� pairs identical to ��
The numerator on the right�hand side of Equation �� is the number of unordered paths in
the given f that give the desired �c�

The number of unordered paths in f that give the desired �c � the numerator on the
right�hand side of Equation �� � is proportional to the number of a�s that give the desired
�c for f and the proof of this claim constitutes a proof of Equation ���� Furthermore� the
proportionality constant is independent of f and �c�

Proof� The proof is established by constructing a mapping � � a �� � taking in an a that
gives the desired �c for f � and producing a � that is in f and gives the desired �c� Showing
that for any � the number of algorithms a such that �a� � � is a constant� independent of
�� f � and �c� and that � is single�valued will complete the proof�

Recalling that that every x value in an unordered path is distinct any unordered path �
gives a set of m$ di�erent ordered paths� Each such ordered path �ord in turn provides a set
of m successive d�s if the empty d is included� and a following x� Indicate by d�ord� this
set of the �rst m d�s provided by �ord�

%From any ordered path �ord a �partial algorithm� can be constructed� This consists
of the list of an a� but with only the m d�ord� entries in the list �lled in� the remaining
entries are blank� Since there are m$ distinct partial a�s for each � one for each ordered path
corresponding to ��� there are m$ such partially �lled�in lists for each �� A partial algorithm
may or may not be consistent with a particular full algorithm� This allows the de�nition
of the inverse of �� for any � that is in f and gives �c� ����� � the set of all a that are
consistent with at least one partial algorithm generated from � and that give �c when run on
f��
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To complete the �rst part of the proof it must be shown that for all � that are in f and
give �c� ����� contains the same number of elements� regardless of �� f � or c� To that end�
�rst generate all ordered paths induced by � and then associate each such ordered path with
a distinct m�element partial algorithm� Now how many full algorithms lists are consistent
with at least one of these partial algorithm partial lists� How this question is answered is
the core of this appendix� To answer this question� reorder the entries in each of the partial
algorithm lists by permuting the indices d of all the lists� Obviously such a reordering won�t
change the answer to our question�

Reordering is accomplished by interchanging pairs of d indices� First� interchange any
d index of the form dxm��� d

y
m���� � � � � d

x
mi � m�� dymi � m��� whose entry is �lled in

in any of our partial algorithm lists with d�d� � dxm��� z�� � � � � d
x
mi�� z��� where z is

some arbitrary constant Y value and xj refers to the j�th element of X � Next� create some
arbitrary but �xed ordering of all x � X � x�� � � � � xjX j�� Then interchange any d� index of
the form dxm��� z� � � � � d

x
mi � m�� z� whose entry is �lled in in any of our new� partial

algorithm lists with d��d�� � x�� z�� � � � � xm� z��� Recall that all the dxmi� must be distinct�
By construction� the resultant partial algorithm lists are independent of �� �c and f � as is the
number of such lists it�s m$�� Therefore the number of algorithms consistent with at least
one partial algorithm list in ����� is independent of �� c and f � This completes the �rst
part of the proof�

For the second part� �rst choose any � unordered paths that di�er from one another� A
and B� There is no ordered path Aord constructed from A that equals an ordered path Bord

constructed from B� So choose any such Aord and any such Bord� If they disagree for the
null d� then we know that there is no deterministic� a that agrees with both of them� If
they agree for the null d� then since they are sampled from the same f � they have the same
single�element d� If they disagree for that d� then there is no a that agrees with both of
them� If they agree for that d� then they have the same double�element d� Continue in this
manner all the up to the m	 ���element d� Since the two ordered paths di�er� they must
have disagreed at some point by now� and therefore there is no a that agrees with both of
them� Since this is true for any Aord from A and any Bord from B� we see that there is no a
in ���A� that is also in ���B�� This completes the proof�

To show the relation to the Kullback�Liebler distance the product of binomials is ex�
panded with the aid of Stirlings approximation when both Ni and ci are large�

ln
jYjY
i��

�
Ni

ci

�

�

jYjX
i��

	�
�
ln �� �Ni lnNi 	 ci ln ci 	 Ni 	 ci� lnNi 	 ci� �

�

�

�
lnNi 	 lnNi 	 ci�	 ln ci

�
�

We it has been assumed that ci�Ni � �� which is reasonable when m � jXj� Expanding
ln�	 z� � 	z 	 z��� 	 � � � � to second order gives

ln
jYjY
i��

�
Ni

ci

�

�

jYjX
i��

ci ln
�Ni

ci

�
	 �

�
ln ci � ci 	 �

�
ln �� 	 ci

�Ni

�
ci 	 � � � � �

�

�




Using m�jX j � � then in terms of �� and �� one �nds

ln
jYjY
i��

�
Ni

ci

�

� 	mDKL��� ��� �m	m ln

� m

jX j
�
	 jYj

�
ln ��

	
jYjX
i��

�

�
ln�im� �

m

�jX j
��i
�i

�
�	 �im� � � � ��

whereDKL��� ��� � P
i �i ln�i��i� is the Kullback�Liebler distance between the distributions

�� and ��� Exponentiating this expression yields the second result in Theorem ��

E Benchmark measures of performance

The result for each benchmark measure is established in turn�
The �rst measure is

P
f P mind

y
m�jf�m� a�� Consider

X
f

P mindym�jf�m� a� ���

for which the summand equals � or � for all f and deterministic a� It is � only if

i� fdxm��� � dym��

ii� fa�dm��	� � dym��

iii� fa�dm��� dm��	� � dym��

and so on� These restrictions will �x the value of fx� at m points while f remains free at
all other points� Therefore

X
f

P dym j f�m� a� � jYjjX j�m�

Using this result in Equation ��� we �nd

X
f

P mindym� � 	 j f�m� � �

jYjm
X
dym

P mindym� � 	 j dym� �
�

jYjm
X

dym�min�dym���

�

�
�

jYjm jYj 	 	�m�

which is the result quoted in Theorem ��
In the limit as jYj gets large write Pf Emin�c�jf�m� �

PjYj
��� 	�


m	 	 �� 	 
m	�	 and

substitute in for 
	� � � 	 	�jYj� Replacing 	 with � � � turns the sum into
PjYj��

��� �� �

�	 ��	 �

Yj�

m 	 � 	 ���
jYj
�m	� Next� write jYj � b�& for some b and multiply and divide the

summand by &� Since jYj � � then &� �� To take the limit of &� �� apply L�hopital�s
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rule to the ratio in the summand� Next use the fact that & is going to � to cancel terms
in the summand� Carrying through the algebra� and dividing by b�&� we get a Riemann
sum of the form m

b�

R b
� dx x� 	 x�b�m��� Evaluating the integral gives the second result in

Theorem ��
The second benchmark concerns the behavior of the random algorithm� Marginalizing

over the Y values of di�erent histograms �c� the performance of �a is

P min�c� � 	 j f�m� �a� �
X
�c

P min�c� � 	 j�c�P �c j f�m� �a�

Now P �c j f�m� �a� is the probability of obtaining histogram �c inm random draws from the

histogram �N of the function f � This can be viewed as the de�nition of �a� This probability
has been calculated previously as

QjYj
i��

�
Ni

ci

�
�
�
jX j
m

�
� So

P min�c� � 	 j f�m��a� �
��
jX j
m

� mX
c���

� � �
mX

cjYj��


jYjX
i��

ci�m�P min�c� � 	j�c�
jYjY
i��

�
Ni

ci

�

�
��
jX j
m

� mX
c���

� � �
mX

cjYj��


jYjX
i��

ci�m�
jYjY
i��

�
Ni

ci

�

�

�PjYj

i��
Ni

m

�
�
jX j
m

� �
�
����jX j

m

�
�
jX j
m

�
which is Equation �� of Theorem ��

F Proof related to minimax distinctions between algo�

rithms

The proof is by example�
Consider three points in X � x�� x�� and x�� and three points in Y � y�� y�� and y��

�� Let the �rst point a� visits be x�� and the �rst point a� visits be x��

�� If at its �rst point a� sees a y� or a y�� it jumps to x�� Otherwise it jumps to x��

�� If at its �rst point a� sees a y�� it jumps to x�� If it sees a y�� it jumps to x��

Consider the cost function that has as the Y values for the three X values fy�� y�� y�g�
respectively�

For m � �� a� will produce a population y�� y�� for this function� and a� will produce
y�� y���

The proof is completed if we show that there is no cost function so that a� produces a
population containing y� and y� and such that a� produces a population containing y� and
y��

There are four possible pairs of populations to consider�

��



i� �y�� y��� y�� y��	�

ii� �y�� y��� y�� y��	�

iii� �y�� y��� y�� y��	�

iv� �y�� y��� y�� y��	�

Since if its �rst point is a y� a� jumps to x� which is where a� starts� when a��s �rst point is
a y� its second point must equal a��s �rst point� This rules out possibilities i� and ii��

For possibilities iii� and iv�� by a��s population we know that f must be of the form
fy�� s� y�g� for some variable s� For case iii�� s would need to equal y�� due to the �rst point
in a��s population� However for that case� the second point a� sees would be the value at x��
which is y�� contrary to hypothesis�

For case iv�� we know that the s would have to equal y�� due to the �rst point in a��s
population� However that would mean that a� jumps to x� for its second point� and would
therefore see a y�� contrary to hypothesis�

Accordingly� none of the four cases is possible� This is a case both where there is no
symmetry under exchange of dy�s between a� and a�� and no symmetry under exchange of
histograms� QED�

G Fixed cost functions and choosing procedures

Since any deterministic search algorithm is a mapping from d � D to x � X � any search
algorithm is a vector in the space XD� The components of such a vector are indexed by the
possible populations� and the value for each component is the x that the algorithm produces
given the associated population�

Consider now a particular population d of size m� Given d� we can say whether any
other population of size greater than m has the ordered� elements of d as its �rst m or�
dered� elements� The set of those populations that do start with d this way de�nes a set of
components of any algorithm vector a� Those components will be indicated by a�d�

The remaining components of a are of two types� The �rst is given by those populations
that are equivalent to the �rst M � m elements in d for some M � The values of those
components for the vector algorithm a will be indicated by a	d� The second type consists of
those components corresponding to all remaining populations� Intuitively� these are popu�
lations that are not compatible with d� Some examples of such populations are populations
that contain as one of their �rst m elements an element not found in d� and populations that
re�order the elements found in d� The values of a for components of this second type will be
indicated by a
d�

Let proc be either A or B� We are interested in

X
a�a�

P c�m j f� d�� d�� k� a� a�� proc� �
X

a�d�a
�
�d�

X
a�d�a

�
�d�

X
a�d�a

�
�d�

P c�mjf� d� d�� k� a� a�� proc��

��



The summand is independent of the values of a
d and a�
d for either of our two d�s� In
addition� the number of such values is a constant� It is given by the product� over all
populations not consistent with d� of the number of possible x each such population could
be mapped to�� Therefore� up to an overall constant independent of d� d�� f � and proc� the
sum equals

X
a�d�a

�
�d�

X
a�d�a

�
�d�

P c�m j f� d� d�� a�d� a��d� � a	d� a�	d�� proc��

By de�nition� we are implicitly restricting the sum to those a and a� so that our summand
is de�ned� This means that we actually only allow one value for each component in a	d
namely� the value that gives the next x element in d�� and similarly for a�	d�� Therefore the
sum reduces to

X
a�d�a

�
�d�

P c�m j f� d� d�� a�d� a��d�� proc��

Note that no component of a�d lies in dx�� The same is true of a
�
�d�� So the sum over a�d is

over the same components of a as the sum over a��d� is of a
�� Now for �xed d and d�� proc�s

choice of a or a� is �xed� Accordingly� without loss of generality� the sum can be rewritten
as

X
a�d

P c�m j f� d� d�� a�d�

with the implicit assumption that c�m is set by a�d� This sum is independent of proc�

H Proof of Theorem 	

Let proc refer to a choosing procedure� We are interested in

X
a�a�

P c�m j f�m� k� a� a�� proc� �
X

a�a��d�d�

P c�m j f� d� d�� k� a� a�� proc�

� P d� d� j f� k�m� a� a�� proc��

The sum over d and d� can be moved outside the sum over a and a�� Consider any term in that
sum i�e�� any particular pair of values of d and d��� For that term� P d� d� j f� k�m� a� a�� proc�
is just � for those a and a� that result in d and d� respectively when run on f � and �
otherwise� Recall the assumption that a and a� are deterministic�� This means that the
P d� d� j f� k�m� a� a�� proc� factor simply restricts our sum over a and a� to the a and a�

considered in our theorem� Accordingly� our theorem tell us that the summand of the sum
over d and d� is the same for choosing procedures A and B� Therefore the full sum is the
same for both procedures�

��


