
No Free Lunch Theorems for Search

David H� Wolpert�dhw�santafe�edu�
William G� Macready�wgm�santafe�edu�

The Santa Fe Institute

���� Hyde Park Rd�

Santa Fe� NM� ������ USA

February 	� ����

Abstract

We show that all algorithms that search for an extremum of a cost

function perform exactly the same� when averaged over all possible cost

functions� In particular� if algorithm A outperforms algorithm B on some

cost functions� then loosely speaking there must exist exactly as many

other functions where B outperforms A� Starting from this we analyze a

number of the other a priori characteristics of the search problem� like its

geometry and its information�theoretic aspects� This analysis allows us

to derive mathematical benchmarks for assessing a particular search algo�

rithm�s performance� We also investigate minimax aspects of the search

problem� the validity of using characteristics of a partial search over a

cost function to predict future behavior of the search algorithm on that

cost function� and time�varying cost functions� We conclude with some

discussion of the justi�ability of biologically�inspired search methods�

� Introduction

Many problems can be cast as optimization over a cost function� In such a
problem� we are given a particular mapping f � X � Y �F being the set of
all such mappings�� For that f we seek the set of x� � X which give rise to
a particular y� � Y� Most often� we seek the x��s which extremize f �this
will often be implicitly assumed in this paper�� Physical examples of such a
problem include free energy minimization �Y � �� over spin con�gurations
�X � f���	�gN�� or over bond angles �X � f� � � � �gN �� etc� Examples
also abound in combinatorial optimization� ranging from number partitioning
to graph coloring to scheduling
���

There are two common approaches to these optimization problems� The
�rst is a systematic construction of a good X value� x�� from good sub�solutions

�

specifying part of x�� The most celebrated method of this type is the branch
and bound algorithm
�� For this systematic and exhaustive approach to work
in reasonable time� one must have an e�ective heuristic� h�n�� representing the
quality of sub�solutions n� There is extensive theoretical work
�� linking the
cost function to the properties a heuristic must have in order to search e�ciently�

A second approach to optimization begins with a population of one or more
complete solutions x � X and the associated Y values� and �tries to� itera�
tively improves upon those X values� There are many algorithms of this type�
including hill�climbing� simulated annealing
��� and genetic algorithms
���

Intuitively� one would expect that for this class of algorithms to work ef�
fectively� the biases in how they try to improve the population �i�e�� the biases
in how they search X � must �match� those implicit in the cost function they
are optimizing� However almost always these algorithms are directly applied�
with little or no modi�cation� to any cost function in a wide class of cost func�
tions� with no concern for the particulars of the cost functions at hand� As
we will demonstrate though� the �matching� intuition is true� blind faith in an
algorithm to search e�ectively across a broad class of problems is rarely justi�ed�

Indeed� one might expect that there are pairs of search algorithms A and B
such thatA performs better thanB on average� even ifB sometimes outperforms
A� As an example� one might expect that hill�climbing usually outperforms hill�
descending if one�s goal is to �nd a maximum of the cost function� One might
also expect it would outperform a random search� In point of fact though�
as our central result demonstrates� this is not the case� If we do not take
into account any particular biases or properties of our cost function� then the
expected performance of all algorithms on that function are exactly the same�

In short� there are no �free lunches� for e�ective optimization� any algorithm
performs only as well as the knowledge concerning the cost function put into
the cost algorithm� For this reason we have dubbed our central result a �no free
lunch� �NFL� theorem�

To prove the NFL theorem a framework has to be developed which addresses
the core aspects of search� This framework constitutes the �skeleton� of the op�
timization problem� it is what can be said concerning search before explicit
details of a particular real�world search problem are considered� The construc�
tion of such a skeleton provides a language to ask and answer formal questions
about search� some of which have never before even been asked� never mind
answered� �We pose and answer a number of such questions in this paper�� In
addition� such a skeleton indicates where the real �meat� of optimization lies�
It clari�es what the core issues are that underly the e�ectiveness of the search
process�

The paper is organized as follows� We begin in Section by presenting
our framework and using it to prove the NFL theorem� We prove the theorem
for both deterministic and stochastic search algorithms� Section � then gives
a geometric interpretation of the NFL theorem� In particular� in that section
we provide a geometric meaning of what it means for an algorithm to be well

�matched� to a cost function� It may be argued that the average behavior of
algorithms is not an interesting quantity by which to compare algorithms� and
thus the NFL results are of limited value� We address this potential criticism
in Section � by investigating minimax distinctions between algorithms�Section
� begins exploring some of the questions and answers raised by the framework
developed in Section � Some of those answers lead naturally into results con�
cerning the information theoretic aspects of search� Those results demonstrate
the importance of the NFL theorem in analyzing optimization �those results are
derived from the NFL theorem�� A myriad of other properties of search may be
investigated using techniques similar to those developed in this section� We list
a sample of these in Section ��� In Section � we turn to the important problem
of assessing the performance of particular search algorithms� We derive two
�benchmarks� against which to compare such an algorithm�s performance� Not
all search problems are static� in many cases the cost function changes over time�
Section � extends our analysis to the case of time dependent cost functions� In
section � we provide some theorems valid for any single �xed cost function�
These theorems state that one can not use a search algorithm�s behavior so far
for a particular cost function to predict its future behavior on that function�
Finally� we conclude in Section � with the implications and future directions for
our work�

The paper can be read in stages� A �rst reading might highlight the NFL
theorem and its broad implications� Such a reading should start with Section
 for an understanding of the NFL theorem� Eq� ���� Section � then provides
a geometric understanding of the theorem� Section �� which considers minimax
distinctions between algorithms� addresses limitations of the NFL theorem� Fi�
nally� Section ��� discusses broad implications of the NFL result�

A second reading might explore the potential of the framework we have
developed� Such a reading should include section �� which uses our framework
to demonstrate some of the information theoretic aspects of search� Section
� then uses the framework to provide useful benchmarks against which other
algorithms may be compared�

A �nal reading might investigate extensions of the above ideas� Such a
reading would include section �� which extends the NFL results to a class of
time�dependent cost functions� It would also include section �� which probes
what may be learned from a limited amount of search over a single� speci�c�
cost function� Concluding with Section �� we list many directions for future
extensions�

� No Free Lunch Theorems for Search

All search algorithms rely on extrapolating from an existing set of m points and
associated cost values� �x� y�m � �X � Y�m� to a new� hopefully low cost point�
x� � X � The extrapolation may be either deterministic or stochastic�

�

For simplicity take X and Y to be �nite� De�ne dm � fdm�i�g � fdxm�i�� dym�i�g �
Dm for i � � � � �m to be a set of m distinct search points and associated cost
values ordered in some way �usually according to the time at which they are
generated� with the ordering index given by i� Let us call this a population of
size m�

Let f indicate a single�valued function from X to Y� Note that there are a
�nite number of f if jX j and jYj are �nite� At each stage of a search algorithm�
a new point x � X is chosen based on the preceding members of d� the pair
fx�� f�x��g is added to d� and the procedure repeats�

Any search algorithm of the second type discussed in the introduction is
a �perhaps probabilistic� mapping taking any population to a new point in
the search space� For simplicity we assume that the new search point has not
already been visited� �As discussed below� relaxing this assumption does not
a�ect our results�� So in particular a deterministic search algorithm is a mapping
a � d � D � fx jx �� dg� where D � �mDm� and in particular contains the empty
set� For clarity of the exposition� in this paper we will only explicitly consider
such deterministic� non�retracing search algorithms� but� as discussed below� all
our results also apply to stochastic and retracing algorithms�

We are interested in the histogram� �c� of cost values that an algorithm� a�
obtains on a particular cost function� f � given m distinct cost evaluations� Note
that �c is given by the y values of the population� dym� and is a vector of length
jYjwhose ith component is the number of members in the population dm having
cost fi� Once we have �c we can use it to assess the quality of the search� For
example if we are searching for minima we might take the minimum value in �c
as our performance measure� Consequently� we are interested in the conditional
probability that histogram �c will be obtained under m applications of algorithm
a on f � We denote this quantity P ��c j f�m� a��

A major result of this work is that P ��c j f�m� a� is independent of a when
we average over all cost functions� In other words�

Theorem� For any pair of algorithms a� and a��X
f

P ��c j f�m� a�� �
X
f

P ��c j f�m� a��� ���

An immediate consequence of this result is that the expected histograms�
E��c j f�m� a� �

P
�c �c P ��c j f�m� a�� are on average identical between any two

pairs of algorithms� More generally� at the point in their search where they have
both created a population of size m� the performance of any two algorithms
�measured for example as the depth of the minimum found� is� on average�
identical �the average being over all possible cost functions�� In particular if a�
has better performance than a� over some subset � � F of functions� then a�
must perform better on the set of remaining functions F n �� So for example
if simulated annealing outperforms genetic algorithms on some set �� genetic
algorithms must outperform simulated annealing on F n ��

�

��� Proof for deterministic search

We now show that
P

f P ��c j f�m� a� has no dependence on a� Conceptually� the
proof involves the following steps� First� we reduce the distribution over �c values
to one over dym values� Then we use induction to establish the a�independence
of the distribution over dym� The inductive step starts by rearranging the distri�
butions in question� Then f is broken up into two independent parts� one for
x � dxm and one for x �� dxm� These are evaluated separately� giving the desired
result�

Expanding over all possible y components of a population of size m� dym� we
see

X
f

P ��c j f�m� a� �
X
f�dym

P ��c� dym j f�m� a�

Now P ��c� dym j f�m� � P ��c j dym� f�m� a�P �dym j f�m� a�� Moreover� the probabil�
ity of obtaining a histogram �c given f � d� m and a� P ��c j dym� f�m�� depends only
on the y values of population dm� Therefore

X
f

P ��c j f�m� a� �
X
f�dym

P ��c j dym�P �dym j f�m� a�

�
X
dym

P ��c j dym�
X
f

P �dym j f�m� a� ��

To prove that the expression in Eq� �� is independent of a it su�ces to show
that for all m and dym�

P
f P �dym j f�m� a� is independent of a� since P ��c j dym� is

independent of a� We will prove this by induction on m�
For m � � we write the population as d� � fdx��a�� f�dx��g where dx��a� is set

by a� The only possible value for dy� is f�x��� so we have �

X
f

P �dy� j f�m � �� a� �
X
f

��dy�� f�d
x
��a���

where � is the Kronecker delta function�
Now when we sum over all possible cost functions ��dy�� f�d

x
��a��� is � only

for those functions which have cost dy� at point d
x
��a�� Therefore that sum equals

jYjjXj��� independent of dx��a��

X
f

P �dy� j f�m � �� a� � jYjjXj��

which is independent of a� This bases the induction�
We now establish the inductive step� that if

P
f P �dym j f�m� a� is indepen�

dent of a for all dym� then so also is
P

f P �dym�� j f�m	�� a�� This will complete
the proof of the NFL result�

�

We start by writing

P �dm�� j f�m	 �� a� � P �fdm������ � � � � dm���m�g� dm���m 	 �� j f�m	 �� a�

� P �dm� dm���m 	 �� j f�m	 �� a�

� P �dm���m 	 �� j dm� f�m	 �� a�P �dm j f�m	 �� a�

so we have
X
f

P �dym�� j f�m	 �� a� �
X
f

P �dym���m 	 �� j dym� f�m	 �� a�P �dym j f�m	 �� a��

The new y value� dym���m 	 ��� will depend on the new x value� f and
nothing else� So we expand over these possible x values� getting

X
f

P �dym�� j f�m	�� a� �
X
f�x

P �dym���m 	 �� j f� x�P �x j dym� f�m	�� a�

�P �dym j f�m	 �� a�

�
X
f�x

��dym���m 	 ��� f�x��P �x j dym� f�m	�� a�

�P �dym j f�m	 �� a��

Next note that since x � a�dxm� d
y
m�� it does not depend directly on f � Con�

sequently we expand in dxm to remove the f dependence in P �x j dym� f�m	�� a��

X
f

P �dym�� j f�m	�� a� �
X

f�x�dxm

��dym���m 	 ��� f�x��P �x j dm� a�P �dxm j dym� f�m	 �� a�

�P �dym j f�m	 �� a�

�
X
f�dxm

��dym���m 	 ��� f�a�dm��� � P �dm j f�m� a�

where use was made of the fact that P �x j dm� a� � ��x� a�dm�� and the fact that
P �dm j f�m	 �� a� � P �dm j f�m� a��

We do the sum over cost functions f �rst� The cost function is de�ned both
over those points restricted to dxm and those points outside of dxm� P �dm j f�m�
will depend on the f values de�ned over points inside dxm while ��dym���m 	
��� f�a�dm��� depends only on the f values de�ned over points outside dxm�
�Recall that a�dxm� �� dxm�� So we have

X
f

P �dym�� j f�m	�� a� �
X
dxm

X
f�x�dxm �

P �dm j f�m� a�

�
X

f�x��dxm �

��dym���m	��� f�a�dm���� ���

�

The sum
P

f�x��dxm � contributes a constant� jYjjXj�m��� equal to the num�

ber of functions de�ned over points not in dxm passing through �dxm���m 	
��� f�a�dm���� SoX

f

P �dym�� j f�m	�� a� � jYjjXj�m��
X

f�x�dxm ��dxm

P �dm j f�m� a�

�
�

jYj
X
f�dxm

P �dm j f�m� a�

�
�

jYj
X
f

P �dym j f�m� a�

By hypothesis the right hand side of this equation is independent of a� so the
left hand side must also be� This completes the proof of the NFL result�

Note that the no free lunch result implies that if we know nothing about f �
then P ��c jm� a�� which is the probability we obtain histogram c after m distinct
cost evaluations of algorithm a� is independent of a� This follows from

P ��c jm� a� �
X
f

P ��c j f�m� a�P �f jm� a� �
X
f

P ��c j f�m� a�P �f�

since the cost function doesn�t depend on either m or a� If we know nothing
about f then all f are equally likely� so for all f P �f� � ��jYjjXj� �More gen�
erally� P �f� re�ects our �prior knowledge� concerning f �� Then P ��c jm� a� �
���jYjjXj�Pf P �c j f�m� a� which is independent of a by the no free lunch the�
orem�

The NFL theorem illustrates that even if we know something about f �per�
haps speci�ed through P �f�� but don�t incorporate that knowledge into a then
we have no assurances the a will be e�ective� we are simply relying on a fortu�
itous matching between f and a� This point is formally established in sections
� and ��

��� More general kinds of search

There are two restrictions on the de�nition of search algorithms used so far that
one might �nd objectionable� These are� i� the banning of algorithms that might
revisit the same points in X after placing them in dx� and ii� the banning of
algorithms that work stochastically rather than deterministically� Fortunately�
the NFL result can easily be extended to include either algorithms that revisit
points and�or are algorithms that are stochastic� So there is no loss of generality
in our de�nition of a �search algorithm��

To see this� say we have a deterministic algorithma � d � D � fx jx � Xg� so
that given some �perhaps empty� d� the algorithmmight produce a point x � dx�
Call such an algorithm �potentially retracing�� Given a potentially retracing

�

algorithm a� produce a new algorithm a� by �skipping over all duplications� in
the sequence of fx� yg pairs produced by the potentially retracing algorithm�
Formally� for any d� a��d� is de�ned as the �rst x value from the sequence
fa�	�� a�d�� a�a�d��� � � �g that is not contained in dx� So long as the original
algorithm a can not get stuck forever in some subset of d� we can always produce
such an a� from a� �We can �nd no reason to design one�s algorithm to not have
an �escape mechanism� that ensures that it can not get stuck forever in some
subset of d�� We will say that a� is a �compacted� version of a�

Now any two compacted algorithms are �search algorithms� in the sense the
term is used in the previous subsection� Therefore they obey the NFL result
of that subsection� So the NFL result in Eq� ��� holds even for potentially
retracing algorithms� if we rede�ne �m� in that equation to be the number of
distinct points in the dx�s produced by the algorithms� in question� and if we
rede�ne ��c� to be the histogram corresponding to those m distinct points�

Moreover� our real�world cost in using an algorithm is usually set by the
number of distinct evaluations of f�x�� So it makes sense to compare potentially
retracing algorithms not by looking at the d�s they produce after being run the
same number of times� but rather by looking at the d�s they produce after
sampling f�x� the same number of times� This is consistent with using our
rede�ned m and �c�

Note that the x at which a potentially retracing algorithm breaks out of a
cycle might be stochastic �e�g simulated annealing�� In this case the compacted
version of the algorithm is still well�de�ned� Only rather than being determinis�
tic� that compacted algorithm is stochastic� This brings us to the general issue
of how to adapt our analysis to address stochastic search algorithms�

Let � be a stochastic non�potentially retracting algorithm� Formally� this
means that � is a mapping taking any d to a �d�dependent� distribution over
X that equals zero for all x � dx� So � can be viewed as a �hyper�parameter��
specifying the function P �dxm���m 	 �� j dm� �� for all m and d�

Given this de�nition of �� we can follow along with the derivation of the NFL
result for deterministic algorithms� just with a replaced by � throughout� Doing
so� everything still holds� So that NFL result holds even for stochastic search
algorithms� Therefore� by the same reasoning used to establish the no�free�lunch
result for potentially retracing deterministic algorithms� the no�free�lunch result
holds for potentially retracing stochastic algorithms�

� A geometric interpretation

We can give a geometric interpretation of the no free lunch theorem by consid�
ering the space of possible cost functions� The probability of obtaining some
histogram� �c� given m distinct cost evaluations using algorithm a is

�

P ��c jm� a� �
X
f

P ��c jm� a� f�P �f��

where P �f� is the prior probability that the optimization problem at hand has
cost function f � We can view the right�hand side of this equality as an inner
product in F �

Theorem� De�ne the F�space vectors �vc�a�m and �p by �vc�a�m�f� � P �c jm� a� f�
and �p�f� � P �f�� Then

P ��c jm� a� � �vc�a�m
 �p ���

This is an important equation� Any global knowledge you have about the
properties of your cost function goes into the prior �p over cost functions� �c can
be viewed as �xed to the histogram you want to obtain �usually one with a
low cost value�� and m is given by the constraints on the time we have to run
our optimization algorithm� Thus the optimal algorithm is that which has the
largest projection onto �p�

Taking this geometric view� the no free lunch result that
P

f P ��c j f�m� a�
is independent of a has the simple interpretation that for a particular �c and
m� all algorithms a have the same projection onto the diagonal� that is vc�a�m

�� � cst��c�m�� For deterministic algorithms the components of vc�a�m �i�e�� the
probabilities that algorithm a gives histogram �c on cost function f after m
distinct cost evaluations� are all either � or � so the no free lunch result also
implies

P
f P

���c jm� a� f� � cst��c�m�� Geometrically� this means that the length
of �vc�a�m is independent of a�

Thus all vectors �vc�a�m have the same length and lie on a cone with constant

projection onto ��� Because the components of �vc�a�m are binary we might also
view �vc�a�m as lying on the subset of the boolean hypercube having the same

hamming distance from ���
In Section �we calculate two quantities concerning the distribution of �vc�a�m

across vertices of this hypercube�

� Minimax distinctions between algorithms

The NFL theorem does not address minimax properties of search� For example�
say we�re considering two deterministic algorithms� a� and a�� It may very
well be that there exist cost functions f such that a��s histogram is much better
�according to some appropriate qualitymeasure� than a��s� but no cost functions
for which the reverse is true� For the NFL theorem to be obeyed in such a
scenario� it would have to be true that there are many more f for which a��s

�

algorithm is better than a��s than vice�versa� but it is only slightly better for all
those f � For such a scenario� in a certain sense a� has better minimax behavior
than a�� there are f for which a� beats a� badly� but none for which a� does
substantially worse than a��

It appears though that analyzing minimax properties of algorithms is sub�
stantially more di�cult than analyzing average behavior �like in the NFL the�
orem�� Presently� nothing at all is known about minimax behavior involving
stochastic algorithms� In particular� it is not known if in some sense a stochas�
tic version of a deterministic algorithm has better�worse minimax behavior than
that deterministic algorithm� In fact� even if we stick completely to determinis�
tic algorithms� only an extremely preliminary understanding of minimax issues
has been reached�

What we do know is the following� Consider the quantity

X
f

Pdy
m��

�dy
m��

�z� z� j f�m� a�� a���

for deterministic algorithms a� and a�� This quantity is just the number of f
such that it is both true that a� produces a population with Y components z
and that a� produces a population with Y components z�� In appendix B� it is
proven that this quantity need not be symmetric under interchange of z and z��

Theorem� In general�

X
f

PdY
m��

�dY
m��

�z� z� j f�m� a�� a�� ��
X
f

PdY
m��

�dY
m��

�z�� z j f�m� a�� a��� ���

This means that under certain circumstances� even knowing only the Y compo�
nents of the populations produced by two algorithms run on the same �unknown�
f � we can infer something concerning what algorithm produced each population�

Now consider the quantity

X
f

PC��C��z� z
� j f�m� a�� a���

again for deterministic algorithms a� and a�� This quantity is just the number of
f such that it is both true that a� produces a histogram z and that a� produces
a histogram z�� It too need not be symmetric under interchange of z and z�

�see appendix B�� This is a stronger statement then the asymmetry of dY �s
statement� since any particular histogram corresponds to multiple populations�

Amongst other things� currently nothing is known about �how big a prob�
lem� these asymmetries are� All of the asymmetries arise when the set of X
values a� has visited overlaps with those that a� has visited� Given such overlap�
and certain properties of how the algorithms generated the overlap� asymmetry
arises� A precise speci�cation of those �certain properties� is not yet in hand�

��

Nor is it known how generic they are� i�e�� for what percentage of pairs of algo�
rithms they arise� Although such issues are easy to state �see appendix B�� it
is not at all clear how best to answer them�

Note that neither of these two results directly address issues like whether
there are f such that a��s histogram is much better than a��s� but not vice�versa�
To answer that involves looking over all pairs of histograms such that there is
the same relative quality between both histograms�

� Information theoretic aspects of search

We �rst calculate the fraction of cost functions which give rise to a speci�c
histogram �c using algorithm a with m distinct cost points� This calculation
allows us� for example� to answer the following question�

�What fraction of cost functions will give a particular distribution of cost
values after m distinct cost evaluations chosen by using a genetic algorithm��

This may seem an intractable question� but the NFL result allows us to
answer it� It does this because it means that the fraction is independent of the
algorithm� So we can answer the question by using an algorithm for which the
calculation is particularly easy�

The algorithm we will use is one which visits points in X in some canonical
order� say x�� x�� � � � � xm� Recall that the histogram �c is speci�ed by giving the
frequencies of occurrence� across the x�� x�� � � � � xm� for each of the jYj possible
cost values�

Now the number of f �s giving the desired histogram under our speci�ed
algorithm is just the multinomial giving the number of ways of distributing the
cost values in �c� At the remaining jX j�m points in X the cost can assume any
of the jYj f values�

It will be convenient to de�ne �� � �
m�c� Note that this is invariant if the

contents of all bins in �c are scaled by the same amount� By the argument of the
preceding paragraph� the fraction we are interested in� �f ����� is given by the
following�

Theorem� For any algorithm� the fraction of cost functions that result in the
histogram �c � m�� is given by

�f ���� �

�
m

c� c� ��� cjYj

�jYjjXj�m
jYjjXj �

�
m

c� c� ��� cjYj

�
jYjm � ���

Accordingly� �f ���� can be related to the entropy of �c in the standard way
by using Stirling�s approximation to order O���m�� which is valid when all of
the ci are large�

��

ln

�
m

c� c�

 cjYj

�
� m lnm�

jYjX
i��

ci ln ci 	
�

h
lnm �

jYjX
i��

ln ci
i

� mS���� 	
�

h�
�� jYj� lnm �

jYjX
i��

ln�i
i

where S���� � �PjYj
i���i ln�i is the entropy of the histogram �c� Thus for large

enough m �m � jYj�� the fraction of cost functions is given by the following
formula�

Corollary�

�f ���� � C�m� jYj� emS����

QjYj
i�� �

���
i

� ���

where C�m� jYj� is a constant depending only on m and jYj�
If some of the ��i are �� Eq� ��� still holds� only with Y rede�ned to exclude

the y�s corresponding to the zero�valued ��i� However Y is de�ned� the normal�
ization constant of Eq� ��� can be found by summing over all �� lying on the
unit simplex� The details of such a calculation can be found in
���

We next turn to a related question�

�On a given vertex of f�space �i�e�� for a given cost function�� what is the
fraction of all algorithms that give rise to a particular �c��

For this question� the only salient feature of f is its histogram �formed by

looking across all X � of cost values� Specify this histogram by �	� there are
Ni � 	i jX j points in X for which f�x� has the i�th Y value�

Call the fraction we are interested in �alg���� �	�� It turns out that �alg���� �	�
depends to leading order on the Kullback�Liebler �distance�
�� between �� and
�	� To see this� we start with the following intuitively reasonable result� formally
proven in appendix A�

Theorem� For a given f with histogram �N � jX j�	� the fraction of algorithms
that give rise to a histogram �c � m�� is given by

�alg���� �	� �

QjYj
i��

�
Ni

ci

�
�
jXj
m

� � ���

The normalization factor in the denominator is simply the number of ways of
selecting m cost values from X ��

�It can also be determined from the identity
P

�c
��
P

i
ci�m�

Q
i

�
Ni
ci

�
�
�P

i
Ni

m

�
�

�

The product of binomials can be approximated via Stirling�s equation when
both Ni and ci are large�

ln

jYjY
i��

�
Ni

ci

�
�

jYjX
i��

Ni lnNi � ci ln ci � �Ni � ci� ln�Ni � ci� 	 lnNi

� ln�Ni � ci�� ln ci�

We assume ci�Ni �� which is reasonable when m jXj� So using the
expansion ln��� z� � �z � z��� � � �� to second order in ci�Ni we have

ln

jYjY
i��

�
Ni

ci

�
�

jYjX
i��

ci ln
�Ni

ci

� � �

ln ci 	 ci

� ci
Ni

�
ci � � 	 �ci � �

�
� ci
Ni

��
	

�

In terms of �� and �	 we �nally obtain �using m�jX j ��

ln

jYjY
i��

�
Ni

ci

�
� mDKL���� �	� 	m 	 jYj ln� mjX j

�

�
jYjX
i��

�

ln��im� 	

m

jX j
��i
	i

�
��� �im 	

��

where DKL���� �	� � �
P

i �i ln�	i��i� is the Kullbeck�Liebler distance between

the distributions �� and �	�
Thus the fraction of algorithms is given by the following�

Corollary�

�alg���� �	� � C�m� jX j� jYj� e
�mDKL�������QjYj

i���
���
i

� ���

where the constant C depends only on m� jX j� and jYj�
As before� C can be calculated by summing �� over the unit simplex�

� Measures of algorithm performance

In this section we calculate certain �benchmark� performance measures that
allow us to assess the e�cacy of any search algorithm�

Consider the case where low cost is preferable to high cost� Then in general
we are interested in P �min��c�
 � j f�m� a�� which is the probability that the

��

minimum cost an algorithm a �nds in m distinct evaluations is larger than ��
given that the cost function is f � We consider three measures of an algorithm�s
performance that are related to this conditional probability�

i� The �rst measure is the average of this probability over all cost functions�

ii� The second is the form this conditional probability takes for the random
algorithm� whose behavior is uncorrelated with the cost function�

iii� The third is the fraction of algorithms which� for a particular f and m�
result in a �c whose minimum exceeds ��

These measures give us benchmarks which all truly �intelligent� algorithms
should surpass when used in the real world� any algorithm that doesn�t surpass
them is doing a very poor job�

Recall that there are jYj distinct cost values� With no loss of generality
assume the i�th cost values equals i� So cost values run from a minimum of �
to a maximum of jYj in integer increments�

The �rst of our two benchmarks measures isP
f P �min��c�
 � j f�m� a�P

f �
�

P
d
y
m�f

P �min�dym�
 � j dym�P �dym j f�m� a�

jYjjXj ����

where in the last line we have marginalized over y values of populations of size
m and noted that min�c� � min�dym��

Now consider
P

f P �dym j f�m� a�� The summand equals � or � for all f and
deterministic a� In particular� it equals � if the following conditions are met

i� f�dxm���� � dym���

ii� f�a
dm����� � dym��

iii� f�a
dm���� dm���� � dym���

� � �

These restrictions will always �x the value of f�x� at exactly m points� f is
completely free at all other points� Therefore

X
f

P �dym j f�m� a� � jYjjXj�m�

Using this result in Eq� ���� we �nd

X
f

P �min��c�
 � j f�m� �
�

jYjm
X
dym

P ��min�dym�
 � j dym�

��

�
�

jYjm
X

dym�min�dym���

�

�
�

jYjm �jYj � ��m�

This establishes the following�

Theorem�
X
f

P �min��c�
 � j f�m� � �m���� ����

where ���� � �� ��jYj is the fraction of cost lying above ��

In a real world scenario� unless one�s algorithm has its best�cost�so�far drop
faster than this� there is no sense in which that algorithm is well�suited to
searching the cost function at hand� The algorithm is doing no better than one
would expect it to for a randomly chosen cost function�

Next we calculate the expected minimum of the cost values in the pop�
ulation as a function of m for the random algorithm� a� which picks points
in X completely randomly� using no information from the current population�
Marginalizing over histograms �c� the performance of a is

P �min��c� � � j f�m� a� �
X
�c

P �min��c� � � j�c�P ��c j f�m� a�

Now P ��c j f�m� a� is the probability of obtaining histogram �c in m random

draws from the histogram �N of the function f � �This can be viewed as the

de�nition of a�� This probability has been calculated previously as

QjYj

i��
�Nici �

�jXjm ��
�

So

P �min��c� � � j f�m� a� �
��
jXj
m

�
mX

c���

mX

cjYj��

��

jYjX
i��

ci�m�P �min��n�
 � j�c�

�
jYjY
i��

�
Ni

ci

�

�
��
jXj
m

�
mX

c���

mX

cjYj��

��

jYjX
i��

ci�m�

jYjY
i��

�
Ni

ci

�

�

�PjYj

i��
Ni

m

�
�
jXj
m

� �see footnote one�

��

�

�����jXj
m

�
�
jXj
m

�
���

This establishes the following�

Theorem� For the random algorithm a�

P �min��c� � � j f�m� a� �
m��Y
i��

!���� i�jX j
�� i�jX j � ����

where !��� �PjYj
i��Ni�jX j is the fraction of points in X for which f�x� � ��

To �rst order in ��jX j this gives the following result�

Corollary�

P �min�c�
 � j f�m� a� � "m���
�
�� m�m � �����"����

"���

�

jX j 	 � � �
�
� ����

This equation provides a useful benchmark against which any algorithm
may be compared� Note in particular that for many cost functions cost values
are distributed Gaussianly� For such a case� if the mean and variance of the
Gaussian are and � respectively� then "��� � erfc������

p
���� where erfc

is the complimentary error function�
Finally� to calculate the third performance measure� note that for �xed f

and m� for any �deterministic� algorithm a� P ��c
 � j f�m� a� is either � or ��
Therefore the fraction of algorithms which result in a �c whose minimum exceeds
� is given by

P
a P �min��c�
 � j f�m� a�P

a �
�

Expanding in terms of �c� we can rewrite the numerator of this ratio asP
�c P �min��c�
 � j �c� P

a P ��c j f�m� a�� However the ratio of this quantity
to
P

a � is exactly what we calculated when we evaluated measure ii� �see the
beginning of the argument deriving Eq� ������ This establishes the following�

Theorem� For �xed f and m� the fraction of algorithms which result in a �c
whose minimum exceeds � is given by the quantity on the right�hand sides of
Eqs� ���� and �����

So in particular� consider the scenario where� when evaluated for � equal
to the minimum of the �c produced in a particular run of your algorithm� the
quantity given in Eq� ���� is less than ��� For such a scenario� your algorithm
has done worse than over half of all search algorithms� for the f and m at hand�

��

� Time�dependent cost functions

Here we establish a set of no free lunch results for a certain class of time�
dependent cost functions� The time�dependent functions we are concerned with
start with an initial cost function that is present when we sample the �rst x
value� Then just before the beginning of each subsequent iteration of the search
algorithm� the cost function is deformed to a new function� as speci�ed by the
mapping T � F � N � F �� We write the function present during the sampling
of the ith point as fi�� � Ti�fi�� We assume that at each step i� Ti is a bijection
between F and F � �Note the mapping induced by T from F to F can vary with
the iteration number�� If this weren�t the case� the evolution of cost functions
could narrow in on a region of f �s for which some algorithm� �by luck� as it
were� happens to sample x values that lie near the extremizing x�

One di�culty with analyzing time�dependent cost functions is how to as�
sess the quality of the search algorithm� In general there are two histogram�
based schemes� involving two di�erent populations of y values� As before� the
population dym is an ordered set of y values corresponding to the x values in
dxm� The particular y value in dym matching a particular x value in dxm is
given by the cost function that was present when x was sampled� In con�
trast� the population Dy

m is de�ned to be the y values from the present cost
function for each of the x values in dxm� Formally if dxm � fdxm����

 � dxm�m�g
then we have dym � ff��dxm�����

 � Tm���fm����dxm�m��g� Similarly� we have
Dy
m � fTm���fm����dxm�����

 � Tm���fm����dxm�m��g�
In some situations it may be that the members of the population �live� for

a long time� on the time scale of the evolution of the cost function� In such
situations it may be appropriate to judge the quality of the search algorithm
with the histogram induced byDy

m� all those previous elements of the population
are still alive� and therefore their �current� �tness is of interest� On the other
hand� if members of the population live for only a short time on the time scale
of evolution of the cost function� one may instead be concerned with things
like how well the living member�s� of the population track the changing cost
function� In that kind of situation� it may make more sense to judge the quality
of the search algorithm with the histogram induced by dym�

Here we derive NFL results for both criteria� In analogy with the NFL
theorem� we wish to average over all possible ways a cost function may be
time�dependent� i�e�� we wish to avenge over all T �rather than over all f � as
in the NFL theorem�� So consider the sum

P
T P ��c j� f�� T�m� a� where f� is

the initial cost function� Note �rst that since T only kicks in for m
 �� and
since f� is �xed� there are a priori distinctions between algorithms as far as
the �rst member of the population is concerned� So consider only histograms
constructed from those elements of the population beyond the �rst� We will

�An obvious restriction would be to require that T doesn�t vary with time� so that it is a
mapping simply from F to F� An analysis for T �s limited this way is beyond the scope of this
paper however�

��

prove the following�

Theorem� For all �c� m
 �� algorithms a� and a�� and initial cost functions f��

X
T

P ��c j f�� T�m� a�� �
X
T

P ��c j f�� T�m� a��� ����

We will show that this results holds whether �c is constructed from dym or
from Dy

m� In analogy with the proof of the NFL theorem� we will do this by
establishing the a�independence of

P
T P ��c j f� T�m� a��

We will begin by replacing each T in the sum with a set of cost functions� fi�
one for each iteration of the algorithm� To do this� we start with the following�

X
T

P ��c j f� T�m� a� �
X
T

X
dxm

X
f����fm

P ��c j �f � dxm� T�m� a�

�P �f�

fm� dxm j f�� T�m� a�

�
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

�
X
T

P �f�

fm j f�� T�m� a��

where we have indicated the sequence of cost functions� fi� by the vector �f �
�f��

 � fm��

Next we decompose the sum over all possible T into a series of sums� Each
sum in the series is over the values T can take for one particular iteration of the
algorithm� More formally� using fi�� � Ti�fi�� we writeX

T

P ��c j f� T� m � a� �
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

�
X
T�

��f�� T��f���

X
Tm��

��fm� Tm���Tm���

T��f������

�Note that
P

T P ��c j f� T�m� a� is independent of the values of Ti�m��� so we
can absorb those values into an overall a�independent proportionality constant��

Now look at the innermost sum� over Tm��� for some �xed values of the
outer sum indices T� � � �Tm��� Now for �xed values of the outer sum indices
Tm���Tm���

T��f���� is just some �xed cost function� Accordingly the in�
nermost sum over Tm�� is simply the number of bijections of F that map that
�xed cost function to fm� This is just a constant� �jFj � ����

So we can do the Tm�� sum� and arrive atX
T

P ��c j f� T� m � a�� �
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

��

�
X
T�

��f�� T��f���

X
Tm��

��fm��� Tm���Tm���

T��f������

Now we can do the sum over Tm��� in the exact same manner we just did
the sum over Tm��� In fact� all the sums over all Ti can be done� leaving us
with

X
T

P ��c j f� T�m � a�� �
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

�
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j f�

fm���m� a�� ����

�In the last step we have exploited the statistical independence of dxm and fm��
To proceed further we must decide if we are interested in histograms formed

from Dy
m or dym� We begin with analysis of the Dy

m case� For this case P ��c j
�f� dxm� � P ��c j fm� dxm�� since Dy

m only re�ects cost values from the last cost
function� fm� Plugging this in we get

X
T

P ��c j f� T�m� a�� �
X
dxm

X
f����fm��

P �dxm j f�

fm���m� a�
X
fm

P ��c j fm� dxm�

The �nal sum over fm is a constant equal to the number of ways of generating
the histogram c from cost values drawn from fm� This constant will involve the
multinomial coe�cient

�
m

c����cm

�
and some other factors� The important point is

that it is independent of the particular dxm� Because of this we can evaluate the
sum over dxm and thereby eliminate the a dependence�

X
T

P ��c j f� T�m� a� �
X

f����fm��

X
dxm

P �dxm j f�

fm���m� a� � �

This completes the proof of Eq� ���� for the case where �c is constructed from
Dy
m�
Next we turn the case where we are interested not in Dy

m but in dym� This

case is considerably more di�cult since we can not simplify P ��c j �f � dxm� and
thus can not decouple the sums over fi� Nevertheless� the NFL result still holds�
To see this we begin by expanding Eq� ���� over possible dym values�

X
T

P ��c j f� T�m� a� �
X
dxm

X
f����fm

X
dym

P ��c j dym�P �dym j �f � dxm�

�P �dxm j f�

fm���m� a�

��

�
X
dym

P ��c j dym�
X
dxm

X
f� ���fm

P �dxm j f�

fm���m� a�

�
mY
i��

��dym�i�� fi�d
x
m�i��� ����

The sum over the inner�most cost function� fm� only has an e�ect on the
��dym�i�� fi�d

x
m�i��� term� So it contributes

P
fm

��dym�m�� fm�dxm�m���� This is

a constant� equal to jYjjXj��� We are left with

X
T

P ��c j f� T�m� a� �
X
dym

P ��c j dym�
X
dxm

X
f����fm��

P �dxm j f�

fm���m� a�

�
m��Y
i��

��dym�i�� fi�d
x
m�i����

The sum over dxm�m� is now trivial� so we have

X
T

P ��c j f� T�m� a�

�
X
dym

P ��c j dym�
X
dxm���

X

dxm�m���

X
f����fm��

P �dxm�� j f�

fm���m� a�

�
m��Y
i��

��dym�i�� fi�d
x
m�i����

Now note that the above equation is of the exact same form as Eq� �����
only with a remaining population of size m�� rather than m� Consequently� in
an exactly analogous manner to the scheme we used to evaluate the sums over
fm and dxm�m� that existed in Eq� ����� we can evaluate our sums over fm��
and dxm�m� ��� Doing so simply generates more a�independent proportionality
constants� Continuing in this manner� we evaluate all the sums over the fi and
arrive at

X
T

P ��c j f� T�m� a�� �
X
dym

P ��c j dym�
X
dxm���

P �dxm��� j m� a� ��dym���� f��d
x
m������

Now there is still algorithm�dependence in this result� However it is a trivial
dependence� as previously discussed� it arises completely from how the algorithm
selects the �rst x point in its population� dxm���� Since we consider only those
points in the population that are generated subsequent to the �rst� our result
says that there is no distinctions between algorithms� �Alternatively� we could
consider all points in the population� even the �rst� and still get an NFL result�
if in addition to summing over all T we sum over all f��� So even in the case

�

where we are interested in dym the NFL result stills hold� subject to the minor
caveats delineated above�

There are others way of assessing the quality of the search algorithm besides
histograms based on Dy

m or dym� For example� one may wish to not consider
histograms at all� one may judge the quality of the search by the �tness of the
most recent member of the population�

Similarly� there are other sums one could look at besides those over T � For
example� one may wish to characterize what the aspects are of the relation�
ship between a and T that determine

P
f P ��c j f� T�m� a�� In fact� in general

there can be a priori distinctions between algorithms as far as this quantity is
concerned�

As an example of such distinctions� say that for all iterations of the search
algorithm� T is the shift operator� replacing f�x� by f�x � �� for all x �with
min�x�� � � max�x�� and with X implicitly taken to be a contiguous set of
integers�� For this T � if a is the algorithm that �rst samples f at x�� next
at x� 	 �� etc�� regardless of the values in the population� then for any f � the
histogram induced by dym is always made up of identical Y values� Accordingly�P

f P ��c j f� T�m� a� � � for any �c containing counts in more than one Y value
bin� For other search algorithms� even for the same shift T � there is not this
restriction on the set of allowed �c� So

P
f P ��c j f� T�m� a� is not independent of

a in general�
Indeed� consider the shift same T � but used with a di�erent algorithm� #a�

This new algorithm looks at the Y value of the its �rst sample point x�� and if
that value is low� it samples at x� 	 �� exactly like algorithm a� On the other
hand� if that value is high� it samples some point other than x�	�� In general�
if one�s goal is to �nd minimal Y values� #a can be expected to outperform a�
even when one averages over all f �

� Fixed cost function results

One obvious di�culty with the NFL results discussed above is that one can
always argue �oh� well in the real world P �f� is not uniform� so the NFL results
do not apply� and therefore I�m okay in using my favorite search algorithm��
Of course� the premise does not follow from the proposition� Uniform P �f� is
a typical P �f�� �The uniform average of all P �f� is the uniform P �f��� So
the actual P �f� might just as easily be one for which your algorithm is poorly
suited as one for which it is well suited� Ultimately� the only way to justify one�s
search algorithm is to argue in favor of a particular P �f�� and then argue that
your algorithm is well suited to that P �f�� This is the only ��� legitimate way
of defending a particular search algorithm against the implications of the NFL
theorems�

Nonetheless� it is clearly of interest to derive NFL�type results that are inde�

�

pendent of P �f�� Certain such results apply to ways of choosing between search
algorithms� and involve averaging over those search algorithms while keeping
the cost function �xed� Although less sweeping than the NFL results� these
results hold no matter what the real world�s distribution over cost functions is�

Let a and a� be two search algorithms� De�ne a �choosing procedure� as
one that examines two populations d and d�� produced by a and a� respectively�
and based on those populations� decides to use either a or a� for the subsequent
part of the search� As an example� one choosing procedure is to choose a if and
only the least cost element in d has lower cost than the least cost element in d��
As another example� a �stupid� choosing procedure would choose a if and only
the least cost element in d has higher cost than the least cost element in d��

At the point that you use a choosing procedure� you will have sampled the
cost function at all the points in d� � d � d�� Accordingly� if d�m refers to
the samples of the cost function that come after using the choosing algorithm�
then the histogram the user is interested in is the histogram c�m which is the
histogram formed from d�m� In addition� for all the usual reasons� we can
assume that the search algorithm chosen by the choosing procedure does not
return to any points in d�� without loss of generality��

The following theorem� proven in appendix C� tells us we have no a priori

justi�cation for using any particular choosing algorithm� Loosely speaking� no
matter what the cost function� observing how well an algorithm has done so far
tells us nothing about how well it would do if we continue to use it on the same
cost function� �For simplicity� we only consider deterministic algorithms��

Theorem� Let d and d� be two �xed populations both of size m� that are
generated when the algorithms a and a� respectively are run on the cost function�
Let A and B be two di�erent choosing procedures� Let k be the number of
elements in c�m� Then

X
a�a�

P �c�m j f� d� d�� k� a� a�� A� �
X
a�a�

P �c�m j f� d� d�� k� a� a�� B�� ����

�It is implicit in this theorem that the sum excludes those algorithms a and a�

that do not result in d and d� respectively when run on f ��
One might think that the preceding theorem is misleading� since it treats all

populations equally� when for any given f some populations will be more likely

�a can know to avoid the elements it has seen before� However a priori� a has no way to
avoid the elements it hasn�t seen yet but that a� has �and vice�versa�� Rather than have the
de�nition of a somehow depend on the elements in d� � d �and similarly for a��� we deal with
this problem by de�ning c�m to be set only by those elements in d�m that lie outside of
d�� �This is similar to the procedure we developed above to deal with potentially retracing
algorithms�� Formally� this means that the random variable c�m is a function of d� as well
as of d�m� It also means there may be fewer elements in the histogram c�m than there are
in the population d�m�

than others� However even if one weights populations according to their proba�
bility of occurrence� it is still true that� on average� the choosing procedure one
uses has no e�ect on likely c�m� This is established by the following corollary�

Corrolary� Under the conditions given in the preceding theorem�

X
a�a�

P �c�m j f�m� k� a� a�� A� �
X
a�a�

P �c�m j� f�m� k� a� a�� B�� ����

Proof� Let �proc� refer to our choosing procedure� We are interested inX
a�a�

P �c�m j f�m� k� a� a�� proc� �
X

a�a��d�d�

P �c�m j f� d� d�� k� a� a�� proc�

�P �d� d� j f� k�m� a� a�� proc��

Pull the sum over d and d� outside the sum over a and a�� Consider any term
in that sum �i�e�� any particular pair of values of d and d��� For that term�
P �d� d� j f� k�m� a� a�� proc� is just � for those a and a� that result in d and d�

respectively when run on f � and � otherwise� �Recall that we are assuming that
a and a� are deterministic�� This means that the P �d� d� j f� k�m� a� a�� proc�
factor simply restricts our sum over a and a� to the a and a� considered in our
theorem� Accordingly� our theorem tell us that the summand of the sum over d
and d� is the same for choosing procedures A and B� Therefore the full sum is
the same for both procedures� QED�

These results tell us that there is no assumption for P �f� that� by itself�
justi�es using some choosing procedure as far as subsequent search is concerned�
To have an intelligent choosing procedure� one must take into account not only
P �f� but also the search algorithms one will be choosing among�

In fact� things may very well be worse than this� In supervised learning�
there is a result related to the theorem above
���� Translated into the current
context that result suggests that if one restricts the sums to only be over those
algorithms that are a good match to P �f�� then stupid choosing procedures $
like choosing the algorithm with the less desirable �c $ outperform �smart� ones
�which are the ones everyone uses in practice�� An investigation of what exactly
the set of algorithms summed over must be for a smart choosing procedure to
be superior to a dumb one is beyond the scope of this paper� But clearly there
are many subtle issues to disentangle�

	 Discussion and Future Work

��� Discussion

In this paper we present a framework for investigating search� This framework
serves as a �skeleton� for the search problem� it tells us what we can know

�

about search before ��eshing in� the details of a particular real world search
problem� Phrased di�erently� it provides a language in which to describe search
algorithms� and in which to ask �and answer� questions about them�

Ultimately� of course� the only important question is� �How do I �nd good
solutions for my given cost function f�� The proper answer to this question
is to start with the given f � determine certain salient features of it� and then
construct a search algorithm� a� speci�cally tailored to match those features�
The inverse procedure � far more popular in some communities � is to investigate
how speci�c algorithms perform on di�erent f �s� This inverse procedure is only
of interest to the degree that it helps us with our primary procedure� of going
from �features concerning� f to an appropriate a�

Note that often the �salient features� concerning f can be stated in terms
of a distribution P �f�� To understand this� �rst note that we do in fact know
f exactly� But at the same time� there is much about f that we need to know
that is e�ectively unknown to us �e�g�� f �s extrema�� In this� it is as though f is
partially unknown� The very nature of the search process is to admit that you
don�t �know� f in full� As a result� it makes sense to �implicitly or otherwise�
replace f with a distribution P �f�� In this� the search problem reduces to �nding
a good a for a particular P �f� � exactly the issue addressed in Section � of this
paper�

As an example of all this� it is well known that generic methods �like sim�
ulated annealing and genetic algorithms� are unable to compete with carefully
hand�crafted solutions for speci�c search problems� The Traveling Salesman
�TSP� problem is an excellent example of such a situation� the best search algo�
rithms for the TSP problem are hand�tailored for it
��� Linear programming
problems are another example� the simplex algorithm is a search algorithm
speci�cally designed to solve cost functions of a particular type� In both of
these situations� the procedure followed by the researcher is to� identify salient
aspects of f �e�g�� it is a TSP problem� or it is a linear programming problem��
throw away all other knowledge concerning f and thereby e�ectively replace f
with a P �f�� and then use a search algorithm explicitly known to work well for
that P �f��

In our investigation of the search problem from this match�f�to�a perspec�
tive� the �rst question we addressed was whether it may be that some algorithm
A performs better than B� on average� Our answer to this question� given by
the NFL theorem is that this is impossible� An important implication of this
result is the following� If a genetic algorithm outperforms simulated annealing
�for example� over some class of cost functions %� then over the remaining cost
functions F n %� simulated annealing must outperform the genetic algorithm�
It should be noted that this applies even if one considers �adaptive� search al�
gorithms
�� �� which modify their search strategy based on properties of the
population of �X ��Y� pairs observed so far in the search� and which perform
this �adaptation� without regard to any knowledge concerning salient features
of f �

�

It is important to bear in mind exactly what all of this does �not� imply
about the relationship between natural selection in the biological world and
optimization �i�e� genetic algorithms�� To this end� consider the extremely
simpli�ed view in which natural selection is viewed as optimization over a cost or
��tness� function� We further simplifymatters by assuming the �tness function
is static over time�

In this paper we measure an algorithm�s performance based on all X values
it has sampled since it began� and therefore we don�t allow an algorithm to
resample points it had already visited� Our NFL theorem states that all algo�
rithms are equivalent by this measure� However one might consider di�erent
measures� In particular� we may be interested in the evolution through time
of �generations� consisting of temporally contiguous subsets of our population�
generations that are updated by our search algorithm� In such a scenario� it
does make sense to resample points already visited� Moreover� our NFL theorem
does not apply to this alternative kind of performance measure� For example�
according to this alternative performance measure� an algorithm that resamples
old points in X that are �t and adds them to the current generation will always
do better than one that resamples old points that are not �t�

Now when we examine the biological world around us� we are implicitly using
this second kind of measure� we only see the organisms from the current genera�
tion� In addition� natural selection means that only �essential characteristics of�
good points in X are kept around from one generation to the next� Accordingly�
using this second kind of performance measure� one expects that the average
�tness across a generation improves with time� �Or would if the environment
� i�e�� cost function � didn�t change in time� etc�� This is nothing more than
the tautology that natural selection improves the �tness of the members of a
generation�

However this empirical evidence that natural selection performs well accord�
ing to this second measure does not mean anything concerning its performance
according to the �rst measure� In particular� it does not mean that if we wish to
do a search� and are able to keep around all points sampled so far� that we have
any reason to believe that natural selection is an e�ective search strategy� Nor
does it mean that natural selection works well as far as the tail of the measure
based on the entire population is concerned� Yet it is precisely that tail that is
of interest in the engineering world�

In short� the empirical evidence of the biological world does not indicate
in any sense that natural selection is an e�ective search strategy� even in the
biological world� We simply have not had a chance to observe the behavior of
alternative strategies� For all we know� the strategy of breeding only the least �t
members of the population may have done a better job at �nding the extrema
of the cost function faced by biological organisms� The experiment just has not
been done� The breed�the�worst strategy will in general result in worse recent
generations� but using that strategy implies nothing about the quality of the
populations over the long term� If however� we relax the unrealistic assumption

�

that the �tness function is constant over time then it is possible that there may
be disadvantages to a breed�the�worst policy�

To summarize� by the NFL theorem� any generation�based scheme that keeps
only the worst members of the population for the next generation is equivalent
to one that keeps the best members� on average� However� the �tness of the
members of the generations will di�er between the two search algorithms� This
raises some obvious questions for future research� Averaged over all f � how
big would one expect the di�erence to be� For a �xed f � and two random
search algorithms that are �directed� di�erently in who they classify in being
the current generation� how big would one expect the di�erence to be� How
does this last calculation compare with the calculation made above of what the
best member of the population will �likely� be for a random algorithm as m
grows�

��� Future work

It is perhaps �tting for a paper about e�ective search that we conclude with a
brief listing of other research directions we believe warrant further investigation�

The most important continuation of this work is to turn our framework into
a practical tool to solve real problems� This would involve two steps� First we
need a method of incorporating broad kinds of knowledge concerning f into the
analysis� In this paper we have used P �f� to do this� but perhaps there are other
ways that we should also consider� For example� it is not yet clear how to �or
even whether one should� encapsulate in a P �f� the knowledge concerning the
cost function that is implicit in the heuristics of Branch and Bound strategies�
How do incorporate how the cost� f of a complete solution is accrued through
the assemblage of sub�solutions�

The second step in this suggested program is to determine how best to
convert knowledge concerning f into an optimal a� The goal in its broadest
sense is to design a system that can take in such knowledge concerning f and
then solve for the optimal a given that knowledge� One would then use that a
to search the f �

In its fullest sense� this program may well involve many years of work�
Nonetheless� there are many important questions related to this program that
should be analyzable using only the tools developed in this paper� Many of
them were presented in the text� Others� particularly well�suited to help us
understand the connection between P �f� and an optimal a� are� How fast does
the cost histogram �c associated with a particular algorithm converge to the his�
togram of the cost values f takes on across all of X� As P �f� changes from
the diagonal in f space �i�e�� from being uniform over all f�� need some a�s be
hurt� Could the average over all a�s improve� For what P �f��s besides the
diagonal are all algorithms equal� Given two particular algorithms �rather than
all algorithms�� for what P �f� is the performance of the algorithms equal� In

�

particular� if P �f� is uniform over some subset % � F and zero outside %�	

what are the equivalence classes of search algorithms with identical expected
behavior�

Another interesting series of questions concerns di�erences between stochas�
tic and deterministic algorithms� Are there potential advantages to stochas�
tic algorithms� In particular� does it make sense to �expand� any stochas�
tic algorithm � in terms of deterministic algorithms a� I�e�� can one write
P �c j f�m� �� �

P
a ka��P �cjf�m� a� for some expansion coe�cients ka��� If so�

it suggests that as P �f� moves from the diagonal the performance of ��s will
neither improve nor degrade as much as that of a�s� So it may be that stochastic
algorithms have certain minimax advantages over deterministic ones�

Acknowledgments

We would like to thank Unamay O�Reilly for helpful conversation� and the SFI
for funding� Dhw would also like to thank TXN Inc� for funding�

References

�� M�R� Garey� D�S� Johnson� Computers and Intractability� Freeman �������

� E�L� Lawler� D�E� Wood� Operations Research� ������ �������� �������

�� J� Pearl� Heuristics� intelligent search strategies for computer problem solv�

ing� Addison�Wesley� �������

�� S� Kirkpatrick� C� D� Gelatt Jr�� M� P� Vecchi� Science� ���� ���� �������

�� J� Holland� Adaptation in Natural and Arti�cial Systems� University of
Michigan Press� Ann Arbor� �������

�� L� Ingber� Adaptive Simulated Annealing� Software package documenta�
tion� ftp�caltech�edu��pub�ingber�asa�Z�

�� D� Yuret� M� de la Maza� Dynamic Hill�Climbing� Overcoming the limi�
tations of optimization techniques in The Second Turkish Symposium on

Arti�cial Intelligence and Neural Networks� pp����� �������

�� C�E�M� Strauss� D�H� Wolpert� D�R� Wolf� Alpha� Evidence� and the
Entropic Prior in Maximum Entropy and Bayesian Methods� ed� Ali
Mohammed�Djafari� pp������� ������

�� T� Cover� J� Thomas� Elements of Information Theory� John Wiley &
Sons� �������

�As an example� � might be the set of correlated cost functions as in 	
���

�

��� D H� Wolpert� O��training set error and a priori distinctions between

learning algorithms� Technical Report SFI�TR����������� Santa Fe Insti�
tute� �����

��� D H� Wolpert� On Over�tting Avoidance as Bias� Technical Report SFI�
TR����������� Santa Fe Institute� ����

�� Gerhard Reinelt� The Traveling Salesman� computational solutions for

TSP applications� Springer Verlag Berlin Heidelberg �������

��� P�F� Stadler� Europhys� Lett� ��� pp������� ������

A Proof related to information theoretic as�

pects of search

We want to calculate the proportion of all algorithms that give a particular �c
for a particular f � We proceed in several steps�

�� Since X is �nite� populations are �nite� Therefore any �deterministic� a
is a huge � but �nite � list� That list is indexed by all possible d�s �aside from
those that extend over the entire input space�� Each entry in the list is the x
the a in question outputs for that d�index�

� Consider any particular unordered set of m x�y pairs where no two of the
pairs share the same x value� Such a set is an �unordered path� �� �Without
loss of generality� from now on we implicitly restrict the discussion to unordered
paths of length m�� A particular � is �in� or �from� a particular f if there
is a unordered set of m �x� f�x�� pairs identical to �� The numerator on the
right�hand side of Eq� ��� is the number of unordered paths in the given f that
give the desired �c�

�� Claim� The number of unordered paths in f that give the desired �c � the
numerator on the right�hand side of Eq� ��� � is proportional to the number of
a�s that give the desired �c for f � �The proof of this claim will constitute a proof
of Eq� ����� Furthermore� the proportionality constant is independent of f and
�c�

�� Proof� We will construct a mapping � � a � �� � takes in an a that
gives the desired �c for f � and from it produces a � that is in f and gives the
desired �c� We will then show that for any � the number of algorithms a such
that ��a� � � is a constant� independent of �� f � and �c� The proof will then be
completed by showing that � is single�valued� i�e�� by showing that there is no
a who has as image under mapping � more than one ��

�� Any unordered path � gives a set of m� di�erent ordered paths in the
obvious manner� �Note that every x value in an unordered path is distinct��
Each such ordered path �ord in turn provides a set of m successive d�s �if one
includes the null d� and a following x� Indicate by d��ord� this set of the �rst

�

m d�s provided by �ord� �Note that any �ord is itself a population� but to avoid
confusion we avoid referring to it as such��

�� For any ordered path �ord we can construct a �partial algorithm�� This
consists of the list of an a� but with only the m d��ord� entries in the list �lled
in� the remaining entries are blank� �We say that m is the �length� of the
partial algorithm�� Since there are m� distinct partial a�s for each � �one for
each ordered path corresponding to ��� we have m� such partially �lled�in lists
for each ��

�� In the obvious manner we can talk about whether a particular partial
algorithm is �consistent� with a particular full algorithm� This allows us to
de�ne �the inverse of� �� for any � that is in f and gives �c� ������ � �the set
of all a that are consistent with at least one partial algorithm generated from �
and that give �c when run on f��

�� To complete the �rst part of our proof we must show that for all � that
are in f and give �c� ������ contains the same number of elements� regardless of
�� f � or c� To that end� �rst generate all ordered paths induced by � and then
associate each such ordered path with a distinct m�element partial algorithm�
Our question is how many full algorithms lists are consistent with at least one
of these partial algorithm partial lists� �How this question is answered is the
core of this appendix��

�� To answer this question� reorder the entries in each of the partial algorithm
lists by permuting the indices d of all the lists� Obviously such a reordering won�t
change the answer to our question�

�� We will perform the permuting by interchanging pairs of d indices� First�
interchange any d index of the form ��dX���� dY ����� � � � � �dX�i � m�� dY �i �
m��� whose entry is �lled in in any of our partial algorithm lists with d��d� �
��dX���� z�� � � � � �dX�i�� z��� where z is some arbitrary constant Y value and xj
refers to the j�th element of X � Next� create some arbitrary but �xed ordering
of all x � X � �x�� � � � � xjcalXj�� Then interchange any d� index of the form
��dX���� z� � � � � �dX�i � m�� z� whose entry is �lled in in any of our �new� partial
algorithm lists with d���d�� � ��x�� z�� � � � � �xm� z��� �Recall that all the dX�i�
must be distinct��

��� By construction� the resultant partial algorithm lists are independent
of �� �c and f � as is the number of such lists �it�s m��� Therefore the number
of algorithms consistent with at least one partial algorithm list in ������ is
independent of �� c and f � This completes the �rst part of the proof�

��� For the second part� �rst choose any unordered paths that di�er from
one another� A and B� There is no ordered path Aord constructed from A that
equals an ordered path Bord constructed from B� So choose any such Aord and
any such Bord � If they disagree for the null d� then we know that there is no
�deterministic� a that agrees with both of them� If they agree for the null d�
then since they are sampled from the same f � they have the same single�element
d� If they disagree for that d� then there is no a that agrees with both of them�
If they agree for that d� then they have the same double�element d� Continue

�

in this manner all the up to the �m����element d� Since the two ordered paths
di�er� they must have disagreed at some point by now� and therefore there is
no a that agrees with both of them�

�� Since this is true for any Aord from A and any Bord from B� we see that
there is no a in ����A� that is also in ����B�� This completes the proof�

B Proof related to minimax distinctions be�

tween algorithms

The proofs are by example�
Consider three points in X � x�� x�� and x�� and three points in Y � y�� y�� and

y��

�� Let the �rst point a� visits be x�� and the �rst point a� visits be x��

� If at its �rst point a� sees a y� or a y�� it jumps to x�� Otherwise it jumps
to x��

�� If at its �rst point a� sees a y�� it jumps to x�� If it sees a y�� it jumps to
x��

Consider the cost function that has as the Y values for the three X values
fy�� y�� y�g� respectively�

For m � � a� will produce a population �y�� y�� for this function� and a�
will produce �y�� y���

The proof is completed if we show that there is no cost function so that
a� produces a population containing y� and y� and such that a� produces a
population containing y� and y��

There are four possible pairs of populations to consider�

i�
�y�� y��� �y�� y����

ii�
�y�� y��� �y�� y����

iii�
�y�� y��� �y�� y����

iv�
�y�� y��� �y�� y����

Since if its �rst point is a y� a� jumps to x� which is where a� starts� when a��s
�rst point is a y� its second point must equal a��s second point� This rules out
possibilities i� and ii��

For possibilities iii� and iv�� by a��s population we know that f must be of
the form fy�� s� y�g� for some variable s� For case iii�� s would need to equal
y�� due to the �rst point in a��s population� However for that case� the second
point a� sees would be the value at x�� which is y�� contrary to hypothesis�

��

For case iv�� we know that the s would have to equal y�� due to the �rst
point in a��s population� However that would mean that a� jumps to x� for its
second point� and would therefore see a y�� contrary to hypothesis�

Accordingly� none of the four cases is possible� This is a case both where
there is no symmetry under exchange of dy�s between a� and a�� and no sym�
metry under exchange of histograms� QED�

C Proof related to NFL results for
xed cost

functions

Since any �deterministic� search algorithm is a mapping from d � D to x � X �
any search algorithm is a vector in the space XD� The components of such a
vector are indexed by the possible populations� and the value for each component
is the x that the algorithm produces given the associated population�

Consider now a particular population d of size m� Given d� we can say
whether any other population of size greater than m has the �ordered� elements
of d as its �rst m �ordered� elements� The set of those populations that do start
with d this way de�nes a set of components of any algorithm vector a� Those
components will be indicated by a�d�

The remaining components of a are of two types� The �rst is given by those
populations that are equivalent to the �rst M � m elements in d for some M �
The values of those components for the vector algorithm a will be indicated by
a	d� The second type consists of those components corresponding to all remain�
ing populations� Intuitively� these are populations that are not compatible with
d� Some examples of such populations are populations that contain as one of
their �rst m elements an element not found in d� and populations that re�order
the elements found in d� The values of a for components of this second type
will be indicated by a
d�

Let proc be either A or B� We are interested in

X
a�a�

P �c�m j f� d�� d�� k � a� a�� proc�

�
X

a�d�a��d�

X
a�d�a��d�

X
a�d�a

�
�d�

P �c�m j f� d� d�� k� a� a�� proc��

The summand is independent of the values of a
d and a�
d for either of our
two d�s� In addition� the number of such values is a constant� �It is given by the
product� over all populations not consistent with d� of the number of possible x
each such population could be mapped to�� Therefore� up to an overall constant
independent of d� d�� f � and proc� our sum equals

��

X
a�d�a��d�

X
a�d �a

�
�d�

P �c�m j f� d� d�� a�d� a��d� � a	d� a�	d� � proc��

By de�nition� we are implicitly restricting the sum to those a and a� so that
our summand is de�ned� This means that we actually only allow one value for
each component in a	d �namely� the value that gives the next x element in d��
and similarly for a�	d� � Therefore our sum reduces to

X
a�d�a

�
�d�

P �c�m j f� d� d�� a�d� a��d� � proc��

Note that no component of a�d lies in dx�� The same is true of a��d� � So our
sum over a�d is over the same components of a as the sum over a��d� is of a

��
Now for �xed d and d�� proc�s choice of a or a� is �xed� Accordingly� without
loss of generality� we can rewrite our sum as

X
a�d

P �c�m j f� d� d�� a�d��

with the implicit assumption that c�m is set by a�d� This sum is independent
of proc� QED�

�

