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ABSTRACT. Humans appear to be able to learn new 
concepts without needing to be programmed explicitly 
in any conventional sense. In this paper we regard 
learning as the phenomenon of knowledge acquisition 
in the absence of explicit programming. We give a 
precise methodology for studying this phenomenon 
from a computational viewpoint. It consists of 
choosing an appropriate information gathering 
mechanism, the learning protocol, and exploring the 
class of concepts that can be learnt using it in a 
reasonable (polynomial) number of steps. We find 
that inherent algorithmic complexity appears to set 
serious limits to the range of concepts that can be 
so learnt. The methodology and results suggest 
concrete principles for designing realistic learning 

systems. 

|. INTRODUCTION 

Computability theory became possible once 
precise models became available for modelling the 
commonplance phenomenon of mechanical calculation. 
The theory that evolved has been used to explain 
human experience and to suggest how artificial 
computing devices should be built. It is also 
worth studying for its own sake. 

The commonplace phenomenon of learning surely 
merits similar attention. The problem is to dis- 
cover good models that are interesting to study 
for their own sake and promise to be relevant both 
to explaining human experience and to building 
devices that can learn. The models should also 
shed light on the limits of what can be learnt, 
just as computability does on what can be computed. 

In this paper we shall say that a program for 
performing a task has been acquired by learning if 
it has been acquired by any means other than 
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explicit programming. Among human skills some 
clearly appear to have a genetically preprogrammed 
element while some others consist of executing an 
explicit sequence of instructions that has been 
memorized. There remains a large area of skill 
acquisition where no such explicit programming is 
identifiable. It is this area that we describe 
here as learning. The recognition of familiar 
objects, such as tables, provide such examples. 
These skills often have the additional property 
that, although we have learnt them, we find it 
difficult to articulate what algorithm we are 
really using. In these cases it would be espe- 
cially significant if machines could be made to 
acquire them by learning. 

This paper is concerned with precise computa- 
tional models of the learning phenomenon. We shall 
restrict ourselves to skills that consist of re- 
cognizing whether a concept (or predicate) is true 
or not for given data. We shall say that a con- 
cept Q has been learnt if a program for recog- 
nizing it has been deduced (i.e. by some method 
other than the acquisition from the outside of the 
explicit program). 

The main contribution of this paper is that it 
shows that it is possible to design learning 
machines that have all three of the following pro- 
perties. 

(A) The machines can provably learn whole 
classes of concepts. Furthermore these classes can 
be characterized. 

(B) The classes of concepts are appropriate 
and nontrivial for general purpose knowledge, and 

(C) The computational process by which the 
machines deduce the desired programs requires a 
feasible (i.e. polynomial) number of steps. 

A learning machine consists of a learning pro- 
tocol together with a deduction procedure. The 
former specifies the manner in which information is 
obtained from the outside. The latter is the 
mechanism by which a correct recognition algorithm 
for the concept to be learnt is deduced. At the 
broadest level the suggested methodology for 
studying learning is the following: define a 
plausible learning protocol and investigate the 
class of concepts for which recognition programs 
can be deduced in polynomial time using the 
protocol. 
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The specific protocols considered in this 
paper allow for two kinds of information supply. 
First the learner has access to a supply of typ- 
ical data that positively exemplify the concept. 
More precisely, it is assumed that these positive 
examples have a probabilistic distribution deter- 
mined arbitrarily by nature. A call of a routine 
EXAMPLES produces one such positive example. The 
relative probability of producing different exam- 
ples is determined by the distribution. The 
second source of information that may be avail- 
able is a routine ORACLE. In its most basic 
version, when presented with data it will tell the 
learner whether or not the data positively exem- 
plifies the concept. 

The major remaining design choice that has to 
be made is that of knowledge representation. 
Since our declared aim is to represent general 
knowledge, it seems almost unavoidable that we use 
some kind of logic rather than, for example, 
formal grammars or geometrical constructs. In 
this paper we shall represent concepts as Boolean 
functions of a set of propositional variables. 
The recognition algorithms that we attempt to 
deduce will be therefore Boolean circuits or 
expressions. 

The adequacy of the propositional calculus 
for representing knowledge in practical learning 
systems is clearly a crucial question. Few would 
argue that this much power is not necessary. The 
question is whether it is enough. There are 
several arguments suggesting that such a system 
would, at least, be a very good start. First, 
when one examines the most famous examples of 
systems that embody preprogrammed knowledge, 
namely expert systems such as DENDRAL and MYCIN, 
essentially no logical notation beyond the pro- 
positional calculus is used. Surely it would be 
over-ambitious to try to base learning systems 
on representations that are more powerful than 
those that have been successfully managed in pro- 
grammed systems. Second, the results in this 
paper can be negatively interpreted to suggest 
that the class of learnable concepts even within 
the propositional calculus is severely circum- 
scribed. This suggests that the search for ex- 
tensions to the propositional calculus that have 
substantially larger learnable classes may be a 
difficult one. 

The positive conclusions of this paper are 
that there are specific classes of concepts that 
are learnable in polynomial time using learning 
protocols of the kind described. These classes 
can all be characterized by defining the class 
of programs that recognize them. In each case 
the programs are special kinds of Boolean ex- 
pressions. The three classes are: (i) con- 
junctive normal form expressions with a bounded 
number of literals in each clause, (ii) monotone 
disjunctive normal form expressions, and (iii) 
arbitrary expressions in which each variable 
occurs just once. In the first of these no calls 
of the oracle are necessary. In the last no 
access to typical examples is necessary but the 
oracles need to be more powerful than the one 

described above. 

The deduction procedure will in each case out- 
put an expression that with high likelihood closely 
approximates the expression to be learnt. Such an 
approximate expression never says yes when it 
should not, but may say no on a small fraction of 
the probability space of positive examples. This 
fraction can be made arbitrarily small by increas- 
ing the runtime of the deduction procedure. Per- 
haps the main technical discovery contained in the 
paper is that with this probabilistic notion of 
learning highly convergent learning is possible for 
whole classes of Boolean functions. This appears 
to distinguish this approach from more traditional 
ones where learning is seen as a process of "in- 
ducing" some general rule from information that is 
insufficient for a reliable deduction to be made. 
The power of this probabilistic viewpoint is 
illustrated, for example, by the fact that an 
arbitrary set of polynomially many positive exam- 
ples cannot be relied on to determine expressions 
consisting of even just a single monomial in any 
reliable way. 

There is another aspect of our formulation that 
is worth emphasizing. In a learning system that is 
about to learn a new concept there may be an 
enormous number of propositional variables avail- 
able. These may be primitive inputs, the values of 
preprogrammed concepts, or the values of concepts 
that have been learnt previously. We want the 
complexity of learning the new concept to be rela- 
ted only to the number of variables that may be set 
in natural examples of it, and not on the car- 
dinality of the universe of available variables. 
Hence the questions asked of ORACLE and the values 
given by EX~4PLES will not be truth assignments to 
all the variables. In the archetypal case they 
will specify an assignment to a subset of the 
variables that is still sufficient to guarantee 
the truth of the function. 

Whether the classes of learnable Boolean con- 
cepts can be extended significantly beyond the 
three classes given is an interesting question. 
There is circumstantial evidence from cryptography: 
however, that the whole class of functions com- 
putable by polynomial size circuits is not 
learnable. Consider a cryptographic scheme that 
encodes messages by evaluating the function E k 
where k specifies the key. Suppose that this 
scheme is immune to chosen plaintext attack in the 
sense that even if the values of E k are known for 
polynomially many d/fferent inputs, it is computa- 
tionally infeasible to deduce an algorithm for E k 
or for an approximation to it. This is equivalent 
to saying, however, that E k is not learnable. 
The conjectured existence of good cryptographic 
functions that are easy to compute therefore im- 
plies that some easy to compute functions are not 
learnable. 

If the class of learnable concepts is as 
severely limited as suggested by our results then 
it would follow that the only way of teaching more 
complicated concepts is to build them up from such 
simple ones. Thus a good teacher would have to 
identify, name and sequence these intermediate 
concepts in the manner of a programmer. The re- 
sults of ZeoiPnabiZity theory would then indicate 
the maximum granularity of the single concepts that 
can he acquired without programming. 
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In summary, this paper attempts to explore the 
limits of what is learnable as allowed by algorith- 
mic complexity. The results are distinguishable 
from the diverse body of previous work on learning 
because they attempt to reconcile the three pro- 
perties (A)-(C) mentioned earlier. Closest in 
rigour to our approach is the inductive inference 
literature (see Angluin and Smith [i] for a survey) 
that deals with inducing such things as recursive 
functions or formal grammars (but not Boolean 
functions) from examples. There is a large body 
of work on pattern recognition and classification, 
using statistical and other tools, (e.g. [4]) but 
the question of general knowledge representation is 
not addressed there directly. Learning, in various 
less formal senses, has been studied widely as a 
branch of artificial intelligence. A survey and 
bibliography can be found in [2,6]. In their 
terminology the subject of this paper is concept 
learning. 

2. A LEARNING PROTOCOL FOR BOOLEAN FUNCTIONS 

We consider t Boolean variables pl,...,pt 
each of which can take the value 1 or 0 to indicate 
whether the associated proposition is true or 
false. There is no assumption about the indepen- 
dence of the variables. Indeed, they may be func- 
tions of each other. 

A vGdtor is an assignment to each of the t 
variables of a value from {0,i,*}. The symbol * 
denotes that a variable is undetermined. A vector 
is totaZ if every variable is determined (i.e. is 
assigned a value from {0,i}.) For example, the 

assignment Pl =P3 =i' P4 =0 and P2 =* is a 
vector that is not total. 

A Boolean function F is a mapping from the 
set of 2 t total vectors to {0,i}. A Boolean 
function F becomes a concept F if its domain 
is extended to the set of all vectors as follows: 
For a vector v F(v) =i if and only if F(w) =I 
for all total vectors w that agree with v on 
all variables for which v is determined. The 
purpose of this extension is that it permits us 
not to mention the variables on which F does 
not depend. 

Given a concept F we consider an arbitrary 
probability distribution D over the set of all 
vectors v such that F(v) = i. In other words 
for each v such that F(v) =i it is the case 
that D(v) 90. Also ~D(v) = 1 when summation 
is over this set of vectors. There are no other 
assumed restrictions on D, which is intended to 
describe the relative frequency with which the 
positive examples of F occur in nature. 

What are reasonable learning protocols to 
consider? First we must avoid giving the teacher 
too much power, namely the power to communicate a 
program instruction by instruction. For example, 
if a premeditated sequence of vectors with repeti- 
tions could be communicated then this could be used 
to encode the description of the program even if 
just two such vectors were used for binary notation. 
Secondly we must avoid giving the teacher what is 
evidently too little power. In particular, the 
protocol must provide some typical examples of 

vectors for which F is true, for otherwise, if 
F is true for just one vector which is total, 
only an exponential search or more powerful oracles 
would be able to find it. 

Such considerations led us to consider the 
following learning protocol as a reasonable one. 
It gives the learner access to the following two 
routines: 

(i) EXAMPLES: This has no input. It gives 
as output a vector v such that F(v) = i. For 
each such v the probability that v is output 
on any single call is D(v). 

(ii) ORACLE( ): On vector v as input it 
outputs 1 or 0 according to whether F (v) = 1 or 0. 

The first of these gives randomly chosen 
positive examples of the concept being learnt. 
The second provides a test for whether a vector 
which the deduction procedure considers to be 
critical is an example of the concept or not. In 
a real system the oracle may be a human expert, a 
data base of past observations, some deduction 
system, or a combination of these. 

Finally we observe that our particular choice 
of leazning protocol was strongly influenced by 
the earlier decision to deal with concepts rather 
than raw Boolean functions. If we were to deal 
with the latter then many other alternatives are 
equally natural. For example, given a vector v 
instead of asking, as we do, whether all comple- 
tions of it m~es the function true, we could ask 
whether there exist any completions that make it 
true. This suggests natural alternative semantics 
for EXAMPLES and ORACLE. In Section 7 we shall 
use such more elaborate oracles. 

3. LEARNABILITY 
We shall consider various classes of programs 

having Pl .... ,Pt as inputs and show that in each 
case any program in the class can be deduced, with 
only small probability of error, in polynomial 
time using the protocol previously described. We 
assume that programs can take the values I, 0 and 
undetermined. 

More precisely we say that a class X of 
programs is learnable with respect to a given 
learning protocol if and only if there exists an 
algorithm A (the deduction procedure) invoking the 
protocol with the following properties: 

(a) The algorithm runs in time polynomial 
both in an adjustable parameter h and in the 
various parameters that quantify the size of the 
program to be learnt, and 

(b) For all programs f 6X and all distribu- 
tions D over vectors v on which f outputs 1 
the algorithm will deduce with probability at least 
(1-h -1) a program g EX that never outputs one 
when it should not, but outputs one almost always 
when it should. In particular (i) for all vectors 
v g(v) =i implies f(v) =i, and (ii) the sum of 
D (v) over all v such that f (v) = 1 but g (v) ~ 1 
is at most h -I. 
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In our definition we have disallowed positive
answers from g to be wrong, only because the
particular classes X in this paper do not require
it. This we call one-sided error learning. In
other circumstances it may be efficacious to allow
two-sided errors. In that more general case we
would need to put a probability distribution E
on the set of vectors such that f(v) fl. Condition
(i) in (b) is then replaced by: CD(v) over all v
such that f(v) fl but g(v) =l is at most h-l.

A second aspect of our definition is that the
parameter h is used in two independent probabil-
istic bounds. This simplifies the statement of the
results. It would be more precise,.however,  to
work explicitly with two independent parameters hl
and h

2'

Thirdly, we should note that programs that
compute concepts should be distinguished from those
that compute merely the Boolean function. This
distinction has little consequence for the three
classes of expressions that we consider since in
these cases programs for the concepts follow
directly from the specification of the expressions.
For the sake of generality our definitions do allow
the value of a program to be undefined since a non-
total vector will not, in general, determine the
value of an expressions as 0 or 1.

It would be interesting to obtain negative
results other than the cryptographic evidence
mentioned in the introduction, indicating that the
class of unrestricted Boolean circuits is not
learnable. In the contrary direction the reader
can verify that the difficulty of this problem can
be upper bounded in various ways. It can be shown
that the assumption that P equals NP would
imply that the class of Boolean circuits is
learnable with two sided error with respect to the
protocol that provides random examples from both
D and 6.

4. A COMBINATORIAL BOUND

The probabilistic analysis needed for our
later results can be abstracted into a single
lemma. The proof of the lemma is independent of
the rest of the paper.

We define the function L(h,Sl for any real’
number h greater than one and any positive
integer S as follows: Let L(h,S)  be the
smallest integer such that in L(h,S) independent
Bernoulli trials each with probability h of
success, the probability of having fewer than S
successes is less than h- .

The following simple upper bound holds for
the whole range of values of S and h and shows
that L(h,S)  is essentially linear both in h and
in S.

PROPOSITION: For all  integers S  21 a n d  atZ  r e a l
h >l.

L(h,S)  < 2h(S  +logeh)  .

Proof. We use the following three well known in-
equalities of which the last is due to Chernoff

(see [51,  p. 18).

(a)  For a l l x>O  (l+x-1)x<e  .

(b) For all x >O ( 1  -x-1)x  <e-l.

Cc) In m independent trials each with
probability p of success the probability that
there are at most k success, where k <mp,  is at
most

pqk (!Q,”  .

The first factor in the expression in (c)
above can be rewritten as

(cm-k)/(mp-k))  (mp-k)(l-=&j .
using (b) with x = (m-k)/(mp-k)  we can upper
bound the product by

e
-mp+k

bw/k)k  .

Substituting
and using loga~i~~"'t?%~'~as~  =h-l

and k=S
e gives the

bound

.-Is  - 210gh+sm  L2 (l+(log  h),S)  I (S/loghl  log h .

Rewriting this using (a) with x= (logeh)/S  gives

e-S -210gho2S ,log  h S
<(2/e)  *e

-logh&-1. 0

As an illustration of an application suppose
that we have access to EXAMPLES, a source of
natural positive examples of vectors for concept
F. Suppose that we want to find an approximation
to the subset P of variables that are determined
in at least one natural example of F. Consider
the following procedure. Pick the first L(h,lPI)
vectors provided by EXAMPLES and let P' be the
union of the sets of variables determined by these
vectors. The proposition then implies that with
probability at least 1-h-l  the set P' w i l l
have the following property: if a vector is
chosen with probability distribution D then the
probability thaflit  determines a variable in P -P'
is less than h . To see this observe that if P'
does not have the claimed property then the
following has happened: L(h, IP 1) trials have been
made (i.e. calls of EXAMPLES) each with probability
greater than h--l of success (i.e. finding a
vector that determines a variable in P-P') but
there have been fewer than IPI successse~  ito;,
discoveries of new additions to P').
bility of such a happening is less than h-l  by
the definition of L.

The above application shows that the set of
variables that are determined in natural examples
o f F can be approximated by a procedure whose
runtime  is independent of t, the total number of
var iab les .



5. BOUNDED CNF EXPRESSIONS 

A conjunctive normal form (CNF) expression is 
any product ClC2...c r of clauses where each 

clause c i is a sum ql +q2 +--- +qJi of literals. 
A ZiteraZ q is either a variable p or the nega- 
tion p of a variable. For example, 

(Pl +P2) (Pl +~2 +P3 ) is a CNF expression. For a 
positive integer k a k-CNF expression is a CNF 
expression where each clause is the sum of at most 
k literals. 

For CNF expressions in general we do not know 
of any polynomial time deduction procedure with 
respect to our learning protocol. The question Of 
whether one exists is tantalizing because of its 
apparent simplicity. 

f In this section we shallprove that for any 
ixed integer k the class of k-CNF expressions is 

learnable. In fact it is learnable easily in the 
sense that calls of EXAMPLES suffice and no calls 
of ORACLE are required. 

In this and subsequent sections we shall use 
the relation ~ on concepts as follows: F ~G 
means that for all vectors v whenever F(v) =I 
it is also the case that G(v) =i. (N.B. This is 
equivalent to the relation F ~G when F,G are 
regarded as functions.) For brevity we shall often 
denote both expressions and even vectors by the 
concepts they represent. Thus the concept repre- 
sented by vector w is true for exactly those 
vectors that agree with w on all variables on 
which w is determined. The concept represented 
by expression f is obtained by considering the 
Boolean function computed by f and extending its 
domain to become a concept. In this section we 
regard a clause c i to be a special kind of ex- 
pression. In Sections 7 and 8 we consider monomials 
m, simple products of literals, as special forms of 
expressions. In all cases statements of the form 
f ~g, v ~c i, v ~m or m ~f can be understood by 
interpreting the two sides as concepts or functions 
in the obvious way. 

THEOREM A: For any positive integer k the class 
of k-CNF expressions is learnable via an algorithm 
A that uses L =L(h,(2t) k+l) calls of EXAMPLES 
and no calls of ORACLE, where t is the number of 
variables. 

Proof.  The algorithm is initialized with formula 
g as the product of all possible clauses of up to 

k literals from {pl,~l,P2,P2, .... pt,Pt}. Clearly 
the number of ways of choosing a clause of exactly 
k literals is at most (2t) k and hence the number 
of ways of choosing a clause with up to k literals 
is less than 2t +(2t) 2 +... + (2t~ k < (2t) k+l. This 

bounds the initial number of clauses in g. 

The algorithm then calls EXAMPLES L times to 
give positive examples of the concept represented 
by k-CNF formula f. For each vector v so ob- 
tained it deletes all of the remaining clauses in g 
that do not contain a literal tha t is determined to 
be true in v. (I.e. in the clauses deleted each 
literal is either not determined or is negated in 
v.) More precisely the following is repeated L 
times: 

begin v :=EXAMPLES 

for each c i in g delete c. if v ~ c.. 
end 1 l 

The claim is that with high probability the value 
of g after the L-th execution of this block will 
be the desired approximation to the formula f 
that is being learnt. 

Initially the set of vectors {vlv~g} is 
clearly empty. We first claim that as the algo- 
rithm proceeds the set {vlv~g} will always be a 
subset of {vlv~f}. To prove this it is clearly 
sufficient to prove the same statement when both 
sets are restricted to only total vectors. Let B 
be the product of all the clauses c containing up 
to k literals with the property that "Vv if 
v~f then v-~c." It is clear that in the course 
of the algorithm no clause in B can be ever 
deleted. Hence it is certainly true that 
{vlv~g } c {vlv~B }. To establish the claim it 
remains only to prove that B computes the same 
Boolean function as f. (In fact B will be the 
maximal k-CNF formula equivalent to f.) It is 
easy to see that f =~B since by the definition of 
B, for every c in B it is the case that "for 
all v if v ~f then v ~c." To verify the con- 
verse, that B~f, we first note that, by defini- 
tion, f is a k-CNF formula. If some clause in f 
did not occur in B then this clause c' would 
have the property that "By such that v ~f but 
v ~6 c'." But this is impossible since if c' is a 
clause of f and if v ~6 c' then v ~6 f. We con- 
clude that every k-CNF representation of the func- 
tion that f represents consists of a set of 
clauses that is a subset of the clauses in B. 
Hence B ~f. 

Let X =~D(v) with summation over all (not 
necessarily total) vectors v such that v~f but 
v ~ g. This quantity is defined for each inter- 
mediate value of g in the course of the algorithm 
and, as is easily verified, it is monotone decreas- 
ing with time. Now clauses will be removed from g 
whenever EXAMPLES outputs a vector v such that 
v ~ g. The probability of this happening at any 
moment is exactly the current value of X. Also, 
the process of running the algorithm to completion 
can have one of just two possible outcomes: (i) At 
some point X becomes less than h -1, in which 
case the g found will approximate to f exactly 
as required by the definition of learnability. 
(~i) The value of X never goes below h -I and 
hence g is not an acceptable approximation. The 
probability of the latter eventuality is, however, 
at most h -I since it corresponds to the situation 
of performing L(h, (2t) k+l) Bernoulli experiments 
(i.e. calls of EXAMPLES) each with probability 
greater than h -I of success (i.e. finding a v 
such that v ~6 g) and obtaining fewer than 
[2t) k+l successes (a success being manifested by 
the removal of at least one clause from g). [] 

In conclusion we observe that a CNF expression 
g immediately yields a program for computing the 
associated concept. Given a vector v we sub- 
stitute the determined truth values in g. The 
concept will be true for v if and only if all the 
clauses are made true by the substitution. 



6. DNF EXPRESSIONS 

A disjunctive normal form (DNF~ expression is 

any sum m I +m 2 + ... +m r of monomials where each 
monomial m i is a product of literals. For exam- 

ple plP2 +plP3P4 is a DNF expression. Such ex- 
pressions appear particularly easy for humans to 
comprehend. Hence we expect that any practical 
learning system would have to allow for them. 

An expression is monotone if no variable is 
negated in it. We shall show that for monotone DNF 
expressions there exists a simple deduction pro-- 
cedure that uses both EXAMPLES and ORACLE. For 
unrestricted DNF a similar result can be proved 
with respect to a different size measure. In the 
unrestricted case there is the additional difficulty 
that we can guarantee to deduce a program only for 
the function, and not for the concept. This diffi- 

culty does not arise in the monotone case where 
given an expression we can always compute the value 
of the associated concept for a vector v by 
making the substitution and asking whether the re- 
sulting expression is identically true. 

A monomial m is a prime implicant of a func- 

tion F (or of an expression representing the 
function) if m~F and if m' ~ F for any m' 
obtained by deleting one literal from m. A DNF 
expression is prime if it consists of the sum of 
prime implicants none of which is redundant in the 

sense of being implied by the sum of the others. 
There is always a unique prime DNF expression in 

the monotone case, but not in general. We there- 
fore define the degree of a DNF expression to be 
the largest number of monomials that a prime DNF 
expression equivalent to it can have. The unique 
prime DNF expression in the monotone case is simply 
the sum of all the prime implicants. 

THEOREM B: The class of monotone DNF expressions 
is learnable via an algorithm B that uses 
L =L(h,d) calls of EXAMPLES and dt calls of 
ORACLE, where d is the degree of the DNF ex- 
pression f to be learnt and t the number of 
variables. 

Proof. The algorithm is initialized with formula 
g identically equal to the constant zero. The 

algorithm then calls EXAMPLES L times to produce 
positive examples of f. Each time a vector v 
is produced such that v ~ g a new monomial m 
is added to g. The monomial m is the product 
of those literals determined in v that are 
essential to make v~f. More precisely, the loop 
that is executed L times is the following: 

begin 

end 

v := EXAMPLES 
if v ~ g then 

begin for i := 1 

end 

to t do 
if Pi is determined in v then 
begin set v equal to v but with~p i :=*; 

if ORACLE(v~ =i then v :=v 

end 
set m equal to the product of all 

literals q such that v~q; 
g :=g +m 

The test v ~ g amounts to asking whether 
none of the monomials of g is made true by the 
values determined to be true in v. Every time 
EXAMPLES produces a value v such that v ~ g the 
inner loop of the algorithm will find a prime im- 
plicant m to add to g. Each such m is 
different from any previously added (since the 
contrary would have implied that v ~g). It 
follows that such a v will be found at most d 
times and hence ORACLE will be called at most dt 
times. 

Let X = ZD(w) with summation over all (not 
necessarily total) vectors w such that w~f 
but w ~ g. This quantity is defined for each 
intermediate value of g in the course of the 
algorithm, is initially unity, and decreases mono- 
tonically with time. Now a monomial will be added 
to g each time EXAMPLFS outputs a vector v such 

that v ~ g. The probability of this occurring at 
any call of EXAMPLES is exactly X. The process 
of running the algorithm to completion can have 
just two possible outcomes: (i) At some time X 
has become less than h -1, in which case the final 
expression g found will approximate to f as 
required by the definition of learnability. 
(li) The value of X never goes below h -I and 
hence g is not an acceptable approximation. The 
probability of this second eventuality is, however, 
at most h -I since it corresponds to the situation 
of performing L(h,d) Bernoulli experiments (i.e. 
calls of EXAMPLES) each with probability greater 
than h -I of success (i.e. of finding a v such 
that v~f but v ~ g) and obtaining fewer than 
d successes (each manifested by the addition of a 
new monomial). [] 

For unrestricted DNF expressions several 
problems arise. The main source of difficulty is 
the fact that the problem of determining whether 
a nontotal vector implies the function specified by 
a DNF formula is NP-hard. This is simply 
because the problem of determining whether the no- 
where determined vector implies the function is the 
tautology question of Cook [3]. An immediate 
consequence of this is that it is unreasonable to 
assume that the program being learnt computes con- 
cepts rather than functions. Another consequence 
is that in any algorithm akin to Algorithm B the 
test v ~ g may not be feasible if v is not 

total. Algorithm B is sufficient, however, to 
establish the following: 

TIIEOREM B': Suppose the notion of learnability is 
restricted to distributions D such that D(V) = 0 
whenever v is not total. Then the class of DNF 
expressions is learnable, in the sense that programs 
for the functions (but not necessarily the concepts) 
can be deduced in L(h,d) calls of EXAMPLES and dt 
calls of ORACLE where d is the degree of the DNF 
expression to be learnt. 

The reader should note that here there is the 

additional philosophical difficulty that availabil- 
ity of the expression does not in itself imply a 
polynomial time algorithm for ORACLE. On the other 
hand, the theorem does say that if an agent has 
some, may be ad hoc, black box for ORACLE whose 
workings are unknown to him, he can use it to teach 
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someone else a DNF expression that approximates the 
function. 

Finally, it may be worth emphasizing that the 
monotone case is nonproblematic and the deduction 
procedure for it very simple-minded. It may be 
interesting to pursue more sophisticated deduction 
procedures for it if contexts can be found in 
which they can be proved advantageous. The 
question as to whether monotone DNF expressions 
can be learnt from EXAMPLES alone is open. A po- 
sitive answer would be especially significant. 

7.. p-EXPRESSIONS 

We have already seen a class of expressions, 
namely the k-CNF expressions, that can be learnt 
from positive examples alone. Here we shall con- 

sider the other extreme, a class that can be learnt 
using oracles alone. 

Deducing expressions on which there are less 
severe structural restrictions than DNF or CNF 
appears much more difficult. The aim of this sec- 
tion is to give a paradigmatic example of how far 
one can go in that direction if one is willing to 
pay the price of oracles that are more sophisticated 
than the one previously described. 

A general expression over variable set 

{Pl,''" ,Pt } is defined recursively as follows: 

(i) For each i (i ~i ~t) "Pi" and 
"Pi" are expressions. 

(ii) If fl,...,fr are expressions then 

"(fl +f2 +''" +fr )'' is an expression 
(called a plus expression). 

(iii) If fl .... ,fr are expressions then 
"(fl xf2 x... ×fr)" is an expression 
(called a times expression). 

A p-expression is an expression in which each 
variable appears at most once. We can assume that 
a p-expression is monotone since we can always 
relabel negated variables with new names that 
denote their negation. In the recursive definition 
of any p-expression there are clearly at most 2t -i 
intermediate expressions of which at most t are of 
type (i) and at most t - 1 of types (ii) or (iii). 
Without loss of generality we shall assume that in 
the definition of a p-expression rules (ii) and 
(iii) alternate. We shall regard two p-expressions 

as identical if their defini£ions can be made 
formally the same by reordering sums and products 

and relabelling as necessary. 

For learning p-expressions we shall employ more 
powerful oracles. The boundary between reasonable 
and unreasonable oracles does not appear sharp. We 
make no claims about the reasonableness of these new 
oracles except that they may serve as vehicles for 
understanding learnability. 

The definitions refer to the Boolean function 
F (not regarded as a concept here,. The oracle of 
Section 2 will be renamed N-ORACLE since it is one 
of necessity: N-ORACLE(v) = 1 if and only if for 

all total vectors w such that w ~v it is the 

case that F(w) = I. The dual of this would be a 
possibility oracle: P-ORACLE(v) = 1 if and only 
if there exists a total vector w such that w ~v 

and F(w) = i. For brevity we shall also define the 
prime implicant oracle: PI(v) = 1 if and only if 
N-ORACLE(v) = 1 but N-ORACLE(w) =0 for any w 
obtained from v by making one variable deter- 
mined in v undetermined. 

Finally we define two further oracles, ones of 
relevant possibility ~ and of relevant accompani- 
ment RA. For convenience we define the first by 

how it behaves on vectors represented as monomials: 
RP(m) = 1 iff from some monomial m' mm' is a 
prime implicant of f. For sets, V,W of variables 
we define RA(V,W) = 1 iff every prime implicant 
of f that contains a variable from V also 
contains a variable from W. 

THEOREM C: The class of p-expressions is leqrnable 
via a deduction procedure C that uses 0(t °) 
calls of N-ORACLE, RP and AP altogether, where t 
is the number of variables, hand no calls of 
EXAMPLES.) The procedure always deduces exactly the 
correct expression. 

Proof. Let ~ be the monomial that is the product 
of no literals. The algorithm will first compute 
RP(Pi) for each Pi to determine which of the 
variables occur in the prime implicants of the 
function that the expression f to be learnt re- 

presents. Let gl,...,g r be distinct single 
variable expressions, one for each Pi for which 
RP(Pi) = i. Note that these are exactly the variab- 
les that occur in f since f is monotone. 

With each gi we associate two monomials m i 
and mi" The former will be the single variable 
pj that gi represents. The latter is defined as 
any monomial ~ having no variable in common with 
m i such that mi~ is a prime implicant of f. 
The algorithm will construct each such mi as the 
final value of m in the following procedure: Set 

m =~; while PI(mm i) =0 find a Pk not in mm i 
such that RP(Pk~ i) = 1 and set m :=~k m. Hence 
in at'most t 2 calls of PI (i.e. t ° calls of 
N-ORACLE) and t 2 calls of RP values for every 

~. will be found. 
l 

Once initialized the algorithm proceeds by 
alternately executing a plus-phase and a times- 
phase. At the start of each phase we have a set of 

expressions gl,..-,gr where each gi is associated 
with two monomials m i and mi (having no variables 
in common) where m i is a prime implicant of gi 
and mi~ i is a prime implicant of f. We distin- 
guish the g's as plus or times expressions accord- 
ing to whether the outermost construction rule was 
addition or multiplication. A plus-phase will first 

compute an equivalence relation S on the subset of 
{gi } that are times expressions. For each equi- 
valence class G such that no gi 6G already 
occurs as a summand in a sum, we construct a new 
expression that is the sum of the members of G and 
call this sum gk where k is a previously unused 
index. If some members of G already occur in a 

sum, say gj, (N.B. they are never distributed in 
more than one sum) then we modify the sum expression 
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gj to equal the sum of every expression in G. A 
times phase is exactly analogous except that it 
computes a different equivalence relation T, now 
on plus expressions, and will form new, or extend 
old, times expressions. In the above context 
single variable expressions will be regarded as 
both times and plus expressions. Also, it is 
immaterial which of the two kinds of phase is used 
to start the algorithm. 

The intention of the algorithm is best ex- 
pressed by the claim to follow which will be 
verified later. Suppose that the expressions 
occurring in the definition of f are fl,...,fq 
(where q ~2t-l). We shall say that g ~ fi iff 
the set of prime implicants of g is a subset of 
the set of prime implieants of ~fi where (i) if 
fi is a plus expression then fi =fi and (ii) if 
fi is a times expression then fi is the product 
of some subset of the multiplicands of fi" 

Claim I: After every phase of the algorithm for 
every gi that has been constructed there is 
exactly one expression fi such that (i) gi ~ fi 
and (ii) fi is of the same kind (i.e. plus or 
times) as gi" 

The procedure builds up the rooted tree of the 
expression as rooted subtrees starting from the 
leaves. One evident difficulty is that there is 
no a p~oP~ knowledge available about the shape of 
the tree. Hence in the grafting process a subtree 
may become attached to another at just about any 
node. 

Whenever a plus or times expression gi is 
created or enlarged its associated m i and mi is 
updated as follows. If gi is a sum then we let 
m i =mj and mi =~j for any g j  that is a surf=and 
in gi" If gi is a product rnnen m i will be the 
product of all the mj's that correspond to multi- 
plicands in gi" Finally mi will be generated as 
the final value of m in the following procedure: 
Set m :=I; while PI(mmi) =0 find a Pk not in 
mm i such that RP(Pkmm i) = 1 and set m :=pk m- 
Since such an mi has to be found at most t 
times in the overall algorithm the total cost is 
at most t 2 calls of PI (i.e., t 3 calls of N- 
ORACLE) and t 2 calls of RP. 

In order to complete the description of the 
algorithm it remains only to define the equivalence 
relations S and T. 

D e f i n i t i o n :  gi S gj if and only if 

(i) PI(mi~ j) = PI(mjm i) = i, and 

(ii) mi,~. contains disjoint sets of 
J ^ 

variables, as do mj,m i. 

For defining T we shall denote by V i the 
set of variables that occur in the expression gi" 

Definition: gi Tgj if and only if RA(Vi,V j) = 
RA(Vj,V i) = i. 

First we shall verify that S and T are 
indeed equivalence relations under the assumption 
that Claim 1 holds at the beginning of each phase. 
Clearly S and T are defined to be both re- 
flexive and symmetric. Also T is transitive for 
supoose that gi Tgj and gj Tg k. The former 
implies that every prime implicant of f contain- 
ing some variable from gi also contains some 
variable from g~. The latter implies that every 

• . 3 
prime implzcant of f containing some variable 
from gj also contains a variable from gk" Hence 
gi Tgk follows. In order to verify the transiti- 
vity of S we shall make a more general observa- 
tion about any sub-expression of f. 

Claim 2: If mi,m. are prime implicants of 
~ n ~ t  ' ] tzmes subexpressions fi,fj of f and if 
for some m, with no variable in common with either 
m i or m., both mim and mjm are prime impli- 
rants of 3f, then fi,fj must occur as summands in 
the same plus expression of f. 

Proof. Most easily verified by representing express- 
ion f as a directed graph (e.g. [7]) with edges 
labelled by the Boolean variables. The sets of 
labels along directed paths between a distinguished 
source node and a distinguished sink node correspond 
exactly to prime implicants in the case of D- 
expressions where all edges have different 
labels. [] 

Now to verify that S is transitive suppose 
that gi Sgj and g~ Sg k where, by Claim i, 
gi ~fi, gj ~fj and 3gk~.f k for appropriate times 

expressions fi'fj 'fk" Then it follows that m.l ~'3 ' 

m.m.3 3 and mkm j^ are all prime implicants of f 

where mi,m q ,m k have no variable in common with 
J 

~.. It follows from Claim 2 that fi,fj and fk 
3 

are addends in the same sum expression. Hence 

gi S gk follows. 

Claim 3: Suppose that after some phase of the 

algorithm Claim 1 holds and times expressions gi,g 5 

have been formed where gi ~<fi' g- 3 ~<f" and f. ,f. 
J z 3 

are times expressions. Then gi and gi will be 

placed in the same sum expression at the next plus 

phase if and only if fi =fi' f'3 =~'3 and fi,fj 

are addends in the same sum expression in f. 

Proof. (~) If gi ~fi =~" and gj ~f. =f. and 
....... 1 3 ] 

fi,fj are in the same sum then mi,m ~ ~ will be 

prime implicants of f. ,f.. Also m.~n and m.~. 
i j i 3 3 I 

will be prime implicants of f, and the variables 

in m. will be disjoint from those in m. as will 
x 3 

be those in m. from those in ~n.. Hence gi S g: 
3 z ] 

will hold and gi,g q will be in the same plus 

expression after the next plus phase. 

(~) Suppose that gi ~fi' gj ~<f.] and 

gi S gj holds. Then mi,m j will be prime implicants 
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of gi'g" 3 respectively, m.d.,m.d, will both be 
i 3 3 3 

prime implicants of f, and the variables in ~. 
3 

will be disjoint from those of both m. and m.. 
3 

It follows from Claim 2 that f. =f. and f. =f. 
l • 3 3 

must occur as summands in the same plus expression 

of f. [N.B. Here we are using the fact that 

Claim 2 remains true if we allow a "times subex- 

pression" to be the product of any subset of the 

multiplicands in a times expression in f.] 

Clalm 4: Suppose that after some phase of the 

algorithm Claim 1 holds and plus expressions 

gi ~fi and gJ ~f'3 (fi,fj plus expressions) have 

been found. (i) If gi = f. and g- 3 = f" and fi' 
i 3 

f. are multiplicands in the same times expressions 
3 

in f then gi,g 5 will be placed in the same 

times expression after the next times phase. 

(ii) If gi,g 5 are placed in the same times 

expression at any subsequent phase then fi,fj are 

in the same product in f. 

Proof. (i) If the conditions of (i) hold then 
gi Tgj will be discovered at the next times phase 
and the claim follows. (ii) If fi,fj are not in 
the same product in f then f contains some 
prime implicant containing variables from one of 
gi,gj and not from the other. Hence gi Tgj will 
never hold. o 

Proof of Claim 1. By induction on the number of 
phases on Claims i, 3 and 4 simultaneously. D 

We define the depth of a formula fi to be 
the maximum number of alternations of sum and 
product required in its definition. 

Claim 5: If fi is an expression of depth k in 
f then after k phases a gi identical to fi 
will have been constructed by the algorithm. 

Proof. By induction on Claims 3 and 4. [3 

To conclude the proof of the theorem it remains 
to analyze the runtime, iThis is dominated by the 
cost of computing m i and hi, for which we have 
already accounted, plus the cost of computing the 
equivalence relations S and T. We first note 
that fewer than 2t expression names gi are 
used in the course of the algorithm. When an ex- 
pression is grafted into another at a point deep in 
the latter then the semantics of all the subex- 
pressions above will change. By Claims 3 and 4 such 
grafting can occur when a gi is added to a sum 
expression but not when added to a times expression. 
Hence the values m i and h i do not need to be 
changed for any expression when such grafting 
occurs. It follows that for computing S only 2t 
values of mi,~ i need to be considered. Hence 
O(t 2) calls of PI or O(t 3) calls of N-ORACLE 
suffice overall. For computing T grafting may 
cause a ripple effect. On each occasion the value 

of V 4 may have to be updated for up to t such 
sets and hence t 2 calls of RA will suffice. 
Hence O(t 3) calls of RA in the overall algro- 
rithm will be enough. 0 

8. REMARKS 

In this paper we have considered learning as 
the process of deducing a program for performing a 
task, from information that does not provide an 
explicit description of such a program. We have 
given precise meaning to this notion of learning 
and have shown that in some restricted but non- 
trivial contexts it is computationally feasible. 

Consider a world containing robots and ele- 
phants. Suppose that one of the robots has dis- 
covered a recognition algorithm for elephants that 
can be meaningfully expressed in k-conjunctive 
normal form. Our Theorem A implies that this 
robot can communicate its algorithm to the rest of 
the robot population by simply exclaiming "ele- 
phant" whenever one appears. 

An important aspect of our approach, if cast 
in its greatest generality, is that we require the 
recognition algorithms of the teacher and learner 
to agree on an overwhelming fraction of only the 
natural inputs. Their behavior on unnatural inputs 
is irrelevant and hence descriptions of all 
possible worlds are not necessary. If followed to 
its conclusion this idea has considerable philo- 
sophical implications: A learnable concept is 
nothing more than a short program that distinguishes 
some natural inputs from some others. If such a 
concept is passed on among a population in a 
distributed manner substantial variations in 
meaning may arise. More importantly, what consensus 
there is will only be meaningful for natural inputs. 
The behavior of an individual's program for un- 
natural inputs has no relevance. Hence thought 
experiments and logical arguments involving un- 
natural hypothetical situations may be meaningless 
activities. 

The second important aspects of the formula- 
tion is that the notion of oracles makes it 
possible to discuss a whole range of teacher- 
learner interactions beyond the mere identification 
of examples. This is significant in the context of 
artificial intelligence where a human may be willing 
to go to great lengths to convey his skills to a 
machine while being unable to articulate thealgorithms 
he himselfuses in the practice of the skills. We 
expect that some explicit programming does become 
essential for transmitting skills that are beyond 
certain limits of difficulty. The identification 
of these limits is a major goal of the line of 
work proposed in this paper. 
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