
A THEORY OF THE LEARNABLE

L.G. Val iant

Aiken Computation Laboratory
Harvard University, Cambridge, Massachusetts

ABSTRACT. Humans appear to be able to learn new
concepts without needing to be programmed explicitly
in any conventional sense. In this paper we regard
learning as the phenomenon of knowledge acquisition
in the absence of explicit programming. We give a
precise methodology for studying this phenomenon
from a computational viewpoint. It consists of
choosing an appropriate information gathering
mechanism, the learning protocol, and exploring the
class of concepts that can be learnt using it in a
reasonable (polynomial) number of steps. We find
that inherent algorithmic complexity appears to set
serious limits to the range of concepts that can be
so learnt. The methodology and results suggest
concrete principles for designing realistic learning

systems.

|. INTRODUCTION

Computability theory became possible once
precise models became available for modelling the
commonplance phenomenon of mechanical calculation.
The theory that evolved has been used to explain
human experience and to suggest how artificial
computing devices should be built. It is also
worth studying for its own sake.

The commonplace phenomenon of learning surely
merits similar attention. The problem is to dis-
cover good models that are interesting to study
for their own sake and promise to be relevant both
to explaining human experience and to building
devices that can learn. The models should also
shed light on the limits of what can be learnt,
just as computability does on what can be computed.

In this paper we shall say that a program for
performing a task has been acquired by learning if
it has been acquired by any means other than

*This research was supported in part by National
Science Foundation Grant MCS-83-02385.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0 -8979 i -133 -4 /84 /004 /0436 $00.75

explicit programming. Among human skills some
clearly appear to have a genetically preprogrammed
element while some others consist of executing an
explicit sequence of instructions that has been
memorized. There remains a large area of skill
acquisition where no such explicit programming is
identifiable. It is this area that we describe
here as learning. The recognition of familiar
objects, such as tables, provide such examples.
These skills often have the additional property
that, although we have learnt them, we find it
difficult to articulate what algorithm we are
really using. In these cases it would be espe-
cially significant if machines could be made to
acquire them by learning.

This paper is concerned with precise computa-
tional models of the learning phenomenon. We shall
restrict ourselves to skills that consist of re-
cognizing whether a concept (or predicate) is true
or not for given data. We shall say that a con-
cept Q has been learnt if a program for recog-
nizing it has been deduced (i.e. by some method
other than the acquisition from the outside of the
explicit program).

The main contribution of this paper is that it
shows that it is possible to design learning
machines that have all three of the following pro-
perties.

(A) The machines can provably learn whole
classes of concepts. Furthermore these classes can
be characterized.

(B) The classes of concepts are appropriate
and nontrivial for general purpose knowledge, and

(C) The computational process by which the
machines deduce the desired programs requires a
feasible (i.e. polynomial) number of steps.

A learning machine consists of a learning pro-
tocol together with a deduction procedure. The
former specifies the manner in which information is
obtained from the outside. The latter is the
mechanism by which a correct recognition algorithm
for the concept to be learnt is deduced. At the
broadest level the suggested methodology for
studying learning is the following: define a
plausible learning protocol and investigate the
class of concepts for which recognition programs
can be deduced in polynomial time using the
protocol.

436

The specific protocols considered in this
paper allow for two kinds of information supply.
First the learner has access to a supply of typ-
ical data that positively exemplify the concept.
More precisely, it is assumed that these positive
examples have a probabilistic distribution deter-
mined arbitrarily by nature. A call of a routine
EXAMPLES produces one such positive example. The
relative probability of producing different exam-
ples is determined by the distribution. The
second source of information that may be avail-
able is a routine ORACLE. In its most basic
version, when presented with data it will tell the
learner whether or not the data positively exem-
plifies the concept.

The major remaining design choice that has to
be made is that of knowledge representation.
Since our declared aim is to represent general
knowledge, it seems almost unavoidable that we use
some kind of logic rather than, for example,
formal grammars or geometrical constructs. In
this paper we shall represent concepts as Boolean
functions of a set of propositional variables.
The recognition algorithms that we attempt to
deduce will be therefore Boolean circuits or
expressions.

The adequacy of the propositional calculus
for representing knowledge in practical learning
systems is clearly a crucial question. Few would
argue that this much power is not necessary. The
question is whether it is enough. There are
several arguments suggesting that such a system
would, at least, be a very good start. First,
when one examines the most famous examples of
systems that embody preprogrammed knowledge,
namely expert systems such as DENDRAL and MYCIN,
essentially no logical notation beyond the pro-
positional calculus is used. Surely it would be
over-ambitious to try to base learning systems
on representations that are more powerful than
those that have been successfully managed in pro-
grammed systems. Second, the results in this
paper can be negatively interpreted to suggest
that the class of learnable concepts even within
the propositional calculus is severely circum-
scribed. This suggests that the search for ex-
tensions to the propositional calculus that have
substantially larger learnable classes may be a
difficult one.

The positive conclusions of this paper are
that there are specific classes of concepts that
are learnable in polynomial time using learning
protocols of the kind described. These classes
can all be characterized by defining the class
of programs that recognize them. In each case
the programs are special kinds of Boolean ex-
pressions. The three classes are: (i) con-
junctive normal form expressions with a bounded
number of literals in each clause, (ii) monotone
disjunctive normal form expressions, and (iii)
arbitrary expressions in which each variable
occurs just once. In the first of these no calls
of the oracle are necessary. In the last no
access to typical examples is necessary but the
oracles need to be more powerful than the one

described above.

The deduction procedure will in each case out-
put an expression that with high likelihood closely
approximates the expression to be learnt. Such an
approximate expression never says yes when it
should not, but may say no on a small fraction of
the probability space of positive examples. This
fraction can be made arbitrarily small by increas-
ing the runtime of the deduction procedure. Per-
haps the main technical discovery contained in the
paper is that with this probabilistic notion of
learning highly convergent learning is possible for
whole classes of Boolean functions. This appears
to distinguish this approach from more traditional
ones where learning is seen as a process of "in-
ducing" some general rule from information that is
insufficient for a reliable deduction to be made.
The power of this probabilistic viewpoint is
illustrated, for example, by the fact that an
arbitrary set of polynomially many positive exam-
ples cannot be relied on to determine expressions
consisting of even just a single monomial in any
reliable way.

There is another aspect of our formulation that
is worth emphasizing. In a learning system that is
about to learn a new concept there may be an
enormous number of propositional variables avail-
able. These may be primitive inputs, the values of
preprogrammed concepts, or the values of concepts
that have been learnt previously. We want the
complexity of learning the new concept to be rela-
ted only to the number of variables that may be set
in natural examples of it, and not on the car-
dinality of the universe of available variables.
Hence the questions asked of ORACLE and the values
given by EX~4PLES will not be truth assignments to
all the variables. In the archetypal case they
will specify an assignment to a subset of the
variables that is still sufficient to guarantee
the truth of the function.

Whether the classes of learnable Boolean con-
cepts can be extended significantly beyond the
three classes given is an interesting question.
There is circumstantial evidence from cryptography:
however, that the whole class of functions com-
putable by polynomial size circuits is not
learnable. Consider a cryptographic scheme that
encodes messages by evaluating the function E k
where k specifies the key. Suppose that this
scheme is immune to chosen plaintext attack in the
sense that even if the values of E k are known for
polynomially many d/fferent inputs, it is computa-
tionally infeasible to deduce an algorithm for E k
or for an approximation to it. This is equivalent
to saying, however, that E k is not learnable.
The conjectured existence of good cryptographic
functions that are easy to compute therefore im-
plies that some easy to compute functions are not
learnable.

If the class of learnable concepts is as
severely limited as suggested by our results then
it would follow that the only way of teaching more
complicated concepts is to build them up from such
simple ones. Thus a good teacher would have to
identify, name and sequence these intermediate
concepts in the manner of a programmer. The re-
sults of ZeoiPnabiZity theory would then indicate
the maximum granularity of the single concepts that
can he acquired without programming.

437

In summary, this paper attempts to explore the
limits of what is learnable as allowed by algorith-
mic complexity. The results are distinguishable
from the diverse body of previous work on learning
because they attempt to reconcile the three pro-
perties (A)-(C) mentioned earlier. Closest in
rigour to our approach is the inductive inference
literature (see Angluin and Smith [i] for a survey)
that deals with inducing such things as recursive
functions or formal grammars (but not Boolean
functions) from examples. There is a large body
of work on pattern recognition and classification,
using statistical and other tools, (e.g. [4]) but
the question of general knowledge representation is
not addressed there directly. Learning, in various
less formal senses, has been studied widely as a
branch of artificial intelligence. A survey and
bibliography can be found in [2,6]. In their
terminology the subject of this paper is concept
learning.

2. A LEARNING PROTOCOL FOR BOOLEAN FUNCTIONS

We consider t Boolean variables pl,...,pt
each of which can take the value 1 or 0 to indicate
whether the associated proposition is true or
false. There is no assumption about the indepen-
dence of the variables. Indeed, they may be func-
tions of each other.

A vGdtor is an assignment to each of the t
variables of a value from {0,i,*}. The symbol *
denotes that a variable is undetermined. A vector
is totaZ if every variable is determined (i.e. is
assigned a value from {0,i}.) For example, the

assignment Pl =P3 =i' P4 =0 and P2 =* is a
vector that is not total.

A Boolean function F is a mapping from the
set of 2 t total vectors to {0,i}. A Boolean
function F becomes a concept F if its domain
is extended to the set of all vectors as follows:
For a vector v F(v) =i if and only if F(w) =I
for all total vectors w that agree with v on
all variables for which v is determined. The
purpose of this extension is that it permits us
not to mention the variables on which F does
not depend.

Given a concept F we consider an arbitrary
probability distribution D over the set of all
vectors v such that F(v) = i. In other words
for each v such that F(v) =i it is the case
that D(v) 90. Also ~D(v) = 1 when summation
is over this set of vectors. There are no other
assumed restrictions on D, which is intended to
describe the relative frequency with which the
positive examples of F occur in nature.

What are reasonable learning protocols to
consider? First we must avoid giving the teacher
too much power, namely the power to communicate a
program instruction by instruction. For example,
if a premeditated sequence of vectors with repeti-
tions could be communicated then this could be used
to encode the description of the program even if
just two such vectors were used for binary notation.
Secondly we must avoid giving the teacher what is
evidently too little power. In particular, the
protocol must provide some typical examples of

vectors for which F is true, for otherwise, if
F is true for just one vector which is total,
only an exponential search or more powerful oracles
would be able to find it.

Such considerations led us to consider the
following learning protocol as a reasonable one.
It gives the learner access to the following two
routines:

(i) EXAMPLES: This has no input. It gives
as output a vector v such that F(v) = i. For
each such v the probability that v is output
on any single call is D(v).

(ii) ORACLE(): On vector v as input it
outputs 1 or 0 according to whether F (v) = 1 or 0.

The first of these gives randomly chosen
positive examples of the concept being learnt.
The second provides a test for whether a vector
which the deduction procedure considers to be
critical is an example of the concept or not. In
a real system the oracle may be a human expert, a
data base of past observations, some deduction
system, or a combination of these.

Finally we observe that our particular choice
of leazning protocol was strongly influenced by
the earlier decision to deal with concepts rather
than raw Boolean functions. If we were to deal
with the latter then many other alternatives are
equally natural. For example, given a vector v
instead of asking, as we do, whether all comple-
tions of it m~es the function true, we could ask
whether there exist any completions that make it
true. This suggests natural alternative semantics
for EXAMPLES and ORACLE. In Section 7 we shall
use such more elaborate oracles.

3. LEARNABILITY
We shall consider various classes of programs

having Pl ,Pt as inputs and show that in each
case any program in the class can be deduced, with
only small probability of error, in polynomial
time using the protocol previously described. We
assume that programs can take the values I, 0 and
undetermined.

More precisely we say that a class X of
programs is learnable with respect to a given
learning protocol if and only if there exists an
algorithm A (the deduction procedure) invoking the
protocol with the following properties:

(a) The algorithm runs in time polynomial
both in an adjustable parameter h and in the
various parameters that quantify the size of the
program to be learnt, and

(b) For all programs f 6X and all distribu-
tions D over vectors v on which f outputs 1
the algorithm will deduce with probability at least
(1-h -1) a program g EX that never outputs one
when it should not, but outputs one almost always
when it should. In particular (i) for all vectors
v g(v) =i implies f(v) =i, and (ii) the sum of
D (v) over all v such that f (v) = 1 but g (v) ~ 1
is at most h -I.

438

In our definition we have disallowed positive
answers from g to be wrong, only because the
particular classes X in this paper do not require
it. This we call one-sided error learning. In
other circumstances it may be efficacious to allow
two-sided errors. In that more general case we
would need to put a probability distribution E
on the set of vectors such that f(v) fl. Condition
(i) in (b) is then replaced by: CD(v) over all v
such that f(v) fl but g(v) =l is at most h-l.

A second aspect of our definition is that the
parameter h is used in two independent probabil-
istic bounds. This simplifies the statement of the
results. It would be more precise,.however, to
work explicitly with two independent parameters hl
and h

2'

Thirdly, we should note that programs that
compute concepts should be distinguished from those
that compute merely the Boolean function. This
distinction has little consequence for the three
classes of expressions that we consider since in
these cases programs for the concepts follow
directly from the specification of the expressions.
For the sake of generality our definitions do allow
the value of a program to be undefined since a non-
total vector will not, in general, determine the
value of an expressions as 0 or 1.

It would be interesting to obtain negative
results other than the cryptographic evidence
mentioned in the introduction, indicating that the
class of unrestricted Boolean circuits is not
learnable. In the contrary direction the reader
can verify that the difficulty of this problem can
be upper bounded in various ways. It can be shown
that the assumption that P equals NP would
imply that the class of Boolean circuits is
learnable with two sided error with respect to the
protocol that provides random examples from both
D and 6.

4. A COMBINATORIAL BOUND

The probabilistic analysis needed for our
later results can be abstracted into a single
lemma. The proof of the lemma is independent of
the rest of the paper.

We define the function L(h,Sl for any real’
number h greater than one and any positive
integer S as follows: Let L(h,S) be the
smallest integer such that in L(h,S) independent
Bernoulli trials each with probability h of
success, the probability of having fewer than S
successes is less than h- .

The following simple upper bound holds for
the whole range of values of S and h and shows
that L(h,S) is essentially linear both in h and
in S.

PROPOSITION: For all integers S 21 a n d atZ r e a l
h >l.

L(h,S) < 2h(S +logeh) .

Proof. We use the following three well known in-
equalities of which the last is due to Chernoff

(see [51, p. 18).

(a) For a l l x>O (l+x-1)x<e .

(b) For all x >O (1 -x-1)x <e-l.

Cc) In m independent trials each with
probability p of success the probability that
there are at most k success, where k <mp, is at
most

pqk (!Q,” .

The first factor in the expression in (c)
above can be rewritten as

(cm-k)/(mp-k)) (mp-k)(l-=&j .
using (b) with x = (m-k)/(mp-k) we can upper
bound the product by

e
-mp+k

bw/k)k .

Substituting
and using loga~i~~"'t?%~'~as~ =h-l

and k=S
e gives the

bound

.-Is - 210gh+sm L2 (l+(log h),S) I (S/loghl log h .

Rewriting this using (a) with x= (logeh)/S gives

e-S -210gho2S ,log h S
<(2/e) *e

-logh&-1. 0

As an illustration of an application suppose
that we have access to EXAMPLES, a source of
natural positive examples of vectors for concept
F. Suppose that we want to find an approximation
to the subset P of variables that are determined
in at least one natural example of F. Consider
the following procedure. Pick the first L(h,lPI)
vectors provided by EXAMPLES and let P' be the
union of the sets of variables determined by these
vectors. The proposition then implies that with
probability at least 1-h-l the set P' w i l l
have the following property: if a vector is
chosen with probability distribution D then the
probability thaflit determines a variable in P -P'
is less than h . To see this observe that if P'
does not have the claimed property then the
following has happened: L(h, IP 1) trials have been
made (i.e. calls of EXAMPLES) each with probability
greater than h--l of success (i.e. finding a
vector that determines a variable in P-P') but
there have been fewer than IPI successse~ ito;,
discoveries of new additions to P').
bility of such a happening is less than h-l by
the definition of L.

The above application shows that the set of
variables that are determined in natural examples
o f F can be approximated by a procedure whose
runtime is independent of t, the total number of
var iab les .

5. BOUNDED CNF EXPRESSIONS

A conjunctive normal form (CNF) expression is
any product ClC2...c r of clauses where each

clause c i is a sum ql +q2 +--- +qJi of literals.
A ZiteraZ q is either a variable p or the nega-
tion p of a variable. For example,

(Pl +P2) (Pl +~2 +P3) is a CNF expression. For a
positive integer k a k-CNF expression is a CNF
expression where each clause is the sum of at most
k literals.

For CNF expressions in general we do not know
of any polynomial time deduction procedure with
respect to our learning protocol. The question Of
whether one exists is tantalizing because of its
apparent simplicity.

f In this section we shallprove that for any
ixed integer k the class of k-CNF expressions is

learnable. In fact it is learnable easily in the
sense that calls of EXAMPLES suffice and no calls
of ORACLE are required.

In this and subsequent sections we shall use
the relation ~ on concepts as follows: F ~G
means that for all vectors v whenever F(v) =I
it is also the case that G(v) =i. (N.B. This is
equivalent to the relation F ~G when F,G are
regarded as functions.) For brevity we shall often
denote both expressions and even vectors by the
concepts they represent. Thus the concept repre-
sented by vector w is true for exactly those
vectors that agree with w on all variables on
which w is determined. The concept represented
by expression f is obtained by considering the
Boolean function computed by f and extending its
domain to become a concept. In this section we
regard a clause c i to be a special kind of ex-
pression. In Sections 7 and 8 we consider monomials
m, simple products of literals, as special forms of
expressions. In all cases statements of the form
f ~g, v ~c i, v ~m or m ~f can be understood by
interpreting the two sides as concepts or functions
in the obvious way.

THEOREM A: For any positive integer k the class
of k-CNF expressions is learnable via an algorithm
A that uses L =L(h,(2t) k+l) calls of EXAMPLES
and no calls of ORACLE, where t is the number of
variables.

Proof. The algorithm is initialized with formula
g as the product of all possible clauses of up to

k literals from {pl,~l,P2,P2, pt,Pt}. Clearly
the number of ways of choosing a clause of exactly
k literals is at most (2t) k and hence the number
of ways of choosing a clause with up to k literals
is less than 2t +(2t) 2 +... + (2t~ k < (2t) k+l. This

bounds the initial number of clauses in g.

The algorithm then calls EXAMPLES L times to
give positive examples of the concept represented
by k-CNF formula f. For each vector v so ob-
tained it deletes all of the remaining clauses in g
that do not contain a literal tha t is determined to
be true in v. (I.e. in the clauses deleted each
literal is either not determined or is negated in
v.) More precisely the following is repeated L
times:

begin v :=EXAMPLES

for each c i in g delete c. if v ~ c..
end 1 l

The claim is that with high probability the value
of g after the L-th execution of this block will
be the desired approximation to the formula f
that is being learnt.

Initially the set of vectors {vlv~g} is
clearly empty. We first claim that as the algo-
rithm proceeds the set {vlv~g} will always be a
subset of {vlv~f}. To prove this it is clearly
sufficient to prove the same statement when both
sets are restricted to only total vectors. Let B
be the product of all the clauses c containing up
to k literals with the property that "Vv if
v~f then v-~c." It is clear that in the course
of the algorithm no clause in B can be ever
deleted. Hence it is certainly true that
{vlv~g } c {vlv~B }. To establish the claim it
remains only to prove that B computes the same
Boolean function as f. (In fact B will be the
maximal k-CNF formula equivalent to f.) It is
easy to see that f =~B since by the definition of
B, for every c in B it is the case that "for
all v if v ~f then v ~c." To verify the con-
verse, that B~f, we first note that, by defini-
tion, f is a k-CNF formula. If some clause in f
did not occur in B then this clause c' would
have the property that "By such that v ~f but
v ~6 c'." But this is impossible since if c' is a
clause of f and if v ~6 c' then v ~6 f. We con-
clude that every k-CNF representation of the func-
tion that f represents consists of a set of
clauses that is a subset of the clauses in B.
Hence B ~f.

Let X =~D(v) with summation over all (not
necessarily total) vectors v such that v~f but
v ~ g. This quantity is defined for each inter-
mediate value of g in the course of the algorithm
and, as is easily verified, it is monotone decreas-
ing with time. Now clauses will be removed from g
whenever EXAMPLES outputs a vector v such that
v ~ g. The probability of this happening at any
moment is exactly the current value of X. Also,
the process of running the algorithm to completion
can have one of just two possible outcomes: (i) At
some point X becomes less than h -1, in which
case the g found will approximate to f exactly
as required by the definition of learnability.
(~i) The value of X never goes below h -I and
hence g is not an acceptable approximation. The
probability of the latter eventuality is, however,
at most h -I since it corresponds to the situation
of performing L(h, (2t) k+l) Bernoulli experiments
(i.e. calls of EXAMPLES) each with probability
greater than h -I of success (i.e. finding a v
such that v ~6 g) and obtaining fewer than
[2t) k+l successes (a success being manifested by
the removal of at least one clause from g). []

In conclusion we observe that a CNF expression
g immediately yields a program for computing the
associated concept. Given a vector v we sub-
stitute the determined truth values in g. The
concept will be true for v if and only if all the
clauses are made true by the substitution.

6. DNF EXPRESSIONS

A disjunctive normal form (DNF~ expression is

any sum m I +m 2 + ... +m r of monomials where each
monomial m i is a product of literals. For exam-

ple plP2 +plP3P4 is a DNF expression. Such ex-
pressions appear particularly easy for humans to
comprehend. Hence we expect that any practical
learning system would have to allow for them.

An expression is monotone if no variable is
negated in it. We shall show that for monotone DNF
expressions there exists a simple deduction pro--
cedure that uses both EXAMPLES and ORACLE. For
unrestricted DNF a similar result can be proved
with respect to a different size measure. In the
unrestricted case there is the additional difficulty
that we can guarantee to deduce a program only for
the function, and not for the concept. This diffi-

culty does not arise in the monotone case where
given an expression we can always compute the value
of the associated concept for a vector v by
making the substitution and asking whether the re-
sulting expression is identically true.

A monomial m is a prime implicant of a func-

tion F (or of an expression representing the
function) if m~F and if m' ~ F for any m'
obtained by deleting one literal from m. A DNF
expression is prime if it consists of the sum of
prime implicants none of which is redundant in the

sense of being implied by the sum of the others.
There is always a unique prime DNF expression in

the monotone case, but not in general. We there-
fore define the degree of a DNF expression to be
the largest number of monomials that a prime DNF
expression equivalent to it can have. The unique
prime DNF expression in the monotone case is simply
the sum of all the prime implicants.

THEOREM B: The class of monotone DNF expressions
is learnable via an algorithm B that uses
L =L(h,d) calls of EXAMPLES and dt calls of
ORACLE, where d is the degree of the DNF ex-
pression f to be learnt and t the number of
variables.

Proof. The algorithm is initialized with formula
g identically equal to the constant zero. The

algorithm then calls EXAMPLES L times to produce
positive examples of f. Each time a vector v
is produced such that v ~ g a new monomial m
is added to g. The monomial m is the product
of those literals determined in v that are
essential to make v~f. More precisely, the loop
that is executed L times is the following:

begin

end

v := EXAMPLES
if v ~ g then

begin for i := 1

end

to t do
if Pi is determined in v then
begin set v equal to v but with~p i :=*;

if ORACLE(v~ =i then v :=v

end
set m equal to the product of all

literals q such that v~q;
g :=g +m

The test v ~ g amounts to asking whether
none of the monomials of g is made true by the
values determined to be true in v. Every time
EXAMPLES produces a value v such that v ~ g the
inner loop of the algorithm will find a prime im-
plicant m to add to g. Each such m is
different from any previously added (since the
contrary would have implied that v ~g). It
follows that such a v will be found at most d
times and hence ORACLE will be called at most dt
times.

Let X = ZD(w) with summation over all (not
necessarily total) vectors w such that w~f
but w ~ g. This quantity is defined for each
intermediate value of g in the course of the
algorithm, is initially unity, and decreases mono-
tonically with time. Now a monomial will be added
to g each time EXAMPLFS outputs a vector v such

that v ~ g. The probability of this occurring at
any call of EXAMPLES is exactly X. The process
of running the algorithm to completion can have
just two possible outcomes: (i) At some time X
has become less than h -1, in which case the final
expression g found will approximate to f as
required by the definition of learnability.
(li) The value of X never goes below h -I and
hence g is not an acceptable approximation. The
probability of this second eventuality is, however,
at most h -I since it corresponds to the situation
of performing L(h,d) Bernoulli experiments (i.e.
calls of EXAMPLES) each with probability greater
than h -I of success (i.e. of finding a v such
that v~f but v ~ g) and obtaining fewer than
d successes (each manifested by the addition of a
new monomial). []

For unrestricted DNF expressions several
problems arise. The main source of difficulty is
the fact that the problem of determining whether
a nontotal vector implies the function specified by
a DNF formula is NP-hard. This is simply
because the problem of determining whether the no-
where determined vector implies the function is the
tautology question of Cook [3]. An immediate
consequence of this is that it is unreasonable to
assume that the program being learnt computes con-
cepts rather than functions. Another consequence
is that in any algorithm akin to Algorithm B the
test v ~ g may not be feasible if v is not

total. Algorithm B is sufficient, however, to
establish the following:

TIIEOREM B': Suppose the notion of learnability is
restricted to distributions D such that D(V) = 0
whenever v is not total. Then the class of DNF
expressions is learnable, in the sense that programs
for the functions (but not necessarily the concepts)
can be deduced in L(h,d) calls of EXAMPLES and dt
calls of ORACLE where d is the degree of the DNF
expression to be learnt.

The reader should note that here there is the

additional philosophical difficulty that availabil-
ity of the expression does not in itself imply a
polynomial time algorithm for ORACLE. On the other
hand, the theorem does say that if an agent has
some, may be ad hoc, black box for ORACLE whose
workings are unknown to him, he can use it to teach

441

someone else a DNF expression that approximates the
function.

Finally, it may be worth emphasizing that the
monotone case is nonproblematic and the deduction
procedure for it very simple-minded. It may be
interesting to pursue more sophisticated deduction
procedures for it if contexts can be found in
which they can be proved advantageous. The
question as to whether monotone DNF expressions
can be learnt from EXAMPLES alone is open. A po-
sitive answer would be especially significant.

7.. p-EXPRESSIONS

We have already seen a class of expressions,
namely the k-CNF expressions, that can be learnt
from positive examples alone. Here we shall con-

sider the other extreme, a class that can be learnt
using oracles alone.

Deducing expressions on which there are less
severe structural restrictions than DNF or CNF
appears much more difficult. The aim of this sec-
tion is to give a paradigmatic example of how far
one can go in that direction if one is willing to
pay the price of oracles that are more sophisticated
than the one previously described.

A general expression over variable set

{Pl,''" ,Pt } is defined recursively as follows:

(i) For each i (i ~i ~t) "Pi" and
"Pi" are expressions.

(ii) If fl,...,fr are expressions then

"(fl +f2 +''" +fr)'' is an expression
(called a plus expression).

(iii) If fl ,fr are expressions then
"(fl xf2 x... ×fr)" is an expression
(called a times expression).

A p-expression is an expression in which each
variable appears at most once. We can assume that
a p-expression is monotone since we can always
relabel negated variables with new names that
denote their negation. In the recursive definition
of any p-expression there are clearly at most 2t -i
intermediate expressions of which at most t are of
type (i) and at most t - 1 of types (ii) or (iii).
Without loss of generality we shall assume that in
the definition of a p-expression rules (ii) and
(iii) alternate. We shall regard two p-expressions

as identical if their defini£ions can be made
formally the same by reordering sums and products

and relabelling as necessary.

For learning p-expressions we shall employ more
powerful oracles. The boundary between reasonable
and unreasonable oracles does not appear sharp. We
make no claims about the reasonableness of these new
oracles except that they may serve as vehicles for
understanding learnability.

The definitions refer to the Boolean function
F (not regarded as a concept here,. The oracle of
Section 2 will be renamed N-ORACLE since it is one
of necessity: N-ORACLE(v) = 1 if and only if for

all total vectors w such that w ~v it is the

case that F(w) = I. The dual of this would be a
possibility oracle: P-ORACLE(v) = 1 if and only
if there exists a total vector w such that w ~v

and F(w) = i. For brevity we shall also define the
prime implicant oracle: PI(v) = 1 if and only if
N-ORACLE(v) = 1 but N-ORACLE(w) =0 for any w
obtained from v by making one variable deter-
mined in v undetermined.

Finally we define two further oracles, ones of
relevant possibility ~ and of relevant accompani-
ment RA. For convenience we define the first by

how it behaves on vectors represented as monomials:
RP(m) = 1 iff from some monomial m' mm' is a
prime implicant of f. For sets, V,W of variables
we define RA(V,W) = 1 iff every prime implicant
of f that contains a variable from V also
contains a variable from W.

THEOREM C: The class of p-expressions is leqrnable
via a deduction procedure C that uses 0(t °)
calls of N-ORACLE, RP and AP altogether, where t
is the number of variables, hand no calls of
EXAMPLES.) The procedure always deduces exactly the
correct expression.

Proof. Let ~ be the monomial that is the product
of no literals. The algorithm will first compute
RP(Pi) for each Pi to determine which of the
variables occur in the prime implicants of the
function that the expression f to be learnt re-

presents. Let gl,...,g r be distinct single
variable expressions, one for each Pi for which
RP(Pi) = i. Note that these are exactly the variab-
les that occur in f since f is monotone.

With each gi we associate two monomials m i
and mi" The former will be the single variable
pj that gi represents. The latter is defined as
any monomial ~ having no variable in common with
m i such that mi~ is a prime implicant of f.
The algorithm will construct each such mi as the
final value of m in the following procedure: Set

m =~; while PI(mm i) =0 find a Pk not in mm i
such that RP(Pk~ i) = 1 and set m :=~k m. Hence
in at'most t 2 calls of PI (i.e. t ° calls of
N-ORACLE) and t 2 calls of RP values for every

~. will be found.
l

Once initialized the algorithm proceeds by
alternately executing a plus-phase and a times-
phase. At the start of each phase we have a set of

expressions gl,..-,gr where each gi is associated
with two monomials m i and mi (having no variables
in common) where m i is a prime implicant of gi
and mi~ i is a prime implicant of f. We distin-
guish the g's as plus or times expressions accord-
ing to whether the outermost construction rule was
addition or multiplication. A plus-phase will first

compute an equivalence relation S on the subset of
{gi } that are times expressions. For each equi-
valence class G such that no gi 6G already
occurs as a summand in a sum, we construct a new
expression that is the sum of the members of G and
call this sum gk where k is a previously unused
index. If some members of G already occur in a

sum, say gj, (N.B. they are never distributed in
more than one sum) then we modify the sum expression

442

gj to equal the sum of every expression in G. A
times phase is exactly analogous except that it
computes a different equivalence relation T, now
on plus expressions, and will form new, or extend
old, times expressions. In the above context
single variable expressions will be regarded as
both times and plus expressions. Also, it is
immaterial which of the two kinds of phase is used
to start the algorithm.

The intention of the algorithm is best ex-
pressed by the claim to follow which will be
verified later. Suppose that the expressions
occurring in the definition of f are fl,...,fq
(where q ~2t-l). We shall say that g ~ fi iff
the set of prime implicants of g is a subset of
the set of prime implieants of ~fi where (i) if
fi is a plus expression then fi =fi and (ii) if
fi is a times expression then fi is the product
of some subset of the multiplicands of fi"

Claim I: After every phase of the algorithm for
every gi that has been constructed there is
exactly one expression fi such that (i) gi ~ fi
and (ii) fi is of the same kind (i.e. plus or
times) as gi"

The procedure builds up the rooted tree of the
expression as rooted subtrees starting from the
leaves. One evident difficulty is that there is
no a p~oP~ knowledge available about the shape of
the tree. Hence in the grafting process a subtree
may become attached to another at just about any
node.

Whenever a plus or times expression gi is
created or enlarged its associated m i and mi is
updated as follows. If gi is a sum then we let
m i =mj and mi =~j for any g j that is a surf=and
in gi" If gi is a product rnnen m i will be the
product of all the mj's that correspond to multi-
plicands in gi" Finally mi will be generated as
the final value of m in the following procedure:
Set m :=I; while PI(mmi) =0 find a Pk not in
mm i such that RP(Pkmm i) = 1 and set m :=pk m-
Since such an mi has to be found at most t
times in the overall algorithm the total cost is
at most t 2 calls of PI (i.e., t 3 calls of N-
ORACLE) and t 2 calls of RP.

In order to complete the description of the
algorithm it remains only to define the equivalence
relations S and T.

D e f i n i t i o n : gi S gj if and only if

(i) PI(mi~ j) = PI(mjm i) = i, and

(ii) mi,~. contains disjoint sets of
J ^

variables, as do mj,m i.

For defining T we shall denote by V i the
set of variables that occur in the expression gi"

Definition: gi Tgj if and only if RA(Vi,V j) =
RA(Vj,V i) = i.

First we shall verify that S and T are
indeed equivalence relations under the assumption
that Claim 1 holds at the beginning of each phase.
Clearly S and T are defined to be both re-
flexive and symmetric. Also T is transitive for
supoose that gi Tgj and gj Tg k. The former
implies that every prime implicant of f contain-
ing some variable from gi also contains some
variable from g~. The latter implies that every

• . 3
prime implzcant of f containing some variable
from gj also contains a variable from gk" Hence
gi Tgk follows. In order to verify the transiti-
vity of S we shall make a more general observa-
tion about any sub-expression of f.

Claim 2: If mi,m. are prime implicants of
~ n ~ t '] tzmes subexpressions fi,fj of f and if
for some m, with no variable in common with either
m i or m., both mim and mjm are prime impli-
rants of 3f, then fi,fj must occur as summands in
the same plus expression of f.

Proof. Most easily verified by representing express-
ion f as a directed graph (e.g. [7]) with edges
labelled by the Boolean variables. The sets of
labels along directed paths between a distinguished
source node and a distinguished sink node correspond
exactly to prime implicants in the case of D-
expressions where all edges have different
labels. []

Now to verify that S is transitive suppose
that gi Sgj and g~ Sg k where, by Claim i,
gi ~fi, gj ~fj and 3gk~.f k for appropriate times

expressions fi'fj 'fk" Then it follows that m.l ~'3 '

m.m.3 3 and mkm j^ are all prime implicants of f

where mi,m q ,m k have no variable in common with
J

~.. It follows from Claim 2 that fi,fj and fk
3

are addends in the same sum expression. Hence

gi S gk follows.

Claim 3: Suppose that after some phase of the

algorithm Claim 1 holds and times expressions gi,g 5

have been formed where gi ~<fi' g- 3 ~<f" and f. ,f.
J z 3

are times expressions. Then gi and gi will be

placed in the same sum expression at the next plus

phase if and only if fi =fi' f'3 =~'3 and fi,fj

are addends in the same sum expression in f.

Proof. (~) If gi ~fi =~" and gj ~f. =f. and
....... 1 3]

fi,fj are in the same sum then mi,m ~ ~ will be

prime implicants of f. ,f.. Also m.~n and m.~.
i j i 3 3 I

will be prime implicants of f, and the variables

in m. will be disjoint from those in m. as will
x 3

be those in m. from those in ~n.. Hence gi S g:
3 z]

will hold and gi,g q will be in the same plus

expression after the next plus phase.

(~) Suppose that gi ~fi' gj ~<f.] and

gi S gj holds. Then mi,m j will be prime implicants

443

of gi'g" 3 respectively, m.d.,m.d, will both be
i 3 3 3

prime implicants of f, and the variables in ~.
3

will be disjoint from those of both m. and m..
3

It follows from Claim 2 that f. =f. and f. =f.
l • 3 3

must occur as summands in the same plus expression

of f. [N.B. Here we are using the fact that

Claim 2 remains true if we allow a "times subex-

pression" to be the product of any subset of the

multiplicands in a times expression in f.]

Clalm 4: Suppose that after some phase of the

algorithm Claim 1 holds and plus expressions

gi ~fi and gJ ~f'3 (fi,fj plus expressions) have

been found. (i) If gi = f. and g- 3 = f" and fi'
i 3

f. are multiplicands in the same times expressions
3

in f then gi,g 5 will be placed in the same

times expression after the next times phase.

(ii) If gi,g 5 are placed in the same times

expression at any subsequent phase then fi,fj are

in the same product in f.

Proof. (i) If the conditions of (i) hold then
gi Tgj will be discovered at the next times phase
and the claim follows. (ii) If fi,fj are not in
the same product in f then f contains some
prime implicant containing variables from one of
gi,gj and not from the other. Hence gi Tgj will
never hold. o

Proof of Claim 1. By induction on the number of
phases on Claims i, 3 and 4 simultaneously. D

We define the depth of a formula fi to be
the maximum number of alternations of sum and
product required in its definition.

Claim 5: If fi is an expression of depth k in
f then after k phases a gi identical to fi
will have been constructed by the algorithm.

Proof. By induction on Claims 3 and 4. [3

To conclude the proof of the theorem it remains
to analyze the runtime, iThis is dominated by the
cost of computing m i and hi, for which we have
already accounted, plus the cost of computing the
equivalence relations S and T. We first note
that fewer than 2t expression names gi are
used in the course of the algorithm. When an ex-
pression is grafted into another at a point deep in
the latter then the semantics of all the subex-
pressions above will change. By Claims 3 and 4 such
grafting can occur when a gi is added to a sum
expression but not when added to a times expression.
Hence the values m i and h i do not need to be
changed for any expression when such grafting
occurs. It follows that for computing S only 2t
values of mi,~ i need to be considered. Hence
O(t 2) calls of PI or O(t 3) calls of N-ORACLE
suffice overall. For computing T grafting may
cause a ripple effect. On each occasion the value

of V 4 may have to be updated for up to t such
sets and hence t 2 calls of RA will suffice.
Hence O(t 3) calls of RA in the overall algro-
rithm will be enough. 0

8. REMARKS

In this paper we have considered learning as
the process of deducing a program for performing a
task, from information that does not provide an
explicit description of such a program. We have
given precise meaning to this notion of learning
and have shown that in some restricted but non-
trivial contexts it is computationally feasible.

Consider a world containing robots and ele-
phants. Suppose that one of the robots has dis-
covered a recognition algorithm for elephants that
can be meaningfully expressed in k-conjunctive
normal form. Our Theorem A implies that this
robot can communicate its algorithm to the rest of
the robot population by simply exclaiming "ele-
phant" whenever one appears.

An important aspect of our approach, if cast
in its greatest generality, is that we require the
recognition algorithms of the teacher and learner
to agree on an overwhelming fraction of only the
natural inputs. Their behavior on unnatural inputs
is irrelevant and hence descriptions of all
possible worlds are not necessary. If followed to
its conclusion this idea has considerable philo-
sophical implications: A learnable concept is
nothing more than a short program that distinguishes
some natural inputs from some others. If such a
concept is passed on among a population in a
distributed manner substantial variations in
meaning may arise. More importantly, what consensus
there is will only be meaningful for natural inputs.
The behavior of an individual's program for un-
natural inputs has no relevance. Hence thought
experiments and logical arguments involving un-
natural hypothetical situations may be meaningless
activities.

The second important aspects of the formula-
tion is that the notion of oracles makes it
possible to discuss a whole range of teacher-
learner interactions beyond the mere identification
of examples. This is significant in the context of
artificial intelligence where a human may be willing
to go to great lengths to convey his skills to a
machine while being unable to articulate thealgorithms
he himselfuses in the practice of the skills. We
expect that some explicit programming does become
essential for transmitting skills that are beyond
certain limits of difficulty. The identification
of these limits is a major goal of the line of
work proposed in this paper.

444

9.

[I]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

D. Angluin and C.H. Smith. "A Survey of In-
ductive Inference: Theory and Methods."
Yale University, Computer Science Department
Tech. Report 250, October 1982.

A. Barr and E.A. Feigenbaum. The Handbook of
Artificial Intelligence, Vol. II, wm. Kaufmann,
Los Altos, Calif. (1982).

S.A. Cook. "The Complexity of Theorem
Proving Procedures." Proc. of Third ACM
Symposium on Theory of Computing (1971), 151-
158.

R.O. Duda and P.F. Hart.
tion and Scene Analysis.
(1973).

Pattern Classi fica-
Wiley, New York

P. Erdos and J. Spencer.
Methods in Combinatorics.
New York (1974).

Probabi lis tic
Academic Press,

R.S. Michalski, J.G. Carbonell and T.M.
Mitchell. Machine Learning: An Artificial
Intelligence Approach, Tioga Publishing Co.,
Palo Alto, Calif. (1983).

S. Skyum and L.G. Valiant. "A Complexity
Theory based on Boolean Algebra. " Proc. of
22nd IEEE Syrup. on Foundations of Computer
Science, (1981) , 244-253.

445

