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Abstract.  Backpropagation, similar to most learning algorithms that can form complex decision 
surfaces, is prone to overfitting.  This work presents classification-based objective functions, an 
intuitive approach to training artificial neural networks on classification problems.  
Classification-based learning attempts to guide the network directly to correct pattern 
classification rather than using an implicit search of common error minimization heuristics, such 
as sum-squared-error (SSE) and cross-entropy (CE).  CB1 is presented here as a novel objective 
function for learning classification problems.  It seeks to directly minimize classification error by 
backpropagating error only on misclassified patterns from culprit output nodes.  CB1 
discourages weight saturation and overfitting and achieves higher accuracy on classification 
problems than optimizing SSE or CE.  Experiments on a large OCR data set have shown CB1 to 
significantly increase generalization accuracy over SSE or CE optimization, from 97.86% and 
98.10%, respectively, to 99.11%.  Comparable results are achieved over several data sets from 
the UC Irvine Machine Learning Database Repository, with an average increase in accuracy 
from 90.7% and 91.3% using optimized SSE and CE networks, respectively, to 92.1% for CB1.  
Analysis indicates that CB1 performs a fundamentally different search of the feature space than 
optimizing SSE or CE and produces significantly different solutions. 
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“The discovery consists of seeing what everyone else has seen 
and thinking what no one else has thought” 
 

Albert Szent-Georgyi 

 
 
 
1. Introduction 
 
Artificial neural networks have received substantial attention as robust learning models for tasks 
including classification and function approximation (Rumelhart, Hinton, & Williams, 1985).  
Learning is no longer formulated simply as function approximation (Bianchini, Frasconi, Gori, & 
Maggini, 1998) and much research has gone into improving a model’s ability to generalize 
beyond sampled data.  Many factors play a role in a network’s ability to learn, including network 
properties, the learning algorithm, and the nature of the problem being learned.  Usually, 
overfitting the training data is detrimental to generalization.  Developing a universal learning 
model for high-accuracy learning while avoiding perceptible overfitting over relevant (real 
world) problem domains remains elusive. 
 
This work proposes the use of classification-based (CB) objective functions, an intuitive 
approach to backpropagation training on classification problems.  Classification-based training 
provides a framework for improving generalization on complex real world classification 
problems, such as speech and character recognition. 
 
This work presents CB1 as its main contribution, an example of CB objective functions for 
learning classification tasks.  CB1 seeks to directly minimize classification error by 
backpropagating error only on misclassified patterns from output nodes that are responsible for 
the error.  It updates the network parameters as little as possible in order to directly classify the 
training patterns.  This technique discourages weight saturation and overfitting and is conducive 
to higher accuracy in classification problems than optimizing common objective functions, such 
as sum-squared-error (SSE) and cross-entropy (CE). 
 
CB1 is shown to perform markedly better on a large OCR data set than an optimized 
backpropagation network learning with respect to SSE or CE, increasing classification accuracy 
from 97.86% and 98.10%, respectively, to 99.11%, a 58.4% decrease in error.  Comparable 
increases in accuracy are achieved on several classification problems from the UC Irvine 
Machine Learning Repository, with an average increase in accuracy from 90.7% and 91.3% for 
optimized SSE and CE networks, respectively, to 92.1% for CB1 performing 10-fold stratified 
cross-validation.  Analysis indicates that CB1 performs a fundamentally different search of the 
feature space than backpropagation optimizing SSE or CE and produces significantly different 
solutions. 
 
1.1 Overview 
A background discussion and comparison of common objective functions to CB1 is provided in 
Section 2.  The CB1 heuristic is presented in Section 3.  Experiments and analysis are given in 
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Section 4 and discussion in Section 5.  Further discussion of learning issues with feed-forward 
backpropagation neural networks, overfitting, and how these relate to CB1 is presented in 
Section 6.  The relevance of CB techniques to previous interactive training paradigms is 
discussed in Section 7.  Conclusions and future work are presented in Section 8. 
 

2. Classical Objective Functions 
 
In multi-layer perceptron (MLP) neural network learning, network speed, complexity and size 
are important considerations.  Over the last fifteen years, much effort has been put into 
developing optimized neural network learning models and techniques.  Techniques, such as 
Quickprop (Fahlman, 1988) and RPROP (Riedmiller & Braun, 1993), seek to speed up learning 
by dynamically adjusting update parameters.  Models that seek to generate network topologies 
that are more suited to learning a given problem are classified as adaptive learning algorithms 
(Anderson & Martinez, 1995; Anderson & Martinez, 1996; Fahlman, & Lebiere, 1990).  Partially 
connected static architectures are also considered in (Chakraborty, Sawada, & Noguchi, 1997).  
These networks have fewer parameters and are therefore simpler and more efficient than fully 
connected networks yet are able to perform equally well. 
 
However, as computing resources continue to increase the consideration of generalization stands 
out at the forefront.  With sufficient capacity, a network is able to store all of the training patterns 
presented it, and can reproduce results exactly as if performing a table lookup.  After a certain 
point in backpropagation learning, however, reducing training set error often accompanies an 
increase in test set error, illustrating the degradation in generalization that accompanies overfit as 
training continues. 
 
There has been a tendency to base “better” results of novel training variants on measurements 
which are not conclusive of improved generalization.  This is especially prevalent in earlier 
research (see (Tollenaere, 1990) and (Fahlman, 1988) for a good discussion of this), but still 
occurs today.  Results in the literature on speed enhancements, for instance, often show how fast 
a new algorithm can converge to arbitrary accuracy on a training set.  In essence, this 
demonstrates how easily new training algorithms can overfit, but says nothing about their ability 
to generalize. 
 
Since gradient descent procedures, such as backpropagation, do not allow direct minimization of 
the number of misclassified patterns (Duda, Hart, & Stork, 1999) an error or objective function 
must be derived that will result in increased classification accuracy as objective error is 
minimized.  Network output values must have a corresponding error measure derived by their 
deviance from target output values.  Quantifying the output error provides a way for iteratively 
updating the network weights in order to minimize that error and thereby achieve more accurate 
output.  However, error functions are not always monotonic with reduction in classification error, 
which is the real goal of the learner. 
 
Classification of N classes is often viewed as a regression problem with an N-valued response, 
with a value of 1 in the nth position if the observation falls in class n and 0 otherwise (LeBlanc & 
Tibshirani, 1993).  The values of zero and one can be considered idealized or hard target values.  
However, in practice there is no reason why class targets must take on these values. 
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To generalize well, a network must be trained using a proper objective function.  
Backpropagation training often uses an objective function that encourages making weights larger 
in an attempt to output a value approaching hard targets of 0 or 1 (±1 for the htan function).  
Using hard targets is a naïve way of training and creates several practical problems.  Different 
portions of the data are learned at different times during training, and using hard targets not only 
leads to weight saturation, making it harder and slower to learn patterns that have yet to be 
learned, but also forces the learner to overfit on patterns that have already been learned.  Using 
hard targets of 0.1 and 0.9 presents a less severe solution but still suffers from overfit. 
 
Methods for overcoming problems resulting from the objective function include forming 
network ensembles.  Ensemble techniques, such as bagging and boosting (Maclin & Opitz,  
1997), or wagging (Andersen & Martinez, 1999), are more robust than single networks when the 
errors among the networks are not positively correlated (see Section 7). 
 
Rankprop (Caruana, Baluja, & Mitchell, 1996) provides an alternative method to training with 
hard target values and empirically shows that it improves generalization.  Rankprop records the 
output of the learner for each training pattern.  It then sorts the patterns in the training set based 
on class, then according to output values.  Thus, a rank of the patterns consistent with the current 
model is developed and used to define the target values on the next epoch.  The idea behind 
Rankprop is that in the case of complex nonlinear solutions a simpler, less nonlinear function is 
provided to learn instead.  The resulting simpler model often generalizes better.  CB1 also 
provides a simpler function for the network to learn that leads to better generalization. 
 
2.1 Common objective functions 
Sum-squared error (SSE) or mean-squared error (MSE), a common statistical measure of 
optimality, is a natural choice for an objective function, being differentiable.  The validity of 
using SSE as an objective function to minimize error relies on the assumption that pattern 
outputs are offset by inherent gaussian noise, being normally distributed about a cluster mean.  
For learning function approximation of an arbitrary signal this presumption often holds.  
However, this assumption is invalid for classification problems, where the target vectors are 
class codings (i.e., arbitrary nominal or boolean values representing designated classes).  This 
suggests that other metrics are more suited to classification problems. 
 
In (LeCun, Denker, & Solla, 1990), a study of the digits problem revealed that heuristically 
reducing the number of network parameters by a factor of two increased training set MSE by a 
factor of ten, while generalization MSE increased by only 50%, and test set classification error 
actually decreased.  This suggests that MSE is not the most reliable objective function for this or 
similar tasks.  This also implies that comparison studies showing “improvements” through a 
reduction of SSE/MSE on classification tasks are not significant unless classification accuracy 
increases likewise. 
 
Cross-entropy (CE) assumes idealized class outputs (i.e., target values of zero or one for a 
sigmoid activation) rather than noisy outputs as does SSE (Mitchell, 1997) and is therefore more 
appropriate to classification problems.  However, error values using SSE and cross-entropy have 
been shown (Hampshire II, 1990) to be inconsistent with ultimate pattern classification accuracy.  
That is, minimizing CE as well as SSE is not necessarily correlated to high recognition rates. 
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The classification figure-of-merit (CFM) objective function was introduced in (Hampshire II, 
1990) for learning classification problems.  It provides a closer estimation of true classification 
accuracy, as minimizing error is monotonic with increasing classification accuracy.  Networks 
that use the CFM as their criterion function are introduced in (Hampshire II, 1990) and further 
considered in (Barnard, 1991). 
 
However, CFM does not determine localization in learning (Jacobs, Jordan, Nowlan, & Hinton, 
1991), i.e., every network is trained on all patterns.  It produces strong (cooperative) coupling 
between experts, but there could be redundant experts for each pattern.  (Jacobs, Jordan, Nowlan, 
& Hinton, 1991) introduces competitive experts.  A gating network makes a stochastic decision 
about which expert to select based on the input.  This kind of system tends to devote a single 
expert to each training case. 
 
The task of CFM is to separate network output values by as large a range as possible.  Like SSE 
and CE, this tactic encourages weight saturation, which is often indicative of overfitting and 
detrimental to accuracy (Bartlett, 1998). 
 
Information gain is especially useful with iterative network growth in mind (Andersen & 
Martinez, 2001b).  Since it makes decisions that have the most affect on accuracy, it has the 
potential to avoid local minima early on in the training process.  Rather than each learner trying 
to immediately fit local regions of a function (curve) to arbitrary accuracy, as one learner fits a 
small region sufficiently well, others stop trying to learn that part and can direct their attention to 
other areas still in need of learning. 
 
A problem with information gain is that it does not clearly suggest how training is to proceed.  
Training is carried out either on repeated runs of random weight perturbations or by normalizing 
the learning rate for each class based on the prospective information to be gained from correcting 
an error on an incorrectly classified pattern of that class (Andersen & Martinez, 2001b).  
Therefore, usually only very simple models are trained to maximize information gain, such as 
perceptrons. 
 
2.2 Classification-based objective functions 
It must be stressed that minimizing an objective function is not the goal of classification learning.  
Rather, it must be viewed as the mechanism that guides the network in learning the concept.  The 
above objective functions provide mechanisms that do not directly reflect the true goal of 
classification learning, which is to achieve high recognition rates on unseen data.  A designer 
implementing a network to learn the task of face or voice recognition by minimizing SSE is not 
really interested in what value the SSE reaches, but how accurate the recognizer is.  Additionally, 
inappropriate objective functions can be deceiving in portraying how well the network has 
learned the problem (e.g., LeCun’s digits study mentioned above).  This being the case, the 
objective function chosen for learning a given task should approximate the true goal of the 
learner as closely as possible. 
 
CB1’s general philosophy is similar to CFM in that it also attempts to increase the range between 
output activations.  However, CB1 differs from CFM in that it widens the range between outputs 
only when there is classification error (that translates in actuality to a narrowing of the gap 
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between outputs, as they are transposed with respect to their classical target values).  When a 
classification error is made, error is backpropagated only from those outputs that are credited 
with producing the error.  This approach allows the network to relax more conservatively into a 
solution and discourages weight saturation and overfitting. 
 

3. CB1: A Classification-based Error Heuristic 
 
Numerous experiments in the literature provide examples of networks that achieve little error on 
the training set but fail to achieve high accuracy on test data (see Andersen & Martinez, 1995; 
Schiffmann, Joost, & Werner, 1993).  There is an inherent tradeoff between fitting the (limited) 
data sample perfectly and generalizing accurately on the entire population (see Section 6.4). 
 
There are several possible ways to process the network’s output vector in calculating an error 
signal for backpropagation to fit the data properly.  For instance, the difference between pre-
defined target values and network activations over all the training patterns can be combined into 
a single batch update to minimize sum-squared error.  Alternately, error can be backpropagated 
following each pattern presentation for on-line learning. 
 
A simple variant to on-line training involves modifying the objective function by providing a 
maximum error tolerance threshold, dmax, which is the smallest absolute output error to be 
backpropagated.  In other words, given dmax > 0, a target value, tj, and network output, oj, no 
network update occurs if the absolute error | tj – oj | < dmax.  This threshold is arbitrarily chosen to 
represent a point at which a pattern has been sufficiently approximated.  With an error threshold, 
the network is permitted to converge with smaller weights (Schiffmann, Joost, & Werner, 1993).  
More dynamic approaches, such as Rankprop (Caruana, 1995), avoid the use of pre-defined 
“hard” targets, setting ranked “soft” target values for the training patterns each epoch. 
 
CB1, introduced here, considers the entire output vector of the network to determine the error of 
each output node. For each pattern considered, CB1 backpropagates error through the network 
only on misclassified patterns.  As this technique forces networks to learn only when explicit 
evidence is presented that their state is a detriment to classification accuracy, we have dubbed the 
approach classification-based training. 
 
CB1 is similar to Rankprop in that it avoids the use of hard target values.  However, rather than 
providing soft targets, it avoids the use of predetermined target values all together.  The objective 
of CB training is not to minimize the error between target and output values, but rather to 
produce output values that can be accurately translated to correct classifications.  When target 
values are not required to guide training, the network is able to arrive at a solution more simply.  
With CB training, smaller weights, even approaching zero, can provide an acceptable solution 
for classification tasks.  This avoids many of the problems accompanying weight saturation and 
overfit. 
 
Network weights are updated during CB training exclusively to minimize classification error.  
When the network misclassifies a pattern, credit for the error is assigned to two sources.  The 
first is the set of output nodes with higher output values than the target class node (resulting in 
the system outputting the wrong class value).  The second is the target output node itself, which 
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output a value too low to produce the correct classification.  This approach is formalized as 
follows. 
 
3.1 CB1 error function 
Let N be the number of output nodes in a network.  Let o designate the activation value of a node 
(0 ≤ o ≤ 1 for sigmoid).  Let ok be the activation value of the kth output node in the network (1 ≤ k 
≤ N).  Let T designate the target class for the current pattern and ck signify the class label of the 
kth output node.  For target output nodes, ck = T, and for non-target output nodes, ck ≠ T.  Non-
target output nodes are called competitors.  Often, class labels are indicated in training by setting 
the target value of one output node high and setting the rest low.  This restriction is not made 
here, as it is possible for more than one output node to act as a target node for a class label in the 
general case.  However, for the remaining discussion standard 1-of-N target designations are 
assumed. 
 
Let oTmax denote the value of the highest-outputting target output node, or formally 
 
 oTmax ≡ max { ok : ck = T }. 
 
Let o~Tmax denote the value of the competitor outputting the highest o, 
 
 o~T max ≡ max { ok : ck ≠ T }. 
 
The error, ε, back-propagated from the kth output node is then defined as 

 

εk ≡ 
⎪
⎩

⎪
⎨

⎧
≥≠−

≥=−

otherwise0

)( and  if

)( and  if

maxmax

maxmax~max~

TkkkT

TTkkT

ooTcoo
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           (1) 

 
The error (1) represented in closed form is 
 
εk ≡ ( kT oo −max~ )I( )( and maxmax~ TTk ooTc ≥= ) + ( kT oo −max )I( )( and maxTkk ooTc ≥≠ ) 

 
where I is the indicator or characteristic function.  Thus, a target output generates an error signal 
only if there is some competitor with an equal or higher value than oTmax, signaling a potential 
misclassification.  Non-target outputs likewise generate an error signal only if they have an 
output equal or higher than oTmax, indicating they are responsible for the misclassification.  The 
intuitive rationale behind this is that if the error is continually reduced on misclassified patterns, 
they will eventually be classified correctly. 
 
The error delta used for backpropagation is 
 

δk = εk f ′(ok) 
 
where f ′ (ok) is the standard error gradient, which is 
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 f ′ (ok)  = ok (1 - ok) 
 
for a sigmoid squashing function, and can be removed on output nodes when using cross-entropy 
(Joost & Schiffmann, 1998). 
 
To illustrate how CB training works, consider a three-class problem.  For a particular pattern, 
assume that the third class is the target.  Traditionally, this translates into a target vector of (0, 0, 
1).  Assume that on this pattern, a 3-output network outputs (0.1, 0.2, 0.4).  While the third 
output (the target) has significant squared error (0.36), the first two output values (the 
competitors) are sufficiently low, enough so that it is possible to extract the correct classification 
(the third class is chosen since its value is highest).  Since the pattern is classified correctly, the 
network parameters remain unchanged. 
 
Only if one of the competitors output higher than the target would a non-zero error signal be 
backpropagated from any of the output nodes.  In the case that the network outputs (0.1, 0.4, 
0.3), both the second and third output nodes would backpropagate error: the second since it 
outputs higher than the target node, and the third, since a competitor output a higher value than 
it.  The error signal is set at the minimum amount possible to produce a correct classification. 
 
3.2 Advantages of CB training 
Repeatedly forcing output values closer to 0 or 1 in cases where pattern classification is already 
correct usually results in weight saturation and possibly overfit.  This needlessly increases 
network variance (sensitivity to the training data), increasing classification error on test data.  
Training without idealized or predetermined target outputs allow a pattern to be potentially 
“learned” with any target node output, providing competitors output lower values.  This insight is 
the driving philosophy behind CB training, which avoids this practice. 
 
CB training of a network proceeds at a different pace than optimizing SSE or CE as the objective 
function.  Weights are updated only through necessity.  Backpropagating a non-zero error signal 
from only the outputs that directly contribute to classification error results in significantly fewer 
weight updates overall (observe that this number is proportional to the classification accuracy) 
and allows the model to relax more gradually into a solution.  CB training learns only as much as 
required to remove misclassifications and thereby discourages overfitting.  This approach is 
reminiscent of training with an error threshold; however, whereas a fixed error threshold causes 
training to stop at a pre-specified point, meaning weights must increase to a magnitude sufficient 
to achieve this threshold, CB training dynamically halts learning at the first possible point that 
correctly classifies a training pattern.  This can be considered an implementation of a dynamic 
error threshold that is unique to each training pattern and network state. 
 
3.3 Increasing the margin with CB training 
Overfit is minimized in CB training in another regard because outliers (noisy patterns) have 
minimal detrimental impact to the decision surface’s accuracy.  This is because the target output 
is only required to output a value negligibly higher than the highest competitor before the 
training process stops updating the network parameters.  This translates to halting the movement 
of the decision surface right next to the pattern (see Figure 1b).  This is in contrast to classical 
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SSE training, where hard target values of 0 and 1 require pushing the decision surface as far 
away from all points as possible, even noisy outliers (see Figure 1a).  Hence, a test pattern 
(represented by the question mark) falling immediately next to a noisy outlier belonging to a 
competing class has a better chance of being correctly classified.  In other words, network 
variance is substantially reduced. 
 

 

Figure 1.  SSE decision surfaces (a,d) and CB decision surfaces (b,c,d). 

 
When CB training, it is common for the highest outputting node in the network, which we will 
call omax, to output a value only slightly higher than the second-highest-outputting node (see 
Figure 4).  This is true for correctly classified patterns (those above 0 in Figure 2), and also for 
misclassified ones (those below 0).  This means that most training patterns remain physically 
close to the decision surface throughout training.  In the absence of outliers, then, one would 
expect the heuristic to arrive at a decision surface similar to those portrayed in Figure 3c.  
According to the application this might not be desirable. 
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Figure 2.  Network output error margin after CB training on OCR data set. 

 
An error margin, µ, can be introduced during training that serves as a confidence buffer between 
the outputs of target and competitor nodes.  The value for µ can range from –1 to +1 under the 
sigmoid function.  For no error signal to be backpropagated from the target output, an error 
margin requires that o~Tmax + µ < oTmax.  Conversely, for a competing node k with output ok, the 
inequality ok < oTmax - µ must be satisfied for no error signal to be backpropagated from k.  This 
augmentation to (1) is presented as 
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εk ≡ 
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where min(·,1) and max(·,-1) enforce the [-1,1] error range of the sigmoid function.  In this way, 
CB1 with a small µ (e.g. 0.1) approximates the SSE solution and the margin is maximized even 
in the absence of outliers (see Figure 1d). 
 
During the training process, the value of µ can be altered and might even be negative to begin 
with, not expressly requiring correct classification at first.  This gives the network time to 
configure its parameters in an even more uninhibited fashion. Then µ is increased to an interval 
sufficient to account for the variance that appears in the domain data, allowing for robust 
generalization.  The value of µ can also be decreased, and remain negative as training is 
concluded to account for noisy outliers.  A preliminary analysis of updating µ during training has 
shown promise (Rimer & Martinez, 2004). 
 
Including a margin also decreases the amount of “classification oscillation” that occurs as 
outputs react to one another.  When µ = 0, patterns remain close to the decision surface during 
training.  As training proceeds and the decision surface shifts around, patterns frequently slide 
back to the wrong side as the decision surface.  Introducing a small, positive µ requires patterns 
to be situated further away from the decision surface and reduces the incidence of renewed 
misclassification, leading to quicker convergence.  Observe that at the extreme value of µ = 1, 
CB1 reverts to standard SSE training, with target values of 1.0 and 0.0 required for all positive 
and negative classes, respectively. 

 
4. Experiments and Analysis 
 
Neural networks were trained through backpropagation optimizing SSE and CE, and through 
CB1 to explore empirical advantages of CB training techniques.  These models include: 

• Single-output networks on two-class problems (positive patterns are assigned a target 
value of 1.0, negative patterns are assigned a target value of 0.0) 

• Multi-output networks (one output per class) 
• Independent single-output networks on multi-class problems (one per class) 

 
Experiments were conducted over a variety of data sets with varying characteristics, differing by: 

• Size of data set (150 instances to half a million) 
• Number of features (two to hundreds) 
• Number of labeled data classes (two to forty-seven) 
• Complexity of data distribution (nearly linearly separable to highly complex) 

 
Real world problems were drawn from the UC Irvine Machine Learning Database Repository 
(UCI MLDR) (Blake & Merz, 1998) and from a large database of machine printed characters 
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gathered for OCR.  This provides a vantage point from which to evaluate the robustness of the 
CB1 heuristic. 
 
In empirical comparisons among different learning methods, appropriate training parameters 
were determined to optimize each model.  For further conceptual analysis and illustration of the 
behavior of these systems, results of experiments using a range of parameters are provided. 
 
4.1 Data sets 
The performance of SSE versus CB training has been evaluated on an OCR data corpus (OCR) 
consisting of over 495,000 alphanumeric character patterns, partitioned into roughly 415,000 
training patterns and 80,000 test patterns.  This work was first presented in (Rimer, Anderson, & 
Martinez, 2001a). 
 
Two network topologies were evaluated for learning OCR, a single N-output network and N 
single-output networks. 
 
Additionally, eight well-known classification problems were selected from the UCI MLDR.  
Descriptions of the selected data sets are listed as follows: 
 

ann – 7200 instances with 15 binary and 6 continuous attributes in 3 classes.  The 
task is to determine whether a patient referred to the clinic is hypothyroid. 
 
bcw – 699 instances with 9 linear attributes in 2 classes.  The task is to detect the 
presence of malignant versus benign breast cancer. 

ionosphere – 351 instances with 34 numeric attributes in 2 classes.  This data set 
classifies the presence of free electrons in the ionosphere. 

iris – 150 instances with 4 numeric attributes in 3 classes.  This classic machine 
learning data set classifies the species of various iris plants based on physical 
measurements.   

musk2 – 6598 instances with 166 continuous attributes in 2 classes.  The task is 
to predict whether new molecules will be musks or non-musks. 

pima – 768 instances with 8 numeric attributes in 2 classes.  The predictive class 
in this data set is whether or not the tested individual has diabetes. 

sonar – 208 instances with 60 continuous attributes in 2 classes.  The task is to 
discriminate between sonar signals bounced off a metal cylinder and those 
bounced off a roughly cylindrical rock. 

wine – 178 instances with 13 continuous attributes in 3 classes.  The attributes 
give various parts of the chemical composition of the wine and the task is to 
determine the wine’s origin. 
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A single network with one output per class was used to learn these problems.  Results on UCI 
MLDR problems were averaged using 10-fold stratified cross-validation. 
 
4.2 Training parameters 
Experiments were performed comparing the SSE, CE, and CB1 objective functions.  Fully 
connected feed-forward networks with a single hidden layer trained through standard on-line 
backpropagation were used.  In all experiments, weights were initialized to uniform random 
values in the range [-0.1,0.1].  Networks trained to optimize SSE and CE used an error tolerance 
threshold (dmax, described in Section 2) of 0.1. 
  
Feature values (both nominal and continuous) were normalized between zero and one.  Training 
patterns were randomly shuffled before each epoch.  For each simulation, a random seed for 
network weight initialization and pattern shuffling was used across all networks tested. 
 
Network learning parameters on OCR have been extensively optimized over the course of two 
years.  For experiments presented here, we constrained each network to a single hidden layer 
comprised of 32 hidden nodes.  The learning rate was 0.2 and momentum was 0.5.  Training was 
halted after 500 epochs.  Although we only present results for a single set of parameter values 
here, it is noted that results testing the above objective functions were typical and comparable 
over a wide range of learning parameters, network sizes and topologies tested. 
 
On UCI MLDR data sets, network size was optimized to maximize generalization for each 
problem and error function.  Optimized numbers of hidden nodes used for learning UCI MLDR 
data sets are listed in Table 1.  Learning rate was 0.1 and momentum was 0.5 for all UCI MLDR 
problems.  Training continued until the training set was successfully learned or until training 
classification error ceased to decrease for 500 epochs.  The network model then selected for 
testing was the one with the best training set classification accuracy.  An alternate set of 
experiments was run using a holdout set to perform model selection with comparable results.  It 
has been omitted here for brevity.  Pattern classification was determined by winner-take-all (the 
class of the highest outputting node is chosen) on all models tested. 
 

Table 1.  Network architectures on MLDR problems. 
The number of input, hidden, and output nodes per network is shown. 

Data set SSE 
Network 

CE 
Network 

CB1 
Network 

ann 21-30-2 21-30-2 21-30-2 
bcw 9-15-2 9-25-2 9-10-2 
ionosphere 34-7-2 34-9-2 34-9-2 
iris 4-1-3 4-1-3 4-1-3 
musk2 166-5-2 166-5-2 166-5-2 
pima 8-8-2 8-8-2 8-16-2 
sonar 60-15-2 60-5-2 60-15-2 
wine 13-16-3 13-8-3 13-16-3 

 
4.3 Results 
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4.3.1 OCR data set 
Table 2 displays the results of standard SSE and CE backpropagation versus CB1 on OCR.  
Train % and Test % are the final training and test set accuracy in percent.  Train MSE and Test 
MSE are the mean squared errors for the training and test sets on the epoch for which the highest 
test set accuracy is achieved. 
 

Table 2.  Results on OCR data set. 

Method Train % Train MSE Test % Test MSE 
SSE (Multiple networks) 99.28 .0047 97.86 .0092 
SSE (Single network) 98.40 .0225 98.38 .0335 
CE (Multiple networks) 99.37 .0094 98.10 .0110 
CE (Single network) 98.62 .0153 98.58 .0300 
CB1 (Single network) 
µ = 0 

99.15 .1594 98.96 .1800 

CB1 (Multiple networks) 
µ = 0.05 

99.61 .1830 99.11 .2410 

 
The results on OCR show that multi-task learning (MTL), or using a single network with 
multiple output nodes, performs better than using a separate network to learn each class with 
SSE and CE objective functions.  Even though training accuracy is lower on the SSE and CE 
multi-output networks than multiple networks, generalization is improved.  Observe that training 
set accuracy is largely preserved on the test set when using a single multiple output network 
using any of the tested error functions.  This occurs since little overfitting can occur in this size 
network when attempting to learn all classes simultaneously.  A greater relative decrease in 
generalization was observed using networks with more hidden nodes.  When using a separate 
network for each class, each network has much greater potential to overfit since there are many 
more network parameters.  This behavior is exhibited to lesser degree with CB training.   
 
Optimizing CE on this difficult classification problem trains and generalizes better than SSE, and 
CB1 performs significantly better than both.  Network models generated through CB training 
have the capability of improving generalization even more.  These tests also show that, although 
the final SSE for CB1 is 10-20 times greater than for SSE and CE optimization, the amount of 
overfitting is sharply reduced and generalization is improved.  Since the networks learn together 
their errors are less correlated and the solution transfers well to unseen data. 
 
Generalization error with the best CB1 architecture is 45.1% less than the best architecture 
trained with SSE and 37.3% less that the best architecture trained with CE.  Considering only 
multiple-output networks, error drops from 1.62% for SSE to 1.42% for CE, and to 1.04% for 
CB1, error reductions of 35.8% and 26.8%, respectively.  Considering only the multiple-network 
models, error drops from 2.14% with SSE to 1.90% with CE, and to 0.89% with CB1, error 
reductions of 58.4% and 53.2%, respectively. 
 
4.3.2 UCI MLDR data sets 
Table 3 lists the results of a naïve Bayes classifier (taken from (Zarndt, 1995)), standard SSE and 
CE backpropagation, and SSE and CE updates with CB1 on eight UCI MLDR classification 
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problems.  Results were gathered using 10-fold stratified cross validation.  The first value in each 
cell is the average classification accuracy of the selected model.  The second value is the 
standard deviation over all runs.  The best generalization for each problem is bolded and the 
second best value is italicized. 
 
Table 3.  Results on selected data sets from UCI MLDR using 10-fold stratified cross-validation.  

Best values are shown in bold and second best in italics. 
Data set Bayes SSE CE CB 

SSE 
CB CE 

ann 99.7 
0.1 

98.25 
0.54 

98.33 
0.53 

97.62 
0.47 

98.76 
0.51 

bcw 93.6 
3.8 

96.96 
2.01 

97.06 
1.81 

97.22 
2.01 

97.36 
1.81 

ionosphere 85.5 
4.9 

89.00 
4.72 

90.80 
4.64 

90.60 
3.75 

90.88 
3.87 

iris 94.7 
6.9 

93.83 
5.68 

94.37 
5.87 

95.47 
5.31 

95.37 
5.25 

musk2 97.1 
0.7 

99.06 
0.37 

98.56 
0.62 

99.15 
0.36 

99.27 
0.29 

pima 72.2 
6.9 

76.26 
4.24 

76.11 
4.36 

76.69 
3.43 

76.82 
6.46 

sonar 73.1 
11.3 

76.06 
9.37 

78.87 
9.03 

80.77 
9.02 

81.92 
8.60 

wine 94.4 
5.9 

96.29 
4.45 

96.74 
4.13 

98.31 
3.49 

97.19 
3.47 

Average 88.79 
5.06 

90.69 
3.92 

91.35 
3.87 

91.97 
3.48 

92.20 
3.79 

 
The average decrease in classification error is from 9.31% for SSE training to 8.03% for CB 
training, a 13.7% decrease in error.  An overall decrease in standard deviation also indicates that 
CB training is more robust to initial parameter values and pattern variance then SSE and CE 
optimization.  This reflects the expectation that weight saturation and overfit is reduced and 
generalization is improved by CB training. 
 
5. Discussion 
 
Standard backpropagation and other gradient descent learning techniques do not consider or 
attempt to maximize the number of correctly classified training patterns (see (Duda, Hart, & 
Stork, 1999)).  CB training incorporates a more direct minimization of misclassified patterns in 
gradient descent procedures by reducing error on only misclassified patterns. 
 
CB1 does not modify weights to provide a monotonic decrease in a global error signal based on 
ideal target values using metrics as SSE or CE.  In fact, during training SSE (MSE) often 
remains roughly constant as accuracy is improved (see Figure 3).  Change in CE displays the 
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same behavior as MSE but is omitted from this graph and the following discussion for clarity.  
This is in contrast to the steady drop in SSE illustrative of standard SSE optimization. 
 

0
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1 6 11 16

Epoch
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Figure 3.  Classification accuracy and MSE during CB training. 

 
SSE, rather than converging to zero, instead remains rather large.  A MSE of 0.25 is equivalent 
to a mean error of 0.5, which illustrates that many output activations are about 0.5.  This 
indicates that the weights for these outputs are close to zero.  A large MSE is incurred by pattern 
outputs being very far away from their idealized target values.  This suggests that CB training 
performs a fundamentally different search in feature space than standard SSE/CE optimization.  
It descends towards different minima and converges to a feature location physically distant from 
SSE/CE solutions.  This also indicates that high-accuracy solutions exist where SSE are CE are 
about as high as when training starts on a network initialized to small random weights. 
 
Figures 4 and 5 give insight into the behavior of the network during the learning process using 
four objective heuristics.  The surface plot shows a histogram of the values output by the 
network output nodes on the training patterns every tenth training epoch.  Figure 4a and 4b show 
learning minimizing SSE, and Figure 5a and 5b show behavior during CB training.  The results 
shown here are only for the bcw data set, but such behavior is generally representative of all data 
sets tested. 
 
Note that SSE training forces the network to output values approaching 0 and 1, even from the 
very first trace (the tenth epoch).  Using a dmax of 0.1 reduces this tendency somewhat.  Observe 
the flattened peaks for positive patterns in Figure 4b that do not exist in 4a. 
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CB training produces a starkly different behavior.  In Figure 5a, it can be observed that all 
patterns output around 0.5 during the entire training process.  In Figure 5b, incorporating a 
confidence margin of µ = 0.1 widens the spread of output values, even causing the outputs of the 
two classes to visibly split apart as training progresses. 
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Figure 4.  Network output trace during SSE minimization on bcw. 
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Figure 5. Network output trace during CB training on bcw. 
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5.1    Empirical effects of an error margin 
Table 4 depicts the results of training with CB1 on bcw with values for µ ranging from 0 to 0.9.  
The top value is averaged classification accuracy and the bottom value is standard deviation 
using 10-fold stratified cross validation. 
 

Table 4.  10-fold CV results for CB training on bcw with µ.  Best results are in bold. 
µ = 0.0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
95.17 
2.09 

97.22 
2.42 

97.22 
1.79 

97.22 
2.01 

96.78 
1.96 

96.93 
2.29 

96.78 
1.72 

95.90 
1.69 

95.61 
2.94 

95.90 
2.26 

95.75 
2.32 

95.75 
2.40 

 
These results show that CB1 is fairly robust to the selection of µ.  A µ greater than 0 causes the 
decision surface to be further removed from test patterns in general and increases generalization 
as a result.  Values closer to 0 show the most improvement and µ values closer to 1 cause CB1 to 
revert proportionally to the behavior of standard SSE training.  (Note that the accuracy shown for 
µ ~ 1.0 does not match the accuracy for SSE training in Table 3 because the accuracies in Table 
3 are based on roughly optimized parameters for each error function, and CB and standard 
training have different optimal learning parameters.) 
 
5.2    Effect of SSE on output values 
Following a training run on OCR training to minimize SSE, winning network outputs on the test 
set were distributed as shown on the logarithmic scale in Figure 8.  The network outputs were 
very close to 1.0 on the majority of the patterns.  Only 2-3% of the patterns lie close to where the 
decision surface is located (implicitly at 0.5).  The weights have grown in magnitude to the point 
that the dividing sigmoidal surface is very sharp. 
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Figure 6.  Network outputs on OCR test set after SSE minimization. 
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Figure 7.  Network outputs on OCR test set after CB training. 

 
5.3 Effect of CB training on output values 
CB training produces a final output distribution quite unlike that seen in Figure 6.  When 
networks only perform weight updates to prevent misclassification, instead of pushing the 
pattern outputs to one end of the output range or the other, the vast majority remains spread out 
just slightly above the decision boundary (see Figure 7).  Pattern output distribution is roughly 
gaussian, reflecting an actual gaussian data distribution (i.e., gaussian noise in the OCR input 
features).  There is a larger output variance than appears from standard SSE optimization but 
with only a fraction of the classification error.  This suggests that the decision surface is much 
smoother and that network weights are not saturated.  Misclassified patterns usually have outputs 
below 0.5 and are lower than the output for correctly classified patterns in the majority of cases. 
 
5.4 Network complexity 
At first, it seems counter-intuitive that networks outputting only around 0.5 will generalize so 
well.  Ordinarily, training networks together allows a classifier to become more complex, prone 
to overfitting.  According to Occam’s razor, adding parameters to a network, beyond the smallest 
correct solution for a given problem, can be a detriment to the generalization ability of the 
network.  This is similar to the claim that a network with higher learning capacity tends to 
“memorize” noise in the data, an undesirable trait. 
 
However, it has been shown that the number of nodes in a network is not as influential as the 
magnitude of the weights (Bartlett, 1998).  The topology, rather, serves more as a mechanism 
that lends itself to solving of certain problems, while the weights represent how tightly the 
network has fit itself to the (admittedly incomplete) training data distribution.  Network 
complexity is further defined (Wang, Venkatesh, & Judd, 1994) as the number of parameters and 
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the capacity to which they are used in learning (i.e., their magnitude).  The authors show how 
network complexity is a generalization of Akaike’s Information Criterion, which reveals 
 

The generalization error of a network is affected not only by the number of 
parameters but also by the degree to which each parameter is actually used in the 
learning process. 

 
Occam’s principle stands, in that it is best to make minimal use of the capacity of the network for 
encoding the information provided by the learning patterns (Wang, Venkatesh, & Judd, 1994).  
In light of this, it is understandable why training (often overly) complex networks using weight 
decay or CB training, which allow networks to converge with smaller weights than normal, 
perform well.  Although the network has a large number of parameters, CB1 prevents further 
weight updates once patterns are correctly classified and results in low complexity.  Hence, the 
possibility of overfitting is reduced in the training process. 
 
The networks used in the OCR experiments (1 for each class) had 64 inputs, 32 hidden nodes and 
1 output node, with 2080 weight parameters (plus 33 bias weights).  The rows of Table 5 list the 
average magnitude of the weights in a network initialized with uniform random weights in the 
range [-0.3,0.3], after standard training, and after CB training, respectively.  The columns denote 
the average magnitude of the bias weight on the hidden nodes, bias on the output node, average 
weight from input to hidden node, and from hidden to output node, respectively.  The lowest 
weight magnitudes are bolded.  The CB network has weights that are roughly two to four times 
larger than the initial random values, while SSE and CE training produce weights from ten to 
twenty times larger.  The CB network is a simpler solution than the networks produced by 
backpropagation training optimizing SSE or CE. 
 

Table 5. Average final network weight magnitudes. 

Method Hidden 
Bias 

Output 
Bias 

Hidden 
Weight 

Output 
Weight 

Initial 0.16 0.15 0.15 0.15 
SSE 2.21 4.66 1.27 6.25 
CE 2.56 4.95 1.43 4.16 
CB1 0.56 0.02 0.31 0.74 

 
5.5 Multi-task learning 
Common training methods for learning multiple tasks involve training multiple networks 
separately, one for each task.  However, learning the subparts of a complex problem separately 
may not be a good idea.  Independent training of domain-specific experts is only marginally 
beneficial to the system as a whole.  Multi-task learning (MTL), learning multiple problems 
simultaneously with a single multiple-output network, is described by Caruana (1993; 1995; 
1996; 1997).  Caruana shows how learning multiple tasks in conjunction (e.g., when learning 
how to automatically drive a vehicle, recognizing where the road’s center line and/or left and 
right lanes are located in addition to deciding just how to steer) helps to avoid local minima and 
improve generalization.  MTL performs better (learning tasks simultaneously) than learning tasks 
separately (Caruana, 1993).  There are several reasons why MTL improves on single-task 
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learning (STL).  Advantages and disadvantages of using MTL over STL are discussed in 
(Caruana, 1993). 
 
A problem that often occurs during training is due to the moving-target problem, and is referred 
to by Fahlman (Fahlman & Lebiere, 1990) as the herd effect.  Suppose there exist two separate 
computational sub-tasks, A and B, which must be performed by the hidden nodes of a network.  
Any of the hidden nodes could handle either task, but since they have no way of communicating 
among themselves, they must decide independently which task to solve.  If task A produces a 
more coherent error signal than B, there is a tendency for all the hidden nodes to focus on 
learning A.  Once A is redundantly solved by all the nodes in the network, then they begin to 
work on B, which is now emitting the only significant error signal.  If they move toward B all at 
once, then problem A reappears.  Often the weights can be observed to oscillate for a prolonged 
period of time until the “herd” finally splits up and deals with both sub-tasks at once.  This 
phenomenon, where weights oscillate back and forth, can be seen on complex problems (e.g., 2 
spiral).  The herd effect can be observed not only among nodes in an MTL or STL network, but 
among networks being trained simultaneously in an ensemble as well. 
 
5.6 CB learning with single vs. multiple networks 
Using single-output networks to learn each class in the problem ensures each class is learned 
separately.  Learning classes separately might allow easier analysis of solutions, whereas 
deciphering the meaning of network weights in a multi-output network is very difficult.  
However, there are advantages to CB training using a single multi-output network over separate 
single-output networks.  Training a single network takes advantage of the benefits of MTL.  
Where problem hypotheses overlap, a single network can “reuse” nodes by taking advantage of 
redundant features.  This produces a more compact solution than having to relearn redundant 
features in separate networks.  In experiments on the OCR set 47 networks were trained.  Each 
network had a 64x32x1 architecture, (plus bias) yielding 2113 weight parameters in each 
network.  In all, the model contains 2113 x 47 = 99,311 weights, whereas the best single network 
has a 64x256x47 topology (plus bias).  This equals 16640 + 12079 = 28,719 weights, a reduction 
in size of nearly three-and-a-half times.  The practical implications of this are that not only is 
memory conserved, but classification speed is increased as well. 
 
Caruana (1995) states one of the disadvantages of MTL is that, since tasks are learned at 
different times during training, it is difficult to know when to stop training.  When training is 
stopped early, some tasks might not have been learned and generalization is often impaired as a 
result.  Caruana’s solution is to train the network until all tasks appear to be overfitting, or to take 
a separate snapshot of the network for each class, at the point where its validation accuracy is 
highest.  However, taking several snapshots makes the solution much more unwieldy, and 
although the snapshot is taken at the point where accuracy is highest, there is no guarantee that 
overfitting has not already occurred in some part of the space for that class. 
 
CB training solves both problems by naturally stopping training on tasks as they are learned, 
both within classes and among them.  This helps in two ways: the solution can be kept small 
(using a single network), and overfitting is discouraged on two levels, both external to learning a 
class (overfitting a class because other classes have yet to be learned sufficiently) and internal to 
it (overfitting on localized regions of a class because other regions have yet to be learned). 
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CB training of multiple networks goes a step beyond MTL.  Note that in Section 4.3.1, the best 
OCR test accuracy obtained was using multiple networks.  It appears their increased 
computational ability (more network parameters) over the monolithic model enables them to be 
used as needed to find a better solution than with a single multi-output network, while CB 
training discourages abuse of the increased potential of the system to overfit.  In addition to 
having specialized networks learning individual tasks at the same time, CB explicitly shares 
relevant information among the networks, in the form of output values, during training to 
coordinate their learning process.  When networks are trained concurrently, rather than 
sequentially as in standard ensembles, they can take advantage of greater expressive power 
through interaction during the training process.  Two or more networks can collaborate together 
to decide how learning is to proceed at any given point.  Network interactivity is discussed 
further in Section 7. 
 
5.7 Computational Cost 
CB1 requires an O(n) search through the n network outputs to determine the highest target and 
competitor values.  However, this additional overhead to the learning algorithm is negligible 
compared to the computation requirements of O(ih) for feed-forwarding a pattern vector and 
O(ihn) for backpropagation, where i is the number of inputs and h is the number of hidden nodes.  
In fact, CB1 saves O(ihn) time by omitting the error backpropagation step over correctly 
classified patterns. 
 

6. Considerations in Neural Network Training using CB1 
 
In this section, several issues are enumerated that must be considered when designing an 
effective neural network backpropagation learner.  How each of these issues is dealt with, to 
some extent, has a significant effect on generalization.  How the CB training philosophy 
presented in this work fits into these issues is discussed. 
 
6.1 Altering Network Topology 
Network topology plays a large role in achieving high generalization.  Most commonly, solutions 
involve training a fully connected network.  However, it has often been shown that partially 
connected networks perform as well or better than fully-connected ones.  Pruning algorithms, 
such as Optimal Brain Damage (LeCun, Denker, & Solla, 1990) and Optimal Brain Surgeon 
(Stork & Hassibi, 1993), reduce the connectivity in an overly specified network, and construction 
algorithms (several are enumerated in (Andersen & Martinez, 2001b)) insert needed connections 
into a skeleton-network until sufficient function approximation is achieved. 
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6.1.1 Pruning Algorithms 
For a fixed amount of data, networks with too many weights often do not generalize well.  On 
the other hand, networks with too few weights will not have enough power to represent complex 
data accurately.  The best generalization is often obtained by trading off the training error and the 
network complexity (LeCun, Denker, & Solla, 1990).  If it is possible to reduce network 
complexity without reducing training error, then it is expected that generalization accuracy will 
improve. 
 
Network complexity is defined (Wang, Venkatesh, & Judd, 1994) as the number of parameters 
and the capacity to which they are used in learning (i.e., their magnitude).  A network with a few 
large weights may effectively be more complex than a network with a greater number of small 
weights.  Hence, complexity can be reduced not only through pruning parameters, but also by 
reducing their values.  A learning algorithm that aims at preserving small weights during training 
can aid in improving generalization.  One example of this is performing weight decay (Werbos, 
1988), which serves to weaken overly strong or saturated connections and in effect remove 
unused network connections.  However, weight decay serves more as a recovery technique to 
repair the damage caused by minimizing the error function as weights tend toward saturation, 
rather than providing a heuristic that specifically aims at small-weight solutions.  The CB 
training algorithm presented in this work actively attempts to find good solutions with weights 
remaining as small as possible to avoid saturation. 
 
6.1.2 Growth Algorithms 
Dynamic network construction algorithms typically start from a very simple basis and 
progressively add complexity until the training data are acceptably learned.  Theoretically, a 
network can always be grown until it has perfectly learned the training data.  However, at this 
point it often acts as a table lookup and exhibits poor generalization.  Therefore in growing 
networks it is essential to choose a proper stopping point.  Growth and pruning algorithms can be 
used in conjunction to first grow a network that empirically has the capability to learn the 
training data, and then prune nodes until accuracy on a holdout set begins to decrease. 
 
Several growth methods append nodes after the current output node (Andersen & Martinez, 
2001b), which is disadvantageous since the original output node was not trained specifically as a 
feature detector for use in the new network.  Cascade Correlation (Fahlman & Lebiere, 1990) 
and DMP3 (Andersen & Martinez, 2001b) add nodes before the output node.  CB training 
effectively teaches each output node to function as a feature detector that performs in 
conjunction with the other output nodes, rather than on its own.  In this way, their mutual results 
can be combined into meaningful, non-redundant output. 
 
6.2 Early Stopping 
Early stopping strategies (Wang, Venkatesh, & Judd, 1994) commonly utilize network 
architectures that have the potential of being overly complex.  Larger network architectures are 
likely to converge to a lower training error, but tend to produce higher error on test patterns.  In 
order to avoid this, early stopping strategies try to determine when the problem has been learned 
sufficiently well, but not yet overfit (Andersen & Martinez, 2001b). 
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(Wang, Venkatesh, & Judd, 1994) shows that stopping learning before the global error minimum 
has the effect of network size selection.  This can be accomplished through a number of methods, 
such as considering the accuracy of a validation, or holdout, set, and stopping training when the 
performance on the holdout set begins to degrade (Andersen & Martinez, 2001b). 
 
CB training performs an “online” form of early stopping.  Rather than stopping training 
completely when it is detected that the training set is being overfit, CB1 selectively omits 
training on individual patterns when backpropagating an error signal would not increase 
accuracy further. 
 
6.3 Model Complexity 
It is often believed that networks with too many degrees of freedom generalize poorly.  This line 
of reasoning is based on two observations: (1) that a sufficiently large network is able to 
memorize the training data if training continues long enough, and (2) even with early stopping 
approaches, it is not apparent whether some form of overfit has occurred.  By reducing the 
learning capacity of such a network, it is thereby forced to generalize as it no longer has the 
capability to memorize the training data. 
 
Caruana (1997) points out that in order to perform a proper theoretical analysis of network 
capacity and generalization, the search heuristic must also be taken into account.  Gradient 
descent search heuristics do not give all hypotheses an equal opportunity.  The inductive bias of 
standard backpropagation is to start with a simple hypothesis (through usually small, random 
weights) and make the hypothesis more complex (by increasing the magnitude of the weights) 
until the network sufficiently learns the problem. 
 
Thus, backpropagation is biased toward hypotheses with small weights, examining solutions 
with larger weights only as dictated by necessity.  Excess network capacity does not necessarily 
hinder generalization, as learning stops as soon as possible.  This stopping point is dictated in 
part by the objective function.  During the first part of training, large networks behave like small 
networks.  If they do not come to a satisfactory solution, they begin to perform less like small 
networks and more like mid-size networks, and so on.  If a large network is too big, early 
stopping procedures will detect when generalization begins to degrade and halt training.  At this 
point, the larger network performs similar to some smaller network.  This means that 
generalization can be less sensitive to excess network capacity, and that using a network that is 
too small can hurt generalization more than using networks that are too large (Caruana, 1997). 
 
The ability to perform online per-pattern stopping, combinable with standard early stopping 
techniques, enables CB training to be more robust in its management of excessively large 
networks.  In our search for optimal network sizes in the experiments above, CB1 proved to be 
more robust to overly large numbers of hidden nodes than SSE and CE optimization. 
 
6.4 Bias and Variance 
A network’s bias and variance, as defined in (Geman & Bienenstock, 1992), can be intuitively 
characterized as the network’s test set generalization and its sensitivity to training data, 
respectively.  There exists an inherent tradeoff between bias and variance, namely 
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The best generalization requires a compromise between the conflicting 
requirements of small variance and small bias.  It is a tradeoff between fitting the 
training data too closely (high variance) and taking no notice of it at all (high 
bias) (Sharkey, 1996). 

 
Bias is the extent to which the network’s output varies from the target function (the error), while 
variance is the sensitivity to the training data sampled in affecting generalization (the variance of 
the constructed hypothesis from the optimal Bayes hypothesis).  An ideal function approximation 
network has low bias and low variance. 
 
An ensemble with high variance tends to have low correlation of errors since each network 
arrives at a unique hypothesis.  The ideal ensemble is a set of networks that do not show any 
coincident errors.  In other words, each network has good generalization (low bias), and when a 
network is in error, the error is not shared by other outputs (high variance) and can be corrected 
through voting.  If only one output is in error, it can be overruled by considering the majority of 
correct outputs of the remaining networks.  However, ambiguity results when more than one 
(i.e., close to a majority) output is in error.  Low bias and high variance is desirable in an 
ensemble, and having sufficiently high variance can make up for moderately high bias.  Variance 
is commonly introduced into ensembles by varying the data presented to each network.  This can 
be done through data sampling, disjoint training sets, adaptive resampling, providing different 
data sources, preprocessing, or a combination of these (Sharkey, 1996).  CB training does not 
attempt to reduce error when it can be resolved by jointly considering the output values (as in 
ensembles), so as not to increase variance needlessly though overfitting. 
 
Friedman illustrates that low SSE bias is not important for classification, and one can reduce 
classification error toward the minimal (Bayes) value by reducing variance alone (Friedman, 
1997).  CB training reduces variance among outputs by “over-smoothing” the decision surface.  
SSE bias is acceptably increased, as CB training is used for classification tasks, not function 
approximation. 
 
Variance is controlled by the degree of over-smoothing – more smoothing creates less variance.  
CB training accomplishes over-smoothing by discouraging patterns from affecting the shape and 
location of the decision surface more than is required for correct classification. 
 
6.5 Overfitting 
The question of how to prevent overfit is a subtle one.  When a network has many free 
parameters, not only can learning be fast, but also local minima can often be avoided.  On the 
other hand, networks with few free parameters tend to exhibit better generalization performance 
(Castellano, Fanelli, & Pelillo, 1997).  Determining the appropriate size network remains an 
open problem. 
 
In taking all of the above issues into account, overfitting is typically considered to be a global 
phenomenon.  However, the degree of overfitting can vary significantly throughout the input 
space.  Lawrence and Giles (2000) show that overly complex MLP models can improve the 
approximation in regions of underfitting, while not significantly overfitting in other regions.  
However, their discussion is limited to function approximation tasks and not classification 
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problems, which are affected in a different way by bias-variance tradeoffs (Friedman, 1997).  CB 
training seeks to achieve minimal overfit not only globally but also locally by not training on 
patterns that are already correctly classified. 
 

7. Interactive Training 
 
It has been proposed (Wegner, 1997; Wegner & Goldin, 1999) that learning models that interact 
with an external environment (e.g., another learner) have a greater theoretical power of 
expression than non-interactive models.  To support this, (Weiss, 1999) shows that coupled 
agents perform much more efficiently than independent agents at complex learning tasks.  The 
paradigm shift from optimized, but isolated, algorithms to interactive models reflects the current 
evolution in the philosophy of the field of computer science from procedure-oriented to object-
oriented languages and single mainframes to networks of personal computers. 
 
Neural network models that learn interactively are proposed to be superior over independent 
models.  An implementation of interactive ensembles is presented in (Liu & Yao, 1999a; 1999b), 
where the networks in the ensemble are trained simultaneously with the inclusion of an 
additional error term that encourages negative error correlation among the networks.  This 
generally provides some improvement.  However, the field of interactive learning among neural 
networks is largely unexplored.  CB1 is an original contribution to the budding field of 
interactive neural network learning. 
 
Interactive methods can be performed on separate, specialized single-output networks or a single 
multi-output network (as discussed in Section 5.6), but discussion in this section will be limited 
to separate networks for simplicity. 
 
7.1 Coordinating objective function 
The philosophy of CB training has ties to multi-agent learning.  Stirling points out that typically, 
optimal single agent solutions are not jointly optimal in multi-agent settings (Stirling & 
Goodrich, 1999).  This is demonstrated for neural network architecture optimization schemes for 
voting (Andersen, Rimer, & Martinez, 2001a).  It is shown that the optimal network architecture 
selected for a single network model is typically not the optimal architecture when many such 
networks are combined with voting techniques such as bagging.  The optimal architecture when 
a single network is used is often much less complex than the optimal network architecture of 
several networks being combined into a voting ensemble. 
 
Coordination among agents occurs if members of a multi-agent system use information 
concerning the existence, decisions, or perceived decision-making strategies of other agents.  
Coordination should provide a means of decision-making for each agent in the system as a 
function of both the agent’s individual agenda and its relationships to the other members of the 
system (Stirling, Goodrich, & Frost, 1996).  Coordinating means enabling a network to update its 
parameters based not only on its behavior, but the behavior of the other networks in the system.  
A network’s complexity must be necessarily restrained when using standard learning heuristics 
to avoid overfitting.  Coordinating network behavior using CB training allows the use of a more 
complex model without engendering overfit. 
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CB training provides coordination among multiple single-output networks, or among output 
nodes in a multi-output network.  CB training illustrates the principle of satisficing (Herbert, 
1959), where an aspiration level is specified, such that once that level is met, the corresponding 
solution is deemed adequate.  CB training balances an output’s credibility, or the exactness with 
which it can produce ideal target values for its class (e.g., reducing SSE to zero), against its 
rejectability, or the risk of overfitting by doing so.  A trade-off is created between exactness in 
individual class outputs and the classification accuracy of the system.  An output node can 
satisfactorily perform less “ideally” with the understanding that the effectiveness of the entire 
system can be improved as a result.  In relaxing the constraint of optimal credibility, resultant 
rejectability is reduced. 

 
8. Conclusion and Future Work 
 
CB training produces less overfit in gradient descent backpropagation training than optimizing 
SSE and CE.  It produces simpler hypotheses than SSE and CE, increasing the probability of 
better generalization. Its robustness and superior generalization over SSE and CE 
backpropagation has been demonstrated on several real world data sets.   On UCI MLDR 
problems there was an average increase in accuracy from 90.7% for optimized SSE networks to 
92.1% for CB training performing 10-fold stratified cross-validation.  Similarly, there was an 
increase in accuracy from 97.86% to 99.11% on a very large OCR data set. 
 
There are many directions that future research on CB training will take.  The effect of modifying 
the error margin will be considered.  Implementing dynamic versions of these parameters that 
change over time or using values local to each instance in the training set presents a 
straightforward extension to be evaluated.  Softprop, a learning approach combining CB1 and 
SSE optimization during training has shown further improvement in a preliminary study and a 
thorough analysis will be presented in future work. 
 
Further studies of the effect of network size on CB training behavior and classification accuracy 
will be done.  The effect of CB training in more sophisticated classification systems, where 
classification functions more complex than a single MLP are used, such as stacking a perceptron, 
MLP, or rule-based or search system onto an existing system (Rimer, Martinez, & Wilson, 
2002), will be investigated. 
 
CB training will be combined with other learning enhancements.  Augmenting CB1 with weight 
decay to produce even “simpler” solutions, RPROP (Riedmiller & Braun, 1993) or Quickprop 
(Fahlman, 1988) techniques to improve the rate of convergence, speed training (Rimer, 
Anderson, & Martinez, 2001b) to speed up learning, methods for growing and pruning networks, 
and forming network hierarchies are approaches being considered.  CB training variants will also 
be considered for batch learning. 
 
It has been observed that classification errors between SSE and CB trained networks are highly 
uncorrelated.  Ensembles combining SSE and CB trained networks will be analyzed with the 
expectation that this will further reduce test error. 
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