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1 Introduction

Most computational models of supervised learning rely only on labeled training examples, and ignore
the possible role of unlabeled data. This is true both for cognitive science models of learning such as
SOAR [Newell 1990] and ACT-R [Anderson, et al. 1995], and for machine learning and data mining
algorithms such as decision tree learning and inductive logic programming (see, e.g., [Mitchell 1997]).
In this paper we consider the potential role of unlabeled data in supervised learning. We present
an algorithm and experimental results demonstrating that unlabeled data can significantly improve
learning accuracy in certain practical problems. We then identify the abstract problem structure that
enables the algorithm to successfully utilize this unlabeled data, and prove that unlabeled data will
boost learning accuracy for problems in this class. The problem class we identify includes problems
where the features describing the examples are redundantly sufficient for classifying the example; a
notion we make precise in the paper. This problem class includes many natural learning problems
faced by humans, such as learning a semantic lexicon over noun phrases in natural language, and
learning to recognize objects from multiple sensor inputs. We argue that models of human and animal
learning should consider more strongly the potential role of unlabeled data, and that many natural
learning problems fit the class we identify.

2 A Supervised Learning Problem: Learning to Classify Web Pages

To illustrate the role of unlabeled data in supervised learning, consider the problem of learning to
classify pages of hypertext from the world wide web, given labeled training data consisting of individual
web pages along with their correct classifications (Figure 1). We have been studying this problem as
part of our larger research goal of automatically extracting information from the web [Craven et al.
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Figure 1: Training example of a “faculty home page.” The task of classifying a web page can be
achieved by considering just the words on the web page. Alternatively, the page can be classified
using only the words on hyperlinks that point to the web page (e.g., “my advisor” “Professor Smith”).
When examples are described by such redundantly sufficient features, unlabeled data can be used to
boost the accuracy for supervised learning.

1998]. For example, one specific task we have considered is training a system to classify web pages into
categories such as “student home page,” “faculty home page,” “home page of an academic course,”
etc.

This web page classification problem can be formulated as a typical supervised learning problem.
By “supervised learning problem” we mean that there is some set X of instances, and there is some
target function f: X — Y to be learned, given a set of training examples of the form {(z;, f(z;))}. In
our case, X is the set of all web pages, Y is the set of possible classifications (e.g., “student” “faculty”
“neither”), and the function f to be learned in the function that maps an arbitrary page x to its
correct classification. For the ith labeled training example, z; is a particular web page, and f(z;) is
the correct classification for z;, provided by an external teacher.

As discussed in [Craven et al. 1998], a number of supervised learning algorithms can be applied
to the problem of learning to classify web pages. One common approach is to first represent each web
page by a large feature vector, where each possible word in the language corresponds to a feature, and
the value of the feature is the number of times the word occurs in the web page. This “bag of words”
representation obviously ignores information about the sequence in which words occur. However, this
representation of web pages as large feature vectors enables us to apply standard supervised learning
algorithms for classification of feature vectors. For example, if we train a naive Bayes classifier [Mitchell
1997] on a set of approximately 4,000 labeled web pages, we achieve accuracies of approximately 70%
in classifying new web pages into the categories mentioned above [Craven et al., 1997].



Given:
e set L of labeled training examples

e set U of unlabeled examples

Loop:
e Learn hyperlink-based classifier H from L

o Learn full-text classifier FF from L

Allow H to label p positive and n negative examples from U

Allow F to label p positive and n negative examples from U

e Add these self-labeled examples to L

Table 1: A Cotraining algorithm, for training two classifiers and using unlabeled data to boost their
accuracies.

While we can achieve reasonable accuracy after training on thousands of hand labeled web pages,
in this paper we are interested in the question of how unlabeled data can be useful. In fact, this is a
crucial question in our web page classification task, because it is costly to hand label thousands of web
pages, and because it is very easy to obtain hundreds of millions of unlabeled pages from the web.

How can we use unlabeled web pages to more accurately learn to classify future pages? The answer
can be seen by first observing that the web contains an interesting kind of redundant information about
each web page, as shown in figure 1. As shown in this figure, we could classify the web page either by
considering the words on the page itself (as suggested in the paragraph above), or we could classify the
page by ignoring the words on the page and instead considering the words on hyperlinks that point
to the page. In many cases, the words on the hyperlinks will be sufficient to classify the example, and
the words on the page itself will also be sufficient. In such cases, we will say these two sets of features
— the hyperlink words, and the web page words — are redundantly sufficient to classify the example.
We will see below that in general if the instances X for some supervised learning task can be factored
into sets of redundantly sufficient features, then unlabeled data can be used to boost the accuracy of
classifiers trained with limited labeled data.

3 Learning with Redundantly Sufficient Features

How can we use unlabeled data to boost the learning accuracy for our web classification problem?



Page-based classifier | Hyperlink-based classifier | Combined classifier
Supervised training 12.9 12.4 11.1
Co-training 6.2 11.6 5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows
errors when training on only the labeled examples. Bottom row shows errors when co-training, using
both labeled and unlabeled examples. The rightmost column shows the classification accuracy when
the two classifiers are provided equal votes on the final classification. The results reported here are
the average of five independent runs of the algorithm with different random starting examples.

The key idea is that we will train two independent classifiers rather than one. One classifier will use
only the words on the web page, and the other classifier will use only the words on the hyperlinks. We
begin by training both classifiers using whatever labeled training examples are available. Presumably
this will result in two classifiers that are imperfect, but better than random. Now we use the unlabeled
data as follows: each classifier is allowed to examine the unlabeled data and to pick its most confidently
predicted positive and negative examples, and add these to the set of labeled examples. In other words,
each classifier is allowed to augment the pool of labeled examples. Both classifiers are now retrained
on this augmented set of labeled examples, and the process is repeated as long as desired. Table 1
summarizes this co-training algorithm.

Why should this co-training algorithm lead to more accurate classifiers? The intuition is that if
the hyperlink classifier finds an “easily classified” hyperlink in the unlabeled data (e.g., one that is
quite similar to one of the labeled examples on which it was trained), the web page that it points to
will be added to the labeled pool of examples as well. Of course just because the hyperlink happened
to be easy to classify does not mean the web page will be easily classified by the other classifier. If
not, then the hyperlink classifier has added useful training information to improve the other classifier.
Similarly, the web page classifier can add examples that are easy for it to classify, but that provide
useful information to improve the accuracy of the hyperlink classifier.

In experiments, we have found that this Cotraining algorithm does improve classification accuracy
when learning to classify web pages. In one experiment [Blum and Mitchell, 1998], summarized
in Table 2, we trained a classifier to label web pages as home pages of academic courses. In this
experiment we provided just 16 labeled examples, and approximately 800 unlabeled pages drawn from
computer science department web sites. On each iteration of co-training, each classifier was allowed to
add 1 new positive and 3 new negative examples to the pool of labeled examples. After 30 iterations
of the cotraining algorithm, the accuracy of the combined classifier was 95%, compared to 89% when
only the labeled data was used. In this case, the impact of cotraining was to reduce the error by better
than a factor of two.



4 Formal Results

Given the experimental evidence that cotraining can be useful in at least one case, it is useful to
characterize the general problem setting in which this kind of algorithm can benefit from unlabeled
data. Here we define a problem setting in which we can prove that unlabeled data will be of help.

To define the general problem setting that captures the essential structure of our web classification
example, recall that earlier we defined a supervised learning problem as one where we have some set of
instances X, a target function f : X — Y, and labeled examples {(z;, f(x;))}. In the cotrainingsetting,
we assume such a supervised learning problem in which the instances are drawn from X according
to some fixed (possibly unknown) probability distribution D. We further assume that X = X x Xy;
that is, the instances in X can be factored into two parts (e.g,. the hyperlink words and the web page
words). We require also that X; and X3 each contain information sufficient to classify the example.
In other words, we require that there exist some function ¢; : X; — Y and some function ¢, : Xo - Y
such that for all z € X, g1(21) = g2(22) = f(z). Note the learner is not expected to know f, g1 or g2
in advance. We simply require that it be possible to express f in terms of ; and in terms of x5 (i.e.,
that Xy and X3 both be sufficient to classify X according to f). If the above constraints on X; and
X5 are satisfied, then we will say that Xy and Xy are redundantly sufficient to classify X with respect
to f.

In [Blum and Mitchell 1998] we show that if f : X — Y is PAC learnable from noisy labeled
data, Xy and X, are redundantly sufficient to classify X with respect to f, and if zp, and zp, are
conditionally independent given f(z), then f can be PAC learned given a weak initial classifier plus
only unlabeled data. What this means is that if the labeled data are sufficient to train a better than
random initial classifier, if X; and X, are distributed independently for each target value of f, and if
f can be learned accurately given an arbitrary number of labeled examples, then f can be learned to
similar accuracy given just this weak initial classifier and an arbitrary number of unlabeled examples.
The significance is that this proves that unlabeled examples can substitute for labeled examples, under
the conditions of the theorem.

In [Blum and Mitchell 1998] we also show that unlabeled data is of potential value under the more
general setting in which X; and X5 are not independently distributed. There we show that if the
training data is noise-free, then unless X; and X, are deterministically related (e.g., one value of z;
is always paired with the same x3), the unlabeled data can be of use.

5 Other Learning Tasks with Redundantly Sufficient Features

Given the success of cotraining as a method for using unlabeled data when learning to classify web
pages, and given the formal characterization of the class of problems for which cotraining can be of use,
it is interesting to ask what other natural learning problems allow this approach. Here we summarize
a number of tasks:



e Learning to classify noun phrases into semantic classes. In [Riloff and Jones 1999], an approach
similar to cotraining was applied to the problem of learning a semantic lexicon over noun phrases
in English. In this paper, one task was to learn to classify noun phrases as positive or negative
examples of locations (e.g., “San Sebastian” is positive, “blue” is negative). In this case each
example, x, is a sentence such as “We are located in lovely Pittsburgh.” The factorization of z
into two redundantly sufficient feature sets is done as follows: z; is the noun phrase itself (e.g.,
“Pittsburgh” in the above sentence), and z; is the linguistic context in which the noun phrase
appears (e.g., “We are located in lovely —"). Note that in most cases it is possible to determine
whether the noun phrase is a location given either x; or z5. Note also that the values of 27 and
x4 are distributed fairly independently (i.e., with might see the same 23 as above, but with a
different z1). Starting with a list of just 10 known noun phrases, their system used an algorithm
similar to cotraining to learn dozens of additional locations.

e Learning to select word sense. In [Yarowsky, 1995], an approach similar to cotraining was applied
to learning to disambiguate word senses (e.g., to determine whether the word “plant” refers to
a manufacturing plant or to a botanical plant). Here, each instance z corresponds to a context
containing the word in question (similar to the Riloff and Jones example above). However, the
factorization of z is into more than two components, with each word serving as a candidate
component, and this algorithm seems to not map directly into cotraining. But it is quite similar,
and the problem could be attacked using a cotraining approach.

e Learning to recognize phonemes in speech. In [de Sa and Ballard, 1998], an approach to fully
unsupervised learning was applied to a problem with nearly redundantly sufficient features. In
this case, the task is to learn to classify speech phonemes, based on both the audio signal and the
video signal watching the speaker’s lips. Here each instance z corresponds to the full data,
corresponds to the audio signal, and z5 corresponds to the video signal. Again, we may roughly
assume that either of x1 or x5 is sufficient to determine the phoneme, and therefore can train
two classifiers on limited labeled data, and let them train each other over the unlabeled data.
In fact, de Sa and Ballard use no labeled data at all, instead performing a kind of clustering in
which the audio signal must predict the video, and vice versa. Their system was able to learn
clusters corresponding to the spoken phonemes in the data.

e Object recognition in multimedia data. Consider the problem of learning to recognize objects in
multimedia data, such as the continuous stream of audio, video, and other sensory input a person
receives. A very similar task is to learn to classify television segments, based on the ongoing
stream of video, audio, and close captioned text. In this latter case, consider the problem of
learning to spot television segments in which Boris Yeltsin appears. Here we could consider each
instance z to be a snapshot containing the audio, video and text at a particular time. Here
x1 could be the audio, 25 the video, and z3 the text. Note that in some cases we might see
“easy” example of video (a full face of Yeltsin), or an easy audio (his voice without background



noise), or an easy text (the word Yeltsin). Thus, we could expect cotraining to provide a useful
approach to using unlabeled data to train classifiers. To my knowledge, this experiment has not
been attempted.

6 Discussion and Conclusions

We have described a class of supervised learning problems for which unlabeled data can be proven to
improve learning accuracy. The key defining features of this problem class are that (1) the instances
X can be factored into two or more components Xy, Xs ..., which are redundantly sufficient to classify
the example, and (2) these components covary, so that a particular z; does not always co-occur with
the same z;..

We have described the cotraining algorithm that uses unlabeled data for such problems, and have
presented experimental and theoretical results showing that in these problems unlabeled data can
indeed be useful to improve accuracy for supervised learning.

The connection to human and animal learning appears to be a rich area for future study. Humans
and other animals have a rich set of sensory input, which includes redundantly sufficient data for many
tasks. For example, smell, vision, sound can all be useful in trying to classify whether food is nearby,
and in many cases the data from just one of these channels is sufficient. de Sa and Ballard’s success
with a cotraining-like algorithm for learning to classify phonemes from video and audio — similar to
that observed by humans — is also suggestive. Perhaps people rely less than we suspect on labeled
data to achieve successful learning for various classification tasks.
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