
IMPROVED HOPFIELD NETWORKS BY TRAINING WITH NOISY DATA

Fred Clift and Tony R. Martinez
Computer Science Department, Brigham Young University, Provo Utah 84602

Email: fred@clift.org, martinez@cs.byu.edu

Abstract

A new approach to training a generalized Hopfield
network is developed and evaluated in this work. Both the
weight symmetricity constraint and the zero self-
connection constraint are removed from standard
Hopfield networks. Training is accomplished with Back-
Propagation Through Time, using noisy versions of the
memorized patterns. Training in this way is referred to as
Noisy Associative Training (NAT). Performance of NAT is
evaluated on both random and correlated data. NAT has
been tested on several data sets, with a large number of
training runs for each experiment. The data sets used
include uniformly distributed random data and several
data sets adapted from the U.C. Irvine Machine Learning
Repository. Results show that for random patterns,
Hopfield networks trained with NAT have an average
overall recall accuracy 6.1 times greater than networks
produced with either Hebbian or Pseudo-Inverse training.
Additionally, these networks have 13% fewer spurious
memories on average than networks trained with Pseudo-
Inverse or Hebbian training. Typically, networks
memorizing over 2N (where N is the number of nodes in
the network) patterns are produced. Performance on
correlated data shows an even greater improvement over
networks produced with either Hebbian or Pseudo-Inverse
training - An average of 27.8 times greater recall
accuracy, with 14% fewer spurious memories.

1 Introduction

Hopfield [1] proposed using a fully-connected neural
network as an associative memory. The intent is to store a
set of bit-patterns in such a way that when a new pattern is
given, the network produces the stored pattern that is
closest to it. Hopfield suggested using the Hebbian [2]
learning algorithm for training the weights of the network
and showed that capacity of such networks is
approximately p = 0.15N patterns where N is the number
of nodes in the network.

Perhaps the most common and best performing general
training algorithm currently used for Hopfield-type
networks is the Pseudo-Inverse algorithm. It was
developed by Personnaz et al., [3][4] and later refined by
Kanter and Sompolinsky [5], and Gorodnichy, [6]. This
method allows up to p < N linearly independent patterns to
be memorized.

While Hopfield associative memories are popular, they have
two well-known weaknesses that can be improved upon.
These weaknesses are:

1) The number of memorized patterns, p, of Hopfield
associative memories is limited to approximately p = N in
current learning algorithms, where N is the number of nodes
in the network.

2) Current learning algorithms tend to produce poorly
performing networks when learning linearly dependent
patterns.

The work in this paper focuses on improving overall recall
accuracy (basin size) and on increasing the number of
memories it is possible to store in a Hopfield network
(memory density). A new training algorithm is developed,
using Back-Propagation Through Time (BPTT) [7] as its
basis. This new algorithm is called Noisy Associative
Training (NAT). NAT differs from existing work in a
number of ways. First, the symmetricity constraint on the
weights is removed. This effectively allows the number of
weights in the network to be doubled, increasing the
expressional capability and storage capacity. Second, unlike
most current work, self-connection is allowed for each node.
Again, this gives the network more expressional capability,
and aids in performance with correlated memories.

Hopfield networks trained with BPTT using the memorized
patterns as both input and target tend to have very high
positive self-connection weights for each node compared to
the other weights in the network. Hebbian and Pseudo-
Inverse training would also produce high self-connection
weights if not explicitly reduced or removed by those
algorithms. In each of these cases, networks that merely
latch any input pattern are produced. Pseudo-Inverse
networks trained beyond capacity (N or more patterns for an
N node network) also tend to produce networks that behave
in this pathological manner. NAT trains with noisy versions
of the memorized patterns to avoid this type of pathological
network.

2 An Overview of NAT

Noisy Associative Training (NAT) works as follows. Back-
Propagation Through Time (BPTT) is used to train the
network, using a training set generated from the memorized
patterns. To generate the input set for BPTT training, noisy
versions of each of the memorized patterns are generated.
All k-bit error versions (those within a hamming distance of
k) of one of the desired memorized patterns is added to the

input set for training. This is done for each desired
memorized pattern and then duplicate entries are removed
from the input set. The target output for each member of
the input set is then calculated to be the closest of the
intended memorized patterns. If there is a tie for the
closest memorized pattern, one of the closest is randomly
chosen before training begins, and that patterns is used
consistently as the target during training. An example set
of memorized patterns for a 3-Node network is {[1,1,1],
[1,-1,1]}. For k = 1 bit of error, this would produce an
input set of {[-1,-1,1], [-1,1,1], [1,-1,1], [1,1,-1], [1,1,1]}
with respective targets of {[1,-1,1], [1,1,1], [1,-1,1],
[1,1,1], [1,1,1]}. BPTT for a chosen number of time-steps,
t, is then performed using this input and output set.

3 Performance Metrics

Before discussing comparative performance of NAT
verses Hebbian and Pseudo-Inverse training, methods for
comparing performance must be considered. Performance
of Hopfield networks can be examined in three basic
ways. The first is the number of memorized patterns
which can be stored in a network. The second is some
measure of basin-size or error-correction. The third is the
number of spurious memories a network contains. All
three of these measures are important to understanding
network performance.

For this work the following metric is used. First, any
network that memorized more memorized patterns from
the training set (including those noisy versions of the
memorized patterns relaxing to their appropriate
memorized patterns) is superior to a network that
memorizes less. This somewhat combines both the first
and second methods discussed above. Next, if both
networks store the same number of memorized and noisy
patterns, then the network that has fewer spurious-
memories is considered superior. This last measure can be
expensive to calculate. For very small networks the entire
pattern space can be enumerated and tested relatively
quickly. However, in this work, a different technique is
used. All bit patterns within a hamming distance of 5 of
any of the memorized patterns are considered. This gives
an idea of basin size and also shows spurious memories
that are likely to interfere with performance of the network
in a real application.

4 Test Data

To compare the performance of the three training
techniques examined, six data sets were used. The first is
uniformly distributed random data. The other five come
from the Machine Learning Repository (MLR) [8]
provided by the University of California at Irvine. Set one
consists of an arbitrary number of 10-bit patterns
uniformly distributed across the pattern space.

Typically, research with Hopfield memories is done only
with random data similar to that of the first data set. Rarely
has any work been done showing performance on non-
random data. Performance on non-random data is useful in
determining how a Hopfield memory would perform in real
applications.

The other data sets used are ones commonly used to evaluate
classification algorithms. Classification is not the intent of
this work. Rather, the output class for each of these data sets
is discarded, and the input data is used as described below.
This data is known to have interesting correlations, (hence
its use in classification problems) and should provide sets of
patterns more similar to data stored in a Hopfield memory in
real applications.

The second set used was the LED data set. It is comprised
of 10 examples of 7 bits in length. These represent the
elements of a 7-segment LED display. The patterns indicate
which segments should be turned on to represent the digits 0
through 9. Software provided with the LED data set can
introduce artificial noise into patterns. This facility was not
used. The software used for this research was used to add
noise to the test and training data. The second and third data
sets from the MLR were the Congressional Voting Records
Database and the Zoo Database. The voting records data set
represents votes either for or against a set of specific bills
under consideration in the US House of Representatives in
1984. 16 attributes (16 actions voted upon) and 151 unique
patterns were used from this set. The 151 patterns were
selected by first discarding any entries with missing
attributes. The classification class provided with this
database was discarded, and then all duplicate entries were
discarded. What remained was 151 unique pattern vectors of
16 bits in length. The Zoo data set contains many binary
attributes representing various features of animals found in a
typical zoo, comprising 15 binary attributes and 43 unique
patterns. The Zoo data set was constructed using the same
method as for the voting records data set. Non-binary
attributes were discarded. Instances with missing values
were discarded. Finally, duplicate patterns were discarded,
yielding 43 unique 15 bit vectors. The Horse Colic and
Hepatitis data sets were also used, with the training sets
being produced in the same fashion.

5 Test Methodology

To compare one weight-setting algorithm to another in terms
of overall accuracy and basin-size, a sequence of runs of
each algorithm was performed. Separate runs were
performed for each data set. For each run, a number of
patterns were randomly selected from the available data.
Each data set was tested with three quantities of memorized
patterns, with 0.5N patterns, N patterns, and 1.5N patterns.
Several hundred runs were made, each time selecting
patterns from the available data set randomly. Final

ot
al

 c
or

re
ct

 (
no

rm
al

iz
ed

)

Figure 1 - Random Data, 10 nodes, 5 patterns (avg over 800 runs)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

bit-error

NAT

PI

Hebbian

Figure 3 - Random Data, 10 nodes, 15 patterns (avg over 725 runs)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

bit-error

NAT

PI
Hebbian

evaluation was done by looking at network performance
for all the selected patterns and noisy versions of those
patterns with up to 5 bits of noise. Each training algorithm
was used on each random set of patterns chosen. Results
for each experiment (each set of runs) were averaged.

To evaluate absolute storage density, rather than basin-size
or overall accuracy, only the random data set was used.
Several hundred runs were made for each tested number of
patterns while selecting new random data each run. Runs
for p = 5, 6, 7, … 29 patterns were performed, all with a
network of 10 nodes.

6 Results

This section presents simulation results for this work.
First, NAT's overall recall accuracy and spurious cycle
state performance is examined on both random and
correlated data. Then NAT's capacity relative to Hebbian
and Pseudo-Inverse training is examined. Finally, a few
other observations made during the course of this work are
discussed.

Except where noted, all the simulations discussed in this
section are done with t = 2 folds (input, hidden-layer,
output) for BPTT and k = 1 bit of error. Standard back-
propagation was used in BPTT, with a learning rate of
0.005. During training a 'best network so far' was kept and
updated after each epoch. If the network failed to
converge after a large number of epochs, training was
stopped and the best seen network was used.

Note that the Pseudo-Inverse implementation used in this
simulation is a modified, improved pseudo-inverse rule
with 'reduced self-connection'. A complete description of
this algorithm can be found in [6]. The decoupling
parameter used for this work is 0.15.

Another important note is that the simulator used in this
work used synchronous updating, which is known in some
cases to lead to pathological generation of cycle-states or
oscillations. Information on the quantity of cycle-states is
provided for reference. It is likely that if a different node-
updating scheme were used, that all three algorithms
would produce fewer cycles. Interestingly, few cycle
states were produced even with synchronous updating.

6.1 Basin Size With Random Data
Figure 1 is a graph of the average retrieval rates over 800
runs for NAT, Pseudo-Inverse and Hebbian Training. The
data set used was the random set described in section 4.
The network was trained with five 10-bit vectors, with a
new set of vectors chosen for each run. The horizontal axis
represents the error rate for all test patterns of a specific
bit-error - e.g. '2 bit-error' represents all those patterns that
differ from any of the memorized patterns by 2 bits.

Figure 1 shows that, for this experiment, NAT yields higher
retrieval rates for the memorized patterns (bit-error = 0) and
has a larger basin of attraction when considering all patterns
up to a hamming distance of 5 away from the memorized
patterns. Note that for the networks examined in this work,
on average, Hebbian training will not be able to make all the
memorized patterns stable states.

Figures 2 and 3 show similar data for 10 node networks
trained with random data, with 10 and 15 memorized
patterns, respectively.

Summarized accuracy results for the random data set is
found in Table 1. Each row provides results for one of the
experiments. Three experiments were performed, examining
basin size (overall accuracy gives an estimate of basin size)
for 5 memorized patterns, 10 memorized patterns, and 15
memorized patterns. For example, ‘random 5’ refers to an
experiment consisting of a certain number of runs, using
random data and 5 memorized patterns. Both the average

Figure 2 - Random Data, 10 nodes, 10 patterns (avg over 800 runs)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

bit-error

NAT

PI
Hebbian

number of memorized patterns stored, and the overall
recall accuracy are provided for each of the three training
algorithms. The numbers are averaged over all the runs for
that experiment. Overall recall accuracy is the percentage
of tested memories that correctly settle to the closest
memorized pattern. The memories tested are those that are
within 5 bits of error of any of the memorized patterns.
The last two columns are the ratio of the overall
performance of NAT compared to the other two
algorithms. So, for instance, the right-most number in the
first row of data shows that the NAT trained networks for
experiment ‘random 5’ correctly recalled 1.860 times
more of the test patterns than the Pseudo-Inverse trained
networks on the same data. The last line is an average of
each column to give an overall idea of relative
performance of the three algorithms. More detailed results
and a more complete description of this research is
available in [9]

On random data (uniformly distributed 10-bit vectors)
NAT trained networks correctly recalled 1.227 times more
of the test vectors than Hebbian trained networks – 22.7 %
better. Note however that the Hebbian trained networks
were not able to store more than a few of the memorized
patterns as stable states, while NAT networks typically
stored all of the desired memorized patterns. The overall
accuracy of a network that does not have at least most of
the intended patterns as stable states is less interesting. On
the same data, NAT was 6.128 times better than Pseudo-
Inverse trained networks – 613% better. This extreme
difference is due to the poor behavior of Pseudo-Inverse
trained networks at or above saturation (p > N). As
discussed previously, these networks tend to latch any bit-
pattern placed in them.

In general, in this work, Hebbian training was not able to
effectively compete with either NAT or Pseudo-Inverse
training. In any application of a Hopfield associative
memory, having 50% or less of the desired memorized
patterns as stable states would not be acceptable behavior.
In this work a network was considered faulty if it could
not memorize most of the desired patterns and in those
cases was not considered when comparing network
performance.

In Table 1 there is an interesting anomaly. The overall
accuracy of Hebbian training for ‘random 15’ appears to

be better than for the other algorithms. The overall recall
accuracy is higher for this network but the average number
of memories that were memorized from this set is 7. It
appears that Hebbian training produced networks that were
good at recalling only a subset of the memorized patterns.
For that subset however, recall accuracy was quite good
leading to good overall accuracy. However, with only 7 of
the memorized patterns as stable states, the Hebbian-trained
networks can not compete.

6.2 Spurious Memories with Random Data
Another important factor in examining the performance of
NAT is the number of spurious states that are produced by it,
compared to the other algorithms. Table 2 shows the average
percentage of spurious memories generated by the three
training algorithms in the same experiments reported in
Table 1 – those experiments done on the random data set.

On the random data tests, NAT had 5% less spurious
memories on one set, and about 4% more on the other two
data sets than Hebbian Trained networks. On all three sets,
NAT had at least 5% less spurious memories than Pseudo-
Inverse trained networks. The performance of NAT trained
networks on the other data sets tended to be a few percent
worse than Hebbian trained networks and 10% to 20% better
than Pseudo-Inverse trained networks. The results show that
NAT outperforms Pseudo-Inverse for this data.

While Hebbian trained networks sometimes had less
spurious memories, it is important to remember that these
networks often stored only a small percentage of the desired
memorized patterns. NAT trained networks had only
slightly more spurious memories while memorizing a much
larger number of memorized patterns.

6.3 Performance on Correlated Data
Performance of Hopfield networks on non-correlated data is
what is typically found in studies of this type. However, for
Hopfield networks to be useful as associative memories, it is
more important to know the typical performance found on
data more representative of what the system will be using.
Generally, data that is interesting has correlations whether or
not they are known in advance. Hence, performance of NAT
was evaluated on several data sets that are not random.

NAT Pseudo-Inverse Hebbian

of mem overall acc # of mem overall acc # of mem overall acc

random 5 5.000 0.408 5.000 0.219 3.653 0.258

random 10 9.961 0.158 10.000 0.014 3.319 0.120

random 15 14.301 0.096 15.000 0.018 7.548 0.122

average 9.754 0.221 10.000 0.084 4.840 0.167

NAT acc /

PI acc ratio

1.860

11.334

5.190

6.128

Heb acc ratio

NAT acc /

1.585

1.311

0.786

1.227

Table 1 - Accuracy Summary Per Algorithm (random data set)

NAT % of PI % of Hebb % of

spurious spurious spurious

random 5 53.952 58.428 65.803

random 10 77.405 93.443 73.515

random 15 84.562 98.074 80.822

average 71.973 83.315 73.380

NAT/PI

ratio

0.923

0.828

0.862

0.871

NAT/Heb

ratio

0.820

1.053

1.046

0.973

Table 2 - Percentage of Spurious Memories Summary
(random data set)

In Table 3, the results for average performance on the
LED, the Zoo, the House Voter, the Hepatitis, and the
Horse Colic data sets are shown. This Table is read in the
same way that Table 1 is read. Each line represents a
single experiment of many runs selecting a random
number of patterns equal to the digit in the first column.
`led 3’ represents the average performance of the three
training algorithms over numerous runs with 3 patterns

randomly chosen from the data set each time. The first
several columns represent the overall recall accuracy for
each algorithm on the test set. The patterns tested are all
those patterns up to 5 bits distant (hamming distance) from
any of the memorized patterns. The results on these
patterns give an estimate of the sizes of the basins of
attraction in each network. The overall accuracy reported
is the percentage of patterns in the test set that lie within
the proper basin of attraction.

As expected, Hebbian trained networks behave very
poorly on this data. The correlations in the data reduce
performance and the size of the patterns restricts the
networks to a very low number of nodes compared to what
would be needed to store all the patterns correctly using
Hebbian training.

Pseudo-Inverse trained networks have reasonable
performance for those tests in which the number of stored
memories is less than the number of nodes in the network.
For the other tests, those where the number of memorized
patterns was greater than or equal to the number of nodes
in the network, Pseudo-Inverse training produced the
pathological networks discussed previously. The network
simply latches any value put into it. All the memorized
patterns are stable states, but, every other bit pattern is also

a stable state of the network. These networks had as much
as 96% of the test patterns as spurious memories.

The performance of NAT was very good on these data sets.
Typical performance shows NAT yielding basins of
attraction several times larger than those produces by either
Pseudo-Inverse or Hebbian training. The overall accuracy of
NAT was an average of 27.8 times larger than Pseudo-
Inverse, and 2.2 times larger than Hebb training. The worst
that NAT did on correlated data still produced basins at least
71% larger than those produced by Pseudo-Inverse (colic 8).

While Hebbian trained networks appear to be performing
better than Pseudo-Inverse trained networks for this data, the
average number of memorized patterns stored in the Hebbian
networks was a fraction of what the other algorithms could
store.

Table 4 shows data on the average number of spurious
memories produced during each experiment.

On average, NAT produced about 14% fewer spurious
memories than Pseudo-Inverse, and about 7% more spurious
memories than Hebbian. Again, keep in mind that the
Hebbian-trained networks had only a small fraction of the
desired memorized patterns as stable states.

6.4 Other Experiments
The overall capacity of NAT trained networks was estimated
by training a 10 node network with a varying number of
random patterns. 400 runs were made with each number of
memorized patterns and the results were averaged. Figure 4
shows the results. Accuracy is over 90% for those networks
memorizing under 20 patterns. At 20 patterns, the accuracy

Percentage of Spurious Memories Ratio

NAT PI Heb

led 3 47.445 37.867 51.496

led 7 57.730 71.829 49.083

led 10 61.820 89.164 48.203

zoo 7 39.979 62.777 50.125

zoo 15 65.831 76.698 54.497

zoo 22 73.879 85.325 55.163

voter 8 51.445 72.790 75.926

voter 16 82.518 84.788 82.322

voter 24 89.642 96.482 80.743

hepatitis 10 69.149 85.993 73.447

hepatitis 13 78.298 89.943 73.530

hepatitus 16 83.488 96.008 75.456

colic 3 47.381 41.734 46.923

colic 5 49.103 61.825 41.215

colic 8 48.044 70.201 39.278

average 63.050 74.895 59.827

NAT/PI

1.253

0.804

0.693

0.637

0.858
0.866

0.707

0.973

0.929

0.804

0.871

0.870
1.135

0.794

0.684

0.859

NAT/Heb

0.921

1.176

1.282

0.798

1.208

1.339

0.678

1.002

1.110

0.941

1.065

1.106

1.010

1.191

1.223

1.070

Table 4 – Percentage of Spurious Memories Summary
(correlated data sets)

NAT Pseudo-Inverse Hebbian

mem overall # mem overall # mem overall

led 3 3.000 0.505 3.000 0.288 2.310 0.342

led 7 6.989 0.379 7.000 0.074 2.872 0.189

led 10 9.947 0.336 10.000 0.108 5.507 0.243

zoo 7 6.99 0.515 7.000 0.175 2.750 0.196

zoo 15 14.927 0.263 15.000 0.004 3.007 0.097

zoo 22 21.545 0.193 22.000 0.002 4.478 0.087

voter 8 7.891 0.395 8.000 0.114 2.101 0.099

voter 16 15.571 0.119 16.000 0.001 1.021 0.033

voter 24 22.156 0.069 24.000 0.001 1.690 0.029

hepatitis 10 9.995 0.231 10.000 0.015 2.379 0.086

hepatitis 13 12.951 0.153 13.000 0.004 2.194 0.065

hepatitus 16 15.916 0.113 16.000 0.004 2.971 0.061

colic 3 3.000 0.513 3.000 0.271 2.176 0.376

colic 5 4.870 0.486 5.000 0.189 2.371 0.327

colic 8 7.483 0.488 8.000 0.285 5.874 0.439

average 10.882 0.317 11.133 0.102 2.913 0.178

NAT/PI

ratio

1.756

5.157

3.096

2.940

61.229

79.671

3.459

113.204

59.528

15.717

38.698

26.433

1.894

2.569

1.715

27.804

NAT/Heb

ratio

1.476

2.007

1.380

2.622

2.706

2.212

4.001

3.661

2.357

2.681

2.357

1.864

1.366

1.484

1.111

2.219

Table 3 - Accuracy Summary Per Algorithm (correlated data sets)

drops to just below 90%. Given this data the capacity of
NAT trained networks is approximately p = 2N. Even for
p > 2N there were a high percentage of networks that had
perfect recall. With p = 3N, overall accuracy is over 75%.

Another experiment was performed to determine if
training with even noisier data would have a beneficial
effect. Training with noisier data appears to have no
positive effect on network performance. Training time was
increased significantly with no performance gain.

Finally, another experiment was performed to determine if
increasing the number of time steps with BPTT would
increase performance. Performance for t = 3, t = 5 for the
same data in table 1 was examined. It was noticed that
there was some small benefit for training with increased t.
At best, improvement of overall accuracy by a few percent
was achieved. The learning rate for BPTT had to be
lowered to 0.0005 to encourage convergence. Even with
this adjustment, training was much less likely to converge.
Increasing t seems to produce slightly larger basins of
attraction, but convergence may not be as likely and
training time is increased.

7 Conclusions

A new approach to training a generalized Hopfield
network was developed and evaluated in this work.

In essence, the algorithm is training Hopfield networks
using Back-Propagation Through Time, using noisy
examples. This is referred to as Noisy Associative
Training, or NAT.

Results show that Hopfield networks storing random
patterns trained in this way typically have many times the
capacity of networks produced with either Hebbian or
Pseudo-Inverse training (average 6.1 times greater recall
accuracy on random data, worst case 1.8 times greater
recall accuracy on 5-pattern experiment). Additionally,
these networks have an average of 13% fewer spurious
memories compared to Hebbian or Pseudo-Inverse trained
networks. Typically, networks memorizing over 2N
(where N is the number of nodes in the network) patterns
are produced. Performance on correlated data shows an

even greater improvement over networks produced with
either Hebbian or Pseudo-Inverse training – An average of
27.8 times greater recall accuracy, with no worse than 1.715
times greater recall accuracy, and with an average of 14%
fewer (25% greater, worst case) spurious memories.

8 References

[1] Hopfield, J.J. (1982) Neural Networks and Physical Systems
with Emergent Collective Computational Abilities. Proc. of
the National Academy of Sciences USA, 79, 2554-2558.

[2] Hebb, D.O. (1949) The Organization of Behavior. New
York: Wiley.

[3] Personnaz, L. Guyon, I. And Dreyfus, G. (1985) Information
Storage and Retrieval in Spin-Glass-like neural networks.
Journal de Physique Lettres, 46:359-365.

[4] Personnaz, L. Guyon, I. And Dreyfus, G. (1986) Collective
computational properties of neural networks: New learning
algorithms. Physical Review A, 34:4217-4228.

[5] Kanter, I. & Sompolinsky, H. (1987) Associative Recall of
Memory Without Errors. Physical Review A 35, p. 380-392.

[6] Gorodnichy, D. O. The optimal Value of Self-connection or
How to Attain the Best Performance with Limited Size
Memory” In Proceedings of IJCNN ’99, Washington DC,
1999.

[7] Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986)
Learning Internal Representations by Error Propagation in
Rumelhart & McClelland, editors, Parallel Distributed
Processing: Explorations in the microstructure of cognition;
Vol. 1 Foundations, The MIT Press, Cambridge, MA.

[8] Murphy, P. M. & Aha, D. W. UCI Repository of machine learning
databases http://www.ics.uci.edu/~mlearn/MLRepository.html Irvine,
CA: University of California, Department of Information and
Computer Science.

[9] Clift, F. Improving the Performance of Hopfield Associative
Memories. Masters Thesis, Brigham Young University –
Computer Science Department, Provo UT, April 2001

Figure 4 - Capacity Test Results (400 runs each)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35
Number of Memorized
Patterns %

 t
ot

al
 m

em
or

iz
ed

 p
at

te
rn

s
T

ot
al

 C
or

re
ct

